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Benchmarking bacterial taxonomic 
classification using nanopore 
metagenomics data of several 
mock communities
Alexander Van Uffelen  1,2,3 , Andrés Posadas1,2,3 , Nancy H. C. Roosens1 , Kathleen Marchal  2,3,4 ,  
Sigrid C. J. De Keersmaecker  1  & Kevin Vanneste  1  ✉ 

Taxonomic classification is crucial in identifying organisms within diverse microbial communities 
when using metagenomics shotgun sequencing. While second-generation Illumina sequencing still 
dominates, third-generation nanopore sequencing promises improved classification through longer 
reads. However, extensive benchmarking studies on nanopore data are lacking. We systematically 
evaluated performance of bacterial taxonomic classification for metagenomics nanopore sequencing 
data for several commonly used classifiers, using standardized reference sequence databases, on the 
largest collection of publicly available data for defined mock communities thus far (nine samples), 
representing different research domains and application scopes. Our results categorize classifiers 
into three categories: low precision/high recall; medium precision/medium recall, and high precision/
medium recall. Most fall into the first group, although precision can be improved without excessively 
penalizing recall with suitable abundance filtering. No definitive ‘best’ classifier emerges, and classifier 
selection depends on application scope and practical requirements. Although few classifiers designed 
for long reads exist, they generally exhibit better performance. Our comprehensive benchmarking 
provides concrete recommendations, supported by publicly available code for reassessment and fine-
tuning by other scientists.

Introduction
Metagenomics considers the study of genetic material from uncultured microorganisms by sequencing1. 
Through directly sequencing the DNA in a sample, metagenomics allows detecting a wide range of microor-
ganisms and their corresponding genes without isolation, cultivation or any a priori knowledge. Metagenomics 
therefore has the potential to be assumption-free and unbiased, rendering it possible to fully characterize the 
microbiome of a complex sample2,3. Moreover, without the need for isolation, it becomes possible to analyze 
organisms that are not cultivable or have specific (unknown) growth conditions. Consequently, metagenomics 
has been successfully employed in a wide array of domains in life sciences such as the study of the human gut4, 
sewage water5, soil and water quality6, rapid identification of the etiological agent, known or novel, in clinical 
settings7, and the detection of foodborne pathogens during outbreak investigation8.

All DNA is sequenced in shotgun metagenomics, whereas amplicon sequencing selectively targets marker 
genes within specific DNA regions, such as the 16S rRNA genes for bacteria and archaea, and the internal tran-
scribed spacer regions (ITS) for fungi2. Significant improvements in sequencing technologies in recent years 
have made shotgun metagenomics a more attractive method for broader applications9. The most commonly 
used sequencing technology currently is Illumina, a second-generation sequencing technology. While Illumina 
provides massive parallel sequencing and a low error rate, it can typically only produce reads of lengths 100–
300 bp. These short reads restrict investigating complex genomes and unraveling repetitive elements10. By con-
trast, long-read third-generation sequencing offers much longer reads spanning several thousand of bases and 
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provides the possibility to characterize samples more accurately. An especially interesting platform is offered by 
Oxford Nanopore Technologies (ONT), through the release of their MinION device with a low cost per million 
reads, fast real-time sequencing and long read lengths up to several 10,000 s of bases11. Despite exhibiting higher 
error rates, significant improvements in recent years have reduced this error rate, and the new Q20 chemistry 
promises a modal 99% accuracy with reads length of around 10–30kb12,13. Pacific Biosciences (PacBio) consti-
tutes an alternative long-read sequencing technology. While PacBio can offer higher accuracy through the gen-
eration of ‘high-fidelity’ reads, this advantage comes at the cost of read length14. Additionally, its higher capital 
investment and run costs may be a limiting factor15. Consequently, ONT has been increasingly adopted by the 
scientific community16, including for shotgun metagenomics applications17–20.

An essential step in many shotgun metagenomics applications is taxonomic classification, which assigns 
sequencing reads to specific taxonomic categories to identify the taxonomic groups they originate from. This 
is typically done by comparing sequencing reads to a database with reference sequences21. Both taxonomic 
classifiers and profilers are commonly used. A classifier assigns a taxonomic identification to each read by com-
paring it to a reference database filled with representative sequences. Examples of popular taxonomic classifi-
ers used in this study include Kraken222 and KMA23. In contrast, taxonomic profilers do not classify all reads 
but instead generate a taxonomic profile with estimates of taxonomic relative abundances, often based on 
clade-specific markers representing the distinctive signatures of species21,24. Examples of popular taxonomic 
profilers used in this study include MetaPhlAn325 and mOTUs226. Classifiers can be divided into DNA-to-DNA 
or DNA-to-protein methods depending on whether the reference database is composed of nucleic acid or pro-
tein sequences, respectively. DNA-to-protein methods are considered more sensitive towards new and highly 
variable sequences compared to DNA-to-DNA methods due to the degeneracy of the genetic code27,28. However, 
only reads with coding regions can be classified, and the complexity cost is higher as six reading frames need 
to be analyzed28. A profiler generates a taxonomic profile by relying on smaller taxon-specific regions and 
comprises a third category of DNA-to-marker methods that compare reads to a reference database containing 
clade-specific markers. Because these markers only occur in certain regions of the genome, a large fraction of 
reads will not be classified. The use of markers renders profilers less complex, although markers need to be con-
tinuously updated as newly sequenced genomes and species are reported to find representative clade-specific 
markers in new genomes21, and the potentially lower representativeness of DNA-to-marker databases hence 
could incur a performance cost28. The distinction between classifiers and profilers is not always clear-cut, as pro-
filers typically employ read classification approaches to compute profiles, and the output of taxonomic classifiers 
can also be converted into profiles containing relative abundances28. Therefore, for the sake of convenience, we 
will refer to both methods as classifiers in this study. The rapidly increasing popularity of long-read sequencing 
has however not been on par with the development of new algorithms and applications specifically adapted for 
classification of long-read sequencing data. Consequently, taxonomic classification of long-read metagenomic 
data is often performed by tools designed for short reads, although there has been a recent increase in the num-
ber of long-read classification tools such as MetaMaps29, MEGAN-LR30 and deSAMBA31.

The choice of reference database to be used with the classifier is paramount. The detection of a certain species 
depends not only on the classifier’s ability, but also on the presence and the quality of a reference sequence for 
that species in the database. The classifier’s performance is hence dependent on the used database that should be 
as comprehensive as possible. However, increasing the number of reference sequences (and therefore complete-
ness) can risk introducing sequences of lower quality, thus also increasing the chance for faulty taxonomic clas-
sifications due to more potential matches. A balance should therefore be struck between the completeness and 
quality of a reference database28, and using different databases can introduce unwanted biases when comparing 
classifiers32–34. Most classifiers include pre-built reference databases that are constructed from various sources. 
Comparing classifier performance using these default databases may yield differences not solely attributable to 
the classifier itself, but also to underlying reference database34,35. To eliminate database biases in benchmarking 
studies, a reference database should therefore ideally be used for each type of classifier that contains exactly 
the same sequences, although this is often impossible for DNA-to-marker methods because their databases are 
algorithmically constructed and specifically tailored to their associated classifiers.

With the increasing popularity of shotgun metagenomics, researchers rightfully saw the need for mean-
ingful comparison and benchmarking to guide selecting the best taxonomic classifier to answer their research 
questions28,36–42. For instance, the Initiative for the Critical Assessment of Metagenome Interpretation 
(CAMI) is a community-driven effort that evaluates methods for metagenome analysis43,44 to establish stand-
ards for benchmark datasets, evaluation procedures and performance metrics. To evaluate performance, 
often synthetic, i.e., simulated, datasets are used. However, because metagenomic data is highly complex, 
synthetic datasets are likely to provide a simplified version, potentially missing key characteristics of the 
studied data45. Empirical data derived from defined mock communities (DMCs) therefore constitute a better 
alternative. A DMC is a well-defined and intentionally constructed mixture of known organisms. Sequencing 
DMCs has the advantage of knowing exactly what is expected, i.e., the ‘ground truth’ to which the output 
of the classifiers can be compared, and producing ‘real’ metagenomic data without potential biases from 
simulation35,46.

Efforts such as CAMI have provided valuable insights into classifier performance, but the majority of bench-
marks have been focused on short-read data. Meyer et al.43 and McIntyre et al.40 included long-read data, but 
this evaluation was limited. Only few studies have evaluated taxonomic classification performance using long 
reads. Marić et al. evaluated thirteen tools on long-read data and concluded that the majority of tools, for both 
short and long reads, are prone to reporting organisms not present in the dataset47. However, only one ONT 
dataset originated from a real DMC (i.e., not simulated), and evaluation of performance was limited to a select 
few metrics without providing a broader systematic investigation. Portik et al. evaluated 11 tools and concluded 
that short-read classifiers required heavy filtering to achieve acceptable precision24. They found that long-read 
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datasets produced better results than short-read datasets, but also included only one real DMC, sequenced with 
two different ONT chemistries. Additionally, they did not use the same database for the same type of classifier. 
Other benchmarking studies primarily focused on the nuances of the sequencing technology over the evaluation 
of classifiers, limiting both the quantity and depth of classifier assessments48–51. Consequently, little guidance is 
available for researchers wishing to perform taxonomic classification using long-read nanopore sequencing data.

In this paper, we extend the aforementioned studies through a systematic investigation of the performance of 
taxonomic classification of ONT data. We consider classifiers that fulfil three requirements: open-source, locally 
installable and allowing customization of the database. The underlying databases from the same type of classifier 
were harmonized to reduce biases introduced by using different reference databases. Performance was then 
evaluated in depth per classifier per sample, using a total of nine DMCs with different compositions, to provide 
a systematic evaluation of performance of nanopore long-read taxonomic classification.

Methods
Defined mock communities. An extensive literature search was conducted to find DMCs of microor-
ganisms for which ONT data was publicly available, resulting in nine datasets, summarized in Table 1. For all 
nine DMCs, ONT data generated with the R9 technology was available, and for one DMC also data generated 
with the R10 technology. The samples ranged from containing a relatively limited number to a large number of 
species with different distributions. A sample with an ‘even’ distribution contained all species with equal relative 
abundances. A ‘staggered’ distribution indicated that the relative abundances differed, although equal abundances 
could occur for some species. Lastly, one sample had a logarithmic distribution for which each consecutive rel-
ative abundance was one-tenth of the previous one. Note that some DMCs were originally available as cells, 
whereas others were available as DNA. This information, together with in-depth detailed information per DMC 
on the exact species and their relative abundances, is available in Supplementary Table S3. Additionally, read 
length and mean read quality distribution plots are also available in the Supplementary Figures S8–S17. Since 
the DMCs were collected from different studies, they did not contain the same overall sequencing yield per 
sample. To ensure that differences in coverage per sample did not introduce any unwanted bias, each DMC was 
randomly subsampled to have the same number of total bases as the DMC with the lowest number of bases. 
Rasusa v0.7.1 was used to randomly downsample the DMCs to 3,125,920,499 bases with a seed set to 152. Prior to 
downsampling, the R10 dataset was subsampled to match both the read length distribution and read count of the 
corresponding R9 dataset to remove the effect of read length on classification when comparing the R9 and R10 
chemistry. Table 2 provides an overview of various sequence metrics before and after subsampling of the datasets. 
After downsampling, the reads of each DMC were filtered to only retain reads with a length higher than 1000 and 
a mean Phred score higher than 7.

Taxonomic classifiers. A literature review was performed to find classifiers commonly employed for or 
specifically designed for long-read data, encompassing also short-read methods frequently applied to long-read 
data. Every classifier considered for benchmarking is listed in Table 3. We imposed three rules on taxonomic 

Name Source Catalog
Chemistry 
version Composition Distribution Link Run accession

DMC 
identifier

Zymo D6300 Zymo Research D6300 R9 8 bacteria; 2 fungi Even https://doi.org/10.1093/gigascience/giz04371 ERR290622772 Zymo_D6300

Zymo D6310 Zymo Research D6310 R9 8 bacteria; 2 fungi Log https://doi.org/10.1093/gigascience/giz04371 ERR290622973 Zymo_D6310

Zymo D6322 Zymo Research D6322 R9 7 bacteria 1 fungus Even, except 
the fungus https://doi.org/10.1038/s41592-022-01539-774 ERR725574275 Zymo_D6322

Zymo D6322 Zymo Research D6322 R10 7 bacteria 1 fungus Even, except 
the fungus https://doi.org/10.1038/s41592-022-01539-774 ERR728798876 Zymo_

D6322_r10

Zymo D6331 Zymo Research D6331 R9 1 archaea; 14 bacteria; 
2 fungi Staggered https://doi.org/10.1186/s40168-022-01415-817 SRR1791320077 Zymo_D6331

Bei Resources 
HM-276D Bei Resources HM-

276D R9 20 bacteria Even https://doi.org/10.1016/j.isci.2020.10122378 SRR1170026579 BeiRes_276D

Bei Resources 
HM-277D Bei Resources HM-

277D R9 20 bacteria Staggered https://doi.org/10.1016/j.isci.2020.10122378 SRR1170026480 BeiRes_277D

Strain 
madness 1 Meslier, V., 

Quinquis, B., 
Da Silva, K. 
et al.

/

R9 22 archaea; 45 bacteria

Staggered https://doi.org/10.1038/s41597-022-01762-z81

ERR976578082 StrainMad_1

Strain 
madness 2 R9 22 archaea; 61 bacteria ERR976578183 StrainMad_2

Strain 
madness 3 R9 14 archaea; 46 bacteria ERR976578284 StrainMad_3

Table 1. Used DMCs to benchmark the classifiers. The first column contains the dataset names. The second 
and third columns give the origin and catalog number (if applicable). The fourth column shows the nanopore 
chemistry used for sequencing. The fifth and sixth columns provide information on the composition of each 
dataset. The seventh column refers to the DOI number from where the datasets originate. The eighth column 
refers to the run accession number of the sequencing data. The last column is used a reference key to the 
DMCs throughout the text and figures. More detailed information on the exact composition of the DMCs, 
including their relative abundances, is available in Supplementary Table S3. Abbreviations: DMC: Defined Mock 
Community; DOI: Digital Object Identifier.
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classifiers included in our study. First, the classifier should be open-source. This ensures that the algorithm used is 
not a ‘black box’, can be peer-reviewed by others, and is free to increase accessibility. Second, it had to be possible 
to locally install the classifier to efficiently incorporate into in-house pipelines and safeguard ownership of any 
analyzed data. A local installation is also independent of external tools and remains unaffected by one’s internet 
speed or potential downtime. Third, the classifier should allow building a custom database compatible with the 
classifier to guarantee uniformity amongst reference databases and allow using reference sequences that may not 
be suitable for public sharing.

DMC identifier Num seqs Sum len Min len Avg len Max len Q1 Q2 Q3 N50 Q20 (%) Q30 (%)

Raw

Zymo_D6300 3,491,078 14,007,156,825 5 4012.3 107972 1907 3275 5102 5213 15.18 0

Zymo_D6310 3,667,007 16,032,264,247 5 4372 117224 2505 3822 5576 5290 13.34 0

Zymo_D6322 8,851,918 31,995,546,765 15 3614.5 172125 561 1063 2782 13837 65.03 30.84

Zymo_D6322_r10 18,831,686 53,221,766,826 10 2826.2 593108 490 1058 2663 7495 77.86 62.15

Zymo_D6331 5,757,345 28,443,158,238 1000 4940.3 50325 3035 4572 6424 5913 65.26 25.44

BeiRes_276D 11,610,183 35,578,375,166 5 3064.4 472762 660 1374 3244 6828 17.43 0

BeiRes_277D 18,254,839 72,312,638,112 1 3961.3 214792 898 2065 4201 7857 39.24 10.06

StrainMad_1 696,944 3,125,920,499 499 4485.2 45135 2072 4206 6311 6086 21.63 0

StrainMad_2 831,802 3,690,876,744 499 4437.2 60869 2013 4154 6268 6057 21.63 0

StrainMad_3 791,715 3,412,736,796 499 4310.6 42254 2070 4049 6033 5788 21.36 0

Downsampled

Zymo_D6300 779,595 3,125,921,589 5 4009.7 57563 1905 3276 5102 5212 15.16 0

Zymo_D6310 714,975 3,125,926,503 5 4372.1 58449 2501 3823 5574 5292 13.35 0

Zymo_D6322 864,519 3,125,936,623 84 3615.8 135502 561 1061 2779 13867 65.06 30.86

Zymo_D6322_r10* 864,025 3,125,958,626 79 3617.9 157706 562 1063 2783 13927 78.23 62.66

Zymo_D6331 632,692 3,125,922,651 1000 4940.7 34278 3032 4573 6422 5911 65.27 25.44

BeiRes_276D 1,020,565 3,125,922,929 5 3062.9 219166 661 1376 3240 6817 17.41 0

BeiRes_277D 789,968 3,125,921,897 1 3957 214792 897 2069 4200 7827 39.27 10.1

StrainMad_1 696,944 3,125,920,499 499 4485.2 45135 2072 4206 6311 6086 21.63 0

StrainMad_2 704,142 3,125,924,133 499 4439.3 60869 2012 4154 6273 6063 21.63 0

StrainMad_3 725,300 3,125,922,602 499 4309.8 42254 2070 4048 6033 5787 21.36 0

Zymo_D6300 779,595 3,125,921,589 5 4009.7 57563 1905 3276 5102 5212 15.16 0

Table 2. Sequence statistics of the DMCs. The initial rows detail the raw DMCs, whereas the subsequent rows 
delineate the DMCs with subsampled reads, aiming for a total close to 3,125,920,499 bases. The second column 
shows the total number of reads, and the third column depicts the total number of bases. The fourth, fifth, and 
sixth columns display the minimum, average, and maximum sequence length, respectively. The seventh, eighth, 
and ninth columns represent the first quartile, median, and third quartile of read lengths. The tenth column 
denotes the N50 of the sequence length, and the eleventh and twelfth columns indicate the percentage of bases 
with quality scores greater than 20 and 30, respectively. *Zymo_D6322_r10 was downsampled to match the 
read length distribution and read count of Zymo_D6322.

Method type Database Classifier Included in benchmark Reason for exclusion

Short-read DNA Bracken55 Yes —

DNA Centrifuge56 Yes —

DNA Kraken222 Yes —

Protein Kaiju27 Yes —

Protein MMseqs257 Yes —

Marker MetaPhlAn325 Yes —

Marker mOTUs226 Yes —

Long-read DNA BugSeq53. No Open-source, locally installable and custom database

DNA deSAMBA31 No Custom database

Protein DIAMOND + MEGAN54 No Custom database

DNA MetaMaps29 No Custom database

Short and long-read DNA CCMetagen58 Yes —

DNA KMA23 Yes —

Table 3. Classifiers considered in this study. The first column shows the type of input the classifiers were designed 
to handle. The second column displays the employed reference database. The third column lists the classifiers. The 
fourth and fifth column indicate whether the classifier was included in this study, and why not if omitted.

https://doi.org/10.1038/s41597-024-03672-8
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Four classifiers specifically intended for long-read data were not included because they did not meet our 
inclusion criteria. Although deSAMBA31 has an option to build a custom database, the build time exceeded 
60 days after which the process was manually killed. MetaMaps29 exhibited unsolvable errors during the 
database building that could not be resolved. BuqSeq53 was not evaluated because it violates all three rules. 
DIAMOND + MEGAN (community edition)54 requires to ‘meganize’ the output of DIAMOND before passing 
to MEGAN. This process needs a file that matches the alignments to the corresponding taxonomy, which can 
only be custom made when using the ultimate edition, which violates the custom database and open-source 
criteria.

Finally, we evaluated the performance of nine taxonomic classifiers. Six classifiers were originally cre-
ated for short reads but also often used in studies for long reads: Bracken55, Centrifuge56, Kaiju27, Kraken222, 
MetaPhlAn325, and mOTUs226. One classifier for long reads was included: MMSeqs257. It should however be 
noted that MMSeqs2 was not specifically designed for long reads but rather for ‘metagenomic contigs’. Two 
classifiers were designed specifically for both short and long reads: KMA23 and CCMetagen58. All classifiers were 
used with their respective default parameters.

Employed reference databases. For both the DNA-to-DNA and DNA-to-protein methods, a harmo-
nized database approach was adapted, guaranteeing uniformity of databases among classifiers utilizing the same 
method. For DNA-to-DNA methods, the NCBI Reference Sequence Database (RefSeq)59, the most popular 
genomic and highly-curated reference database, served as the preferred genomic reference database. Following 
several curation steps, the employed genomic database contained 2,389,358 sequences, corresponding to 44,494 
genomes and 20,219 unique species (see Supplementary for curation details). An overview of the content of 
this database is available Table 4. The following DNA-to-DNA classifiers were evaluated: Kraken2, Bracken, 
Centrifuge, KMA and CCMetagen (see Supplementary for details).

For DNA-to-protein methods, we used the NCBI non-redundant (nr) protein sequence database that con-
tains entries from GenPept, Swissprot, the Protein Information Resource, the Protein Research Foundation and 
the Protein Data Bank60–62. After under undergoing curation steps, this yielded a protein database containing 
433,397,414 sequences, corresponding to 154,116 unique species (see Supplementary for curation details). An 
overview of the content of this database is available in Table 5. The following DNA-to-protein classifiers were 
evaluated: Kaiju and MMSeqs2 (see Supplementary for details).

A reference database for DNA-to-marker methods consists of unique clade-specific markers. Since multiple 
approaches exist to define these markers, each DNA-to-marker tool has its own approach and corresponding 
database, and a common database for all DNA-to-marker could not be created and the tool-specific databases 
were used. Although this violated one of our three ground rules for classifier inclusion (i.e., the possibility to 
create a custom database), we made an exception for DNA-to-marker methods to conceptually evaluate whether 
this type of classifier potentially could outperform the other two types. The following tools were evaluated: 
MetaPhlAn3 and mOTUs2 (see Supplementary for details).

Due to the databases being constructed at various time intervals, the volatility of taxonomic IDs within the 
NCBI Taxonomy database can lead to faulty conclusion when comparing the ground truth of the mock commu-
nities with the output of the classifiers. To address this, taxonomic IDs from both the ground truth and classifier 
outputs were synchronized to correspond to the same time point using Taxonkit v0.13.0 (See Supplementary 
for details)63.

Performance evaluation. The evaluation was performed in two separate rounds. First, classifiers were eval-
uated in a ‘per-sample’ manner where each sample was considered separately. Per sample, all performance metrics 
were calculated for each classifier and an output report was generated64. Second, classifiers were evaluated in a 
‘per-classifier’ manner. For each classifier, results of all datasets with the R9 chemistry were aggregated and one 
output report was generated64. The R10 dataset of Zymo D6322 was however excluded from this second step since 
not enough R10 datasets were present for a systematic investigation. Instead, it was specifically compared to its 
R9 counterpart.

Per sample evaluation. Performance metrics. Classifiers were evaluated by comparing the taxonomic 
names with the ground truth (i.e., the known organisms of the DMCs). Performance was evaluated at both the 
genus and species levels. Higher taxonomic ranks were not considered. If classification was possible at genus but 

Branch Assembly level Genomes # Unique

Archaea Complete Chromosome Scaffold 828 30 orders; 48 families; 160 genera; 563 species;

Bacteria Complete 31559 193 orders; 474 families; 1754 genera; 8103 species;

Fungi Complete Chromosome Scaffold 376 54 orders; 112 families; 192 genera; 369 species;

Protozoa Complete Chromosome Scaffold 87 23 orders; 27 families; 36 genera; 86 species;

Viruses Complete 11642 63 orders; 222 families; 1972 genera; 11096 species;

Other eukaryota (including human) / 2 2 orders; 2 families; 2 genera; 2 species;

Table 4. Genomic reference sequences used for DNA-to-DNA methods. The first column lists the taxon 
branch. The second column specifies the used NCBI filter for the assembly level. The third column lists the total 
number of genomes for a branch. The last column displays the unique number of taxonomic entries at the level 
of order, family, genus and species.

https://doi.org/10.1038/s41597-024-03672-8


6Scientific Data |          (2024) 11:864  | https://doi.org/10.1038/s41597-024-03672-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

not at species level, the taxonomic label was assigned based on the corresponding genus, accompanied by an 
‘unclassified’ designation at species level. Commonly used performance metrics to evaluate classifiers include 
precision, recall and F165. These are based on the number of true positives (TPs), false positives (FPs), and false 
negatives (FNs). A taxon detected by a classifier was considered a TP if it was present in the DMC. A FP consti-
tuted a detected taxon not present in the DMC. A FN constituted a taxon present in the DMC but not detected by 
a classifier. Precision, recall and F1 were then calculated as follows:

Precision TPs
TPs FPs (1)

=
+

Recall TPs
TPs FNs (2)

=
+

F
recall precision

precision recall
precision recall

TPs
TPs FPs FNs

1 2 2
( ) (3)

1 1 1
2

=
+

=
∗ ∗

+
=

+ +− −

Precision describes the percentage of all correctly detected taxa out of all detected taxa. A low precision 
indicates that many false positive taxa were detected. The recall, also referred to as sensitivity or true positive 
rate, is the percentage of correctly detected taxa out of all taxa present in the DMC. A low sensitivity indicates 
that many taxa present in a DMC were not identified. F1 is the harmonic mean between precision and the recall 
and represents both in one metric. In particular, extreme values of either precision or recall are punished more 
severely. An F1 score of 1 represents perfect precision and recall, while a score of 0 indicates that the precision 
and/or recall is 0.

Relative abundance estimation. Estimated relative abundances need to be as accurate as possible. However, not 
every classifier outputs the same kind of relative abundance. DNA-to-DNA methods and DNA-to-protein meth-
ods output a classification per read. The relative abundance is calculated as the number of reads classified as a 
certain taxon divided by the total number of reads. This is also referred to as sequence abundance66. Conversely, 
DNA-to-marker methods represent abundance of certain unique marker regions. This is also referred to as tax-
onomic abundance66. Relative abundances of species in DMCs were only available as sequence abundances and 
hence had to be converted to taxonomic abundances (see Supplementary).

The L1 distance is then calculated using both the relative abundances of taxa in the ground truth and those 
detected by the classifier (note that throughout this study, the relative abundance is always considered after omit-
ting the unclassified fractions). If vector p = (p1, p2, …, pn) and q = (q1, q2, …, qn) are the n-dimensional vectors 
containing the relative abundances of the taxa from the ground truth and the output of the classifier, respectively, 
the L1 distance (dL1 (p,q)) between vector p and q, equals:

∑= | − |
=

p qd p q( , )
(4)

L
i

n

i i1
1

The L1 distance can range between zero (i.e., all TPs are detected with the correct relative abundance) 
and a maximum of two (i.e., no TPs are detected). The L1 distance was calculated using the relative sequence 
abundance for DNA-to-DNA and DNA-to-protein methods, and the relative taxonomic abundance for 
DNA-to-marker methods (see Supplementary). Among the nine R9 datasets, BeiRes_277D lacked information 
regarding the exact abundances of the species, and was excluded from the L1 distance calculation.

Relative abundance threshold filtering. Frequently within taxonomic classification, relative abundance thresh-
olds are enforced for a detected taxon in order to be acknowledged as truly present28,40,67. This mitigates the 
effects of FPs and their penalty on precision, because FPs often turn up with low relative abundances. Since 
the relative abundance was computed from classified reads, abundance filtering was likewise done exclusively 

Branch Sequences # Unique

Archaea 9,370,693 45 orders; 63 families; 215 genera; 3788 species;

Bacteria 389,099,915 261 orders; 662 families; 4090 genera; 81478 species;

Fungi 25,501,044 215 orders; 752 families; 4375 genera; 29135 species;

Protozoa 1,308,088 25 orders; 30 families; 41 genera; 92 species;

Viruses 6,012,833 65 orders; 227 families; 2425 genera; 39622 species;

Eukaryote 1,801,040 1 order; 1 family; 1 genus; 1 species;

Root* 303,801 /

Table 5. Protein reference sequences used for DNA-to-protein methods. The first column lists the taxon 
branch. The second column shows the total number of protein sequences per taxon branch. The last column 
displays the unique number of taxonomic entries at the level of order, family, genus and species. *Protein 
sequences at the highest node (either root or cellular organism)
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based on classified reads. The effect of a relative abundance filtering on performance was investigated using 
precision-recall (PR) curves. These display the tradeoff between precision and recall when shifting the relative 
abundance threshold. By increasing this threshold, precision typically increases but recall decreases. The PR 
curve can be summarized with the area under the precision-recall curve (AUPRC), which is calculated using the 
trapezoid rule. A higher AUPRC represents a better model performance. A minimum value of 0 indicates the 
worst possible performance, while a maximum value of 1 denotes a perfect model where the TPs and FPs can be 
clearly separated by a specific relative abundance threshold.

Per classifier evaluation. For every classifier, the results of the R9 datasets were aggregated by calculating 
the medians of the precision, recall, F1, L1, and AUPRC scores, and depicted in boxplots with values overlayed. 
Additionally, the medians at every relative abundance threshold were also calculated. Their courses were plot-
ted in a line graph along with the minimum, maximum, 25th percentile (Q1), and 75th percentile (Q3) over all 
samples. Dotplots were created that showed for all classifiers their median precision and recall on the x-axis and 
y-axis, respectively, with three different error bars. First, error bars represented the interquartile range (IQR), i.e., 
Q3-Q1, showing the spread of precision and recall without any abundance filtering. For the second and third, 
error bars represented the shift of median precision and recall when using a 0.05% and 0.1% relative abundance 
threshold, respectively, to show the effect of abundance filtering on precision and recall.

Results
Performance evaluation of the different taxonomic classifiers. DNA-to-DNA methods. The 
evaluated DNA-to-DNA methods consisted of Kraken2, Bracken, Centrifuge, KMA and CCMetagen. Results 
described below are at species level (results at genus level are available in the Supplementary). As Bracken and 
CCMetagen are companion tools building upon the output of Kraken2 and KMA, respectively, their results are 
separately presented in the next paragraph. Kraken2, Centrifuge and KMA demonstrated low to very low pre-
cision for all datasets, i.e., a considerable number of species not present in the DMCs were predicted (Fig. 1A). 
Although the precision of KMA was low, its median precision was considerably higher (0.216) compared to 
Kraken2 (0.018) and Centrifuge (0.010). In contrast, all classifiers exhibited high recall, i.e., few false negative 
species were observed, and the majority of expected species were detected (Fig. 1B). A median recall of 1 was 
observed for all three classifiers. Moreover, with the exception of the three StrainMad and Zymo_D6331 datasets, 
the recall of all three classifiers was 1 for the other individual datasets. Although the recall of KMA was slightly 
lower than Centrifuge and Kraken2, the higher precision of KMA resulted in the highest median F1 score (0.352), 
followed by Kraken2 (0.035) and lastly Centrifuge (0.019) that introduced much more FPs than Kraken2 (in 
some samples more than twofold) (Fig. 1C). The L1 distances between all three classifiers were very similar, with 
a median L1 distance for Centrifuge, KMA, and Kraken2 of 0.667, 0.662, and 0.674, respectively (Fig. 1D).

CCMetagen, a companion tool to KMA that applies post-filtering, had a noteworthy high median precision 
(0.933). The post-filtering steps removed many FPs, substantially increasing precision compared KMA (0.216), 
but also unintentionally removed TPs, resulting in a decreasing median recall (0.600) compared to KMA (1). 
This was most notably observed in datasets with a staggered or logarithmic composition for which the pre-
dicted relative abundances of some FPs were close to those of actual TPs, rendering it difficult to separate both. 
Therefore, CCMetagen performed worst in terms of recall of all DNA-to-DNA methods, but still displayed the 
highest median F1 score of all DNA-to-DNA classifiers (0.706). CCMetagen had a slightly higher median L1 
distance (0.741) compared to Kraken2, KMA, and Centrifuge, because the smaller number of FPs increased the 
L1 distance but the higher number of FNs increased the L1 distance.

Bracken, a companion tool to Kraken2, re-distributes reads classified at higher taxonomic levels to either 
the genus or species levels. As Bracken does not introduce or remove new genera or species that were not yet 
detected by Kraken2, scores such as precision, recall, and F1 will not be altered by Bracken but rather the rela-
tive abundances of the detected genera and species are recalculated based on reads assigned to a higher rank. 
However, the L1 distance differences of Bracken compared to Kraken2 were often very limited. For some sam-
ples, such as BeiRes_276, Zymo_D6300, and Zymo_D6310, there was a decrease in L1 distance, and for some 
samples, such as the three StrainMad, Zymo_D6322 and Zymo_D6331, an increase was observed. This resulted 
overall in a marginal increase of the median L1 value of Bracken (0.673) compared to Kraken2 (0.667). Bracken, 
hence, did not exhibit a substantial difference of the relative abundances for the analyzed samples.

DNA-to-protein methods. The evaluated DNA-to-protein methods consisted of Kaiju and MMseqs2. Results 
described below are at species level (results at genus level are available in the Supplementary). Similar to 
DNA-to-DNA methods, both classifiers displayed only very low precision (Fig. 1A). Kaiju introduced more 
FPs than MMseqs2, resulting in a lower median precision (0.010) compared to MMseqs2 (0.060). Similar again 
to DNA-to-DNA methods, both methods displayed very high recall. However, MMseqs2 exhibited more FNs 
than Kaiju for multiple samples, resulting in lower median recall for MMSeqs2 (0.900) compared to Kaiju (1) 
(Fig. 1B). The median F1 score of MMseqs2 (0.113) was higher than Kaiju (0.021) (Fig. 1C), due to the pro-
nounced higher precision of MMseqs2 compared to Kaiju. Notwithstanding, the F1 score of MMseqs2 remained 
substantially lower compared to KMA (0.352). Both DNA-to-protein classifiers generally exhibited worse abun-
dance estimations than DNA-to-DNA classifiers with higher L1 distances, with MMSeqs2 (1.124) exhibiting a 
worse median L1 distance than Kaiju (1.059) (Fig. 1D).

DNA-to-marker methods. The evaluated DNA-to-marker methods consisted of MetaPhlAn3 and mOTUs2. 
Results described below are at species level (results at genus level are available in the Supplementary). mOTUs2 
displayed a substantially higher median precision (1) compared to MetaPhlAn3 (0.381) (Fig. 1A). MetaPhlAn3 
displayed a large spread in precision over the different DMCs. The samples that exhibited the lowest precision 
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were those with few species and a staggered or logarithmic composition. Overall, both DNA-to-marker meth-
ods consequently performed substantially better in precision compared to DNA-to-DNA and DNA-to-protein 
methods, excluding CCMetagen (0.933) that achieved a higher precision compared to MetaPhlAn3. However, 
recall values for both MetaPhlAn3 (0.645) and mOTUs2 (0.600) were also the lowest of all evaluated methods, 
excluding CCMetagen (Fig. 1B). Because MetaPhlAn3 and mOTUs2 employ different underlying databases that 
could not be harmonized, the introduction of FNs was however not solely dependent on the classifier’s capability, 
but also on the presence of the ground truth in their underlying reference databases. Investigation of the under-
lying databases indicated that mOTUs2 contained fewer taxa from the ground truth in two DMCs and more taxa 

Fig. 1 Performance evaluation for the different classifiers aggregated over all DMCs (generated with the R9 
technology) at species level. Each subplot represents a performance metric with panels A, B, C, D and E showing 
precision, recall, F1, L1, and AUPRC, respectively. For each subplot, the y-axis displays the metric value and the 
x-axis the different classifiers. For every classifier, the metric values of all datasets are summarized in a boxplot 
with the median value as horizontal line. Individual dots represent specific values for the different DMCs (dots 
can be superimposed upon each other if the same value was observed). Outliers are denoted by dots enclosed in 
a black circle. The legend in the lower right panel corresponds to the DMC identifiers presented in Table 1.
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in one DMC (see Table S1). mOTUs2 had a higher F1 score (0.733) compared to MetaPhlAn3 (0.516) (Fig. 1C), 
since mOTUs2 had the highest precision and comparable recall to MetaPhlAn3. Consequently, the F1 scores 
of DNA-to-marker methods were the highest compared to both DNA-to-DNA and DNA-to-protein methods, 
with again the notable exception of CCMetagen. The L1 distances for MetaPhlAn3 (0.817) and mOTUs2 (0.575) 
had a substantial difference between each other (Fig. 1D). Notably, mOTUs2 emerged as the classifier with the 
best L1 distance.

Relative abundance threshold filtering. Area under the precision-recall curve. Overall, DNA-to-DNA 
and DNA-to-protein methods displayed high to very high recall, but suffered from very low precision, drasti-
cally reducing their F1 scores, whereas DNA-to-marker methods displayed medium recall but very high pre-
cision, resulting in overall the best F1 scores (Fig. 1). Since classifier performance can be increased by setting 
an abundance threshold to remove FP predictions, albeit at the cost of increased FNs, PR plots were calculated 
for all classifiers (see Reports)64. The resulting AUPRC values at species level are presented in Fig. 1E (results at 
genus level are available in the Supplementary). Median AUPRC values were the lowest for the DNA-to-marker 
methods MetaPhlAn3 (0.533), mOTUs2 (0.600), and the DNA-to-DNA method CCMetagen (0.523). This 
can likely be explained because recall values of these classifiers were the lowest of all considered categories 
whereas precision values were the highest, so that further filtering could only reduce recall values with little 
effect on precision. DNA-to-protein based methods displayed an intermediate effect for both Kaiju (0.647) and 
MMSeqs2 (0.672), indicating a mildly positive effect of abundance filtering. Lastly, DNA-to-the DNA methods 
Kraken2 (0.830), Bracken (0.829), Centrifuge (0.838), and KMA (0.789) displayed the highest AUPRC values, 
excluding CCMetagen. This indicated a marked positive effect of relative abundance threshold filtering for 
DNA-to-DNA methods with respect to other methods. CCMetagen was an exception because this method per-
forms heavy filtering by default and therefore behaves more similar to DNA-to-marker tools. For all methods, 
there existed a marked effect of the considered samples on AUPRC values, as expected, since samples with fewer 
organisms and an even composition exhibited better AUPRC scores. For such samples, it was easier to find a 
threshold that removed many FP, alleviating the low precision of these methods, without an associated cost of 
decreasing recall.

Effect of abundance filtering on precision, recall and F1. As thresholds changed during filtering, precision and 
recall values also changed. An example is the Zymo_D6300 dataset for Kraken2 (1) and KMA (0.744) with dif-
ferent AUPRC values at species level. Kraken2 became the perfect classifier with a precision and recall of 1 when 
a filtering threshold of 2.5% was applied. Conversely, whereas KMA exhibited increased precision in the initial 
filtering thresholds, its precision experienced a rapid decline as the filtering threshold continued increasing due 
to a FP with a substantial relative abundance. Hence, although AUPRC values indicated DNA-to-DNA methods 
benefited from increased filtering, finding balanced filtering still requires evaluating precision, recall, and F1 
scores at different thresholds to select suitable thresholds for the different classifiers. Figure 2 displays the general 
trends of precision, recall and F1 at varying thresholds in steps of 0.05% for all classifiers at species level from 0% 
to 1.20% (results at genus level are available in the Supplementary). As expected, the precision benefitted from 
increasing relative abundance filtering thresholds, whereas recall was punished, although trends could differ 
between individual classifiers.

All DNA-to-DNA classifiers had their steepest increase in median precision before a threshold of 0.5%, but 
the slope of the increase could differ between classifiers, with KMA exhibiting a notably steeper slope com-
pared to Kraken2, Bracken, and Centrifuge. Additionally, both the final maximum median precision and the 
filtering threshold at which it was reached, could differ between classifiers. The maximum precision of Kraken2 
(1), Bracken (1), KMA (0.963) and Centrifuge (1) was reached at a threshold of 0.45%, 1.05%, 0.9% and 
0.65%, respectively. However, recall values dropped very fast with increased filtering. At the threshold where 
DNA-to-DNA classifiers reached their maximum precision, their median recall had decreased drastically. 
Using F1 scores as a balanced metric for both precision and recall, F1 values experienced the steepest increase 
up to a threshold of 0.05%, after which the increase slowed down or even decreased, suggesting this to be a 
well-balanced cutoff for DNA-to-DNA methods. CCMetagen was an outlier for DNA-to-DNA methods as this 
classifier inherently already performs filtering so that further filtering barely made a difference in precision 
but decreased recall fairly quickly. Although CCMetagen without filtering scored best in F1 scores compared 
to other DNA-to-DNA methods, even at very low filtering values, the other DNA-to-DNA methods surpassed 
CCMetagen, suggesting that the default filters applied to CCMetagen are potentially too strict and should be 
relaxed. While precision similarly increased for DNA-to-protein methods, its increase was much less steep. Both 
DNA-to-protein methods had their steepest increase before 0.2% with a similar slope. A maximum median 
precision of 1 was reached at high filtering thresholds of 2.3% and 1.85% for Kaiju and MMSeqs2, respectively, 
however similar to DNA-to-DNA methods at substantial costs in recall that were more pronounced for Kaiju. 
Using F1 scores as a balanced metric for both precision and recall, Kaiju and MMSeqs2 reached their best 
F1 scores at different filtering thresholds of 0.1% and 0.05%, respectively. Although the steepest increase for 
MMSeqs2 was before 0.05%, its F1 score still increased at 0.1% without a decrease in recall, suggesting 0.1% 
to be a well-balanced filtering threshold. Notwithstanding, it appeared that even with tailored filtering thresh-
olds, DNA-to-DNA methods outperformed DNA-to-protein methods because their precision could generally 
be increased without an as drastic drop in their recall.

Lastly, DNA-to-marker methods similarly displayed increasing precision but with marked differences 
between mOTUs2 and MetaPhlAn3. mOTUs2 already exhibited a median precision of 1 without any additional 
filtering, whereas the precision of MetaPhlAn3 benefitted greatly from additional filtering reaching a maxi-
mum of 0.917 at a filtering threshold of 2.7%. Recall values declined faster for MetaPhlAn3 than for mOTUs2 
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with additional filtering. This was reflected in their F1 scores, which suggested filtering thresholds of 0.1% for 
MetaPhlAn3 and no filtering threshold for mOTUs2.

Assessment of overall classifier performance. A summary of the performance of all classifiers at 
species level is presented in Fig. 3A (results at genus level are available in the Supplementary), displaying 
precision and recall along with their interquartile ranges (based on values obtained over all DMCs) rep-
resented as error bars, illustrating a clear distinction between three main groups. The first group contains 
DNA-to-DNA and DNA-to-protein classifiers, excluding CCMetagen, in the top left corner characterized by 
high recall but low precision. Within this group, KMA had the best precision. Although its precision exhib-
ited more fluctuation based on its IQR, its lower boundary was still higher than the highest IQR boundary 
of other classifiers within this group. All classifiers scored a median recall value of 1, except for MMseqs2, 
although it did reach a recall of 1 for some datasets. The recall IQRs of classifiers, excluding MMSeqs2, were 
hence similar within this group. The second group consists solely of MetaPhlAn3, which resides in a central 
position characterized by medium recall and precision. MetaPhlAn3 displayed the highest IQR interval for 
its precision of all classifiers. Recall was lower compared to the first group, partly explained by missing taxa in 
the underlying reference database (see Table S1). However, should these missing taxa have been present and 
correctly detected, MetaPhlAn3 would still have missed more species than the classifiers in the first group (see 
Table S2) because many species with very low relative abundances were missed. The third group consists of 
CCMetagen and mOTUs2, residing at the middle right position characterized by high precision but medium 
recall. Both classifiers exhibited the lowest median recall and largest IQR for recall values among all classifiers. 
Although mOTUs2 obtained the highest precision close to 1 for all datasets, it experienced the same issue as 
MetaPhlAn3 with ground truth species being absent in its underlying reference database (see Table S1), hav-
ing a profound negative impact on recall. However, even if those taxa had been present in the database and 
detected, the amount of FNs would still have been higher than for other classifiers (see Table S2). CCMetagen, 
on the other hand, relies on heavy post-filtering of KMA results, increasing precision to very high values but 
removing too many TPs in the process, especially in datasets with a staggered composition, incurring a heavy 
penalty in recall.

Figure 3B,C illustrate the effects on precision and recall at species level using filtering thresholds of 0.05% and 
0.1% (results at genus level are available in the Supplementary), displaying the effects of filtering as error bars. For 
the first group, precision increased strongly at 0.05%. Expanding the threshold to 0.1% led to a further increase 
in precision, albeit to a lesser degree compared to the initial 0.05% threshold. Recall decreased similarly for both 
thresholds, with the decline being less pronounced for DNA-to-protein methods compared to DNA-to-DNA 
methods, in agreement with the suggested filtering thresholds of 0.05% and 0.1% for DNA-to-DNA and 
DNA-to-protein methods (see section Effect of abundance filtering on precision, recall and F1). The second 
group showed a small increase in precision for a threshold of 0.05% and a bigger increase for a threshold of 
0.1%. The associated drops in recall were much less pronounced than for the first group, in agreement with the 
suggested filtering threshold of 0.1% for MetaPhlAn3 (see section Effect of abundance filtering on precision, 
recall and F1). Lastly, the third group did not demonstrate any further increases or decreases in both precision 

Fig. 2 Precision, recall and F1 for the different classifiers when filtering is applied at species level. The first, 
second and third row represent precision, recall and F1 score, respectively, and each column displays a different 
classifier. The x-axis of every subplot represents the applied filter threshold for which all species below this 
threshold were considered as absent, and the y-axis displays the metric value. Each subplot contains three 
shades of color with the darkest shade showing the median, the medium shade showing the IQR, and the 
brightest shade showing the minimum/maximum values over all nine R9 DMCs.
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and recall when filtering thresholds were increased, in agreement with the suggestion that no filtering should be 
employed for mOTUs2 and CCMetagen (see section Effect of abundance filtering on precision, recall and F1).

Evaluation of classification performance using a single ONT R10 DMC. Figure 4 presents results 
for classification performance of all classifiers compared to the R9 and R10 datasets of sample Zymo D6322 
at species level (genus level results are available in the Supplementary). For most classifiers, there is no sub-
stantial difference in absolute precision when considering both datasets. Only CCMetagen exhibited a notable 
decline in absolute precision for the R10 dataset, with an absolute decrease of 0.111. However, in relative pre-
cision, the R10 dataset showed a substantial decrease for CCMetagen (−11.11%), Centrifuge (−15.78%) and 
MMseqs2 (−23.79%), whereas a relative precision increase was observed for Kraken2/Bracken (+2.56%), KMA 
(+8.45%), Kaiju (+26.43%), and MetaPhlAn3 (+16.67%). The precision of mOTUs2 remained the same in both 
datasets. The notable difference in absolute precision for CCMetagen stems from the low count of FPs in the R9 
dataset. Consequently, the introduction of additional FPs in the R10 dataset substantially affected precision for 
CCMetagen, unlike other classifiers, which already had a higher FP count in the R9 dataset. In contrast, there 
were no differences in FNs between the R9 and R10 datasets so that the recall for all classifiers remained the same. 
Consequently, F1 score differences between the R9 and R10 datasets mirrored trends observed for precision 
with the R10 dataset showing a relative F1 score decrease for CCMetagen (−5.88%), Centrifuge (−15.67%), and 
MMseqs2 (−22.98%); a relative F1 score increase for Kraken2/Bracken (2.51%), KMA (7.60%), Kaiju (26.09%), 
and MetaPhlAn3 (12.50%); and the same F1 score for mOTUs2. Note however that the employed R9 dataset of 
sample Zymo D6322 had a relatively high quality compared to other R9 datasets (see Supplementary Figures S8, 
S10–S17). This higher quality of the R9 Zymo D6322 dataset was however not an isolated case, as samples Bei 
Resources HM-277D (Supplementary Figure S11) and Zymo D6331 (Supplementary Figure S17) had compa-
rable read quality distributions to R9 Zymo D6322 (Supplementary Figure S8), demonstrating the variability of 
nanopore sequencing.

Discussion
In this study, we extensively benchmarked different taxonomic classifiers on nanopore sequencing data gen-
erated on several well-characterized DMCs to provide an overview of the performance of commonly used 
DNA-to-DNA, DNA-to-protein and DNA-to-marker methods. In particular, we harmonized the underlying 
reference databases for different methods, and analyzed the largest amount of real DMCs thus far. These DMCs 
represented a broad range of abundances, taxonomies and application domains, mimicking pathogen, environ-
mental and gut microbiome samples.

DNA-to-DNA methods were characterized by high recall and low precision, excluding CCMetagen that acts as a 
companion tool to KMA by performing additional filtering58. Our benchmarking confirmed CCMetagen to achieve 

Fig. 3 Overall median precision and recall values at species level for the different classifiers. The dots in panel A  
represent the median precision (x-axis) and recall (y-axis) values for every classifier aggregated over all nine 
DMCs, while the error bars indicate the extent of the IQR for both the precision and recall. The dots in panels B 
and C similarly indicate median precision (x-axis) and recall (y-axis) values for every classifier aggregated over all 
nine R9 DMCs, but with error flags indicating the updated median precision and recall for an abundance filtering 
threshold of 0.05% and 0.1%, respectively. Classifiers are colored according to the legend on the lower right of 
plot C. Abbreviations: DMC (Defined mock community); IQR (Interquartile range); PR (Precision recall).
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the highest precision and F1 score for all DNA-to-DNA methods, albeit at a high cost in recall. For estimating relative 
abundances, all DNA-to-DNA methods performed very similarly and were only outperformed by mOTUs2. Bracken 
acts as a companion tool to Kraken2 by correcting species abundance estimates55, but was observed to actually result 
in slightly worse abundance estimates. Post-filtering classification results greatly increased precision, albeit at a sub-
stantial recall cost through missing TP predictions of species present at low abundances, for which we found 0.05% to 
represent a good trade-off. Since DNA-to-DNA-methods use all genomic information, they had the highest amounts 
of classified reads, although this also requires a priori having full genomes available in contrast to DNA-to-protein 
and DNA-to-marker methods where only sequence information on proteins and markers, respectively, is required.

DNA-to-protein classifiers also exhibited high recall and low precision. Although recall values were overall 
comparable to DNA-to-DNA methods (excluding CCMetagen), Kaiju offered over all DMCs the best recall of 

Fig. 4 Metric values at species level for the R9 and R10 dataset of Zymo D6322. The dots in panel A, B and C 
represent the precision, recall and F1 values (left axis), respectively, for every classifier (lower axis) of both the 
R9 dataset and R10 dataset of the DMC Zymo D6322. Dots can be superimposed upon each other if (nearly) 
identical values were observed. The bars in each panel present the relative percentage change (right axis) from 
the R9 to R10 metric value.
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any of the evaluated classifiers. This effect may be attributable to the underlying databases, as DNA-to-protein 
classifiers enable building much larger databases since only protein and not full genome sequences are required, 
allowing to incorporate proteins of species for which no full genomes are available yet. This was for instance 
observed in the Strain Madness datasets, for which the genomic databases did not contain sequences of some 
species whereas these were represented in the protein databases. Enforcing relative abundance filtering thresh-
olds indicated that 0.1% represented a well-balanced trade-off between precision and recall. A drawback of 
DNA-to-protein methods is that many proteins in the database occur in multiple organisms, and hence carry a 
taxonomic level higher than even the genus so that many reads cannot be classified at species level. Additionally, 
since only coding regions of reads are classified, many reads remain unclassified due to not containing coding 
regions. Although we did not benchmark running times, we observed that the requirement to analyze all six 
possible open reading frames incurred a high computational running cost compared to DNA-to-DNA meth-
ods. L1 distances indicated that DNA-to-protein methods resulted in worse abundance estimates compared to 
DNA-to-DNA methods, which may be attributed to exclusively classifying coding regions, leading to an abun-
dance representation specific to coding sequences.

DNA-to-marker methods exhibited the best precision but also the worst recall of all methods. This was due to 
a large extent to the absence of some taxa in their underlying reference databases, which have the disadvantage 
of being built very specifically to a certain tool and therefore being hard to impossible to add new organisms by 
other users. Post-filtering could therefore not increase the lower recall of DNA-to-marker methods as the TPs 
were simply not present in the output to begin with. DNA-to-marker methods also had substantially more FNs 
in datasets with species present at lower relative abundances compared to other methods. Regarding abundance 
estimates, mOTUs2 emerged as the top-performing classifier of all evaluated classifiers. However, this achieve-
ment cannot be primarily attributed to all DNA-to-marker methods, as MetaPhlAn3 demonstrated worse L1 
distances compared to DNA-to-DNA methods. It should be noted a newer version of MetaPhlAn3 is available, 
MetaPhlAn4, which was not available at the time our study was performed. This newer version also includes 
new species-level genome bins into its underlying reference database, which could affect the recall obtained in 
our study68.

A ‘best classifier’ would require a substantial and consistent performance increase in both recall and preci-
sion compared to other classifiers, which was not observed in our study. Instead, our results suggest the choice 
of classifier should depend on the type of research question(s) and application scope. DNA-to-marker methods 
provided the highest precision and would therefore be advised if it is crucial that predicted organisms are cor-
rect and only limited false predictions are generated. Since the underlying databases may be limited and hard to 
adapt, they could be less suited for niches where microorganisms are not yet well-represented. If interested in 
taxonomic abundance rather than sequence abundance, mOTUs2 appears an appropriate choice. Alternatively, 
certain DNA-to-DNA classifiers like Kraken2 have also been employed alongside targeted amplicon sequenc-
ing with a specifically constructed marker database such as the 16S rRNA gene to ascertain taxonomic abun-
dance69, but performance evaluation thereof was not within the scope of our study. DNA-to-protein classifiers 
are interesting for studies where taxa are expected for which protein sequences are already available in sequence 
databases, but not yet full genome sequences. For other applications, DNA-to-DNA classifiers appear a good 
choice. Studies focusing on species diversity (e.g., ecological niches) would be expected to benefit of some lim-
ited post-filtering to reduce false positive predictions. If detecting all potential organisms is highly relevant, e.g., 
for clinical applications where a potential pathogen may only be present at very low abundances, post-filtering 
would be disadvised and screening results for relevant pathogens, followed by additional analyses, such as read 
mapping, would be recommended in light of their low precision. KMA in particular appears recommended, 
displaying the highest F1 score, except for CCMetagen and DNA-to-marker methods that are however subject 
to heavy penalties in recall. Practical considerations could also affect classifier selection. DNA-to-marker meth-
ods have the lowest running times, rendering them a good choice to quickly compute results. DNA-to-protein 
methods have high computational costs and may therefore only be reserved for researchers with access to ade-
quate computational resources. Database creation may also affect classifier selection. KMA database building 
was a computationally very demanding process. If higher eukaryotes are involved, Kraken2 could be a better 
choice as we experienced it to be the only classifier that allows building databases containing large and complex 
eukaryotic genomes, and the low precision could similarly be counteracted with post-filtering and/or other 
confirmatory assays in case species of low abundance are relevant to detect.

Other benchmarking studies focusing on nanopore sequencing data were conducted by Portik et al.24 and 
Marić et al.47. Portik et al. evaluated several short-read methods (Kraken2, Bracken, Centrifuge, mOTUs2 and 
MetaPhlAn3), long-read methods (MetaMaps, MMSeqs2, MEGAN-LR and BugSeq), and one general method 
(Sourmash). However, they only evaluated a single DMC twice (each with a different ONT chemistry), com-
pared to nine DMCs in our study, and also did not harmonize the underlying databases of the different classifi-
ers. The majority of those long-read methods were not benchmarked in our study due to our requirements for 
being open-source, locally installable and customizable. They found that long-read methods generally outper-
formed short-read methods. Though direct comparison between our study and Portik et al. is not possible due 
to methodological differences, similar trends for the classifiers evaluated in both studies were observed. We also 
found that classifiers tailored to long reads exhibited better performance. In our study, the recall of MMseqs2 
was similar to Portik et al. However, their average precision was 2-3 times higher than ours. A potential expla-
nation is that Portik et al.‘s calculation of relative abundance relied on all reads rather than just the classified 
ones, and the application of a default filtering threshold of 0.001%. Applying similar filtering in our analysis 
consequently increased precision values. KMA was the second long-read classifier considered in our study, 
and did indeed also outperform short-read methods. With respect to short-read methods, Portik et al. simi-
larly observed for Kraken2, Bracken and Centrifuge high recall and low precision, for mOTUs2 almost perfect 
precision and moderate recall, and for MetaPhlAn3 moderate precision and recall. Lastly, Portik et al. found 
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that Bracken did not significantly improve the results of Kraken2, which we also observed. Methodological 
differences to the study of Marić et al. were more profound (e.g., due to employing different definitions for FPs, 
TPs and FNs). Marić et al. divided classifiers into kmer-based methods (Kraken2, Bracken, Centrifuge, CLARK 
and CLARK-S), mapping-based (MetaMaps, MEGAN-N and deSAMBA), general purpose long-read mappers 
(Minimap2 and Ram) and tools which use protein databases (Kaiju and MEGAN-P). Although they did create 
uniform databases for different classifiers in contrast to Portik et al., only one real DMC (i.e., not simulated) 
was evaluated. They found mapping-based methods such as Minimap2 and Ram to outperform kmer-based 
methods. The latter are however general-purpose read mappers not specifically designed for metagenomic clas-
sification, forcing researchers to provide their own scoring schemes and scripts to allow classification. Their 
results also revealed that tools which used protein databases performed worse than other categories for metrics 
such as accuracy and abundance estimations, for which the latter aligns with our observations. They observed 
that kmer-based methods, such as Kraken2 and Centrifuge, introduced many FPs, a phenomenon also seen in 
our results. They also observed that abundance estimation for kmer-based methods was not on-par with other 
mapping-based methods, although we found that Kraken2 and Centrifuge exhibited good L1 distances, only 
outperformed by mOTUs2. Similar to both our study and Portik et al., the impact of Bracken on the study con-
ducted by Marić et al. was generally negligible.

Our study extends the current knowledge on the performance of metagenomics classification of nanopore 
sequencing data in several aspects. First, a systematic approach was taken to evaluate different classifiers by gen-
erating an extensive uniform report for each sample with performance metrics and figures for easy comparison, 
and results for different samples were also aggregated to provide a clear and uniform overview of classifier per-
formance based on all DMCs64. Researchers interested in better understanding the performance of their favorite 
classifier on long reads can hence use these reports. Second, a high number of popular classifiers, frequently used 
for nanopore taxonomic classification based on the literature, was evaluated, including classifiers for which no 
systematic information on performance was available yet such as KMA and CCMetagen. Third, the used datasets 
were actually sequenced DMCs without the use of simulated reads. Moreover, to the best of our knowledge, no 
single other study has evaluated the same quantity of real DMCs. These DMCs encompass varying scenario’s, 
e.g., both even and staggered species abundance distributions, and mimicking different environments such as 
the gut and a complex ecosystem hosting numerous species, rendering our benchmarking results more repre-
sentative. Fourth, the codebase for our performed benchmarking and generating the associated reports, has 
been made publicly available64. This allows other researchers interested in benchmarking their own classifiers 
to utilize our approach. Fifth, the utilized databases have been harmonized, a practice seldomly observed in 
other studies, to maximize comparability of different classifiers without introducing unwanted biases from the 
underlying databases.

We acknowledge the following limitations of our study. First, default parameters were used for all classifiers. 
With careful parameter tuning, the performance of certain classifiers may potentially still improve substantially. 
However, in practical applications, classifiers are predominantly utilized with default parameters, as the tuning 
process demands a substantial amount of time without guaranteed improvement. Notwithstanding, for those 
interested in parameter tuning, our codebase can serve as a tool to benchmark various parameters by comparing 
reports generated with different classifier configurations. Second, even though we evaluated the largest amount 
of DMCs thus far, certain niches, such as ecology of unusual habitats, are not represented in our benchmarking 
so that our results may not be applicable to those domains. Once such datasets become available, the classifi-
ers can undergo re-evaluation, incorporating their specific characteristics. Third, as the DMCs originate from 
various studies, procedures for sample collection and processing varied. Differences in DNA extraction, library 
preparation, sequencing, and other factors could potentially introduce unwanted variability. However, the high 
amount of DMCs is expected to mitigate these potential sources of variability to some extent. In future work, the 
impact of these factors could also be assessed with our framework by introducing the same datasets generated 
by variations in sample processing.

The field of nanopore sequencing is still undergoing rapid evolution, marked by numerous alterations 
to the underlying flowcells and chemistries. The benchmarking was primarily performed with DMCs that 
were sequenced using the R9 chemistry, while the recently introduced R10 chemistry is expected to result 
in higher-quality reads70. Moreover, R9 will be phased out in 2024 in favor of R10. As the R10 chemistry is 
still novel, there is currently a scarcity of R10 reference datasets for conducting rigorous benchmarking, but 
the higher quality of new ONT chemistries is expected to increase classification performance, especially for 
DNA-to-protein and k-mer based classifiers24. However, in our results, Kraken2’s performance increased while 
Centrifuge’s declined, both utilizing exact kmers. Similarly, Kaiju’s performance improved while MMseqs2’s 
decreased, both using translation. Furthermore, an increased performance was observed for KMA and 
MetaPhlAn3, while a decrease was observed for CCMetagen. Notably, performance differences were solely due 
to changes in precision whereas recall values remained the same. These findings did hence not yield a defini-
tive conclusion on improvement of performance. Furthermore, the R9 dataset used had above-average quality 
compared to typical R9 datasets, making the quality difference with the R10 dataset less pronounced. Factors 
beyond quality, such as read lengths and N50, may also have influenced the comparison of the two chemistries. 
It hence remains largely unclear what the exact effects, if any, of the new R10 sequencing on the performance 
of taxonomic classification will be. When more R10 datasets become available, our framework could also allow 
a more comprehensive comparative analysis of newly released ONT chemistry versions against older versions 
to estimate improvements in taxonomic classification. Beyond dataset chemistry, as the quantity of public ref-
erence ONT datasets grows, our approach could also allow periodic reassessment of classifiers, particularly 
in niche applications where appropriate reference datasets are currently lacking. In this context, harmonized 
centrally maintained reference collections of DMCs representing different application domains and ecological 
niches, sequenced with different sequencing technologies/chemistries would prove to be a major asset. There 
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also exists a need for new algorithmic developments for long-read tools. In contrast to short-read methods, few 
long-read specific classifiers are currently available. Classifiers need to evolve in tandem with technological 
advancements to harness the full potential of emerging sequencing platforms. In particular, we urge that these 
classifiers should be open-source, allow customizable databases, and should be locally installable. These pre-
requisites offer a multitude of advantages, including interoperability, reproducibility, adaptability, accessibility, 
security, speed, community support and development. Lastly, harmonization of the underlying reference data-
bases would also allow to more quickly contrast the performance of different classifiers on different sequencing 
technologies/chemistries.

Data availability
The datasets presented in this study originate from other studies and can be found under the run accessions in 
Table 1. The output reports with all metrics and plots are available on Zenodo (https://zenodo.org/doi/10.5281/
zenodo.11371848)64.

Code availability
The source code to perform the analysis and generate the output reports is publicly available on GitHub (https://
github.com/BioinformaticsPlatformWIV-ISP/BenchmarkingClassifiers) accompanied by an example dataset 
showcasing the expected output structure and final output file.
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