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Abstract: We consider a system of two coupled parallel queues with infinite waiting rooms. The time
setting is discrete. In either queue, the service of a customer requires exactly one discrete time slot.
Arrivals of new customers occur independently from slot to slot, but the numbers of arrivals into both
queues within a slot may be mutually dependent. Their joint probability generating function (pgf ) is
indicated as A(z1, z2) and characterizes the whole model. In general, determining the steady-state
joint probability mass function (pmf ) u(m, n), m, n ≥ 0 or the corresponding joint pgf U(z1, z2) of the
numbers of customers present in both queues is a formidable task. Only for very specific choices
of the arrival pgf A(z1, z2) are explicit results known. In this paper, we identify a multi-parameter,
generic class of arrival pgfs A(z1, z2), for which we can explicitly determine the system-content pgf
U(z1, z2). We find that, for arrival pgfs of this class, U(z1, z2) has a denominator that is a product,
say r1(z1)r2(z2), of two univariate functions. This property allows a straightforward inversion of
U(z1, z2), resulting in a pmf u(m, n) which can be expressed as a finite linear combination of bivariate
geometric terms. We observe that our generic model encompasses most of the previously known
results as special cases.
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1. Introduction

This paper fits into a greater scientific effort that aims to find explicit analytic solutions
for the joint stationary probability distribution (or probability generating function) of
the numbers of customers in a system of two coupled discrete-time single-server queues.
Various instances of such systems have been studied before, both differing in the cause of
the coupling between the two queues or in the scientific perspective taken in the study.

With no claim on completeness, we mention a number of possible causes for the presence
of coupling between queues. A first cause may be that the arrival streams into the queues
are mutually interdependent or state-dependent—that is to say, dependent on the system
contents, i.e., the numbers of customers present in the queues. Mutual dependence between
arrivals occurs, for instance, in the context of communications networks, where the nodes
of the network contain switching systems that have to forward digital packets from many
different origins to many different destinations. In such switches, each destination has
(at least, conceptually) its own dedicated buffer to temporarily store arriving packets,
and, since packets destined for one destination do not enter the output buffer associated
with another destination, the arrivals within such output buffers are mutually correlated.
Buffered slotted switches have been studied, e.g., in [1–6]. Specifically, in [1–3], the authors
analyze a symmetric 2 × 2 switch with Bernoulli arrivals on the two input lines of the
switch; [4] extends this analysis to asymmetric switches; [5] gives an overview of a large
number of analysis techniques for coupled queues (including the example of the 2 × 2
switch with Bernoulli arrivals); [6] focuses on the asymptotic behavior of two discrete-time
coupled parallel queues, for general arrival processes (including the 2 × 2 switch model),
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under the condition that one of the two queues is highly loaded. State dependence of arrivals
occurs, for instance, in join-the-shortest-queue systems, where arriving customers adapt their
behavior at the entrance of the two-queue system to the system contents upon arrival;
see, e.g., ref. [7] for the case of two asymmetric regular queues, ref. [8] for the specific
case of orbit queues in the context of systems with retrials and [9] in the setting of polling
models. More conceptual studies of queues with interdependent arrivals include [6,10–12]:
ref. [10] discusses a continuous-time two-queue model with coupled Poisson inputs; ref. [11]
provides some initial results for discrete-time coupled parallel queues with various specific
arrival processes; ref. [6] treats more general arrival streams but focuses on the asymptotic
behavior, whereas the focus of [12] is to examine in what circumstances the (exact) joint
system-content pmf in a system of two coupled queues can be expressed as a finite linear
combination of bivariate geometric product-form terms, and it includes (among others)
parallel-queue systems with interdependent arrivals.

Another (major) cause of coupling may be that the queues of the system have to share
the same service facilities. This situation occurs, for instance, in polling systems, where one
server periodically visits multiple queues to serve a number of customers and then goes to
the next queue; various variants of polling systems have been studied quite intensively in
the past. Good general overviews of different kinds of polling models and their applications
can be found, for instance, in [13–17]; random polling systems are considered in [18]; time-
limited polling systems are studied in [19,20]; whereas [21] discusses a specific polling
model with an autonomous server.

Sharing of servers also occurs in so-called alternating service systems, where one server
is allocated for alternating random durations of time to either of two queues, regardless
of the states of these queues. Continuous-time models with Poisson arrivals and general
service-time distributions were considered, for instance, in [22,23]; in [24], the concept of
switchover times is added to this concept. Discrete-time models were treated in [12,25–27].
An exact analysis of the case of independent Bernoulli arrivals is reported in [25] by means
of a transform-based technique involving analytic continuation and also in [27] by means
of a probability-based compensation technique, while the case of global geometric arrivals
is treated in depth in [26,27], again using transform-based and probability-based methods,
respectively. In [12], exact solutions are also derived for more general arrival distributions.

Priority queuing models, where one common service facility gives preferential service to
one class of customers over other class(es) of customers, also introduce coupling between
the class-dedicated queues; a large body of research results, both in a continuous-time
setting and a discrete-time setting, is available on this topic. For pioneering work on
continuous-time models, we refer to [28–30]. In a discrete-time setting, which is most
relevant for the present paper, various models have also been examined, differing as
follows: in the nature of the service-time distributions (deterministic [31], general); in the
specifics of the priority scheduling rule (non-pre-emptive [32], pre-emptive resume [33], pre-
emptive repeat identical [34], pre-emptive repeat with resampling [35], priority jumps [36],
accumulating priority [37]); in the nature of the performance metrics studied (system
contents, customer delays [32]); and/or in the nature of the arrival processes (independent
arrivals, correlated arrivals [38]). A detailed discussion of all these models is beyond the
scope of this paper.

Similar ideas are also implemented in so-called (generalized) processor sharing (GPS)
systems, whereby the service facility is randomly allocated to multiple queues according to
preset weights, as opposed to alternating service systems. However, GPS systems usually
allow the server to deliver service to customers of a queue to which it is not allocated when
the queue to which it is allocated is empty, thus making the system work-conserving. In fact,
GPS systems can also be viewed as systems with alternating priorities; see, e.g., ref. [39]. Some
papers dealing with GPS systems are [40–44]: ref. [40] presents a basic continuous-time
model, and [41] adds server interruptions; refs. [42–44] deal with discrete-time models—
specifically, ref. [42] provides an approximate analysis based on the power series approach,
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ref. [43] discusses an approximative approach for the case of Bernoulli arrivals, and [44]
compares GPS with alternating service, based on a heavy-traffic approximation.

In the context of server sharing, we should also mention serve-the-longest-queue systems,
where, upon a service completion, a server can autonomously decide to give preference to
the queue that contains the largest number of customers; see, e.g, refs. [45,46]. Recently,
some authors have examined the combined join-the-shortest-queue and serve-the-longest-queue
scenario; see [47,48].

A third important cause of coupling in two-queue systems can be that (part of) the
output stream of one queue constitutes (part of) the input stream into the other queue, such
as in the context of tandem queues (see, e.g., refs. [49–51]), or, more generally, in a network
environment.

As far as the scientific perspective taken by various authors in the literature is concerned,
we see a significant difference between considering the involved (two-queue) queuing
system as the basic concept of the study—where the determination of the joint (or total)
system-content distribution of both queues, the overflow probabilities, the customer delays,
etc., is the main objective—versus a more fundamental, mathematically-oriented point of
view, whereby the underlying random walks that model the system contents of both queues
are the basic concepts of the study. We refer to [52] for a thorough discussion of random
walks in the quarter-plane, ref. [53] for a pioneering paper on the subject, ref. [54] for the
definition and analysis of an interesting subclass of random walks, ref. [55] for the detailed
analysis of a specific random walk by means of techniques from complex analysis and [56]
for an analysis based on the compensation approach. In [27], the aim is to shed more
light on the structural properties of random walks required to admit elegant solutions.
Very often, in these more theoretically oriented studies, the involved random walks are of
nearest-neighbor type, which is rather restrictive in a queuing context, and the structure
of their transition probabilities may be quite arbitrary and may not necessarily reflect the
behavior of a queuing system.

The present paper does not take the mathematical study of the random walk that
models the two-queue system explicitly as a major point of interest, but rather concentrates
on the explicit determination of the joint pgf of the two system contents in the two queues
of the system. Specifically, we consider a conceptually very simple system of two coupled
parallel discrete-time queues. The queues are named queue 1 and queue 2; both have their
own dedicated server and infinite storage capacity. Customers arriving to queue 1 and to
queue 2 are referred to as type-1 and type-2 customers, respectively. The service times of
the customers are deterministically equal to one time slot, regardless of the customer type.
New customer arrivals of both types occur independently from slot to slot, but are possibly
type-interdependent within a slot. This is the only source of coupling in this model. Earlier
studies of various instances of this type of two-queue system include the aforementioned
papers [1–6,10–12].

In general, determining the steady-state joint pgf U(z1, z2) of the system contents
in a system of two coupled queues is a formidable task, because it requires the solution
of a possibly complicated, nonlinear kernel-type functional equation for U(z1, z2), which
contains the unknown boundary functions U(z1, 0) and/or U(0, z2). A well-established
generic technique to solve such equations is the so-called boundary-value approach, which
is described in great detail in the classic texts [52,57]. Although this approach can deal
with various kinds of kernel-type functional equations, it has the disadvantage that it
involves singular integrals and conformal mappings, which may be very complicated,
and also requires considerable additional numerical work. Another useful method is the
compensation approach, a rather versatile technique for the analysis of two-dimensional
Markov chains satisfying certain conditions without transforms (pgfs) [56,58]. Basically,
in this method the desired unknown joint distribution is expressed as a sum of bivariate
geometric product forms satisfying the inner balance equations of the Markov chain,
and the coefficients of the individual terms in the sum are determined in a clever way.
Other researchers have successfully applied the so-called uniformization method, a complex
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function-based technique, for various models; see, e.g., refs. [1,59] for the analysis of
a clocked buffered switch. This method introduces a parameter representation for the
algebraic curve that represents the set of zero-tuples of the kernel. The unknown boundary
functions in the functional equation are also expressed in terms of this parameter, referred
to as the “uniformization variable”, and equations are derived and subsequently solved for
these boundary functions. Another technique that is frequently used involves analytic (or
meromorphic) continuation of complex (boundary) functions; see, for instance, refs. [25,55].
We also mention the so-called power series technique [42,60,61] as a useful approximative
method. This technique consists of expanding the desired distribution (or the associated
pgf) as a power series, in terms of some system parameter (e.g., the load in some queue, the
probability that the server is allocated to some queue), and then finding the coefficients of
the consecutive powers in that power series as the solutions of “easier” equations than the
original functional equation. An excellent overview of methods that have been used to find
the joint system-content distribution in coupled-queue systems can be found in [5].

In this paper, we use a different, purely algebraic, transform-based technique, which
aims at a direct derivation of the joint system-content pgf U(z1, z2) without the need of
first determining the boundary functions U(z1, 0) and U(0, z2). Our technique can be
best described as a two-step process: first, we make an educated guess at the solution
for U(z1, z2) that corresponds to a given arrival pgf A(z1, z2); next, we prove that the
proposed expression of U(z1, z2) indeed satisfies the functional equation. Of course, in
this approach, the choice of a suitable arrival pgf A(z1, z2) and making an educated guess at
the corresponding system-content pgf U(z1, z2) is crucial. In fact, this step is essentially a
process of trial and error, based on the intuition gained from the preliminary study of a large
number of simple special cases and a generalization and adaptation of these, until a class
of arrival pgfs A(z1, z2) is found for which U(z1, z2) can be conjectured. The second step
is then just a matter of rather simple algebra, and—unlike the aforementioned methods—
does not involve complicated mathematics such as conformal mappings, singular integrals,
uniformization, analytic continuation, power series expansion, etc.

For the specific coupled-queues system considered in this paper, explicit results have
been obtained thus far only in a number of isolated cases, for very specific choices of the
arrival pgf A(z1, z2) (see, e.g., ref. [11]). Furthermore, these special cases are of a rather
simple nature: the arrivals of both types should be mutually independent or the two queues
should receive identical numbers of arrivals in each slot or one of both queues should receive
no more than one single arrival per slot, implying that in this queue no accumulation of
customers occurs. Some initial indications to extend the class of “solvable” arrival pgfs
A(z1, z2) are also given in [11], but the extensions are limited.

In this paper, we identify a multi-parameter, generic class of arrival pgfs A(z1, z2), for
which we go on to explicitly determine the joint pgf U(z1, z2), using the algebraic approach
described above. By making specific choices for the many parameters of the model, we also
define three interesting subclasses of arrival pgfs that lead to even more explicit solutions.
We find that for arrival pgfs of the classes considered in this paper, the bivariate joint
system-content pgf U(z1, z2) has a denominator that is a product (say, r1(z1)r2(z2)) of two
univariate functions. This property allows a straightforward inversion of the pgf U(z1, z2)
by means of an inversion technique we developed in a previous paper [12], resulting in a
pmf u(m, n) that can be expressed as a finite linear combination of bivariate geometric terms.
We observe that, in addition to providing explicit solutions for a great variety of arrival
pgfs, for which no solution was known until now, our generic model also encompasses
most of the previously known results as special cases. In fact, it was by studying these
special cases that we developed the intuition needed to be able to identify the class of
arrival pgfs introduced in this paper.

The rest of this paper is organized as follows. In Section 2 we introduce the detailed
mathematical model of the system under study and establish a functional equation for the
joint pgf U(z1, z2). The solution of this functional equation is, in fact, the main purpose of
the paper. Section 3 defines the generic class of arrival pgfs A(z1, z2) that will be studied
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in this paper. In Section 4, we present and prove the main result of the paper, in the form
of Theorem 1, which gives an explicit expression for the joint system-content pgf U(z1, z2)
associated with the joint arrival pgf A(z1, z2) defined in Section 3. Section 5 defines three
interesting subclasses, named A, B and C, of the generic class of arrival pgfs A(z1, z2)
defined in Section 3 and establishes even more explicit formulas for the associated system-
content pgfs U(z1, z2) in these cases, in the form of three corollaries of Theorem 1, also
named A, B and C. In Section 6, we consider several instances of subclasses A, B and C,
whereby specific choices are made for the various parameters and functions appearing
in the formulations of corollaries A, B and C. Section 7 discusses a fundamental method
to invert the system-content pgf U(z1, z2), i.e., to determine the pmf u(m, n) from the pgf
U(z1, z2), and it illustrates this technique by means of specific examples within subclasses
A, B and C. Finally, we state some concluding remarks in Section 8.

2. Mathematical Model and Queuing Analysis

We define the random variables a1,k and a2,k as the numbers of type-1 and type-2
arrivals, respectively, during slot k. Their joint probability mass function (pmf) a(i, j) and
probability generating function (pgf) A(z1, z2) are indicated as

a(i, j) ≜ Prob[a1,k = i and a2,k = j] , i, j ≥ 0 ,

A(z1, z2) ≜ E
[
za1,k

1 za2,k
2

]
≜

∞

∑
i=0

∞

∑
j=0

a(i, j) zi
1zj

2 , (1)

which are independent of k. The (marginal) pgfs of a1,k and a2,k are given by

A1(z1) ≜ E
[
za1,k

1

]
= A(z1, 1) , A2(z2) ≜ E

[
za2,k

2

]
= A(1, z2) , (2)

respectively. The mean arrival rates, i.e., the mean numbers of arrivals per slot of types 1
and 2 are denoted as

λ1 ≜ A′
1(1) , λ2 ≜ A′

2(1) . (3)

A graphical representation of the system under study is shown in Figure 1:

A1(z1)

A2(z2)

A(z1, z2)

1

2

Figure 1. System of two coupled parallel queues.

Let u1,k and u2,k indicate the system contents, i.e., the total numbers of customers present
in queue 1 and queue 2, respectively, including the customer(s) in service, if any, at the
beginning of slot k. We indicate their joint pgf as

Uk(z1, z2) ≜ E
[
zu1,k

1 zu2,k
2

]
. (4)

Furthermore, let q1,k and q2,k indicate the queue contents, i.e., the numbers of waiting cus-
tomers in queue 1 and queue 2, respectively, excluding the customer(s) in service, if any, at
the beginning of slot k. We indicate their joint pgf as

Qk(z1, z2) ≜ E
[
zq1,k

1 zq2,k
2

]
. (5)

It is not difficult to see that the following relationships exist between the system contents
and the queue contents:

q1,k = (u1,k − 1)+ , q2,k = (u2,k − 1)+ , (6)
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where we have introduced the notation (x)+ to indicate the quantity max(0, x).
The main purpose of the paper is to analyze the steady-state behavior of the queuing

system under study, i.e., we are interested in determining the steady-state joint pgfs of
the two system contents and/or queue contents, provided that such a steady state exists.
Specifically, we wish to study the following limit functions:

U(z1, z2) ≜ lim
k→∞

Uk(z1, z2) , Q(z1, z2) ≜ lim
k→∞

Qk(z1, z2) (7)

if they exist. A steady state exists if and only if both queues are stable—that is to say,
they receive, on average, less customers per slot than they can serve, i.e., if and only if the
following stability conditions are fulfilled:

λ1 < 1 , λ2 < 1 , (8)

where λ1 and λ2 denote the mean arrival rates, as defined in (3).
As mentioned in, e.g., refs. [6,11], the evolution of the system contents is described by

the following system equations:

u1,k+1 = a1,k + (u1,k − 1)+ , u2,k+1 = a2,k + (u2,k − 1)+ . (9)

Using standard z-transform techniques, the equations (9) can be translated into one corre-
sponding transform equation between the joint pgfs Uk(z1, z2) and Uk+1(z1, z2) by using
definition (4). Assuming the system reaches a steady state, i.e., assuming the stability condi-
tions (8) are met, letting the time parameter k go to infinity, and using definitions (4) and (7),
the latter transform equation translates into the following functional equation for the steady-
state system-content pgf U(z1, z2):

K(z1, z2)U(z1, z2) = A(z1, z2)L(z1, z2) , (10)

where the unknown function L(z1, z2) is defined as

L(z1, z2) ≜ (z2 − 1)U(z1, 0) + (z1 − 1)U(0, z2) + (z1 − 1)(z2 − 1)U(0, 0) (11)

and the kernel K(z1, z2) is given by

K(z1, z2) ≜ z1z2 − A(z1, z2) . (12)

Although, in general, the functional Equation (10) is hard to solve for U(z1, z2) it is
fairly easy to derive explicit expressions for the marginal pgfs U(z1, 1) and U(1, z2) of the
individual system contents in queues 1 and 2 by choosing either z2 = 1 or z1 = 1 in (10),
because such choices greatly simplify the L-function. As a result, we then obtain

U(z1, 1) =
U(0, 1)(z1 − 1)A1(z1)

z1 − A1(z1)
, U(1, z2) =

U(1, 0)(z2 − 1)A2(z2)

z2 − A2(z2)
. (13)

Invoking the normalization condition U(1, 1) = 1 yields U(0, 1) = 1 − λ1 and
U(1, 0) = 1−λ2. The expressions in (13) are very well-known in the context of discrete-time
queuing theory; see, for instance [62]; they will be very useful later in this paper.

We now turn our attention to the queue contents. Using (6) in (9), we readily obtain

u1,k+1 = a1,k + q1,k , u2,k+1 = a2,k + q2,k .

Transforming these relationships to pgfs, we obtain, on account of the definitions (4) and (5),

Uk+1(z1, z2) = A(z1, z2)Qk(z1, z2) .
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In view of (7), this implies that

U(z1, z2) = A(z1, z2)Q(z1, z2) , Q(z1, z2) =
U(z1, z2)

A(z1, z2)
. (14)

Equation (14) makes clear that Q(z1, z2) is known as soon as U(z1, z2) is known, and vice
versa. In the remainder of this paper, we mainly concentrate on the determination of
U(z1, z2).

3. Defining a Class of Arrival Pgfs A(z1, z2)

Let f1(z1), f2(z2), g1(z1), g2(z2), h1(z1), h2(z2) denote one-dimensional probability
generating functions. We note that this implies

f1(1) = f2(1) = g1(1) = g2(1) = h1(1) = h2(1) = 1 . (15)

Furthermore, let n11, n12, n21, n22 denote a set of normalized probabilities, i.e.,

n11, n12, n21, n22 ≥ 0 , n11 + n12 + n21 + n22 = 1 , (16)

and d1 and d2 two non-negative real parameters. We then use all the above quantities to
define a whole class of bivariate functions A(z1, z2), as follows:

A(z1, z2) =
n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1) + n22h1(z1)h2(z2)

1 + d1 + d2 − d1g1(z1)− d2g2(z2)
. (17)

We now show that the above function is a genuine joint pgf, i.e., it can be developed as a
two-dimensional power series in z1 and z2 with non-negative coefficients that add up to 1.

Let us denote the numerator and the denominator of (17) as n(z1, z2) and d(z1, z2),
respectively, i.e.,

A(z1, z2) =
n(z1, z2)

d(z1, z2)
= n(z1, z2)

( 1
d(z1, z2)

)
, (18)

with
n(z1, z2) ≜ n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1) + n22h1(z1)h2(z2) ,

d(z1, z2) ≜ 1 + d1 + d2 − d1g1(z1)− d2g2(z2) .
(19)

In view of (15) and (16), it is clear that both n(z1, z2) and d(z1, z2) are normalized, i.e.,
n(1, 1) = 1 and d(1, 1) = 1, which implies that A(z1, z2) is also normalized, i.e., A(1, 1) = 1.
The numerator n(z1, z2) is a probabilistic mixture of four valid pgfs and, therefore, is a
valid pgf too. The function 1/d(z1, z2) is also a genuine pgf, since it can be developed as a
two-dimensional power series in z1 and z2 with non-negative coefficients as follows:

1
d(z1, z2)

=
1

(1 + d1 + d2)− d1g1(z1)− d2g2(z2)

=
1

(1 + d1 + d2)
(
1 − π1g1(z1)− π2g2(z2)

)
=

(
1

1 + d1 + d2

) ∞

∑
i=0

(
π1g1(z1) + π2g2(z2)

)i ,

where the probabilities π1 and π2 have been defined as

π1 =
d1

1 + d1 + d2
, π2 =

d2

1 + d1 + d2
.
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Equation (18) thus shows that A(z1, z2) can be expressed as the product of two valid joint
pgfs and, therefore, is a valid joint pgf too.

In this paper, we will examine a parallel-queues system with joint arrival pgf A(z1, z2),
as defined in (17) and (18). The corresponding marginal arrival pgfs A1(z1) and A2(z2) are

A1(z1) = A(z1, 1) =
n(z1, 1)
d(z1, 1)

=
(n11 + n12)z1 + n21 f1(z1) + n22h1(z1)

1 + d1 − d1g1(z1)
,

A2(z2) = A(1, z2) =
n(1, z2)

d(1, z2)
=

(n11 + n21)z2 + n12 f2(z2) + n22h2(z2)

1 + d2 − d2g2(z2)
.

(20)

The mean arrival rates λ1 and λ2 are

λ1 ≜ A′
1(1) = n11 + n12 + n21 f ′1(1) + n22h′1(1) + d1g′1(1)

λ2 ≜ A′
2(1) = n11 + n21 + n12 f ′2(1) + n22h′2(1) + d2g′2(1) .

(21)

We assume that λ1 < 1, λ2 < 1.

4. The Main Result

According to (13), the marginal system-content pgfs are given by

U(z1, 1) =
U(0, 1)(z1 − 1)A1(z1)

z1 − A1(z1)
=

U(0, 1)(z1 − 1)n(z1, 1)
k1(z1)

,

U(1, z2) =
U(1, 0)(z2 − 1)A2(z2)

z2 − A2(z2)
=

U(1, 0)(z2 − 1)n(1, z2)

k2(z2)
,

(22)

where
k1(z1) ≜ z1d(z1, 1)− n(z1, 1) , k2(z2) ≜ z2d(1, z2)− n(1, z2) . (23)

We are now ready to formulate the main result of this paper.

Theorem 1. In the stable parallel-queues system with joint arrival pgf

A(z1, z2) =
n(z1, z2)

d(z1, z2)
=

n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1) + n22h1(z1)h2(z2)

1 + d1 + d2 − d1g1(z1)− d2g2(z2)
, (24)

where f1(z1), f2(z2), g1(z1) and g2(z2) are arbitrary one-dimensional pgfs and

n11, n12, n21, n22 ≥ 0 , n11 + n12 + n21 + n22 = 1 . (25)

The steady-state joint system-content pgf U(z1, z2) is given by

U(z1, z2) =
n(z1, z2)U(z1, 1)U(1, z2)

n(z1, 1)n(1, z2)
=

U(0, 1)U(1, 0)(z1 − 1)(z2 − 1)n(z1, z2)

k1(z1)k2(z2)
, (26)

provided that the functions h1(z1) and h2(z2) are genuine one-dimensional pgfs, given by

h1(z1) = α1z1 + β1 f1(z1) + γ1z1g1(z1) ,

h2(z2) = α2z2 + β2 f2(z2) + γ2z2g2(z2) ,
(27)

where {α1, β1, γ1} and {α2, β2, γ2} are two sets of “normalized constants”, i.e.,

α1 + β1 + γ1 = 1 , α2 + β2 + γ2 = 1 , (28)
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satisfying the restrictions

β1 > 0 , , β2 > 0 , γ1 =
d1β1

n21
≥ 0 , γ2 =

d2β2

n12
≥ 0 . (29)

4.1. Some Remarks on the Terms of Theorem 1

According to Equation (27), Theorem 1 requires that h1(z1) be a linear combination of
z1, f1(z1) and z1g1(z1) and, similarly, that h2(z2) be a linear combination of z2, f2(z2) and
z2g2(z2), with coefficients that add up to 1. It is easily seen that, as required, this implies
that h1(z1) and h2(z2) are normalized, i.e., h1(1) = h2(1) = 1. However, for arbitrary
choices of the parameters β1, β2, d1, d2, n12 and n21, the functions h1(z1) and h2(z2), as
given in (27), could, in general, contain linear terms in z1 or z2 with a negative coefficient,
which would prevent them from being genuine pgfs. Indeed, whereas the coefficients β1,
γ1, β2 and γ2 are certainly non-negative, this not necessarily the case for the coefficients
of the linear terms in (27). It is clear that sufficient conditions to guarantee that h1(z1) and
h2(z2) are valid pgfs are

α1 ≥ 0 , α2 ≥ 0 , (30)

but these conditions are not necessary. In order to determine the linear terms in (27) com-
pletely, it is useful to decompose the functions f1(z1), f2(z2), g1(z1) and g2(z2), as follows:

f1(z1) = f10 + f11z1 + z2
1v1(z1) , f2(z2) = f20 + f21z2 + z2

2v2(z2) (31)

and
g1(z1) = g10 + z1w1(z1) , g2(z2) = g20 + z2w2(z2) . (32)

Substitution of (31) and (32) in (27) yields

h1(z1) = β1 f10 +
(
α1 + β1 f11 + γ1g10

)
z1 +

(
β1v1(z1) + γ1w1(z1)

)
z2

1

h2(z2) = β2 f20 +
(
α2 + β2 f21 + γ2g20

)
z2 +

(
β2v2(z2) + γ2w2(z2)

)
z2

2 .
(33)

The above expressions make clear that h1(z1) and h2(z2) are genuine pgs if and only if

α1 + β1 f11 + γ1g10 ≥ 0 , α2 + β2 f21 + γ2g20 ≥ 0 , (34)

which are milder conditions than (30).

4.2. Proving Theorem 1

In order to prove Theorem 1, we first establish a technical lemma. Let us define the
bivariate function e(z1, z2) as

e(z1, z2) ≜ n(0, 1)n(1, 0)n(z1, z2) + n(0, 1)n(z1, 0)k2(z2) + n(1, 0)n(0, z2)k1(z1)

+ n(0, 0)k1(z1)k2(z2) .
(35)

Lemma 1. The function e(z1, z2) can be expressed as

e(z1, z2) = n(0, 1)n(1, 0)z1z2d(z1, z2) .

Proof. Combining (27), (28) and (29), and due to the fact that β1 and β2 are assumed to be
strictly positive, we can compute the functions n21 f1(z1) and n12 f2(z2) in terms of g1(z1),
g2(z2), h1(z1) and h2(z2), as follows:
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n21 f1(z1) =
β1z1

(
n21 + d1(1 − g1(z1))

)
+ n21

(
z1 − h1(z1)

)
β1

,

n12 f2(z2) =
β2z2

(
n12 + d2(1 − g2(z2))

)
+ n12

(
z2 − h2(z2)

)
β2

.

(36)

Inserting (36) into (19), we then obtain

n(z1, z2) = n22
(
h1(z1)h2(z2)− z1z2

)
+ z1z2d(z1, z2)−

n21z2
(
z1 − h1(z1)

)
β1

−
n12z1

(
z2 − h2(z2)

)
β2

, (37)

where we have also used the definition in (19) of d(z1, z2).
Choosing either z1 = 0 or z2 = 0 in (37) yields

n(z1, 0) = f2(0)
(
n12z1 + β2n22h1(z1)

)
, n(0, z2) = f1(0)

(
n21z2 + β1n22h2(z2)

)
, (38)

and, from this,
n(0, 0) = f1(0) f2(0)n22β1β2 . (39)

On the other hand, choosing either z1 = 1 or z2 = 1 in (37) leads to

n(z1, 1) = n22h1(z1) + z1
(
d(z1, 1)− n22

)
−

n21
(
z1 − h1(z1)

)
β1

,

n(1, z2) = n22h2(z2) + z2
(
d(1, z2)− n22

)
−

n12
(
z2 − h2(z2)

)
β2

.

(40)

Equations (27) imply that h1(0) = β1 f1(0) and h2(0) = β2 f2(0), and, hence, choosing
z1 = 0 and z2 = 0 in (40) yields

n(0, 1) = f1(0)
(

β1n22 + n21
)

, n(0, 1) = f2(0)
(

β2n22 + n12
)

. (41)

Using (40) and (41) in (23), we can express k1(z1) and k2(z2) as

k1(z1) ≜ z1d(z1, 1)− n(z1, 1) =
β1n22 + n21

β1

(
z1 − h1(z1)

)
=

n(0, 1)
β1 f1(0)

(
z1 − h1(z1)

)
,

k2(z2) ≜ z2d(1, z2)− n(1, z2) =
β2n22 + n12

β2

(
z2 − h2(z2)

)
=

n(1, 0)
β2 f2(0)

(
z2 − h2(z2)

)
.

(42)

Substitution of (37), (38), (39) and (42) in (35) then leads to

e(z1, z2) = n(0, 1)n(1, 0)
(

n22
(
h1(z1)h2(z2)− z1z2

)
+ z1z2d(z1, z2)−

n21z2
(
z1 − h1(z1)

)
β1

−
n12z1

(
z2 − h2(z2)

)
β2

)
+ n(0, 1) f2(0)

(
n12z1 + β2n22h1(z1)

) n(1, 0)
β2 f2(0)

(
z2 − h2(z2)

)
+ n(1, 0) f1(0)

(
n21z2 + β1n22h2(z2)

) n(0, 1)
β1 f1(0)

(
z1 − h1(z1)

)
+ f1(0) f2(0)n22β1β2

n(0, 1)
β1 f1(0)

(
z1 − h1(z1)

) n(1, 0)
β2 f2(0)

(
z2 − h2(z2)

)
.

(43)



Mathematics 2024, 12, 2345 11 of 31

It is then a matter of straightforward algebra to prove that all the terms in the above
equation containing h1(z1) and/or h2(z2) compensate each other. The final result is

e(z1, z2) = n(0, 1)n(1, 0)z1z2d(z1, z2) .

This concludes the proof of Lemma 1.

Proof of Theorem 1. The proof of Theorem 1 consists of two steps. In the first step, we
show that the function U(z1, z2), defined in (26), is a genuine joint pgf. In the second
step, we prove that, under the conditions of Theorem 1, U(z1, z2) satisfies the functional
Equation (10) of the system.

Step 1: U(z1, z2) is a genuine joint pgf Proof. In view of the relationship (14)
between U(z1, z2) and Q(z1, z2) (and the corresponding marginal pgfs), Equation (26) can
be rewritten as

U(z1, z2) =
n(z1, z2)U(z1, 1)U(1, z2)

n(z1, 1)n(1, z2)
=

n(z1, z2)A(z1, 1)Q(z1, 1)A(1, z2)Q(1, z2)

n(z1, 1)n(1, z2)
.

Using (20), we then easily obtain

U(z1, z2) =
n(z1, z2)Q(z1, 1)Q(1, z2)

d(z1, 1)d(1, z2)
= n(z1, z2)Q(z1, 1)Q(1, z2)

(
1

d(z1, 1)

)(
1

d(1, z2)

)
,

where the right-hand side is a product of five valid pgfs. Hence, U(z1, z2) is a valid pgf
as well.

Step 2: U(z1, z2) satisfies the functional equation Proof. Combining (10) and (12), we
can express the functional equation as(

z1z2 − A(z1, z2)
)
U(z1, z2) = A(z1, z2)L(z1, z2) ,

and, from this,
A(z1, z2)

(
L(z1, z2) + U(z1, z2)

)
= z1z2U(z1, z2) .

Inserting the expression (18) for A(z1, z2) then leads to

L(z1, z2) + U(z1, z2) =
z1z2d(z1, z2)U(z1, z2)

n(z1, z2)
. (44)

The function L(z1, z2) can be computed from (11) as

L(z1, z2) ≜ (z2 − 1)U(z1, 0) + (z1 − 1)U(0, z2) + (z1 − 1)(z2 − 1)U(0, 0) , (45)

where U(z1, 0) and U(0, z2) can be derived from (26) as

U(z1, 0) =
U(0, 1)U(1, 0)(z1 − 1)n(z1, 0)

n(1, 0)
(
k1(z1)

) , U(0, z2) =
U(0, 1)U(1, 0)(z2 − 1)n(0, z2)

n(0, 1)
(
k2(z2)

, (46)

which also implies

U(0, 0) =
U(0, 1)U(1, 0)n(0, 0)

n(0, 1)n(1, 0)
. (47)

Substitution of (46) and (47) in (48) then leads to

L(z1, z2) = ℓ(z1, z2)b(z1, z2) , (48)
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where we have defined ℓ(z1, z2) and b(z1, z2) as short-hand notations for

ℓ(z1, z2) ≜ n(0, 1)n(z1, 0)k2(z2) + n(1, 0)n(0, z2)k1(z1) + n(0, 0)k1(z1)k2(z2) ,

b(z1, z2) ≜
U(0, 1)U(1, 0)(z1 − 1)(z2 − 1)

n(0, 1)n(1, 0)k1(z1)k2(z2)
.

On the other hand, in view of (26), U(z1, z2) can be expressed as

U(z1, z2) = n(0, 1)n(1, 0)n(z1, z2)b(z1, z2) . (49)

Inserting (48) and (49) into (44), we then obtain(
ℓ(z1, z2) + n(0, 1)n(1, 0)n(z1, z2)

)
b(z1, z2) =

(
n(0, 1)n(1, 0)z1z2d(z1, z2)

)
b(z1, z2) . (50)

It thus suffices to show that the expressions between the large parentheses on the left-hand
side and on the right-hand side of (50) are equal. The expression on the left-hand side is
exactly the function e(z1, z2), defined in (35). Lemma 1 thus proves that (50) is fulfilled.
This concludes the proof of Theorem 1.

5. Subclasses A, B and C

Theorem 1 provides an explicit solution for the steady-state joint system-contents pgf
U(z1, z2) for any joint arrival pgf A(z1, z2) that satisfies the shape specified in
Equations (24), (25), (27), (28) and (29), on condition that h1(z1) and h2(z2) are valid pgfs. We
now define three interesting subclasses of the generic class of arrival pgfs considered in
Theorem 1, for which this crucial condition is fulfilled.

5.1. Subclass A: d1 = 0, d2 = 0, β1 ≤ 1, β2 ≤ 1

If d1 = 0 and d2 = 0 then the denominator d(z1, z2) is equal to 1 and the arrival pgf
A(z1, z2), defined in (17), simplifies to

A(z1, z2) = n(z1, z2) = n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1) + n22h1(z1)h2(z2) . (51)

We note that, in this case, the pgfs g1(z1) and g2(z2) play no role anymore in A(z1, z2). We
also observe that, since A(z1, z2) = n(z1, z2), the joint queue-content pgf Q(z1, z2), given
in (14), reduces to

Q(z1, z2) =
U(z1, z2)

n(z1, z2)
,

and, hence, our main result (26) in Theorem 1 is equivalent to

Q(z1, z2) = Q(z1, 1)Q(1, z2) , (52)

i.e., the queue contents of both queues are mutually independent.
The parameters γ1 and γ2, defined in (29), are both equal to zero, and, hence, the

functions h1(z1) and h2(z2), defined in (27), are given by

h1(z1) = (1 − β1)z1 + β1 f1(z1) , h2(z2) = (1 − β2)z2 + β2 f2(z2) , (53)

and are certainly genuine pgfs if we assume

β1 ≤ 1 , β2 ≤ 1 . (54)

In the sequel, we assume condition (54) fulfilled, and we formally define subclass A of
the generic class of arrival pgfs considered in this paper by the conditions d1 = 0, d2 = 0,
β1 ≤ 1, β2 ≤ 1.

Substitution of (53) in (51) then leads to
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A(z1, z2) = n(z1, z2) = n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1)

+ n22
(
(1 − β1)z1 + β1 f1(z1)

)(
(1 − β2)z2 + β2 f2(z2)

)
,

(55)

which can be rewritten as

A(z1, z2) = n(z1, z2) = m11z1z2 + m12z1 f2(z2) + m21z2 f1(z1) + m22 f1(z1) f2(z2)

if we define the new parameters m11, m12, m21 and m22 as

m11 ≜ (1 − β1)(1 − β2)n22 , m12 ≜ n12 + (1 − β1)β2n22 ,

m21 ≜ n21 + β1(1 − β2)n22 , m22 ≜ β1β2n22 .

It is easily seen that, since β1 ≤ 1, β2 ≤ 1 and α1 = 1 − β1, α2 = 1 − β2, the sufficient
conditions (30) are fulfilled and the parameters m11, m12, m21 and m22 also represent a
normalized set of probabilities, just as the original parameters n11, n12, n21 and n22, i.e.,

m11, m12, m21, m22 ≥ 0 , m11 + m12 + m21 + m22 = 1 . (56)

The marginal arrival pgfs A1(z1) and A2(z2), given in (20), reduce to

A1(z1) = (m11 + m12)z1 + (m21 + m22) f1(z1) , A2(z2) = (m11 + m21)z2 + (m12 + m22) f2(z2) , (57)

whereas the marginal mean arrival rates, given in (21), simplify to

λ1 = 1 − (m21 + m22)
(
1 − f ′1(1)

]
, λ2 = 1 − (m12 + m22)

(
1 − f ′2(1)

]
. (58)

Hence, the stability conditions λ1 < 1, λ2 < 1 are equivalent to

f ′1(1) < 1 , f ′2(1) < 1 .

The functions k1(z1) and k2(z2), defined in (23), reduce to

k1(z1) = (m21 + m22)
(
z1 − f1(z1)

)
, k2(z2) = (m12 + m22)

(
z2 − f2(z2)

)
,

and, hence, the joint pgf U(z1, z2) can be derived from (26) as

U(z1, z2) =
M(z1 − 1)(z2 − 1)n(z1, z2)(

z1 − f1(z1)
)(

z2 − f2(z2)
) , (59)

where the constant M is defined as

M ≜
U(0, 1)U(1, 0)

(m21 + m22)(m12 + m22)
.

The only remaining unknown M in Equation (59) can be computed from the normalization
condition U(1, 1) = 1, which results in

M =
(
1 − f ′1(1)

)(
1 − f ′2(1)

)
. (60)

A fully explicit expression for U(z1, z2) then follows from (59) and (60).
In summary, we have, thus, proven the following corollary of Theorem 1:

Corollary 1. In the stable parallel-queues system with joint arrival pgf

A(z1, z2) = m11z1z2 + m12z1 f2(z2) + m21z2 f1(z1) + m22 f1(z1) f2(z2) , (61)
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where f1(z1) and f2(z2) are arbitrary one-dimensional pgfs, and

m11, m12, m21, m22 ≥ 0 , m11 + m12 + m21 + m22 = 1 , (62)

the steady-state queue contents of both queues are mutually independent, and the steady-state joint
system-content pgf U(z1, z2) is given by

U(z1, z2) =

(
1 − f ′1(1)

)(
1 − f ′2(1)

)
(z1 − 1)(z2 − 1)A(z1, z2)(

z1 − f1(z1)
)(

z2 − f2(z2)
) . (63)

Remark 1. If we define the discriminant D of A(z1, z2) as D ≜ m12m21 − m11m22 then it is
easily seen that if D = 0 then the pgf A(z1, z2) has a product form, i.e.,

A(z1, z2) =

(
m11z1 + m21 f1(z1)

)(
m11z2 + m12 f2(z2)

)
m11

,

and the arrivals of both customer types are mutually independent. It is clear from (63) that, in this
case, the pgf U(z1, z2) reduces to a product form too, i.e., the two steady-state system contents are
also mutually independent.

5.2. Subclass B: α1 = 0, α2 = 0

The requirements (30) represent sufficient conditions to guarantee that the functions
h1(z1) and h2(z2) are valid pgfs. A trivial way to satisfy (30) is to choose

α1 = 0 , α2 = 0 . (64)

We formally define the subclass B of the generic class of arrival pgfs considered in this paper
by condition (64). From (28) and (29), it follows that (64) is equivalent to

γ1 =
d1

d1 + n21
, γ2 =

d2

d2 + n12
. (65)

Substitution of (64) in (27) then yields

h1(z1) = (1 − γ1) f1(z1) + γ1z1g1(z1) , h2(z2) = (1 − γ2) f2(z2) + γ2z2g2(z2) . (66)

Equations (66) and (15) imply that

h′1(1) = (1 − γ1) f ′1(1) + γ1[1 + g′1(1)] , h′2(1) = (1 − γ2) f ′2(1) + γ2[1 + g′2(1)] ,

so that the mean arrival rates, given in (21), can be expressed as

λ1 = (n11 + n12 + γ1n22) + (n21 + (1 − γ1)n22) f ′1(1) + (d1 + γ1n22)g′1(1) ,

λ2 = (n11 + n21 + γ2n22) + (n12 + (1 − γ2)n22) f ′2(1) + (d2 + γ2n22)g′2(1) .
(67)

The functions k1(z1) and k2(z2), defined in (23), are given by

k1(z1) =
n21 + (1 − γ1)n22

1 − γ1

(
[1 − γ1g1(z1)]z1 − (1 − γ1) f1(z1)

)
,

k2(z2) =
n12 + (1 − γ2)n22

1 − γ2

(
[1 − γ2g2(z2)]z2 − (1 − γ2) f2(z2)

)
.

(68)

The joint pgf U(z1, z2) can be derived from (26) and (68) as

U(z1, z2) =
M(z1 − 1)(z2 − 1)n(z1, z2)(

[1 − γ1g1(z1)]z1 − (1 − γ1) f1(z1)
)(
[1 − γ2g2(z2)]z2 − (1 − γ2) f2(z2)

) , (69)
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where the constant M has been defined as

M ≜
U(0, 1)U(1, 0)(1 − γ1)(1 − γ2)(

n21 + (1 − γ1)n22
)(

n12 + (1 − γ2)n22
) .

The only remaining unknown M in Equation (93) can be computed from the normalization
condition U(1, 1) = 1, which results in

M =
(
(1 − γ1)[1 − f ′1(1)]− γ1g′1(1)

)(
(1 − γ2)[1 − f ′2(1)]− γ2g′2(1)

)
. (70)

A fully explicit expression for U(z1, z2) then follows from (74) and (75).
Summarizing again, we have, thus, proven the following corollary of Theorem 1:

Corollary 2. In the stable parallel-queues system with joint arrival pgf

A(z1, z2) =
n(z1, z2)

1 + d1 + d2 − d1g1(z1)− d2g2(z2)
, (71)

where n(z1, z2) is defined as

n(z1, z2) ≜ n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1)

+ n22
(
(1 − γ1) f1(z1) + γ1z1g1(z1)

)(
(1 − γ2) f2(z2) + γ2z2g2(z2)

)
,

(72)

with f1(z1), f2(z2), g1(z1), g2(z2) arbitrary one-dimensional pgfs, and

n11, n12, n21, n22 ≥ 0 , n11 + n12 + n21 + n22 = 1

and
γ1 ≜

d1

d1 + n21
, γ2 ≜

d2

d2 + n12
, (73)

the steady-state joint system-content pgf U(z1, z2) is given by

U(z1, z2) =
M(z1 − 1)(z2 − 1)n(z1, z2)(

[1 − γ1g1(z1)]z1 − (1 − γ1) f1(z1)
)(
[1 − γ2g2(z2)]z2 − (1 − γ2) f2(z2)

) , (74)

with
M ≜

(
(1 − γ1)[1 − f ′1(1)]− γ1g′1(1)

)(
(1 − γ2)[1 − f ′2(1)]− γ2g′2(1)

)
. (75)

5.3. Subclass C: No Linear Terms in h1(z1) and h2(z2)

The requirements of (34) are necessary and sufficient conditions in order for h1(z1) and
h2(z2) to represent genuine pgfs. In this subsection, we examine the extreme case whereby
the inequalities in (34) are replaced by equalities, i.e., where

α1 + β1 f11 + γ1g10 = 0 , α2 + β2 f21 + γ2g20 = 0 . (76)

In view of (28) and (29), (76) can be rewritten as

(1 − α1)(n21 f11 + d1g10) + α1(n21 + d1) = 0 , (1 − α2)(n12 f21 + d2g20) + α2(n12 + d2) = 0 . (77)

Solving (77) for α1 and α2, we find

α1 = − n21 f11 + d1g10

n21(1 − f11) + d1(1 − g10)
, α2 = − n12 f21 + d2g20

n12(1 − f21) + d2(1 − g20)
. (78)
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In these circumstances, due to (33), the functions h1(z1) and h2(z2) can be expressed
as

h1(z1) =
n21 f10 + z2

1
(
n21v1(z1) + d1w1(z1)

)
n21(1 − f11) + d1(1 − g10)

,

h2(z2) =
n12 f20 + z2

2
(
n12v2(z2) + d2w2(z2)

)
n12(1 − f21) + d2(1 − g20)

,

(79)

and, hence, contain no linear terms in z1 and z2, respectively.
In order to further simplify the expressions, let us consider the (further) special

case where
v1(z1) = w1(z1) , v2(z2) = w2(z2) . (80)

Of course, we then also have v1(1) = w1(1), v2(1) = w2(1). From (31) and (32), we
readily obtain

v1(1) = 1 −
(

f10 + f11
)

, v2(1) = 1 −
(

f20 + f21
)

, w1(1) = 1 − g10 , w2(1) = 1 − g20 ,

and, hence, v1(1) = w1(1), v2(1) = w2(1) implies

f11 = g10 − f10 , f21 = g20 − f20 .

We now choose to additionally simplify the model by assuming

g10 = f10 ≜ 1 − ω1 , g20 = f20 ≜ 1 − ω2 ⇔ f11 = 0 , f20 = 0 , (81)

where we have introduced the new parameters ω1 and ω2, which are valid probabilities.
By definition, we refer to arrival pgfs A(z1, z2) (of the form considered in Theorem 1)

as pgfs of subclass C if and only if they comply with the conditions (76), (80) and (81).
Using (80) and (81), we obtain the following expressions for h1(z1) and h2(z2) from (79):

h1(z1) =
n21(1 − ω1) + (n21 + d1)z2

1v1(z1)

n21 + d1ω1
, h2(z2) =

n12(1 − ω2) + (n12 + d2)z2
2v2(z2)

n12 + d2ω2
, (82)

From their definitions in (31) and (32), it follows that the functions v1(z1) and v2(z2)
only contain powers of z1 and z2 with non-negative coefficients, but are not necessarily
normalized. It is useful to replace them by new functions, say c1(z1) and c2(z2), that do
satisfy a normalization condition, and, hence, are genuine pgfs, as follows:

c1(z1) ≜
v1(z1)

v1(1)
=

v1(z1)

ω1
, c2(z2) ≜

v2(z2)

v2(1)
=

v2(z2)

ω2
. (83)

All the defining functions of our model can then be expressed in terms of the pgfs c1(z1)
and c2(z2), as follows:

f1(z1) = 1 − ω1 + ω1z2
1c1(z1) , f2(z2) = 1 − ω2 + ω2z2

2c2(z2) , (84)

g1(z1) = 1 − ω1 + ω1z1c1(z1) , g2(z2) = 1 − ω2 + ω2z2c2(z2) , (85)

h1(z1) = 1 − θ1 + θ1z2
1c1(z1) , h2(z2) = 1 − θ2 + θ2z2

2c2(z2) , (86)

where we have defined the probabilities θ1 and θ2 as

θ1 ≜
(n21 + d1)ω1

n21 + d1ω1
, θ2 ≜

(n12 + d2)ω2

n12 + d2ω2
. (87)
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The arrival pgf A(z1, z2) can be determined by the substitution of (84), (85) and (86)
in (24):

A(z1, z2) =
n(z1, z2)

1 + d1ω1
(
1 − z1c1(z1)

)
+ d2ω2

(
1 − z2c2(z2)

) , (88)

where

n(z1, z2) ≜ n11z1z2 + n12z1
(
1 − ω2 + ω2z2

2c2(z2)
)
+ n21z2

(
1 − ω1 + ω1z2

1c1(z1)
)

+ n22
(
1 − θ1 + θ1z2

1c1(z1)
)(

1 − θ2 + θ2z2
2c2(z2)

)
.

(89)

The marginal mean arrival rates can be computed from (21), which results in

λ1 = 1 − n21 + n22 + ω1d1

n21 + ω1d1

(
n21 + ω1d1 − ω1(n21 + d1)

(
2 + c′1(1)

))

λ2 = 1 − n12 + n22 + ω2d2

n12 + ω2d2

(
n12 + ω2d2 − ω2(n12 + d2)

(
2 + c′2(1)

))
.

(90)

Consequently, the stability conditions λ1 < 1, λ2 < 1 are equivalent to

c′1(1) <
n21 − ω1(2n21 + d1)

ω1(n21 + d1)
, c′2(1) <

n12 − ω2(2n12 + d2)

ω2(n12 + d2)
.

The functions k1(z1) and k2(z2) that constitute the denominator of U(z1, z2) can be
derived from (42):

k1(z1) =
n21 + n22 + ω1d1

n21 + ω1d1

(
n21(z1 − 1) + ω1(n21 + d1z1)− ω1(n21 + d1)z2

1c1(z1)
)

,

k2(z2) =
n12 + n22 + ω2d2

n12 + ω2d2

(
n12(z2 − 1) + ω2(n12 + d2z2)− ω2(n12 + d2)z2

2c2(z2)
)

,

(91)

where we have also used (87). Introducing the notations V1(z1) and V2(z2) as

V1(z1) ≜
z1 − 1

n21(z1 − 1) + ω1(n21 + d1z1)− ω1(n21 + d1)z2
1c1(z1)

,

V2(z2) ≜
z2 − 1

n12(z2 − 1) + ω2(n12 + d2z2)− ω2(n12 + d2)z2
2c2(z2)

,
(92)

we can compute the joint pgf U(z1, z2) from (26) and (91) as

U(z1, z2) = MV1(z1)V2(z2)n(z1, z2) , (93)

where the constant M has been defined as

M ≜
U(0, 1)U(1, 0)(n21 + ω1d1)(n12 + ω2d2)

(n21 + n22 + ω1d1)(n12 + n22 + ω2d2)
.

As before, the remaining unknown M can be determined by invoking the normaliza-
tion condition U(1, 1) = 1, which results in

M =

(
n21 + ω1d1 − ω1(n21 + d1)

(
2 + c′1(1)

))(
n12 + ω2d2 − ω2(n12 + d2)

(
2 + c′2(1)

))
. (94)

A fully explicit expression for U(z1, z2) then follows from (93), (104) and (94).
Summarizing again, we have thus proven the following corollary of Theorem 1:
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Corollary 3. In the stable parallel-queues system with joint arrival pgf

A(z1, z2) =
n(z1, z2)

1 + d1ω1
(
1 − z1c1(z1)

)
+ d2ω2

(
1 − z2c2(z2)

) , (95)

where

n(z1, z2) ≜ n11z1z2 + n12z1
(
1 − ω2 + ω2z2

2c2(z2)
)
+ n21z2

(
1 − ω1 + ω1z2

1c1(z1)
)

+ n22
(
1 − θ1 + θ1z2

1c1(z1)
)(

1 − θ2 + θ2z2
2c2(z2)

)
,

(96)

with c1(z1) and c2(z2) arbitrary one-dimensional pgfs, and

n11, n12, n21, n22 ≥ 0 , n11 + n12 + n21 + n22 = 1

and

0 ≤ ω1, ω2 ≤ 1 , θ1 ≜
(n21 + d1)ω1

n21 + d1ω1
, θ2 ≜

(n12 + d2)ω2

n12 + d2ω2
,

the steady-state joint system-content pgf U(z1, z2) is given by

U(z1, z2) = MV1(z1)V2(z2)n(z1, z2) , (97)

where
V1(z1) ≜

z1 − 1
n21(z1 − 1) + ω1(n21 + d1z1)− ω1(n21 + d1)z2

1c1(z1)
,

V2(z2) ≜
z2 − 1

n12(z2 − 1) + ω2(n12 + d2z2)− ω2(n12 + d2)z2
2c2(z2)

,
(98)

and

M ≜
(

n21 + ω1d1 − ω1(n21 + d1)
(
2 + c′1(1)

))(
n12 + ω2d2 − ω2(n12 + d2)

(
2 + c′2(1)

))
. (99)

6. Special Cases within Subclasses A, B and C

In this section, we consider several instances of subclasses A, B and C, whereby specific
choices are made for the various parameters and functions appearing in the formulations
of corollaries 1, 2 and 3.

6.1. Special Cases within Subclass A
6.1.1. At Most, One Arrival per Slot in Queue 1

Here, we choose
f1(z1) = 1 − σ1 + σ1z1 , f ′1(1) = σ1 , (100)

which implies that the pgf A(z1, z2), given in (61), reduces to

A(z1, z2) =
(
(m21σ1 + m11)z2 + (m22σ1 + m12) f2(z2)

)
z1 + (1 − σ1)

(
m21z2 + m22 f2(z2)

)
,

which is clearly linear in z1, meaning that queue 1 receives, at most, one arrival per slot.
The marginal arrival pgf A2(z2) and the mean arrival rate λ2 follow from (57) and (58) as

A2(z2) = (m11 + m21)z2 + (m12 + m22) f2(z2) , λ2 = 1 − (m12 + m22)[1 − f ′2(1)] ,

from which we can deduce that

f2(z2) =
A2(z2)− (m11 + m21)z2

m12 + m22
, 1 − f ′2(1) =

1 − λ2

m12 + m22
. (101)
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According to corollary A, the pgf U(z1, z2) can be obtained from (63) by substitution
of (100), i.e.,

U(z1, z2) =
(1 − σ1)

(
1 − f ′2(1)

)
(z1 − 1)(z2 − 1)A(z1, z2)(

z1 − (1 − σ1 + σ1z1)
)(

z2 − f2(z2)
) =

(
1 − f ′2(1)

)
(z2 − 1)A(z1, z2)

z2 − f2(z2)
.

Owing to (101) and (56), this can be rewritten as

U(z1, z2) =

(
1 − λ2

)
(z2 − 1)A(z1, z2)

z2 − A2(z2)
.

This particular result is well-known. We first established it through an alternative, more
direct, approach in our earlier short paper [11]. It is interesting that we retrieve it here as a
very simple special case of our more general results.

6.1.2. The Case m12 = m21 = 0

Again, in our earlier paper [11] we stated (without proof) the following theorem. Later,
we also provided a formal proof in [12].

Theorem 2. If UE(z1, z2) denotes the joint system-content pgf in a parallel-queues system with
joint arrival pgf E(z1, z2), and a new arrival pgf A(z1, z2) is defined as

A(z1, z2) ≜ (1 − ν)z1z2 + νE(z1, z2) , where 0 < ν ≤ 1 , (102)

then the joint system-content pgf UA(z1, z2) corresponding to arrival pgf A(z1, z2) is given by

UA(z1, z2) =
UE(z1, z2)A(z1, z2)

E(z1, z2)
. (103)

Specifically, if the arrivals of both types are mutually independent in the original
system, i.e., if E(z1, z2) has a product form, E(z1, z2) = E1(z1)E2(z2), then UE(z1, z2) has a
product form too, i.e., UE(z1, z2) = UE(z1, 1)UE(1, z2), with, similar to (13),

UE(z1, 1) =

(
1 − E′

1(1)
)
(z1 − 1)E1(z1)

z1 − E1(z1)
, UE(1, z2) =

(
1 − E′

2(1)
)
(z2 − 1)E2(z2)

z2 − E2(z2)
, (104)

and (103) reduces to

UA(z1, z2) =
UE(z1, 1)UE(1, z2)A(z1, z2)

E1(z1)E2(z2)
=

(
1 − E′

1(1)
)(

1 − E′
2(1)

)
(z1 − 1)(z2 − 1)A(z1, z2)(

z1 − E1(z1)
)(

z2 − E2(z2)
) . (105)

It is remarkable that we can easily retrieve this property as a simple instance of our
subclass-A results if we choose

m11 = 1 − ν, m12 = m21 = 0, m22 = ν, f1(z1) = E1(z1), f2(z2) = E2(z2) .

Indeed, Equations (61) and (63) from the formulation of corollary A are then equivalent
to Equations (102) and (103) from the formulation of Theorem 2. We do emphasize that
Theorem 2 was proven to be valid also if E(z1, z2) does not have a product form.

6.1.3. Geometric f -Distributions

Here, we choose geometric distributions with respective mean values σ1 and σ2 for the
pgfs f1(z1) and f2(z2):

f1(z1) =
1

1 + σ1 − σ1z1
, f2(z2) =

1
1 + σ2 − σ2z2

, f ′1(1) = σ1 , f ′2(1) = σ2 . (106)
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The arrival pgf A(z1, z2) then follows from (61) as

A(z1, z2) =
F(z1, z2)

(1 + σ1 − σ1z1)(1 + σ2 − σ2z2)
,

where F(z1, z2) is a quadratic polynomial in both z1 and z2, defined as

F(z1, z2) ≜ m22 + m12z1(1 + σ1 − σ1z1) + m21z2(1 + σ2 − σ2z2)

+ m11z1z2(1 + σ1 − σ1z1)(1 + σ2 − σ2z2) .

The marginal mean arrival rates follow from (58):

λ1 = 1 − (m21 + m22)(1 − σ1) , λ2 = 1 − (m12 + m22)(1 − σ2) . (107)

The stability conditions λ1 < 1, λ2 < 1 are, therefore, equivalent to σ1 < 1, σ2 < 1.
The system-content pgf U(z1, z2) can be obtained by using (106) in (63):

U(z1, z2) =
(1 − σ1)(1 − σ2)F(z1, z2)

(1 − σ1z1)(1 − σ2z2)
, (108)

a remarkably simple expression. The zeroes of the denominator are

z1 =
1
σ1

> 1 , z2 =
1
σ2

> 1 .

We return to this special case further in the paper.

6.1.4. Binomial f -Distributions

Here, we choose binomial distributions of order 2, again with respective mean values
σ1 and σ2, for the pgfs f1(z1) and f2(z2):

f1(z1) =
(
1 − σ1

2
− σ1

2
z1
)2 , f2(z2) =

(
1 − σ2

2
− σ2

2
z2
)2 , f ′1(1) = σ1 , f ′2(1) = σ2 . (109)

The arrival pgf A(z1, z2) follows from (61) as

A(z1, z2) = m11z1z2 + m12z1
(
1 − σ2

2
− σ2

2
z2
)2

+ m21z2
(
1 − σ1

2
− σ1

2
z1
)2

+ m22
(
1 − σ1

2
− σ1

2
z1
)2(1 − σ2

2
− σ2

2
z2
)2 ,

and is a quadratic polynomial in both z1 and z2. Again, the stability conditions λ1 < 1,
λ2 < 1 are equivalent to σ1 < 1, σ2 < 1.

The system-content pgf U(z1, z2) can be obtained by using (109) in (63):

U(z1, z2) =
16(1 − σ1)(1 − σ2)A(z1, z2)(

(2 − σ1)2 − σ2
1 z1

)(
(2 − σ2)2 − σ2

2 z2
) ;

again, a rather simple expression. The zeroes of the denominator are

z1 =

(
2 − σ1

σ1

)2

> 1 , z2 =

(
2 − σ2

σ2

)2

> 1 .
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6.1.5. Batch-2-Geometric f -Distributions

Here, we choose batch-2-geometric distributions with respective mean values σ1 and σ2
for the pgfs f1(z1) and f2(z2):

f1(z1) =
2

2 + σ1 − σ1z2
1

, f2(z2) =
2

2 + σ2 − σ2z2
2

, f ′1(1) = σ1 , f ′2(1) = σ2 . (110)

The terminology batch-2-geometric reflects the fact that a random variable with this distribu-
tion can only take values equal to geometrically distributed multiples of batch-size 2. The
arrival pgf A(z1, z2) follows from (61) as

A(z1, z2) =
F(z1, z2)(

2 + σ1 − σ1z2
1
)(

2 + σ2 − σ2z2
2
) ,

where F(z1, z2) is a cubic polynomial in both z1 and z2, defined as

F(z1, z2) ≜ 4m22 + 2m12z1(2 + σ1 − σ1z2
1) + 2m21z2(2 + σ2 − σ2z2

2)

+ m11z1z2(2 + σ1 − σ1z2
1)(2 + σ2 − σ2z2

2) .

Once again, the stability conditions λ1 < 1, λ2 < 1 are equivalent to σ1 < 1, σ2 < 1.
The system-content pgf U(z1, z2) can be obtained by using (110) in (63):

U(z1, z2) =
(1 − σ1)(1 − σ2)F(z1, z2)(

2 − σ1z1(1 + z1)
)(

2 − σ2z2(1 + z2)
) ,

a remarkably simple expression. The zeroes of the denominator can be explicitly determined
as the solutions of quadratic equations; we omit the results here, for the sake of brevity.

6.2. Special Cases within Subclass B

In subclass A, the bivariate arrival pgf A(z1, z2) is completely determined by the
univariate pgfs f1(z1) and f2(z2), and the pgfs g1(z1) and g2(z2) play no role. In subclass
B, however, all the defining one-dimensional pgfs contribute to A(z1, z2). In order to
specifically examine the effect of g1(z1) and g2(z2), we consider two examples where
f1(z1) = f2(z2) = 1, combined with different choices for g1(z1) and g2(z2).

6.2.1. The Case f1(z1) = f2(z2) = 1, g1(z1) = z1, g2(z2) = z2

Here, we choose

f1(z1) = f2(z2) = 1, g1(z1) = z1, g2(z2) = z2 , f ′1(1) = f ′2(1) = 0, g′1(1) = 1, g′2(1) = 1 . (111)

The arrival pgf A(z1, z2) follows from (71), (72) and (73) as

A(z1, z2) =
n11z1z2 + n12z1 + n21z2 + n22(1 − γ1 + γ1z2

1)(1 − γ2 + γ2z2
2)

1 + γ1n21
1−γ1

(1 − z1) +
γ2n12
1−γ2

(1 − z2)
. (112)

In view of (67), the marginal mean arrival rates are

λ1 = 1 − 1 − 2γ1

1 − γ1

(
n21 + (1 − γ1)n22

)
, λ2 = 1 − 1 − 2γ2

1 − γ2

(
n12 + (1 − γ2)n22

)
,

and, hence, the stability conditions λ1 < 1, λ2 < 1 are equivalent to γ1 < 1/2, γ2 < 1/2.
The joint system-content pgf U(z1, z2) can be obtained by using (111) in (72), (74)

and (75), which results in

U(z1, z2) =
(1 − 2γ1)(1 − 2γ2)

(
n11z1z2 + n12z1 + n21z2 + n22[1 − γ1 + γ1z2

1][1 − γ2 + γ2z2
2]
)

(1 − γ1 − γ1z1)(1 − γ2 − γ2z2)
. (113)
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The zeroes of the denominator are given by

z1 =
1 − γ1

γ1
> 1 , z2 =

1 − γ2

γ2
> 1 .

Remark 2. It is worth mentioning that a special instance of this case was treated in our recent
paper [6]. There, we considered a parallel-queues system, whereby the total number of arrivals
per slot (of both customer types together) has a shifted geometric distribution with pgf C(z) and
mean value q ≥ 1, i.e., C(z) = z/[q − (q − 1)z], and new arrivals are routed independently and
probabilistically to queue 1 or 2 with probabilities p and 1 − p, respectively, implying that the joint
arrival pgf A(z1, z2) is given by

A(z1, z2) = C(pz1 + (1 − p)z2) =
pz1 + (1 − p)z2

q − (q − 1)pz1 − (q − 1)(1 − p)z2
. (114)

In Appendix A of [6], we formally proved that the joint system-content pgf U(z1, z2) for this
system is

U(z1, z2) =
(κ1 − 1)(τ1 − 1)

(
pz1 + (1 − p)z2

)
(κ1 − z1)(τ1 − z2)

, with κ1 ≜
1 − p

p(q − 1)
, τ1 ≜

p
(1 − p)(q − 1)

. (115)

The proof in [6] was a (rather complicated) constructive proof, whereby we explicitly solved
the functional Equation (10), K(z1, z2)U(z1, z2) = A(z1, z2)L(z1, z2), by expressing that the
unknown function L(z1, z2) should vanish for all (z1, z2) in the area of convergence of U(z1, z2) for
which the kernel K(z1, z2) vanishes. This allowed us to determine the boundary functions U(z1, 0)
and U(0, z2), and, from this, the function L(z1, z2), and, eventually, the pgf U(z1, z2), as given
in (115).

The function A(z1, z2) in (114) is clearly of the form (112) considered in the current subsection,
provided we choose

n11 = 0 , n12 = p , n21 = 1 − p , n22 = 0 , d1 = p(q − 1) , d2 = (1 − p)(q − 1) . (116)

We now show that the solution (115) can be retrieved from the results in this subsection. Indeed,
using (116) in the definitions (65) of our current parameters γ1 and γ2 leads to

γ1 ≜
d1

d1 + n21
=

p(q − 1)
p(q − 1) + 1 − p

, γ2 ≜
d2

d2 + n12
=

(1 − p)(q − 1)
(1 − p)(q − 1) + p

,

and, from this,

1 − γ1

γ1
=

1 − p
p(q − 1)

= κ1 ,
1 − γ2

γ2
=

p
(1 − p)(q − 1)

= τ1 , (117)

and
1 − 2γ1

γ1
=

1 − p
p(q − 1)

= κ1 − 1 ,
1 − 2γ2

γ2
=

p
(1 − p)(q − 1)

= τ1 − 1 . (118)

Inserting (116) in (113) yields

U(z1, z2) =
(1 − 2γ1)(1 − 2γ2)

(
pz1 + (1 − p)z2

)
(1 − γ1 − γ1z1)(1 − γ2 − γ2z2)

. (119)

Division of both the numerator and the denominator of the above expression by γ1γ2 and substitution
of (117) and (118) then clearly shows that (119) is identical to (115).

We have, thus, been able, once again, to recover a specific existing result as a particular case of
the results of the current paper.
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6.2.2. The Case f1(z1) = f2(z2) = 1, g1(z1) = z2
1, g2(z2) = z2

2

Here, we choose

f1(z1) = f2(z2) = 1, g1(z1) = z2
1, g2(z2) = z2

2 , f ′1(1) = f ′2(1) = 0, g′1(1) = 2, g′2(1) = 2 . (120)

The arrival pgf A(z1, z2) follows from (71), (72) and (73) as

A(z1, z2) =
n11z1z2 + n12z1 + n21z2 + n22(1 − γ1 + γ1z3

1)(1 − γ2 + γ2z3
2)

1 + γ1n21
1−γ1

(1 − z1) +
γ2n12
1−γ2

(1 − z2)
.

From (67), we find the marginal mean arrival rates as

λ1 = 1 − 1 − 3γ1

1 − γ1

(
n21 + (1 − γ1)n22

)
, λ2 = 1 − 1 − 3γ2

1 − γ2

(
n12 + (1 − γ2)n22

)
,

and, hence, the stability conditions λ1 < 1, λ2 < 1 are equivalent to γ1 < 1/3, γ2 < 1/3.
The joint system-content pgf U(z1, z2) is obtained by using (120) in (72), (74) and (75):

U(z1, z2) =
(1 − 3γ1)(1 − 3γ2)

(
n11z1z2 + n12z1 + n21z2 + n22[1 − γ1 + γ1z3

1][1 − γ2 + γ2z3
2]
)(

1 − γ1 − γ1z1(1 + z1)
)(

1 − γ2 − γ2z2(1 + z2)
) . (121)

Again, the zeroes of the denominator can be explicitly computed. We return to this special
case in more detail further in the paper.

6.3. Special Cases within Subclass C

In order to simplify the expressions in this subsection, we first make the following
assumptions:

n11 = 0 , n12 = n21 = d1 = d2 = d , n22 = 1 − 2d , ω1 = ω2 =
1
4

. (122)

According to (95) and (96), the arrival pgf is given by

A(z1, z2) =
n(z1, z2)

1 + d
4
(
2 − z1c1(z1)− z2c2(z2)

) ,

where

n(z1, z2) =
d
4

(
z1
(
3 + z2

2c2(z2)
)
+ z2

(
3 + z2

1c1(z1)
))

+
1 − 2d

25
(
3 + z2

2c2(z2)
)(

3 + z2
1c1(z1)

)
. (123)

The marginal mean arrival rates are

λ1 = 1 − 4 − 3d
20

(
1 − 2c′1(1)

)
, λ2 = 1 − 4 − 3d

20
(
1 − 2c′2(1)

)
,

which implies that the stability conditions λ1 < 1, λ2 < 1 are equivalent to c′1(1) <
1/2, c′2(1) < 1/2. From (98) and (99), we obtain

V1(z1) =
4(z1 − 1)

d
(
5z1 − 2z2

1c1(z1)− 3
) , V2(z2) =

4(z2 − 1)
d
(
5z2 − 2z2

2c2(z2)− 3
) ,

and

M =
d2

16
(
1 − 2c′1(1)

)(
1 − 2c′2(1)

)
.

It then follows from (97) that the system-content pgf is given by
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U(z1, z2) =

(
1 − 2c′1(1)

)(
1 − 2c′2(1)

)
(z1 − 1)(z2 − 1)n(z1, z2)(

3 − 5z1 + 2z2
1c1(z1)

)(
3 − 5z2 + 2z2

2c2(z2)
) , (124)

We now make different choices for c1(z1) and c2(z2) that are interesting from a compu-
tational point-of-view because they lead to easily computable zeroes of the denominator
of (124).

6.3.1. Bernoulli c-distributions

Here, we choose Bernoulli distributions with parameters σ1 and σ2 for c1(z1) and
c2(z2):

c1(z1) = 1 − σ1 + σ1z1 , c2(z2) = 1 − σ2 + σ2z2 , c′1(1) = σ1 , c′2(1) = σ2 .

The pgf U(z1, z2) then reduces to

U(z1, z2) =
(1 − 2σ1)(1 − 2σ2)n(z1, z2)

(3 − 2z1 − 2σ1z2
1)(3 − 2z2 − 2σ2z2

2)
. (125)

We come back to this special case later in this paper.

6.3.2. Geometric c-Distributions

We now consider geometric distributions with mean values σ1 and σ2 for c1(z1) and
c2(z2):

c1(z1) =
1

1 + σ1 − σ1z1
, c2(z2) =

1
1 + σ2 − σ2z2

, c′1(1) = σ1 , c′2(1) = σ2 . (126)

The pgf U(z1, z2) then reduces to

U(z1, z2) =
(1 − 2σ1)(1 − 2σ2)(1 + σ1 − σ1z1)(1 + σ2 − σ2z2)n(z1, z2)(

3(1 + σ1)− (2 + 5σ1)z1
)(

3(1 + σ2)− (2 + 5σ2)z2
) .

The zeroes of the denominator are given by

z1 =
3(1 + σ1)

2 + 5σ1
> 1 , z2 =

3(1 + σ2)

2 + 5σ2
> 1 .

6.3.3. Negative Binomial c-Distributions

Here, we choose negative binomial distributions of order two for the pgfs c1(z1) and
c2(z2):

c1(z1) =
4

(2 + σ1 − σ1z1)2 , c2(z2) =
4

(2 + σ2 − σ2z2)2 , c′1(1) = σ1 , c′2(1) = σ2 . (127)

In this case, the pgf U(z1, z2) is given by

U(z1, z2) = W1(z1)W2(z2)n(z1, z2) ,

where

W1(z1) ≜
(1 − 2σ1)(2 + σ1 − σ1z1)

2(
3(2 + σ1)2 − 4(2 + σ1)(1 + 2σ1)z1 + 5σ2

1 z2
1
) ,

W2(z2) ≜
(1 − 2σ2)(2 + σ2 − σ2z2)

2(
3(2 + σ2)2 − 4(2 + σ2)(1 + 2σ2)z2 + 5σ2

2 z2
2
) .



Mathematics 2024, 12, 2345 25 of 31

Also in this case, the zeroes of the denominator are the solutions of quadratic equations
and can be computed explicitly; it is not difficult to show that they lie outside the unit disks
on the z1-plane and the z2-plane.

7. Inverting the Joint pgf U(z1, z2)

In this section, we focus on the derivation of the steady-state joint probability mass
function (pmf) u(m, n) of the system contents in queues 1 and 2, which is defined as

u(m, n) ≜ lim
k→∞

Prob[u1,k = m, u2,k = n] ,

and is related to the joint pgf U(z1, z2) by the equation

U(z1, z2) =
∞

∑
m=0

∞

∑
n=0

u(m, n)zm
1 zn

2 .

In an earlier paper [12], we proved (with slightly different notations) the following useful
theorem to determine u(m, n) from U(z1, z2) for “interior states” (m, n) in the state space.

Theorem 3. If the joint pgf U(z1, z2) is a rational function of z1 and z2 of the form

U(z1, z2) =
B(z1, z2)

r1(z1)r2(z2)
=

B(z1, z2)

∏L1
i=1(z1 − κi)∏L2

j=1(z2 − τj)
, (128)

where the numerator B(z1, z2) is a bivariate polynomial of degree K1 in z1 and K2 in z2 and the
denominator is a product of two univariate functions r1(z1) and r2(z2), having only zeroes of
multiplicity 1, and the numerator and the denominator are mutually prime, then threshold values
m0 and n0 can be defined as m0 ≜ max(0, K1 − L1 + 1), n0 ≜ max(0, K2 − L2 + 1), such that
for m ≥ m0, n ≥ n0 the pmf u(m, n) is given by a finite linear combination of bivariate geometric
terms, i.e.,

u(m, n) =
L1

∑
i=1

L2

∑
j=1

µi,j
( 1

κi

)m( 1
τj

)n , m ≥ m0, n ≥ n0 , (129)

where

µi,j ≜
B(κi, τj)

κiτjr′1(κi)r′2(τj)
. (130)

7.1. Some Comments

In all the examples that we have considered in this paper, we have chosen rational
functions for constituting one-dimensional pgfs f1(z1), f2(z2), g1(z1), g2(z2), h1(z1), h2(z2)
of the joint arrival pgf A(z1, z2), defined in (24). This implies that the pgf U(z1, z2), given
in (26) by

U(z1, z2) =
U(0, 1)U(1, 0)(z1 − 1)(z2 − 1)n(z1, z2)

k1(z1)k2(z2)
, (131)

is a rational bivariate function whose denominator is a product of two univariate functions,
and that it can, therefore, be expressed in the form required to apply Theorem 3.

By definition, the quantities κi and τj occurring in (129) are the zeroes of r1(z1) (or
k1(z1)) and r2(z2) (or k2(z2)). According to (129), the geometric decay rates of the system-
content distribution are the inverse values of these zeroes, i.e., the ith decay rate for queue 1
is equal to 1/κi and the jth decay rate for queue 2 is given by 1/τj. Each bivariate geometric
term in u(m, n) thus corresponds to a couple (κi, τj) of zeroes of r1(z1) and r2(z2), but the
opposite is not necessarily true, since, for some i and j, it may happen that the coefficient
µi,j in Equation (129) is zero. According to (130), this situation occurs if B(κi, τj) = 0. If
this is the case for one or more couples (κi, τj), the number of nonzero bivariate geometric
terms in u(m, n) is lower than the product L1 × L2.
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7.2. Specific Examples

In this subsection, we apply Theorem 3 in some examples of arrival pgfs A(z1, z2)
belonging to subclasses A, B and C, as defined before.

7.2.1. An Example within Subclass A

In this example, we revisit the model with geometric f -distributions of Section 6.1.3.
The system-content pgf U(z1, z2) is given in (108). The parameters and functions appearing
in the formulation of Theorem 3 are K1 = K2 = 2, L1 = L2 = 1 and

B(z1, z2) = (1 − σ1)(1 − σ2)F(z1, z2) , r1(z1) = 1 − σ1z1 , r2(z2) = 1 − σ2z2 ,

with

F(z1, z2) ≜ m22 + m12z1(1 + σ1 − σ1z1) + m21z2(1 + σ2 − σ2z2)

+ m11z1z2(1 + σ1 − σ1z1)(1 + σ2 − σ2z2) .

The zeroes of r1(z1) and r2(z2) are κ1 = 1
σ1

> 1, τ1 = 1
σ2

> 1. The coefficient µ1,1 can be
computed from (130) as µ1,1 = (1 − σ1)(1 − σ2). Finally, the pmf u(m, n) for interior states
(m, n) follows from (129) as

u(m, n) = (1 − σ1)(1 − σ2)
( 1

σ1

)m( 1
σ2

)n , m ≥ 2, n ≥ 2 .

7.2.2. An example within subclass B

Here, we consider a symmetric instance of the model with quadratic g-functions of
Section 6.2.2, with the following specific parameter choices: n12 = n21 = n0, d1 = d2 = d,
γ1 = γ2 = γ. The joint system-content pgf U(z1, z2) can be obtained from (121):

U(z1, z2) =
(1 − 3γ)2(n11z1z2 + n0z1 + n0z2 + n22[1 − γ + γz3

1][1 − γ + γz3
2]
)(

1 − γ − γz1(1 + z1)
)(

1 − γ − γz2(1 + z2)
) .

We can apply Theorem 3 with K1 = K2 = 3, L1 = L2 = 2,

B(z1, z2) ≜ (1 − 3γ)2(n11z1z2 + n0z1 + n0z2 + n22[1 − γ + γz3
1][1 − γ + γz3

2]
)

,

and
r1(z1) ≜ 1 − γ − γz1(1 + z1) , r2(z2) ≜ 1 − γ − γz2(1 + z2) .

The zeroes of r1(z1) and r2(z2) lie outside the unit disks {z1 : |z1| ≤ 1} and {z2 : |z2| ≤ 1}
on the complex z1-plane and z2-plane, respectively, and are given by

κ1 = τ1 =

√
γ(4 − 3γ)− γ

2γ
> 1 , κ2 = τ2 = −

√
γ(4 − 3γ) + γ

2γ
< −1 .

The coefficients µi,j can be computed from (130):

µ1,1 = µ
1 − γ + (1 − 4n0)(1 +

√
γ(4 − 3γ))

2 − γ −
√

γ(4 − 3γ)
, µ2,2 = µ

1 − γ + (1 − 4n0)(1 −
√

γ(4 − 3γ))

2 − γ +
√

γ(4 − 3γ)

µ1,2 = µ2,1 = µ
1 − γ − n0(2 − 3γ)

1 − γ
, where µ ≜

(1 − 3γ)2

γ(4 − 3γ)
.

(132)

In general, all these coefficients are nonzero, and the linear combination in (129) contains
four terms:
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u(m, n) = µ1,1
( 1

κ1

)m+n
+ µ12

(( 1
κ1

)m( 1
κ2

)n
+

( 1
κ2

)m( 1
κ1

)n
)
+ µ2,2

( 1
κ2

)m+n , m ≥ 2, n ≥ 2 .

Careful study shows that it is impossible to choose the parameter n0, appearing
in (132), in such a way that the coefficients µ1,1, µ1,2 or µ2,1 are zero, but there does exist a
value of n0, such that µ2,2 vanishes; the required n0-value is

n0 =
2 − γ +

√
γ(4 − 3γ)

4
(
1 +

√
γ(4 − 3γ)

) > 0 . (133)

This is an acceptable value, since it implies that

n11 + n22 = 1 − n12 − n21 = 1 − 2n0 =
γ +

√
γ(4 − 3γ)

2
(
1 +

√
γ(4 − 3γ)

) > 0

So, in case n0 is chosen in accordance with (133), the linear combination in (129) contains
only three bivariate geometric terms:

u(m, n) = µ1,1
( 1

κ1

)m+n
+ µ12

(( 1
κ1

)m( 1
κ2

)n
+

( 1
κ2

)m( 1
κ1

)n
)

, m ≥ 2, n ≥ 2 ,

and does not contain a term with two negative decay rates.

7.2.3. An example within subclass C

We now go back to the model with Bernoulli c-distributions in Section 6.3.1. The pgf
U(z1, z2) is given by (125). We can apply Theorem 3, provided we choose K1 = K2 = 3,
L1 = L2 = 2:

B(z1, z2) = (1 − 2σ1)(1 − 2σ2)n(z1, z2) , r1(z1) = (3 − 2z1 − 2σ1z2
1) , r2(z2) = (3 − 2z2 − 2σ1z2

2) ,

where, owing to (123), n(z1, z2) is given by

n(z1, z2) =
d
4

(
z1
(
3 + z2

2(1 − σ2 + σ2z2)
)
+ z2

(
3 + z2

1(1 − σ1 + σ1z1)
))

+
1 − 2d

25
(
3 + z2

1(1 − σ1 + σ1z1)
)(

3 + z2
2(1 − σ2 + σ2z2)

)
.

(134)

The zeroes of r1(z1) and r2(z2) lie outside the unit disks {z1 : |z1| ≤ 1} and {z2 : |z2| ≤ 1}
on the complex z1-plane and z2-plane, respectively, and are given by

κ1 =

√
1 + 6σ1 − 1

2σ1
> 1 , κ2 = −

√
1 + 6σ1 + 1

2σ1
< −1

τ1 =

√
1 + 6σ2 − 1

2σ2
> 1 , τ2 = −

√
1 + 6σ2 + 1

2σ2
< −1 .

The coefficients µi,j can be computed from (130):

µ1,1 = µ
4 + d(σ1κ1 + σ2τ1 − 1)
(1 + 2σ1κ1)(1 + 2σ2τ1)

, µ1,2 = µ
4 + d(σ1κ1 + σ2τ2 − 1)
(1 + 2σ1κ1)(1 + 2σ2τ2)

,

µ2,1 = µ
4 + d(σ1κ2 + σ2τ1 − 1)
(1 + 2σ1κ2)(1 + 2σ2τ1)

, µ2,2 = µ
4 + d(σ1κ2 + σ2τ2 − 1)
(1 + 2σ1κ2)(1 + 2σ2τ2)

,
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where we have defined µ as

µ ≜
(1 − 2σ1)(1 − 2σ2)

16
.

Again, in general, all these coefficients are nonzero, and the linear combination in (129)
contains four terms:

u(m, n) = µ1,1
( 1

κ1

)m( 1
τ1

)n
+ µ12

( 1
κ1

)m( 1
τ2

)n
+

( 1
κ2

)m( 1
τ1

)n
+ µ2,2

( 1
κ2

)m( 1
τ2

)n , m ≥ 2, n ≥ 2 . (135)

Let dij denote the value of d that makes µi,j zero; then, we can easily compute the follow-
ing values:

d11 =
8

4 −
√

1 + 6σ1 −
√

1 + 6σ2
, d12 =

8
4 −

√
1 + 6σ1 +

√
1 + 6σ2

,

d21 =
8

4 +
√

1 + 6σ1 −
√

1 + 6σ2
, d22 =

8
4 +

√
1 + 6σ1 +

√
1 + 6σ2

.

Taking into account the stability conditions σ1 < 1/2, σ2 < 1/2, as we have shown in
Section 6.3.1, it is readily seen that all these d-values are positive, as required, but none of
them are lower than 1/2, which is also necessary, because in this model, according to (122),
n22 = 1 − 2d and needs to be positive. We conclude that, in this particular case, the pmf
u(m, n) always contains exactly four bivariate geometric terms, as shown in (135).

8. Concluding Remarks

This paper has considered the steady-state queuing analysis of a system of two parallel
discrete-time single-server queues with mutually interdependent arrivals, characterized by
the joint arrival pgf A(z1, z2). We have identified a very broad, multi-parameter, generic
class of arrival pgfs A(z1, z2), for which we were able to determine explicit analytic solutions
for the joint system-content pgf U(z1, z2). We think this is the main virtue of the paper. It is
also interesting to observe that our results encompass most of the previously known results
for this kind of system, which is known to be hard to analyze.

Although the class of arrival pgfs A(z1, z2) examined in this paper is very broad, it still
has its limitations, which are mainly due to the shape of the arrival pgf, i.e., Equation (17):

A(z1, z2) =
n11z1z2 + n12z1 f2(z2) + n21z2 f1(z1) + n22h1(z1)h2(z2)

1 + d1 + d2 − d1g1(z1)− d2g2(z2)
,

and the requirement that the pgfs appearing in the above expression should be related as
stated in Equations (27) or (36), which can be rewritten as

β1n21
(
z1 − f1(z1)

)
+ β1d1z1

(
1 − g1(z1)

)
+ n21

(
z1 − h1(z1)

)
= 0 ,

β2n12
(
z2 − f2(z2)

)
+ β2d2z2

(
1 − g2(z2)

)
+ n12

(
z2 − h2(z2)

)
= 0 .

Since the parameters β1 and β2 need to be strictly positive – we need this in the proof
of Lemma 1—we can, thus, not have a constant numerator for A(z1, z2) without the
requirement that the denominator be also constant. Hence, a seemingly simple arrival
pgf like

A(z1, z2) =
1

1 + d1 + d2 − d1z1 − d2z2
(136)

is not a special case of our model. So far, we have not seen a solution for the “global geometric”
arrival pgf in (136), and the current paper also does not provide one.

Future work could go in several directions. We may try to further extend the class
of arrival pgfs that lead to explicit solutions for the parallel-queues system, dealt with in



Mathematics 2024, 12, 2345 29 of 31

this paper, but we may also consider other types of coupled queues, such as the (other)
ones mentioned in the introduction section of this paper. An even more challenging task
could be to extend the analysis from two queues to more than two queues. We expect such
an extension to be far from obvious, because the number and the nature of the boundary
functions in the functional equation make the problem much more complex than in the
two-queue case.
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