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MICROBIOLOGICAL DRINKING 
WATER SAFETY STILL RELIES ON 
CENTURY-  OLD METHODS

Over time, humanity has addressed microbial water 
contamination in various ways. Historically, individu-
als resorted to products such as beer to overcome the 

health risks of drinking contaminated water (Antman 
& Flynn, 2022). Both the boiling and fermentation 
processes, which result in a small amount of alco-
hol, ensure that during the production and storage of 
beer, the water is purified and unwanted microorgan-
isms are killed (Bamforth & Wiley InterScience, 2004; 
Homan, 2004).
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Abstract
Over time, humanity has addressed microbial water contamination in vari-
ous ways. Historically, individuals resorted to producing beer to combat the 
issue. Fast forward to the 19th century, and we witnessed a scientific ap-
proach by Robert Koch. His groundbreaking gelatine plating method aimed 
to identify and quantify bacteria, with a proposed limit of 100 colony- forming 
units per millilitre (CFU/mL) to avoid Cholera outbreaks. Despite consider-
able advancements in plating techniques through experimentation with media 
compositions and growth temperatures, the reliance on a century- old method 
for water safety remains the state- of- the- art. Even though most countries 
succeed in producing qualitative water at the end of the production centres, 
it is difficult to control, and guarantee, the same quality during distribution. 
Rather than focusing solely on specific sampling points, we propose a holis-
tic examination of the entire water network to ensure comprehensive safety. 
Current practices leave room for uncertainties, especially given the low con-
centrations of pathogens. Innovative methods like flow cytometry and flow cy-
tometric fingerprinting offer the ability to detect changes in the microbiome of 
drinking water. Additionally, molecular techniques and emerging sequencing 
technologies, such as third- generation sequencing (MinION), mark a signifi-
cant leap forward, enhancing detection limits and emphasizing the identifica-
tion of unwanted genes rather than the unwanted bacteria/microorganisms 
itself. Over the last decades, there has been the realization that the drinking 
water distribution networks are complex ecosystems that, beside bacteria, 
comprise of viruses, protozoans and even isopods. Sequencing techniques 
to find eukaryotic DNA are necessary to monitor the entire microbiome of 
the drinking water distribution network. Or will artificial intelligence, big data 
and machine learning prove to be the way to go for (microbial) drinking water 
monitoring? In essence, it is time to transcend century- old practices and em-
brace modern technologies to ensure the safety of our drinking water from 
production to consumption.
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In the 19th century, people began to grasp the impor-
tance of clean and microbiologically safe water. In 1854, 
there was a cholera outbreak in London. An anaesthe-
siologist, John Snow, was able to trace the source of 
the outbreak and was the first to describe cholera as 
a waterborne disease (Snow, 1854; Tulchinsky, 2018). 
Three decades later, Robert Koch invented a tech-
nique to isolate and cultivate ‘pure’ cultures of bacte-
ria by growing them in plates with gelatine based, solid 
growing media, allowing for their identification and 
quantification (Blevins & Bronze, 2010; Koch, 1881). 
Richard Petri later modified Koch's technique to make 
handling and pouring easier (Petri, 1887). By means 
of this new method, Koch was able to identify the 
bacteria, describe the mode of action and locate the 
source of a Vibrio cholera outbreak in Egypt (Blevins 
& Bronze, 2010). This method with ‘Petri’ dishes into 
which media could be poured, cooled and solidified to 
grow and isolate pure cultures to evaluate the drink-
ing water microbiology is still bound to a legal standard 
(Commission European, 2020; WHO, 2022). This stan-
dard, was first introduced by Koch, as he stated that 
lowering the amount of pathogenic cholera bacteria 
below 100 CFU/mL could prevent a cholera outbreak 
(Exner et al., 2003; Koch, 1893). Both Snow's and 
Koch's discoveries lead to the realization that access 
to clean water was necessary to prevent the spread of 
cholera and disease outbreaks in general. The access 
to clean and safe drinking water was later even declared 
a basic human right by the World Health Organization 
(WHO) and now one of their Sustainable Development 
Goals (SDG 6: Clean Water and Sanitation), as it is es-
sential for preserving the health, dignity and prosperity 
of every individual (WHO, 2017, 2022).

Their inventions led to the heterotrophic plate count-
ing (HPC) technique and its corresponding upper lim-
its to prevent waterborne diseases. These were the 
foundations for the (legal) standards today (Figure 1). 
Heterotrophic bacteria are broadly defined as bac-
teria that require organic compounds as their car-
bon and nutrient source for metabolic synthesis and 
thus their growth. In general, HPC includes a variety 
of simple culture- based tests that are intended to re-
cover a wide range of heterotrophic bacteria from 
drinking water. The abundance of microorganisms 
and the grown genera depend on media composi-
tion, time, temperature of incubation and means of 
medium inoculation (Allen et al., 2004; Gensberger 
et al., 2015). Today, bacteria are inoculated on semi- 
solid nutrient- rich media and incubated under defined 
incubation conditions. For drinking water analysis the 
most commonly used media are Reasoner's 2A (R2A) 
and yeast extract agar (YEA) (Frilabo, 2016; Gibbs & 
Hayes, 1988; Sartory et al., 2008). R2A medium has 
been specifically developed for drinking water analy-
sis, as it is a low nutrient medium that in combination 
with lower growing temperatures stimulates the growth 

of stressed and chlorine- tolerant bacteria (Reasoner & 
Geldreich, 1985). The European and Flemish (Farys, 
Pidpa, Water- Link, De Watergroep) drinking water pro-
viders use these methods at an incubation tempera-
ture of 22°C/36°C for the detection of mostly aquatic 
coliforms, as described by the European directive 
(Commission European, 2020). Now, depending on 
the country and sampling location the 100 CFU/mL 
threshold has been altered, even to the point that within 
Europe (Allen et al., 2004; Van Nevel et al., 2017). 
Instead, there are guidelines that state that ‘no abnor-
mal change’ (NAC), should be detected (Sartory, 2004). 
This ‘degree of acceptable change’ fits within the idea 
of creating a biostable environment drinking water dis-
tribution with a stable bacterial abundance and com-
munity composition (Favere, Barbosa, et al., 2021). As 
the concept of biostability, defined by Favere, Barbosa 
et al., reaches further than microbial abundance, HPC 
is not an ideal method to monitor biostability. Although 
HPC only detects a small portion (<1%) of cells in the 
drinking water and thus fails to detect the ‘viable but 
non- culturable’ (VBNC) bacteria, they are simple (Park 
et al., 2023). Despite remaining the primary parameter 
for microbiological drinking water quality, these plating 
techniques are labour intensive (Craun et al., 2002; 
Hammes et al., 2008). Moreover, the outcomes of HPC 
only provide information about a specific region of the 
entire distribution network (at an accessible point, the 
source water, at the tap, …) at a specific point in time 
(no continuous monitoring).

Over the years, Koch's plating technique underwent 
several adaptations and in 1885 it was first used as a 
routine drinking water analysis in London (Hutchinson 
& Ridgway, 1977). Since the direct detection of all 
pathogenic bacteria is not feasible, specific growing 
media were designed to identify and enumerate indica-
tor bacteria (Dufour, 2013; Means et al., 1981; Méndez 
et al., 2004). These indicator bacteria are considered to 
signal the presence of faecal material and waterborne 
diseases (Ashbolt et al., 2001). Over time, Escherichia 
coli had become one of the key indicators, as it was 
found that ‘faecal’ coliforms not always had a faecal or-
igin and a lot of methods were specifically improved for 
the detection of E. coli (Tallon et al., 2005). The detec-
tion and enumeration of coliforms is a vital parameter to 
monitor disinfection and the drinking water distribution 
systems (DWDS) integrity (WHO, 2022).

Early 20th century, based on these first cultiva-
tion techniques, other plating/growing methods were 
derived. For example, the most probable number 
(MPN) technique, in which it was specified that not 
more than one of five 10 mL portions of drinking water 
should contain E. coli (Ashbolt et al., 2001). A full MPN 
screening took between 24 and 96 h, since the media 
lacked specificity and a subculture and confirmation 
step was necessary (George et al., 2000; Watkins & 
Xiangrong, 1997). With the MPN technique, the USA 
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Public Health Service Drinking Water Standard in-
vented a bacteriological standard that was applicable 
to any drinking water system (Ashbolt et al., 2001).

From the 1970's on, membrane filtration methods 
had gained wide acceptance, as these were faster 
(14 h) and typical colonies could be identified (Watkins 
& Xiangrong, 1997). Later, specific enzymes incorpo-
rated in the media were used to detect the hydrolysis 
products of fluorogenic or chromogenic substrates 
(George et al., 2000). This method allowed for a bet-
ter identification and recovery of the target bacteria. 
These substrate based methods have then evolved 
into different enzymatic assays based on the MPN 
technique for the detection of several indicator bac-
teria, such as Enterolert for Enterococci, Legiolert 
for Legionella, Colilert for total coliforms and E. coli 
(Boubetra et al., 2011; Eckner, 1998; Rech et al., 2018). 
The Colilert technique specifically proved to be as sen-
sitive for E. coli and even more sensitive for coliform 

detection compared to the standard MPN and mem-
brane filtration techniques (Eckner, 1998; Edberg 
et al., 1988, 1990). The Colilert technique for drinking 
water testing had improved sensitivity, specificity, cost, 
labour and speed compared to the standard cultivation 
based methods. Up until now (2024), Colilert is still the 
standard method to control the integrity of the drinking 
water distribution networks for the drinking water pro-
viders (Farys, De Watergroep, Pidpa, Waterlink, AGSO 
Knokke- Heist). However, the previously used cultiva-
tion based methods lacked the ability to detect the ‘vi-
able but non- culturable’ bacteria (Colwell et al., 1985).

All the above mentioned methods (MPN, Colilert, 
HPC and membrane filtration) remain the legal stan-
dards (established in the European Drinking Water 
Directive (EU 2020/2184), and are in Flanders still 
implemented in the Flemish drinking water legislation 
(Belgian Official Gazette, 20/01/2023)). They are also 
found in the water analysis compendium (WAC) (De 

F I G U R E  1  An overview of the 
evolution of microbiological monitoring of 
drinking water.
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Watergroep, 2024; Farys, 2024; Pidpa, 2024). Despite 
advancements in media composition and reducing the 
analysis time and labour, we thus still rely on century- 
old methods and upper limits for microbiological moni-
toring and drinking water safety. In such a fast moving 
society where everything is connected, it seems odd 
that for something as precious as our drinking water 
and associated human health, we seem to fall be-
hind concerning technology in microbial monitoring. 
However, with the use of modern day techniques, such 
as MALDI- TOF, these plating techniques have been 
further modified to better identify the detected bacteria 
(Farys, 2024; Pidpa, 2024; Pinar- Méndez et al., 2021; 
Sala- Comorera et al., 2016; Schumann & Maier, 2014). 
It is important to note that a multitude of these plating, 
Colilert and Enterolert techniques are also registered 
as legally obliged methods to monitor the drinking 
water (ISO 17025). Undoubtedly, these methods are 
still very valuable for drinking water monitoring today. 
The fact that they are still the current state- of- the- art 
show how revolutionary the inventions of Koch and 
Petri and the adaptations over the last centuries were 
for microbiology.

THE RISE OF NEW 
HOLISTIC METHODS FOR 
MICROBIOLOGICAL MONITORING

The previously discussed plating and enzymatic tech-
niques often fail to provide the drinking water provid-
ers with a holistic overview of the entire distribution 
network. They are not sufficient for the detection of 
short- term water quality changes, as the time- to- result 
takes too long (24 h). This, in combination with the 
low abundance of pathogenic bacteria in the drinking 
water distribution networks leaves room for uncertain-
ties (Buysschaert et al., 2019; European Communities, 
1998). Accurate and sensitive monitoring of the bacteria 
(and other organisms) in the drinking water distribution 
networks is not only important to assure safe and quali-
tative drinking water at the customer's tap, but also to 
monitor and control the treatment processes (Hammes 
et al., 2012). Innovative technologies are thus neces-
sary to shift from slow and inaccurate to fast, accurate 
and sensitive microbiological monitoring methods.

Recently, biological online monitoring devices based 
on cultivation- independent techniques have been de-
veloped, enabling fast and direct monitoring of the 
microbial quality of drinking water. For example, mea-
surement of specific and/or total enzymatic activity 
by adding a substrate fluorescent compound such as 
p- nitrophenyl phosphate or 4- methylubelliferyl- β- D- g
alactopyranoside that is converted by the respective 
enzymes such as alkaline phosphatase activity and 
β- D- galactosidase (e.g. ColiMinder (VWM, Austria), 
BACTControl (MicroLan, The Netherlands)). As a 

result, a fluorescent signal is generated and measured 
by laser detection. Coliminder has recently been ap-
plied to assess quality of the intake water for drinking 
water production, as the β- D- glucuronidase shows a 
good correlation to the E. coli and can thus be used 
as a real- time faecal indicator (Frank et al., 2022; 
Hachad et al., 2024). Because these methods are 
often not sensitive enough to detect the low concen-
tration of unwanted bacteria in the drinking water that 
they have been applied to the source water. The above 
mentioned studies show that safeguarding water qual-
ity can actually already start by monitoring the source 
water that is used for the production itself. It could be 
argued that it might be easier to monitor the source 
itself (only one location). These monitoring methods 
leave the drinking water providers with the question 
what part of the drinking water production, treatment 
and distribution pipeline is the correct place to sample/
monitor and is definitely food for thought. As an alter-
native to these culture- based and enzymatic assays 
for the detection of E. coli and Enterococci, reverse–
transcriptase- polymerase chain reaction (RT- PCR) 
has been applied (Molaee et al., 2015). This offline 
technique was already used for the detection of E. coli, 
but has recently been optimized and validated (ac-
cording to: ISO16140- 2: 2016) for Enterococci as well 
(Heijnen, 2018; Heijnen et al., 2024). Results showed 
that four strains of Enterococci can be identified. By 
means of RT- PCR, a contamination can be detected 
within a matter of hours instead of days, when com-
pared to conventional methods.

Over the years, several alternative on-  and offline 
monitoring techniques have been applied to monitor 
drinking water microbiology. The measurement of ade-
nosine triphosphate (ATP) is an indirect measurement 
that determines the biological activity of the cells that 
are present in the drinking water by detecting the flu-
orescent conversion of luciferin by the enzyme lucifer-
ase (Stoddart et al., n.d.; de Vera & Wert, 2019). This 
offline measurement can be done in less than an hour. 
Although ATP measurements are fast and relatively 
easy in practice, the conventional methods, such as 
HPC and Colilert exceed the ATP measurement for the 
detection of surface and wastewater intrusion (Vang 
et al., 2014). Despite its short time- to- result and thus, 
potential use as an early warning system for high mi-
crobial loads, ATP measurements are not often used 
in practice because interpreting the results is difficult, 
and there is often no clear indication if a problem oc-
curs and what that problem is (Favere, Waegenaar, 
et al., 2021; Vang et al., 2014).

Flow cytometry, a cultivation- independent method 
known for its high throughput, is used to sensitively 
measure bacterial cell densities, both online and offline. 
In recent decades, it has been increasingly employed 
for the analysis of drinking water (Berney et al., 2008; 
Hoefel et al., 2003). With the use of different staining 
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techniques, flow cytometry offers the opportunity to 
gain insight into bacterial physiology, activity and via-
bility (Hammes & Egli, 2010; Hatzenpichler et al., 2020; 
Nescerecka et al., 2016). Based on the flow cytomet-
ric measurements, a phenotypic fingerprint of the mi-
crobial community can be generated. Flow cytometric 
fingerprinting relies on physiological data acquired 
through the rapid optical characterization of thousands 
of cells. With the flow cytometric data, a phenotypic 
fingerprint that represents the multivariate optical data 
of more than 10,000 cells can be generated. This 
high- throughput flow cytometry- based technique was 
designed to track the biodiversity of microbial commu-
nities at fine temporal resolution (Props et al., 2016). 
The outcome of this phenotypic fingerprinting enables 
the identification of key transitions in the community 
structure of drinking water samples. These microbial 
dynamics as a response to changing water quality 
allow us to use the microbial community as an (indirect) 
indicator for water quality changes as well. As such, 
flow cytometry has been successfully applied to detect 
the community response to operational events in the 
drinking water production and transport systems, re-
growth in the DWDS, the intrusion of rain-  and ground-
water, and/or seasonal changes in the drinking water 
(sources) (Buysschaert et al., 2019; Favere et al., 2020; 
Pluym et al., 2023). These studies demonstrate that 
flow cytometry and flow cytometric fingerprinting can 
be used as a sensitive monitoring and event detec-
tion for drinking water microbiology and ultimately as 
an early warning method for drinking water quality. In 
a study by Favere et al. flow cytometry even proved 
to be more sensitive to rain-  and groundwater con-
taminations than plate counting (Favere, Waegenaar, 
et al., 2021). Although flow cytometry has the potential 
to do high- throughput and accurate measurements of 
the bacteria present in the DWDS, it can currently only 
indicate or predict a calamity as an unexpected change 
in the phenotypic fingerprint. Additionally, flow cytom-
eters are expensive machines, that not only require 
certain environmental conditions (e.g. temperature 
variations, humidity, etc.), but also trained personnel to 
maintain and interpret the data. In practice, this means 
that implementing flow cytometry in the routine analy-
sis of the drinking water laboratories, would increase 
operational costs. Despite their fast and accurate na-
ture, interpretation and translation of these online tools 
(ATP, flow cytometry) to drinking water norms are still 
difficult. It is currently suggested that these online tech-
nologies can serve as a first line of screening placed 
at crucial points in the distribution network. If abnormal 
or unwanted changes are detected, additional samples 
for HPC, qPCR, RT- PCR and/or MALDI- TOF MS are 
taken to determine both the exact problem and precise 
consequence for the water quality.

Over recent years there has been a focus on compu-
tational and statistical advancements as well, which has 

led to higher resolution flow cytometric fingerprints and 
thus more tools to analyse the microbiology (Claveau, 
Hudson, Jeffrey, & Hassard, 2024). The latter has proven 
to be useful in operational event detection and disinfec-
tion monitoring (Claveau, Hudson, Jarvis, et al., 2024). 
The collection of this big data (high- resolution flow cy-
tometry and other online data) in combination with ma-
chine learning will lead to a more precise monitoring and 
possibly even event prediction based on several online 
parameters (Sadler et al., 2020). Although the applica-
tion of machine learning and artificial intelligence (AI) 
for drinking water monitoring is still under construction 
or constrained by legislation, it could have the poten-
tial to provide both the supplier and costumer with use-
ful insights regarding water quality and safety (Maroju 
et al., 2023) (Figure 2). It has already been successfully 
applied for surface water monitoring, but, since we are 
only at the start of grasping AI's capabilities, full- scale 
drinking water applications will probably follow soon 
(Pérez- Beltrán et al., 2024; Rana et al., 2023).

BACTERIA ARE ONLY THE ‘TIP OF 
THE ICEBERG’

Over the last centuries, there has primarily been a 
focus on (the detection) bacteria. It is important to un-
derstand that these bacteria are only a small part of 
the complex ecosystem that a drinking water distribu-
tion network is (Bichai et al., 2008). This means that 
the presence of viruses, bacteriophages, protozoa and 
higher organisms are a largely unexplored and, more 
importantly, unmonitored part of the drinking water dis-
tribution network ecosystem. Recent advancements 
and technical improvements in flow cytometry have 
contributed to the development of a full flow virometry 
pipeline, enabling the quantification of viruses (Safford 
et al., 2023). As these can infect humans (and bacte-
riophages bacteria), these organisms are potential vital 
parts of the drinking water ecosystem. Viruses on their 
part may enter the distribution network through leaks or 
when the system is opened for maintenance works and 
could then be infectious for human when consumed 
(Lambertini et al., 2011; Teunis et al., 2010).

Protozoa in particular have even been called the 
‘Trojan horses’ of the microbial world, because of the 
fact that they can harbour (e.g. protection from dis-
infection, grow inside protozoa) specific (unwanted) 
bacteria, which can be released again later (Barker & 
Brown, 1994; King et al., 1988). There are some tradi-
tional microscopic counting techniques for higher or-
ganisms, but these require pipe flushing at limited study 
locations.

Furthermore, a recent study revealed the presence 
of flies in water towers, which can lead to increased 
coliform detection and alterations in the general micro-
bial community of drinking water when the basin in a 
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F I G U R E  2  Overview of a multi- analysis approach to detect microbiological calamities in the drinking water distribution network. By 
combining flow cytometry, enrichments and sequencing microbiological calamities can be detected.
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water tower is left uncovered (Baele et al., 2023). Other 
macroinvertebrates, such as Asellus aquaticus and 
Oligochaeta have also been observed in the DWDS 
(Gunkel et al., 2021; Ketelaars et al., 2023). The pres-
ence of these organisms also has an impact on the 
bacteria and overall water quality, as it has been seen 
that Asellus aquaticus is associated with the presence 
of Aeromonas and coliforms (Christensen et al., 2013; 
Hijnen et al., 2024; Ketelaars et al., 2023).

We believe that a comprehensive understanding 
of the DWDS- biome, including protists, invertebrates, 
bacteria, fungi and archaea is currently missing. New 
techniques using environmental/eukaryotic DNA 
(eDNA) to detect macroorganisms are necessary to 
unravel the complex interplays within the drinking water 
biome (Figure 2). Moreover, a well- established eDNA 
analysis will broaden the potential sampling locations 
and improve dataset robustness (Xie et al., 2021).

‘OLD’ MEETS ‘NEW’: THE FUTURE 
OF DRINKING WATER MONITORING

With the rise of new sequencing techniques, such as 
third- generation metagenomic sequencing, there are 
new possibilities for drinking water monitoring (Werner 
et al., 2022). Oxford Nanopore's MinION, for example, 
one of these third- generation sequencing techniques, 
is faster than second- generation sequencing and can 
even be performed in the field. These rising metagen-
omic sequencing techniques do not only allow for taxo-
nomic identification, but unravel all gene sequences 
found in a sample. The latter could be an important 
aspect for (drinking) water monitoring. The presence 
of a certain opportunistic pathogen does not always 
immediately imply an effect on drinking water quality 
(Siponen et al., 2024). As unwanted traits are corre-
lated with the transcription of specific genes, we hy-
pothesize that the detection of these specific odour and 
taste, pathogenic, virulence and antibiotic resistance 
genes alone could be sufficient to evaluate drinking 
water quality, rather than screening for indicator and/
or specific bacteria. By means of the different growth 
dynamics of r/K- strategists, there is the possibility to 
selectively enrich the low- abundant, unwanted bacteria 
in the drinking water distribution system, as proposed 
by Favere, Barbosa, et al. (2021). It is hypothesized that 
these unwanted bacteria are r- strategists (ideal condi-
tions means fast growth) and the resident community 
are K- strategists (no matter the conditions, slow but 
steady growth) (Andrews & Harris, 1986). This combi-
nation of specifically enriching the unwanted bacteria 
in non- specific liquid growing media with the MinION 
(third- generation sequencing) sequencing analysis, 
could revolutionize the drinking water microbiology 
monitoring. By means of this new analysis pipeline the 
drinking water providers now have the ability to get 

high- resolution data on the drinking water microbiome, 
and additionally, on the presence of genes that affect 
water quality in around 48 h. Although this analysis will 
take as long as the standard plating techniques, a lot 
more high- resolution data and information about the 
network will be generated. This will be a step in the right 
direction for future- proofing the microbial monitoring of 
drinking water. Especially since it combines the plating/
growing methods, which have been the state- of- the- art 
for centuries, with some of the latest advancements in 
sequencing and bacteriology. An integrated approach 
in which multiple analysis are combined (flow cytom-
etry, enrichments and third- generation sequencing) will 
allow for an accurate detection of calamities and will 
help the drinking water providers decide if action needs 
to be taken (Figure 2). This multi- analysis approach, 
will give better insights into the microbiology of the 
network then any analysis alone, and, if a problem oc-
curs, allow for a more targeted solution. Furthermore, 
the upcoming treats of climate change (e.g. floods and 
extreme weather…) will enhance the spread of patho-
gens and put a strain on surface water availability (Jia 
et al., 2024; Leveque et al., 2021). As these conse-
quences of climate change might limit water availability, 
accurate and fast water quality monitoring techniques 
to monitor all types of water (drinking water, surface 
water, …) will be detrimental.

CONCLUSION

As of today, the drinking water sector primarily relies 
on HPC plating (22°C/36°C, for aquatic coliform detec-
tion), the MPN technique (Colilert) and membrane fil-
tration methods for their drinking water monitoring (De 
Watergroep, 2024; Farys, 2024; Pidpa, 2024; Water- 
link, 2024). These techniques, which were based on 
Koch's original plating method, have undergone several 
adaptations to meet today's microbiological monitor-
ing demands, and are implemented in the (European) 
legislation as a result. Nowadays, these are combined 
with more advanced techniques such as MALDI- TOF 
to rapidly identify the bacterial cultures grown on the 
plates (Pinar- Méndez et al., 2021; Pidpa, 2024). Their 
robustness and the existence of century old data en-
sure that they remain the current state- of- the- art and 
legal standard in Flanders, based on the European 
Drinking Water Directive. Over the last decades, there 
has been a lot of experimentation with different alter-
native off-  and online techniques, such as flow cytom-
etry, RT PCR, qPCR and enzymatic assays. Despite 
some successful applications of for example (online) 
flow cytometry and enzymatic assays, these alterna-
tive methods can, and probably will never completely 
replace the ‘century- old’ plating methods. They need 
to be regarded as supporting methods to the plat-
ing methods currently established in the legislation, 
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because these alternative methods can serve as an 
early warning system because of the short time- to- 
result. When an unexpected or unwanted event is 
detected, additional tests are still required. Simply, be-
cause flow cytometry and enzymatic assays still lack 
a certain specificity. However, flow cytometry (off-  and 
online) could replace HPC, especially since current 
standards require ‘no abnormal change’ (NAC), which 
can perfectly be monitored by FCM. However, we hy-
pothesize that a combination of plating/growing meth-
ods with (third generation) sequencing might be a leap 
forward for drinking water monitoring. This combination 
of an ‘old’ and ‘new’ technique can provide the drinking 
water suppliers with information about odour and taste, 
virulence and antibiotic resistance genes and can thus 
indicate the possible cause of a certain problem. This 
pipeline allows for a more adequate and fast solution. 
Nevertheless, the drinking water distribution networks 
still remain a largely unexplored ecosystem, contain-
ing protozoa, fungi, macroorganisms, viruses, etc., in 
which bacteria are possibly only a small part. Other 
techniques, such as the development of an eDNA se-
quencing pipeline that can provide a holistic overview 
of the drinking water ecosystem will be necessary in 
the near future. This combination of new and old mi-
crobial monitoring techniques will contribute to clean 
and safe drinking water and thus prevent the spread of 
diseases now and in the future (SDG 3: Ensure healthy 
lives and promote well- being for all at all ages).

Although advancements are being made, there 
has not been a major leap forward in terms of micro-
bial drinking water monitoring since the discoveries of 
Koch. In a smart and connected society, we still rely 
on century- old methods that are relatively slow, while 
not always revealing the origin of the problem. This 
is striking for something as precious as our drinking 
water. After all, access to safe and qualitative drinking 
is a basic human right, as declared by the WHO. As 
of today, new techniques are being applied to drinking 
water, but we are still waiting for the next revolution-
ary discovery to improve microbiological monitoring 
in drinking water. Is this the era in which AI, big data 
and machine learning will drastically change microbial 
drinking water monitoring as well?
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