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Abstract

Segmented Gamma Scanning (SGS) is an important technique for quanti-
fying gamma-emitting isotopes in radioactive waste packages. Collimated
High-Purity Germanium (HPGe) detectors are commonly employed due to
their superior resolution. However, calibrating HPGe detectors equipped
with complex collimators poses challenges, especially regarding the modeling
of the spatial response of the detector. This work introduces a calibration
methodology for the Full Energy Peak Efficiency (FEPE) of HPGe detectors
equipped with variable aperture collimators using Bayesian optimization to
handle their complex geometries. The method and the model were then
validated for the full range of application of the detector-collimator arrange-
ment using experimental FEPE measurements, demonstrating the model’s
potential for accurate SGS simulations.
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1. Introduction

Segmented Gamma Scanning (SGS) is a non-destructive technique for
inspecting radioactive waste packages, using gamma spectrometry to iden-
tify and quantify gamma-emitting isotopes. Semiconductor detectors like
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High-Purity Germanium (HPGe) are preferred for SGS due to their superior
resolution and wide detection range.

HPGe detectors can resolve small photopeaks across the full gamma spec-
trum relevant for waste characterization. SGS involves scanning the package
in horizontal segments, with the HPGe detector equipped with a collimator
to reduce crosstalk and ensure proper spatial separation of segments.

However, HPGe detectors require initial and periodic calibration due to
efficiency loss over time. Calibration often uses computational Monte Carlo
(MC) models to determine uncertain detector parameters affecting intrinsic
efficiency. This by employing methods like direct search, sequential optimiza-
tion, analytic approximation, or response surface methodology [1, 2, 3, 4].

Although numerous calibration methods have been proposed for various
detectors, to the best of our knowledge, no method suited to SGS detec-
tors with complex collimators exists to date. The spatial response of the
detector is essential in SGS calibration. However, SGS collimators can be
geometrically complex [5], especially when they have a variable aperture,
while accounting for the detector’s spatial response in the calibration is es-
sential. Altogether this makes the calibration of collimated SGS detectors
challenging.

Because of the sensitivity of the detector’s efficiency to the relative po-
sitions of the source, detector and collimator, for collimated detectors it is
crucial to spatially characterize the detector-collimator arrangement with
multiple sources or distributed sources rather than single point source mea-
surements. Furthermore, this behavior of collimated detectors leads to a
somewhat high-dimensional parameter space to search in the calibration pro-
cess, which may become computationally prohibitive for traditional calibra-
tion methods.

Bayesian optimization (BO) is a powerful, gradient-free tool for expen-
sive black-box optimization problems [6]. BO uses a probabilistic model,
typically a Gaussian process (GP) [7], to emulate the mean and uncertainty
of the objective function to minimize (or maximize). An acquisition func-
tion then guides the selection of the next query point, balancing exploration
and exploitation of the searched parameter space. BO iteratively (i) selects
points to evaluate, and (ii) updates the GP, until a stopping criterion is met
[8].

This process allows BO to focus on promising regions of the parameter
space. By using a surrogate model to guide the search, BO is particularly
suited to problems with a small objective function evaluation budget [9].
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This paper introduces a new HPGe detector calibration methodology for
SGS that relies on BO to deal with complex geometries with respect to both
the detector itself and the associated collimator. Using a set of Full Energy
Peak Efficiency (FEPE) measurements with a known point source, our ap-
proach is shwon to be able to determine the effective geometrical parameters
of both components.

The remainder of this paper is organized as follows. Section 2, describes
the experimental setup and the optimization methodology. This is followed
by section 3 that presents the results of the optimization. Section 4 then
provides some discussion of our approach before a conclusion is given in
section 5.

2. Materials and methods

We consider a specific measurement system: SYSCADE. A mobile labo-
ratory designed for the inspection and characterization of nuclear waste [10].
The SYSCADE system employs a HPGe detector equipped with a flexible
collimator that can shut its lateral slabs to adjust the angular aperture as
needed.

2.1. Detection system

The detector is a P-type Coaxial HPGe detector, model GCD 50210,
produced by Baltic Scientific Instruments (BSI). This detector is electrically
cooled and presents a Ge crystal with dimensions of ∅70 x 53.2 mm. The
efficiency response was characterized by using two point sources with identical
geometry: 241Am with a gamma emission of 59.54 keV, and 152Eu, for which
seven different peaks could be measured at 121.78, 244.70, 344.28, 778.91,
964.08, 1112.08 and 1408.01 keV.

It offers a maximum resolution of 1152 eV for 122 KeV and 1854 eV for
1332 KeV, along with a relative efficiency of no less than 50.6 measured with
respect to a (NaI)TI detector. The approximate internal dimensions of the
detector are illustrated in Fig. 1a. As a measure of verification an X-Ray
scan was taken (see Fig. 1b) which revealed that there are no substantial
discrepancies in the crystal dimensions. However, a noticeable difference is
apparent between the nominal crystal-to-endcap distance and the measured
one.
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(a) Detector layout.

A
B
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(b) X-ray image of the detector.

Figure 1: Detector setup. Panel (a) depicts the nominal internal dimensions of the detec-
tor. he purple, orange, green and yellow-colored areas correspond to the frontal, lateral,
back and inner dead layers, respectively. The dashed red lines denote the area between
crystal and endcap. Panel (b) shows the X-ray image of the detector. Measured dimen-
sions were: A (crystal diameter), 70.05 mm, B (distance to endcap), 5.88 mm and C
(crystal depth), 53.16 mm.

In the setup, the detector is housed within a lead box (Fig. 2a). The
side of the box facing the detection zone measures 100 x 190 mm. The box
is centrally positioned within a cylindrical cavity of 103.90 mm diameter.
There is an offset of 12 mm from the box surface to the exterior surface of
the detector endcap.

The detector can be displaced along two axes: vertically, allowing move-
ment up and down, and in depth, closer to or farther away from the radiation
source with an uncertainty in the displacement that is never larger than one
millimeter according to the detector manufacturer.

The collimator used in this setup is made of lead and has a thickness of
80 mm (Fig. 2b). It consists of two movable lateral parts and two fixed parts
at the top and bottom. The lateral parts can be adjusted horizontally to
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accommodate different activity levels and dimensions of the objects placed
in front of it for scanning. The external frame is made of Aluminum.

When the collimator is fully closed, its profile aligns with that of the box.
The horizontal aperture of the collimator can vary from 10 mm to 60 mm,
and the lateral wedges are set at a nominal angle of 10 degrees. The vertical
dimension of the collimator window is fixed at 60 mm. The collimator is
fixed to the box by using three M8 bolts.

(a) Detector without collimator.

(b) Detector with the collimator assembled.

Figure 2: Detector setup. In the panel (a) the origin of coordinates of the system of
reference used is marked with ’0’, please note the offset between the detector and the lead
box. Panel (b) shows the collimator once assembled with a 60 mm aperture measured on
the detector side.

2.2. Parameter selection for optimization
We present the most relevant parameters to be determined in order to

calibrate the efficiency. These parameters are chosen by relevance on their
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impact on the intrinsic efficiency according to the literature and eventually,
the physical phenomena underlying the detection.

It is known that the Dead Layer (DL) thickness increases with time be-
cause of the diffusion of the dopants, especially if the detector is not kept at
very low temperature. It is also well documented that the dead layer thick-
ness plays a crucial role in the detector efficiency deterioration [11, 12]. The
effect of the dead layer thickness is two-faced: firstly, because of the partial
energy depositions by photons in the dead layer region, secondly, increasing
the volume of the dead layers implies a decreasing of the active volume of
the crystal thereby reducing the probability of interaction of the photons.

The germanium crystal, encased in a vacuum within a primary casing, is
then placed in a secondary casing to protect it from mechanical damage. A
thinner section at the front of this secondary casing, known as the detector
window, improves measurement capabilities.

During calibration, it is essential to determine the distance from the de-
tector window to the crystal’s frontal surface and the thickness of the window
itself. These measurements play a crucial role in understanding the detector’s
behavior [13, 14].

Nonetheless, for the energy range studied in this work (60 keV to 1400
keV), the change of certain parameters do not have a very strong effect over
the FEPE, such is the case of the back dead layer, that according to the
literature, exhibits a strong influence on the FEPE only at energies greater
than 1.5 MeV [15].

On the other hand, and according to [16], the endcap thickness is normally
negligible, it is made of aluminium which has a low atomic number, while
the endcap thickness is too small to significantly influence the efficiency.

Therefore, among all the detector internal parameters, only the Frontal,
Lateral and Inner regions of the dead layer were chosen, as well as the distance
between the crystal frontal surface and the endcap. Additionally, the relative
position of the detector axis with respect to the lead box cavity was also taken
into account by considering the offset between box and detector centers.

Table 1 lists the parameters selected for optimization.
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Table 1: Parameters chosen for optimization.

Detector parameters Affects: Bounds Units
Frontal DL FEPE for E < 400 keV [15] [0.60, 1.60] mm
Lateral DL FEPE for E > 300 keV [15] [0.60, 1.60] mm
Inner DL FEPE, weakly [17] [0.01, 0.02] mm
Distance crystal-endcap crystal positioning [5.30, 7.00] mm
Vertical offset Y detector positioning [-1.50, 1.50] mm
Horizontal offset X detector positioning [-4, 4] mm
Collimator parameters
Horizontal aperture aperture, centering [59.00, 61.00] mm
Vertical aperture aperture, centering [60.00, 61.00] mm
Slab angle actual slab geometry [19.00, 20.40] deg

The collimator parameters are geometry-dependent, and given the studied
geometry of the considered collimator, we selected parameters that account
for both the geometry of the slabs and the actual non-shadowed area, i.e.,
the vertical and horizontal aperture. These parameters are quite important
in the case of SGS since using poor estimates of them will greatly affect the
modelled efficiency when the source is located away from the detector axis.

The optimization requires bounds on the search space to avoid selection
of unrealistic parameter values. These bounds were selected based on the
uncertainties provided by the manufacturer when available. For the dead
layer thicknesses, no information was given by the manufacturer and the
bounds were thus selected based on the literature [18].

2.3. Experimental acquisitions

Table collection is divided in three sets of experiments. The first one
serves as the experimental reference required to compute an error function
for the optimizer, herein the calibration experimental set (CES). The second
(VE1) and third (VE2) sets were validation experiments devoted to check
performance of our BO-based calibrated detector model.

VE1, was performed without the collimator, such that the consistency
of the derived parameters for the detector internals could be checked. VE2
consisted of repeating the calibration measurements with different collimator
apertures in order to verify that the optimized collimator parameters are
consistent. The two point sources of 241Am and 152Eu were measured for 5
minutes in each position. Table 2 describes the setup for every experiment.
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Table 2: Sources and detector settings employed in the experiments. Uncertainties are
presented as two times the standard deviation.

Exp. Source Activity Collimator
(KBq) aperture (mm)

CES 241Am 410.88 ± 14.38
152Eu 392.52 ± 11.78 60

VE 1 241Am 410.88 ± 14.38
152Eu 392.52 ± 11.78 –

VE 2 241Am 410.88 ± 14.38
152Eu 392.52 ± 11.78 50 and 40

For the CES, VE1 and VE2 experiments, the same source location design
was used. It consisted of a 5x5 planar square-shaped grid perpendicular to the
detector axis and located 20 cm away from the detector window. The center
square was perfectly aligned with the center of the detector window and all
the points are equispaced as shown in Fig. 3. The position of the sources
was found by performing preliminary tests and was found to properly capture
the attenuation effect of the collimator in both the vertical and horizontal
directions.
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Figure 3: Positions for the sources 20 cm away from the detector window (X and Y are
horizontal and vertical displacement, respectively). The center of the collimator window
is aligned with (0,0).

The FEPE (Eexp) was calculated for all the peaks recorded by the detector
according to Eq. (1).

Eexp =
(

N

A · Pγ · t

)
· Cs (1)

where N is the net counts for a given photopeak, A is the activity of
the considered point source, Pγ the emission probability of that photopeak
and t is measurement time of the detector. Cs represents a factor for the
coincidence summing correction that was considered negligible (Cs=1) after
its estimation using EFFTRAN [19] .

The uncertainty can be propagated to Eexp using the propagation law
for uncorrelated variables, which is used for calculating the variance of the
FEPE.

Var(Eexp) = E2exp
(
Var(N)

N2
+

Var(A)

A2
+

Var(Pγ)

P 2
γ

+ V ar(Pos)

)
(2)

The net counts and their variance were directly given by the manufacturer
software whereas the variance for Pγ was obtained from [20]. The V ar(Pos)
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variable accounts for the uncertainty of the efficiency induced by the uncer-
tainty in the source position. The latter was estimated by perturbing the
positions by 1 mm. This leads to a V ar(Pos) value of 9.76 %.

2.4. Monte Carlo Simulation Using PHITS Code

The MC computational model of the collimated detector was developed
using the PHITS particle transport simulation code [21]. Typically, the input
for a MC model includes parameters for the source, the problem environment
(in this case the detection setup), the chosen tally for recording the outputs of
interest, and some control parameters related to computational practicalities.

The simulation of the FEPEs was conducted using a peak-by-peak ap-
proach. This means that each run simulated and tallied only one energy peak,
which simplifies post processing since background subtraction can be imple-
mented without taking into account the effects of neighboring or overlapping
peaks.

For simplicity, point sources are considered to have no thickness. The
casing is also omitted, since the thickness and density of the plastic was
found to be negligible during simulations, therefore, the active region was
modelled as a disc of 1.5 mm of radius. For all the cases it was supposed
a mono-energetic source, however, to emulate an actual detector response,
the resolution of the detector was considered by inducing a Gaussian shape
in the peak by employing the fitted parameters Fano (F), that accounts for
best variance/mean ratio in the peak amplitude obtainable from the detector
resolution, and σr that accounts for its resolution. According to the PHITS
manual, the broadening of the Gaussian peak as a function of energy, σpeak,
is given by:

σpeak =
√

σr + FE (3)

Where E is energy. This is homologous to the well known expression for
fitting the Full Width at Half-Maximum (FWHM) parameter. The σr and
F parameters were obtained by fitting Eq. 3 to the experimental efficiency
values measured for a 152Eu point source.

It is worth noting that the PHITS default model does not transport elec-
trons due to the computational demand associated with charged particle
calculations. However, in this case, the tallying of electrons is essential as
they are the particles generated by the interactions of photons within the
germanium crystal. Therefore, the EGS5 model [22] integrated within the
PHITS code was used to perform the simulations.
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2.4.1. modeling the detector

The detector measurements for modeling the geometry were taken directly
from the manufacturer (Fig. 1a). Both, the chemical composition and the
density from the different components were taken from [23]. It is important
to note that in the dead layers of an HPGe detector, which are the undepleted
zones of the crystal, the constituent material is impure germanium, and not
lithium [24]. Therefore, considering the density of these layers as that of pure
germanium is a reasonable approximation.

Figure 4 presents various views of the detector model, assuming nominal
parameter values. Although the figure scale makes it difficult to discern the
dead layers, they are of course incorporated into the model. The region
colored in white is considered to be vacuum, while the rest of the system is
surrounded by air, with a density corresponding to 20 ◦C and 1 atm.

As one can notice, the aluminum frames and table that hold the collimator
slabs have not been modelled since their contribution to the attenuation of
the signal is negligible for the angle of view of the collimator. Similarly, the
high voltage power supply and control unit have been omitted. The reason
for this is that they are located at the back of the detector, making their
impact on the signal also negligible.

2.4.2. Tallying the efficiency

The tallied region corresponds to the active volume of the crystal, which is
the remaining volume after the subtraction of the dead layer volume. In this
region, the tracked score is the energy deposition by the photon incidence,
that generates electron-hole pairs in the active region of the crystal. The
energy resolution was set to be 150 groups with a mesh divided equally in
linear scale for all the simulations. These groups can be equaled to the
channel concept used in current gamma spectrometry equipment.

Since the simulations are normalized to the number of history particles,
the efficiency can be directly obtained by integrating under the tally and
finding the net peak area.

Given that only one peak is reproduced per simulation, a simple approach
for background subtraction, like the Covell method, seems sound enough for
this task. The Covell method estimates the background using the counts (C)
in groups of channels located at the upper and lower energy edges of the peak
region [25]. Therefore the net area under the peak, i.e., the full energy peak
efficiency (EMC), can be obtained by removing the background beneath the
peak (B) from the gross counts (G), which amounts to sum up the contents

11



(a) Horizontal cut top view (b) Vertical cut side view

(c) 3D perspective

Figure 4: PHITS model of the detection system
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in the 150 groups (n):

EMC = G−B =
U∑

i=L

Ci −
n

2m

(
U∑

i=L−m

Ci +
U+m∑
i=U+1

Ci

)
(4)

Given that along the edges of the peak the count statistics tend to be
poor for physical reasons, and because the tally will always be less populated
at the edges, an average of the counts of the channels (m) located in the
Upper edge (U) and the Lower edge (L) of the peak is taken. For this case,
taking the average of the four most extreme channels (m = 4) was found to
provide a good representation of the background.

Regarding uncertainty propagation, the variance for both the background
and the gross counts is equal to the variance of the sum of random variables,
i.e., the counts per group, that are scaled by the term n/2m. The correlation
term for the sum between counts per channel is zero since these variables are
independent. The physical intuition behind this is that each photon reaching
the detector constitutes an independent event. Hence, the variability in the
energy of one photon is uncorrelated with the variability in the energy of
another photon, since their trajectories and interactions remain independent.
The validity of this assumption was confirmed by MC simulations. This leads
to the following expression for obtaining the variance of the net peak area and
ultimately, since the counts are normalized, to the variance of the efficiency:

V ar(EMC) =
U∑

i=L

σ2
MCi
− n2

4m2

(
U∑

i=L−m

σ2
MCi

+
U+m∑
i=U+1

σ2
MCi

)
(5)

Where σMCi
is the standard deviation given by the code for each energy

group i.

2.5. Bayesian optimization

Bayesian optimization (BO) uses and iteratively retrains a surrogate of
the difference between the calibration measurements and the MC model pre-
dictions, i.e., the objective function f(θ) with θ being the 9D vector of cali-
bration parameters. The considered surrogate model is a Gaussian Process
(GP) which is utilized to select ”promising” points where to run the MC
model according to an acquisition policy (AP) that minimizes the distance
measured by f(θ). In this subsection, we introduce a brief formalism of the
BO algorithm such that we can later describe how our implementation can
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be related to these generic parts of the BO. The pseudo-code of the algorithm
is detailed below:

Algorithm 1 Bayesian optimization pseudo-code (minimization)

Requires: f(θ), D = {(θi, yi)}, α
Output: Best solution found θ∗

1. Initialize Gaussian process (surrogate) model with D
while stopping criterion not met:
2. Select next query point θnext ← argminθ∈−θ′ α(θ

′;D)
3. Evaluate ynext = f(θnext)
4. Update D ← D ∪ {(θnext, ynext)}
5. Update Gaussian process model
end while
θ∗ ← argminθi∈D yi

In step 1, The GP model is firstly initialized with an initial dataset D,
containing the parameters fed to the objective function f(θ), and the ob-
served value of the objective function yi obtained by calculating the sim-
ulated FEPEs associated with these initial sets of parameters for all the
source-position combinations of the CES experiment. In our case, D is a col-
lection of 25 points, i.e., 25 combinations of parameters plus the associated
value of the objective function (25 x 10).

In step 2, once this first GP model is trained, a new candidate θnext (1 x
9) or a batch of candidates q (q x 9), can be selected by optimizing the AP,
α. This policy evaluates the GP within the parameter bounds defined for
the problem. By doing so, the parameter space is explored in a data-efficient
fashion, i.e., the exploration of unknown regions of the objective function
and the exploitation of promising regions with a low variance are balanced.

In step 3, we need to obtain ynext (q x 1) , i.e., the objective function
value(s) at θnext (q x 9), and this is done by running again the MC model
for the newly-proposed parameters for the 200 experimental setups (different
energies and positions). Running the MC model is the ”expensive” step, and
we therefore try to minimize the number of MC runs, which means mini-
mizing the number of iterations of the BO since the number of experimental
setups is fixed.

In step 4, once the calculations of the batch defined in step 3 are finished,
{(θnext, ynext)} (q x 10) is appended to D.
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In step 5, now that we more information is available with respect to the
objective function landscape, the GP is retrained with the updated D.

The loop defined by steps 2 to 5 continues until a predefined computa-
tional budget is consumed.

There are many options available for building the full BO loop. Differ-
ent initialization methods of D could work with different results depending
on which experimental design or sampling technique is being used. The ac-
quisition policy α will eventually depend on the approach followed for BO,
maybe the user is interested in manually regulating the trade-off between
exploration or exploitation, or perhaps, for a given application it is decided
to run parallel evaluations of α (q > 1) and then, a scalable method for the
AP is preferred. Additionally, different data will be best-fitted by different
surrogate models, which implies deciding as well on the parameters of the
surrogate. In essence, the BO framework is highly problem-oriented and ide-
ally requires a good knowledge of the problem at hand to choose the best
possible implementation. We refer the reader to [8] and to [7] for a deeper
and rigorous explanation of BO and GPs respectively.

2.5.1. Objective function

The objective function to be minimized, f(θ) for all the positions (X, Y )
and energies (E) available in the CES experiment, was defined as the aver-
age of the L1 norm distance between the measured and simulated FEPEs
weighted by the square root of the sum of their variances as expressed by
Eq. (6).

f (x) =
1

n

i=n∑
i=1

 |EMC(E,X, Y )i − Eexp(E,X, Y )i|√
σ2
MC(E,X, Y )i + σ2

exp(E,X, Y )i
)

 (6)

This objective function favours fitting those measured efficiencies that
have the lowest (both MC and experimental) uncertainties.

2.5.2. Gaussian process surrogate model

The GP method assumes that the joint distribution of the observed val-
ues (training data) and the values we want to predict (test data) can be
represented as a multivariate normal distribution (MVN). This involves cal-
culating a covariance matrix (the kernel of the GP) using a kernel function
k(θ, θ′), which describes how the values of the objective function change as
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the input parameters vary. In other words, the kernel function expresses the
similarity between two given points θ and θ′.

In this work, we use the well-known Radial Basis Function (RBF). For
a collection of commonly used kernel functions, we refer to [7]. The RBF
kernel is given by:

k(θ, θ′) = σ2exp

(
−(θ − θ′)2

2l2

)
(7)

This kernel function has two key hyperparameters: the lengthscale (l), which
determines how smooth the function transitions between points, and the out-
put variance (σ), which measures the average spread of the function around
its mean.

We chose this kernel through a process called Cross-Validation (CV) [7],
which ensures it is the kernel most compatible with our initial dataset. In
CV, we iteratively train the model on subsets of the data and validate on
the excluded subset, repeating this for each subset. This helps us assess the
performance of the model and select the best kernel by observing the standard
deviation and average of the misfit between the actual and predicted values
for all the repetitions. In this case, 10 subsets, making 10 validations in total.

Training the GP involves optimizing these hyperparameters to best match
our data, which is commonly done by maximizing the so-called marginal log-
likelihood (MLL) of the GP model [7]. Note that this step is faster than the
expensive evaluation made in step 3 of our algorithm.

Once trained (step 5), the GP is used to predict the objective function
values for the new sets of parameters. Here the acquisition policy comes into
play. The acquisition policy uses the GP’s predictions and their uncertainties
to determine the next set of parameters to evaluate. Essentially, it decides
where in the parameter to sample next by balancing the trade-off between
exploring areas with high uncertainty (to learn more about the function) and
exploiting areas with low predicted values (which are likely to contain the
global minimum). This iterative process continues until the allowed compu-
tational budget is exhausted or a given threshold objective function value is
reached.

2.5.3. Acquisition policy

In this approach, the update of the dataset is based on batch acquisition
(q = 4), so four evaluations of f(θ) are made at each iteration. To choose
these promising candidates, Thompson Sampling (TS) [26] is used.
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Although many policies can be used to propose next candidates, TS allows
for easy parallelization since it scales well with q and is easy to implement,
TS is conducted by drawing a sample from the GP, i.e., a realization of the
unidentified objective function (a realization of the GP posterior distributions
is a function, not a scalar) over a discretized search domain:

αTS(θ;D) ∼ p(f |D) (8)

TS identifies the optimal (in this case, minimum) value of this randomly
drawn sample and evaluates the objective function at that point. This ac-
quisition policy can be viewed as optimizing random acquisition functions,
that consists of random draws of the GP posterior [27].

2.5.4. Initial dataset generation

Since the first dataset requires 25 x 200 MC calculations, it is desirable to
make those points as informative as possible. For that reason, we resorted to
what is known as a space-filling design, which aims to fill the 9D hypervolume
as homogeneously as possible for a given number of points. We used an
optimized maximin Latin Hypercube Design (LHD) obtained from [28] to
create the initial values for D.

It is noticed that the growth of the different dead layers appears to be,
to a certain extent, positively correlated for a given detector [2, 4, 29, 30].
Furthermore, a high spread in the marginal distributions of the three dead
layer thicknesses is to be expected [2, 4, 29, 30]. To incorporate this behaviour
into D, we used a 3D multivariate normal distribution (MVN) with means
0.666, 1.72, and 0.015 and with standard deviations 0.066, 0.17, and 0.01 for
the frontal, lateral, and inner dead layer respectively. The correlation for the
three parameters was derived from the previous references and set to 0.93 for
all three pairs.

Then we resorted to the inverse Rosenblatt [31] transform to convert the
uniform [0,1] distribution contained in D to the prescribed MVN. The details
of the procedure are as follows.

A vine copula is used for capturing the dependencies between variables
in the generated MVN. A vine copula is a flexible and structured way to
model complex dependencies among multiple variables using a series of bi-
variate copulas organized in a hierarchical graphical model. [32]. Next, the
Rosenblatt transform converts the normal distributions obtained by the vine
copula to a uniform distribution.
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Finally, the inverse Rosenblatt transform can be used to convert the initial
LHD for the dead layers to a MVN with the prescribed correlations.

Overall, to integrate all the available knowledge for elaborating the dis-
tributions for the initial dataset, we proceeded as illustrated by Fig 5.

Figure 5: Steps followed to obtain the initial dataset for the surrogate, processes are
represented by rectangles, auxiliary datasets are represented by the parallelograms, the
final dataset is represented by the rounded corner rectangle. Data size represented between
brackets in [rows, initial column:final column] format. Note that for obtaining a robust
vine distribution, 50 000 samples were drawn from the MVN.

2.5.5. Implementation

The specific optimization algorithm utilized in this work is known as
Trust Region Bayesian Optimization (TuRBO) [27]. BO is very efficient for
optimizing hard problems which objective function is expensive, but tends to
scale bad for higher-dimensional problems. TuRBO was designed as a local
approach for global optimization problems and tries to alleviate the scalabil-
ity issue of BO by running local GP models on parallel, each model would run
q candidates drawn within the trust regions for each iteration, which allows
for concurrent evaluation of different query points of the objective function.

The trust regions are volumes defined inside the search space, centered
around the best solution found so far. If an iteration is successful (a candidate
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is found), the region will double the size in all directions, aiming to explore
the space around. However, if the iteration cannot find a better value than
the current one, the region will shrink by half the size around the best value
found, once the size is minimal (smaller than a size Lmin, normalized to the
GP lengthscales) the optimizer converges and the process finishes.

For this work, only one trust region was used (TurBO-1) and four candi-
dates were proposed for each iteration (q = 4). The optimizer for this work
was set according to [27] in BoTorch [33], a library for Bayesian optimization
built on top of PyTorch [34]. The very same algorithm used on this work
is presented for a synthetic case in [35]. Fig. 6 depicts the flow diagram of
TuRBO with 1 trust region used in this work.

Figure 6: Diagram of the optimization process.
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2.5.6. Metrics for validation

In order to evaluate the results, Ratio (R), Zeta-score (ζscore), and Preci-
sion Score (Pscore) were employed as metrics in order to evaluate the deviation
of the model, accuracy, and precision of the model, respectively. Said metrics
are defined according to Eqs. (9), (10) and (11).

R =
EMC

Eexp
(9)

ζscore =
|EMC − Eexp|√
σ2
MC + σ2

exp

(10)

Pscore = 100

√(
σMC

EMC

)2

+

(
σexp

Eexp

)2

(11)

These metrics are typically employed in the literature for validating ra-
diation detector computational models. Furthermore, ζscore and Pscore are
commonly employed by the IAEA in inter-comparison exercises and profi-
ciency tests [14].

3. Results

3.1. Optimization results

After 16 iterations with four evaluations of the objective function per
batch (64 evaluations in total), the optimizer found a set of parameters that
lies within the acceptance criteria dictated by the evaluation metrics,as can be
found when comparing the CES simulated efficiency for the found parameters
to the actual measured efficiency values (Fig. 7). The effective parameters
are presented in Table 3.
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Table 3: Effective parameters found by the optimizer (iteration 16).

Parameter Bounds Value
(1) Frontal DL [0.60, 1.60] 0.69
(2) Lateral DL [0.60, 1.60] 1.40
(3) Inner DL [0.01, 0.02] 0.0199
(4) Dist. Crystal-endcap [5.30, 7.00] 5.78
(5) Offset X of detector [-4, 4] -3.93
(6) Offset Y of detector [-1.50, 1.50] -0.85
(7) Coll. Horizontal apert. [59.00, 61.00] 60.43
(8) Coll. Vertical apert. [60.00, 61.00] 60.66
(9) Slab Angle [19.00, 20.40] 19.50

As can be observed, there is an evident offset in the detector position
with respect to the lead shielding center in both horizontal (5) and vertical
(6) coordinates. Additionally, the distance from the Crystal to the endcap
(4) found is similar to the measured via X-Ray imaging (Fig. 1b).

The asymmetry found in the positioning corresponds to the effect of the
efficiency values noticeable in Fig. 7, specially in the lateral source positions
(X=-8 cm and X= 8 cm). As for the general response of the detector for
each position, it can be noted how the efficiency exponentially decreases over
energy after reaching its maximum at 120 keV, as expected according to the
working principle of the detector. Furthermore, the attenuation that the
collimator exerts on the efficiency is clear, especially in the vertical direction
when the source is placed 8 cm away from the center of the detector (Y=-8
cm and Y= 8 cm). Regarding the uncertainty and reliability of the accrued
measurements, it is worth noting that the experimental uncertainty σexp (k
= 1) always covers the FEPEs obtained via MC with the exception of the
241Am peak in the position (-8,8).

3.2. Validation results

This section presents the VE1 and VE2 validation experiments. First,
the validation of the detector internals was performed by computing the
FEPEs for the positions in VE1 (no collimator). The comparison of the
corresponding measured and calculated FEPEs is shown in Fig. 8. The
validation of the collimator parameters, relying on VE2, is then shown in
Fig. 9 and in Fig. 10 for the collimator opened at 40 mm and 50 mm,
respectively.
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Figure 7: FEPE values for the 25 positions of CES for americium and europium peaks,
collimator at 60 mm. X and Y indicate the position of the source in cm. In blue the
simulated FEPE, and in red, the measured FEPE. The MC error is not depicted here for
being small.

Simulations from the calibrated model show a good agreement with VE1
measurements for all the positions. All the simulated FEPE indeed lie within
the uncertainty of the measured FEPEs.

Basically, for the higher end of the considered energy range, the response
of an uncollimated detector (VE1 experiment, Fig. 8) is much less sensitive to
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Figure 8: FEPE values for the 25 positions of VE1 for americium and europium peaks,
No collimator attached. X and Y indicate the position of the source in cm. In blue the
simulated FEPE, and in red, the measured FEPE. The MC error is not depicted here for
being small.

the variations in source positions than the response of a collimated detector
(VE2 experiment, Figures 9 and 10).

Regarding VE2, an overall good agreement between the simulated and
the experimental data, except for the positions (8,-8) and (8,8) cm when the
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Figure 9: FEPE values for the 25 positions of VE2 for americium and europium peaks,
collimator opened at 40 mm. X and Y indicate the position of the source in cm. In blue
the simulated FEPE, and in red, the measured FEPE. The MC error is not depicted here
for being small.

collimator aperture is 40 mm (Fig. 9).
In the case of the collimator opened at 50 mm (Fig. 10), it can be

noticed a better agreement between the simulated and the measured FEPEs
for the position (8,-8) and in general, a better fit for every source positions,
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is observed.
Nonetheless, we would like to stress that several measured FEPE values

belonging to the (8,-8), (8,8) and (-8,8) cm positions were measured from low
intensity peaks (relative low count rates with respect to other peaks measured
in the same arrangement and/or with respect to other peaks belonging to the
same spectrum) and hence, with a noisy background.

This could cause errors when calculating both background and peak areas,
since the manufacturer’s software tries to fit a Gaussian distribution to the
region of interest (ROI) of the peak.

Given the used measurement time and the measured total counts, the
associated measured FEPE values were deemed to be statistically unreliable.
For positions 8 cm away from the detector windows, measured data corre-
sponding to net count rates lower than 20 cps where therefore excluded from
the optimization.

We now turn attention to the evaluation metrics introduced in section
2.7. The first one is ζscore, shown in Fig. 11 for each collimator aperture and
VE1 (no collimator).

Drawn in red, is the limit of 2.58, which is considered to be the critical
value for a normal distribution with a confidence level of 99 % [14].

For VE1 and CES, all 200 points of the arrangements are below the critical
limit and for CES, only some outliers have values greater than 1, values that
are from FEPEs measured in the most peripheral positions (8 cm away from
the detector window).

Nonetheless, in VE2, there are some outliers greater than 2.58, when the
collimator is at 50 mm, 98.5 % of the points are below the 2.58 limit, and
only 3 outliers are, out of limits. When the collimator is closed up to 40 mm,
the number of outliers exceeding critical limits increase, but still 97 % of the
points are within acceptance criteria.

These outliers are the FEPEs measured at positions (8,8) and (8,-8) for
the collimator opened at 40 and 50 mm. Positions that were known to be
noisy, as previously stated. Additionally, note that there is a clear increase in
the difference between measured and simulated FEPEs when the collimator
is present (VE2 40 mm and 50 mm in Fig. 11). The same situation is seen
for the ratio criterion (Fig. 12).

Here too, outliers are associated with the (8,8), (-8,8) and (-8,-8) source
positions. Even though 71.5% of the points are within 10% of deviation
(marked in red) and 87% lie with 15 % of deviation , there are also points
that reach more than 20 % of deviation among the values observed for VE1.
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Figure 10: FEPE values for the 25 positions of VE2 for americium and europium peaks,
collimator opened at 50 mm. X and Y indicate the position of the source in cm. In blue
the simulated FEPE, and in red, the measured FEPE. The MC error is not depicted here
for being small.

These outlier values again correspond to the peripheral positions measured 8
cm away from the detector window. Additionally, it is seen that the average
ratio for each experiment lies exactly on 1.0, which means that there is no
bias in the simulated FEPEs.
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Figure 11: ζscore box plot for each experimental arrangement.
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Figure 12: Ratio box plot for each experimental arrangement.

Finally, the Precision score, Pscore, is presented for all the experiments in
Fig. 13.
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Figure 13: Pscore box plot for each experimental arrangement.

The values of Pscore are always way below the agreed critical limit of 20
[13], marked in red. Additionally, it is found that the Pscore values are well
centered around 10% since the source position error is dominating the error
in the MC calculations (see expression 11).

4. Discussion

4.1. Validity of the model

According to our results, it can be assumed that the calibrated detector
model is valid for predicting FEPEs in SGS scenarios where it is necessary
to simulate SGS use cases taking into account the position of the source for
the 50 to 1400 keV energy range.

With respect to the VE2 validation tests, which involve the collimated
detector with two apertures not used for calibration, the calibrated performs
generally well although not surprisingly somewhat less well than for the val-
idation without collimator (VE1).

However, it is important to note that the variation in the measured
FEPEs between these most peripheral source positions and the center po-
sition (source in front of the detector window) can be up to two orders of
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magnitude. We argue that deriving a calibrated model with such a flexibil-
ity is a huge challenge, if at all possible. As stated above, we consider our
calibrated model to be well validated.

4.2. Validity of the found parameters

The parameters can be considered valid if they are considered effective
parameters, i.e. they have values that allow the computational model to
perform in a homologous way to the real equipment even if they are not the
real values.

As far as the internal detectors (1 to 4 in Table 3) are concerned, they
appear to make sense according to the good results obtained in VE1, although
obviously the found values can only be compared with those in the literature.

On the one hand, it is confirmed that the lateral dead layer is thicker,
slightly more than twice as large as the front layer. On the other hand, the
crystal-endcap distance is in line with what was observed via X-rays.

Additionally, it is confirmed that the internal dead layer (electrode side)
hardly affects the simulated FEPE values. This was verified by checking that
no significant variation of the FEPEs was observed for these source-position
arrangements for any value of the internal dead layer thickness ranging from
0.005 to 0.04 mm when running the optimized model (the bounds for this
parameter were 0.01 and 0.02 mm).

As for the position of the detector (parameters 4 to 6), it is observed that
the offset in X determined by the optimisation is perhaps (taking into account
that we cannot check the centering inside the detector casing) somewhat
exaggerated, however, this value works to compensate for the asymmetry
found in the FEPE values in the horizontal direction. Finally, the derived
geometrical parameters of the collimator, agree well with those measured on
the real equipment.

4.3. Optimization methodology

Firstly, it has been observed how BO can find the studied parameters
simultaneously with a reduced number of objective function evaluations.

The objective function used has been proven to work correctly within the
optimization framework. The purpose of this objective function was to take
into account the noise present in real measurements, relying less on those
with worse statistics. Traditional Root Mean Squared Error (RMSE) proved
to be convenient too, but more evaluations of the objective function were
required to reach acceptable results.
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The fast convergence of TuRBO used in this case surely depends on the
initial distributions used in the design matrix required to produced the start-
ing dataset. As has been verified, it is effective to use a MVN to model the
relationship of the dead layers, assuming that the thickness of these is pos-
itively correlated. On the other hand, it seems that the chosen parameters
are representative enough of the problem, being sufficient for calibrating the
spatial and spectral response of the detector.

Lastly, we would like to stress that the optimization process, although
informed and efficient, remains computationally intensive due to the number
of MC simulations necessary for the evaluation of the objective function.
Since the peaks were separatedly calculated, 8 calculations were required for
each combination of detector - source positions. In total, for each evaluation
of the objective function, 200 calculations were needed, requiring 40 cores
each to be completed in less than 20 minutes.

For this reason, it would be interesting not to simulate points that are
lowly informative for modeling the collimator and the detector simultane-
ously.

One option to assess the information content of a parameter set before
actually simulating it with the computationally-demanding MC code would
be to create a computationally-efficient surrogate model of the MC model of
the detector directly (rather than that of the misfit between MC-simulated
and measured counts). This surrogate model (or metamodel or emulator),
which could be a GP or another nonlinear regressor, would then be able to
predict the FEPE based on the position, the energy of the source, and other
relevant parameters of the measurement setup. If successfully trained, such
a computationally cheap digital twin could be combined with Bayesian Op-
timal Experimental Design techniques to obtain, on the one hand, the most
informative points where to position the sources in a real-world experiment,
and on the other hand, the geometric parameters that most affect the FEPE.
This will be explored in future work.

In the same line of work, being able to successfully train an efficient digital
twin of the optimized MC model taking into account all the parameters stud-
ied here, will allow us in the future to optimize the measurement setups for a
given waste package, for example, obtaining optimal sampling time assessed
via Minimum Detectable Activity (MDA), or providing optimal distances or
collimator apertures for a given waste package.
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5. Conclusion

It has been demonstrated that the methodology used here based on
Bayesian optimization, allows for the identification of effective parameters
to validate complex computational models of SGS equipment taking into ac-
count all the relevant parameters that affect the detector response, whether
collimated or uncollimated.

The model calibrated following this methodology performs well when pre-
dicting the spatial and spectral response of the real detector, which has been
verified for different collimator configurations.
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