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REVIEW

Phage lysins for intestinal microbiome modulation: current challenges and 
enabling techniques
Iris Pottie a,b, Roberto Vázquez Fernández a,c, Tom Van de Wieleb, and Yves Briers a

aLaboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium; bCenter for Microbial Ecology and 
Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium; cCentro de Investigación Biomédica en Red de 
Enfermedades Respiratorias (CIBERES), Madrid, Spain

ABSTRACT
The importance of the microbiota in the intestinal tract for human health has been increasingly 
recognized. In this perspective, microbiome modulation, a targeted alteration of the microbial 
composition, has gained interest. Phage lysins, peptidoglycan-degrading enzymes encoded by 
bacteriophages, are a promising new class of antibiotics currently under clinical development for 
treating bacterial infections. Due to their high specificity, lysins are considered microbiome- 
friendly. This review explores the opportunities and challenges of using lysins as microbiome 
modulators. First, the high specificity of endolysins, which can be further modulated using protein 
engineering or targeted delivery methods, is discussed. Next, obstacles and possible solutions to 
assess the microbiome-friendliness of lysins are considered. Finally, lysin delivery to the intestinal 
tract is discussed, including possible delivery methods such as particle-based and probiotic 
vehicles. Mapping the hurdles to developing lysins as microbiome modulators and identifying 
possible ways to overcome these hurdles can help in their development. In this way, the applica-
tion of these innovative antimicrobial agents can be expanded, thereby taking full advantage of 
their characteristics.
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Introduction: the gut microbiome and 
microbiome modulators

The gastrointestinal tract of humans is inhabited by 
a variety of microorganisms, including bacteria, 
viruses, archaea, fungi, and protozoa. These micro-
organisms are of paramount importance for the 
physiological functioning and health status of the 
human host, as reported by an accumulating num-
ber of studies.1,2 Both entities have acquired certain 
functions to adapt to each other, and they are even 
considered to have coevolved.3 This has resulted at 
some levels in symbiotic relationships. This symbio-
sis can be mutually beneficial but can also be neutral 
or even disadvantageous (also called pathogenic) to 
the human host.3 In any case, the continuous inter-
play between the human host and microbiota aims 
to achieve a harmonious, homeostatic state.1 During 
this homeostatic state, the microbiota provides cer-
tain vital functions to the host.3 These include reg-
ulation of digestion4 and immune response,5 

suppression of pathogens,6 and maintaining 

epithelial integrity.7 However, a disruption of the 
homeostatic state, also termed dysbiosis, is asso-
ciated with multiple diseases and disorders, includ-
ing Clostridioides difficile infection,8 inflammatory 
bowel disease,9 celiac disease,10 colorectal cancer,11 

obesity,12 and diabetes.13

The associations of the microbiota with health 
and disease, together with the important functions 
it provides, have resulted in a paradigm shift in 
how to perceive the role of the microbiota for 
human health and its implications for 
healthcare.14 Two main drivers can be identified. 
On the one hand, broad-spectrum antibiotics are 
questioned in some cases, not only because the 
target bacteria are becoming resistant to them, 
but also because they disrupt the normal micro-
biota, with effects observed in the short and the 
long term.15–17 This, in turn, can have detrimental 
effects on the human host, although the target 
bacterium and primary infection can normally be 
treated.15 Antibiotic-associated diarrhea and 
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a bloom of vancomycin-resistant enterococci upon 
antibiotic treatment are two examples of such 
effects in the short term.18 Furthermore, although 
association should not be confused with causation, 
the use of broad-spectrum antibiotics in early 
childhood is associated with obesity later in life. It 
is thought that the long-term effects of antibiotic 
treatment on the human host may be caused by 
a disruption in the establishment of homeostatic 
microbial colonization.19,20 Anyway, the off-target 
and potentially long-term effects of broad- 
spectrum antibiotics have led to an increased inter-
est in narrow-spectrum antibiotics that kill or inhi-
bit the growth of the target bacteria while keeping 
the rest of the microbiota intact.21 To use these 
antibiotics effectively, precise and rapid diagnostics 
are required to identify the target bacterium and 
the accompanying antibiotic.22 On the other hand, 
the association of the microbiota with health and 
disease has sparked interest in steering the intest-
inal microbiota to treat certain diseases by altering 
the microbiota composition or adding certain 
functions to the microbiome. For example, fecal 
microbiota transfer has been considered as 
a treatment by remodeling the gut microbiota, 
with promising outcomes for treating C. difficile 
infections, but variable outcomes in the case of 
inflammatory bowel disease.23,24 These insights 
have led to a paradigm shift in the perception of 
bacteria in healthcare: (i) encouraging results of 
treating diseases by remodeling the gut microbiota 
and (ii) the association between the adverse effects 
of broad-spectrum antibiotics on the gut micro-
biota and human health.

Because microbiome research is constantly and 
rapidly evolving, some terms used in this article are 
clarified to avoid confusion. The vast number of 
living microorganisms in the intestinal tract, of 
which bacteria alone make up an estimated 39 
trillion microorganisms, is collectively referred to 
as ‘the human intestinal microbiota’.3,25 This 
human intestinal microbiota, together with the 
collective genome and the produced metabolites, 
controlled by environmental factors is called the 
‘human intestinal microbiome’.3 It is difficult, if 
not impossible, to properly define what a healthy 
microbiome is, as microbiomes vary between 
healthy individuals, and thus a healthy microbiome 
is not necessarily determined by the presence of 

one or some specific microbial species. At most, it 
can be said that a holobiont is characterized by 
a healthy homeostatic state with high microbial 
functional diversity and a harmonic microbial bal-
ance. However, an absolute, general definition of 
this ‘balance’, also called ‘eubiosis’, cannot be given, 
also not for the counter situation, ‘dysbiosis’ in 
which the homeostatic balance is lost.26,27 Due to 
the relative and variable nature of a healthy micro-
biome, it is also difficult to provide a definition of 
‘microbiome-friendliness’ as used in the field of 
antimicrobial therapy or microbiome modulation. 
Still, some attempts have been made, arguing that 
this notion should be characterized as a lack of 
microbiome perturbation with respect to a basal, 
homeostatic state. In this sense, the eradication of 
opportunistic pathogens and stimulation of ‘bene-
ficial’ microbes are perceived to contribute to 
a microbiome-friendly character, although both 
effects can be seen as compositional changes.28 As 
it can be concluded from our prior discussion, 
defining which organisms are opportunistic patho-
gens and which are beneficial is a challenging task, 
if bona fide beneficial microorganisms even exist. 
In this regard, advances in microbiome research 
might help in elucidating which species may be 
regarded as key toward promoting a healthy micro-
biome in general, or if this issue needs to be 
assessed in a case-by-case manner, providing ele-
ments for more concrete definitions of the micro-
biome-friendliness of microbiome modulators and 
antimicrobial agents.29 What we refer to as ‘micro-
biome modulation’ are techniques aiming to 
change the composition of a microbiome to restore 
its homeostatic state. This artificial modification of 
the microbiome composition can be achieved by 
expanding the presence of certain species, for 
example, by fecal microbiota transplantation,23 by 
using pre-,30 pro-,31 or postbiotics,32 or by the 
administration of a microbial consortium.33 

Conversely, the microbiome can also be modulated 
by eliminating species or strains that are consid-
ered to provoke negative effects. Although broad- 
spectrum antibiotics are usually administered to 
diminish disease-causing bacteria in situations of 
dysbiosis, their effect on other gut bacteria can also 
hinder the recovery of a homeostatic state. 
Therefore, a more specific depletion of species or 
strains is considered to be a more suitable way of 
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microbiome modulation. This can be achieved, for 
example, (i) by using narrow-spectrum 
antibiotics,34,35 (ii) by using bacteriophages that 
infect and kill specific bacteria,36,37 (iii) by engi-
neering bacteria that produce or deliver antimicro-
bials and toxins targeting nearby bacteria,2,38–41 

and (iv) by delivering genetic tools to eliminate 
target species, e.g. the selective destruction of target 
DNA by CRISPR-Cas systems.42–44 For a more 
comprehensive review of the impact of the micro-
biome on human health, potential engineering 
techniques, and enabling technologies, the reader 
is referred to Aggarwal et al. (2023).2 In this work, 
we particularly focus on the use of phage lysins as 
potential microbiome modulators.

Phage lysins as a potential tool for microbiome 
modulation

Many bacteriophages, viruses infecting bacteria, 
encode lysins, enzymes that catalytically degrade 
the peptidoglycan of the bacterial cell wall. Their 
natural role is to lyse the cell at the end of the 
replication cycle, resulting in the release of the 
newly formed phage particles. Most phage lysins 
from Gram-positive infecting phages are modular, 
meaning they consist of one or more modules or 
domains, folding and acting independently as either 
an enzymatically active domain (EAD) or a cell wall- 
binding domain (CBD). In contrast, most lysins 
targeting Gram-negatives are globular, consisting 
of a mere EAD. For a comprehensive review of 
phage lysins, the reader is referred to.45 In the case 
of Gram-positive bacteria, purified wild-type phage 
lysins can remain active when applied exogenously, 
resulting in osmotic lysis and subsequent cell death. 
They can thus be used as enzyme-based antibacter-
ials. These lysins are considered a promising new 
class of antimicrobials because they have a new 
mode of action, a low probability to provoke resis-
tance development, a lack of cross-resistance with 
known resistance mechanisms, and a new target as 
compared with the standard-of-care antibiotics. In 
addition, they act rapidly and may have a narrow 
spectrum. Moreover, the modular nature of lysins 
enables relatively easy protein engineering by 
domain swapping.46 For the sake of clarity, in this 
review, phage lysins and engineered, phage-derived 
lysins are taken under the umbrella term ‘lysin’. The 

protein engineering process allows the improvement 
of phage lysins by altering their bactericidal activity 
and biochemical properties, modifying the lytic 
spectrum, or improving the performance of the pro-
tein in clinical settings.47 Moreover, the activity 
spectrum can be further tuned by domain swapping. 
This is a particularly appealing property in terms of 
increasing the specificity of microbiome modula-
tion. Indeed, phage lysins have the potential to act 
as precision antibiotics that surgically remove the 
pathogen, without or with minimal effect on the 
benign microbiota.46 This becomes increasingly 
relevant now it is increasingly understood that the 
collateral damage of widely used broad-spectrum 
antibiotics on the intestinal microbiota causes dys-
biosis, which is associated with multiple diseases.

The implementation of phage-derived lysins to 
treat bacterial infections while maintaining or restor-
ing a healthy microbiome has gained interest of the 
industry. For example, lysin SA.100 is incorporated in 
the cosmetic product Gladskin to treat skin diseases 
aggravated by S. aureus. Moreover, other lysins are 
being developed to selectively eradicate S. aureus in 
the skin microbiome, lysin XZ-700 being one 
example.48–50 The possibilities of an engineered 
lysin, PM-477, has also been explored to treat bacterial 
vaginosis by specifically eradicating Gardnerella while 
having limited impact on beneficial lactobacilli or 
other species in the vaginal microbiome.51 

Medolysin®, a burn wound spray that eradicates either 
Gram-negative bacteria Escherichia coli, Klebsiella 
pneumoniae, Acinetobacter baumannii, and 
Pseudomonas aeruginosa or Gram-positive S. aureus, 
using the Artilysin® technology. This technology is 
based on the fusion of a modular lysin with 
a lipopolysaccharide-destabilizing peptide. 
Medolysin® has been reported to have positive effects 
on the skin microbiome; however, no data supporting 
this claim are available.52,53 In addition to Medolysin®, 
other Artilysins® are being developed to treat skin 
diseases aggravated by bacterial infections while 
allowing the skin microbiome to be restored.

The academic research and commercial invest-
ments in lysin technology point toward the feasi-
bility of using them as microbiome-friendly agents 
to modulate microbiomes. This entails that they 
could specifically deplete bacteria that cause 
adverse effects to the host, while generally keeping 
the benign bacteria of the microbiome intact. 
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Because lysins directly act on a target bacterium, 
they are not dependent on the presence or prolifera-
tion of certain bacteria, as is the case for, for exam-
ple, pro-, pre-, and postbiotics, fecal microbiota 
transfer and engineered bacteria specifically deliver-
ing a toxin or antimicrobial substance. Moreover, 
because lysins actively degrade the cell wall of the 
target bacteria rapidly, the metabolic status of the 
target cell has only a small effect on its action, if any. 
This counteracts the evasion of lysin treatment by 
bacterial persisters (bacteria with the same genotype 
that are metabolically inactive)54 and resisters (bac-
teria with new genotype that are not affected by the 
treatment).49,55 In contrast, antibiotics and bacter-
iophages require an active metabolism of the target 
bacteria. This, in turn, can result in the survival of 
persisters that can repopulate the infection site upon 
resuscitation,56 and promote the emergence of 
resisters,57,58 interfering with the complete eradica-
tion of the target bacterium.

Although lysins are promising candidates to 
modulate the gut microbiome, the current appli-
cations are limited to treating skin and vaginal 
infections. These microbiomes are usually less 
complex, having an estimated lower absolute 
amount of bacterial cells (estimation of 1014 bac-
teria in the colon and 1011 in both the vaginal 
and skin microbiota59) and a lower (in case of 
the vaginal microbiome) or similar (in case of the 
skin microbiome) alpha diversity (measure of 
microbial diversity within a sample) compared 
to the intestinal tract.60 Moreover, the application 
of products is easier for skin and vaginal applica-
tions, compared to the intestinal tract.2 In this 
review, challenges encountered when developing 
phage-derived lysins to modulate the gut micro-
biome, including defining the specificity profile 
and microbiome-friendliness, and the delivery to 
the gut, as well as potential enabling techniques 
are explored (Figure 1).

Figure 1. Phage-derived lysins are potential microbiome modulators. However, certain challenges hinder their development, which 
could be addressed by recent opportunities. (left) the microbiome within the gut can be altered and modulated by using lysins 
derived from phages. After treatment with a phage-derived lysin, the gut microbiome is depleted from specific members. (upper right) 
the specificity of lysins can be too broad, resulting in off-target effects. Protein engineering and targeted delivery of lysins can be 
applied to minimize these effects. (middle right) assessing the impact of a lysin on the microbiome can be challenging, partly due to 
the complexity of the microbiome and ethical issues. Therefore, consecutive in vitro, ex vivo and in vivo assessment models could be 
applied. (lower right) lysin delivery to the intestines is complicated because proteins can be degraded during passage through the 
gastrointestinal tract (GIT). Proteins can be formulated using probiotic delivery methods, particle-based and macroscopic systems to 
address this issue. GIT: gastrointestinal tract.
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Challenges and enabling technologies

Specificity of lysins

Lysins are considered microbiome-friendly 
because of their specificity. Indeed, specificity can 
give an interesting first insight into lysin behavior 
and can be considered a first step toward the char-
acterization of a lysin and its potential as 
a microbiome modulator with a microbiome- 
friendly character. Lysin specificity is usually exam-
ined by assessing the lytic or bactericidal activity 
against a panel of bacteria. This panel is usually 
made up of closely related species, sometimes com-
plemented by species relevant to a given microbial 
environment.51 However, the selection of a panel of 
bacteria may seem arbitrary because defining spe-
cies relevance for a given microbiome is not 
straightforward. In this regard, ongoing efforts to 
characterize the human microbiome in health and 
disease, fueled by advances in sequencing and cul-
turing technologies, can help in the selection of 
a relevant panel.61,62 Besides the choice of 
a bacterial panel, the conditions in which the lysin 
has been tested are also of major importance. Most 
antibacterial assays performed to test lysin specifi-
city are executed under laboratory conditions, 
using one specific strain at a time under controlled 
conditions such as pH, temperature, etc. Although 
these conditions increase the reproducibility and 
robustness of experiments, they do not consider 
the complexity of the intestinal environment. As 
bacterial growth kinetics, cell morphology and 
associated peptidoglycan structure, and bacterial 
functionality can vary across different growth con-
ditions and environments, this can affect lysin 
activity.63,64 In addition, lysin activity itself 
depends on environmental conditions, such as 
ionic strength and tonicity.65 Taken together, asses-
sing the specificity of a lysin is an important first 
step toward characterizing it as a microbiome 
modulator, but care should be taken when choos-
ing which conditions and which bacteria are to be 
examined.

That being said, it is important to note that not all 
lysins exhibit the same level of specificity. While some 
lysins are indeed reported to possess a specific bacter-
icidal activity, often at the serovar, species,66 or genus 
level,67,68 others exhibit bactericidal activity against 
a broader range of bacteria.69–72 The differences in 

lysin specificity could be partly attributed to its mod-
ular architecture and its target. However, not all lysins 
are modular. In fact, most Gram-negative lysins are 
monomodular or globular.73 Notably, although gen-
eralizations should be taken with caution, lysins from 
Gram-negative phages appear to have a broader host 
range compared to those from Gram-positive phages. 
This can be explained on the one hand by the impor-
tance of the CBD in determining lysin specificity, 
although evidence suggests that the EAD also con-
tributes to lysin specificity, and on the other hand by 
the conserved peptidoglycan chemotype (A1γ) for 
Gram-negatives, whereas Gram-positive bacteria 
show much more chemotype diversity.74–76 In any 
case, it can be said that lysins have, in general, 
a broader host range compared to their encoding 
phages, but are still more specific than currently 
used broad-spectrum antibiotics.77,78 To further fine-
tune the specificity of lysins, it is possible to adapt 
lysin specificity using different approaches, including 
protein engineering and directed delivery.

First, the specificity of a lysin can be altered 
using protein engineering. Swapping EADs and 
CBDs originating from different lysins is a viable 
approach to alter the specificity or other character-
istics. This has been applied to broaden, narrow, 
and even redirect the activity range of lysins.47,79 

For example, the domains of two enterococcal 
lysins with different lytic specificities, PlyV12 and 
LysEF-P10, were swapped to modulate their speci-
ficity. By substituting the CBD of PlyV12 with that 
of LysEF-P10, the lytic activity of PlyV12 was nar-
rowed, targeting only enterococci. On the opposite, 
the substitution of the CBD of LysEF-P10 with that 
of PlyV12 broadened the activity range of LysEF- 
P10, targeting E. faecalis and staphylococci, but not 
E. faecium.79 Similarly, the fusion of the CBD of 
PlyV12 with the EAD of Staphylococcus aureus 
phage lysin LysGH15 or the EAD of bacteriophage 
endolysin Ply187 extended the activity spectrum 
toward staphylococci, enterococci and 
streptococci.80,81 Likewise, ClyR, constituting of 
the CBD of Streptococcus suis prophage lysin 
PlySs2 and the EAD of C1 bacteriophage lysin 
PlyC, showed extended lytic activity against strep-
tococci, enterococci and staphylococci.82 In addi-
tion to domain swapping, domains have been 
truncated or deleted,83–85 or mutagenesis has been 
employed to alter lysin properties.86–89 Moreover, 
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lysins or lysin modules can be fused to other pep-
tides or protein moieties.90 The latter approach is 
mainly applied to enable lysins to pass through 
outer or eukaryotic membranes to potentiate lysins 
against Gram-negative and intracellular bacteria, 
respectively, but it is also used to alter other prop-
erties, such as directing lysins toward specific tar-
gets. For example, fusion of LysP (the endolysin of 
Propionibacterium phage P1.1) to a cellulose- 
binding domain enabled cellulose-based affinity 
protein purification91; fusion of the enzybiotic 
Cpl-711 to MinP (a minimized polyhydroxyalk-
anoate affinity tag) enabled lysin immobilization 
on a polymeric nanoparticle,92 and fusion of 
a chimeric lysin (Cpl-7S) to a choline-binding 
module was performed to redirect the chimeric 
lysin toward choline or its derivative 
diethylaminoethyl.93 In conclusion, the fusion of 
lysin domains to a plethora of possible peptide 
moieties could be applied to modulate lysin char-
acteristics, including redirecting lysins toward 
a specific target.

A second possible approach to enhance lysin 
specificity is to target their delivery toward 
a specific cell type. This could be achieved, for 
example, by engineering (probiotic) bacteria in 
such a way that they produce or secrete a drug 
upon the detection of the target bacteria, by 
means of quorum sensing molecules, bacterial 
pheromones, or molecules characteristic to 
a specific disease state. For example, Art-085 was 
constitutively expressed in E. coli, and released 
upon detection of a quorum sensing signal of 
Vibrio cholera.39 Besides phage-derived lysins, 
other antimicrobial peptides have been targeted 
toward specific pathogens as well. For example, 
E. coli Nissle 1917 (EcN) has been engineered to 
express three proteins, pyocin S5, the E7 lysis pro-
tein, and the antibiofilm protein DspB, upon detec-
tion of the Pseudomonas quorum-sensing molecule 
N-(3-oxododecanoyl)-L-homoserine lactone. This 
probiotic delivery method was proven effective in 
both treating and preventing P. aeruginosa gut 
infections in mice.38 More recently, the same detec-
tion and expression system was used to express 
PA2-GNU7, a specific antimicrobial peptide, to 
eradicate P. aeruginosa.94 Moreover, EcN has 
been applied to express microcin H47 upon detec-
tion of tetrathionate, a molecule produced during 

gut infection that enhances the growth of 
Salmonella.95 EcN has also been engineered to pro-
duce bile salt hydrolase Cbh upon detection of 
sialic acid, a biomarker of dysbiosis. Expression of 
this protein restored the disturbed bile acid meta-
bolism, and, as a result, alleviated Clostridioides 
infection.96,97 Apart from E. coli, Lactococcus lactis 
NZ9000 has also been engineered to produce three 
different bacteriocins (enterocin A, enterocin P and 
hiracin JM79) upon detection of the enterococcal 
sex-pheromone cCF10.41 As an alternative to the 
administration of engineered microorganisms, 
native microorganisms of the microbiota may be 
engineered in situ to express proteins. This devel-
opment is fueled by recent advances in the engi-
neering of microorganisms previously thought to 
be genetically intractable.98 An attractive method 
for this may be using phages as vectors for specifi-
cally delivering recombinant DNA.99 For example, 
Meile et al. engineered a coliphage to deliver an 
Enterococcus-targeting lysin gene, forcing the 
phage-infected E. coli cells to express the lysin. 
They demonstrated that both E. coli and 
Enterococcus faecalis reduced upon phage 
infection.100 This method can be conceived as 
a hybrid technology, combining both phage ther-
apy and lysin treatment to modulate a microbiome 
and alleviate polymicrobial urinary tract infections 
in which both E. coli and E. faecalis are the etiolo-
gical agents. For a comprehensive review compar-
ing phage therapy and phage enzymes, the reader is 
referred to.101

Microbiome-friendliness of lysins

While specificity aims to narrow down the activity 
range of a lysin in vitro, care should be taken when 
drawing conclusions from in vitro specificity data 
and when extrapolating specificity to microbiome- 
friendliness. That is, such a specificity test cannot 
take the complexity of the in vivo environment into 
account. Therefore, microbiome-friendliness 
should be assessed by sequential in vitro, ex vivo, 
and in vivo experiments.28 During such assess-
ments, the composition of the microbiome can be 
evaluated by culture-based techniques, together 
with sequencing methods to account for uncultiva-
ble members of the microbiome. Moreover, the 
metabolic and functional capacity can be evaluated 
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using metatranscriptomic, metaproteomic, and/or 
metabolomic techniques. These research areas are 
rapidly evolving, possibly enabling a more in-depth 
evaluation of microbiome-friendliness in the 
future.102,103

Multiple in vitro models have been developed to 
examine intestinal microbial communities, as 
reviewed elsewhere.104 For instance, fermentation 
models can be used to study microbiota activity 
and dynamics. These models typically consist of 
one (single-stage) or multiple (multi-stage) reactor 
vessels, in which specific (micro)-environments of 
the gastrointestinal tract are simulated. In the case 
of single-stage fermentation models, both batch105 

and continuous systems106–109 are used. On the 
other hand, multistage fermentation models are 
always continuous systems and they further vary 
in other operational conditions, such as the num-
ber of reaction vessels.110–112 These continuous 
models attempt to give a more realistic approxima-
tion of the conditions within the (gastro-)intestinal 
tract. This is done by, for example, taking long-
itudinal differences along the gastrointestinal tract 
(i.e. between the stomach, small intestine, proximal 
and distal colon)113 and cross-sectional differences 
within the gastrointestinal tract (i.e. between lumen 
and mucosa)114 into account. Depending on the 
research question and available resources, one or 
more in vitro models can be used or combined. In 
general, fermentation models can provide an idea 
of microbiome activity and compositional micro-
bial changes, including the complex interactions 
that may occur at a mixed population level, while 
staying in a relatively controlled in vitro environ-
ment. However, they still do not incorporate the 
potential effects of host interactions. To address 
this limitation, microfluidic-based models have 
been developed that simulate the complex physiol-
ogy and structure of the intestine in a miniature 
flow system. These in vitro models usually consist 
of multiple microchannels, representing micro-
chambers, in which human intestinal Caco-2 cells 
or microbiota are grown, or through which med-
ium is dispended.115–119 Because in vitro models 
are in general less expensive, more stable, and 
robust, and have fewer ethical constraints com-
pared to in vivo models, they are considered 
a good starting point to assess microbiome- 
friendliness. Still, they are unable to capture more 

complex reactions after treatment, and can merely 
give a first insight into potential interactions with 
the intestinal epithelium.104 Therefore, additional 
experimental setups are also typically required to 
assess microbiome-friendliness.

In contrast to in vitro models, ex vivo models 
include functional tissues of animal origin, 
thereby including more of the cellular complexity 
found in an in vivo environment. The Ussing 
chamber,120–122 the Everted sac model,123 the 
InTESTineTM model,124 biopsy-derived 
organoids,125–127 and biopsy-derived microflui-
dic-based chips127–129 are examples of ex vivo 
models for the intestinal tract. Ex vivo models 
allow the simulation of more complex functional 
environments, and thus assessment of treatment 
impact at physiologically relevant conditions. 
Nevertheless, these models are generally more 
expensive, less scalable and reproducible and 
enable a lower throughput compared to in vitro 
models.130 Moreover, both in vitro and ex vivo 
models are not able to capture more complex, 
systemic interactions, such as neurological and 
immunogenic reactions. Yet, such effects are par-
ticularly interesting, as the gut and its microbiome 
are interconnected with host organs and the 
immune system. This, in turn, can affect treat-
ment outcomes. For example, one study found 
that a bacteriophage cocktail targeting commensal 
Klebsiella pneumoniae alleviated symptoms in 
patients with inflammatory bowel disease by spe-
cifically eliminating bacteria-induced 
inflammation.131 In contrast, another study 
found that a bacteriophage cocktail aggravated 
intestinal colitis in IBD patients by the intrinsic 
immunomodulatory effects of the 
bacteriophages.132 Therefore, ex vivo models 
should be merely considered a second step toward 
assessing the impact of a treatment, before moving 
on to in vivo experiments.

Both animal models and human clinical trials 
are used to perform in vivo experiments. These 
studies are the most physiologically relevant 
because they consider both the impact of treatment 
on the microbiome and the crosstalk between the 
host and the microbiota. However, challenges to 
sample specific locations and ethical issues arise 
when performing experiments on animals or 
humans, apart from them being time- and cost- 
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intensive. Moreover, achieving a stable coloniza-
tion of specific species pathogenic to humans in 
animals can be challenging.133 In addition, the bio-
logical structure and organization of animals vary, 
complicating the extrapolation of the results of 
in vivo animal experiments to humans and impact-
ing their relevance.104 Still, in vivo experiments are 
crucial to assess the safety and efficacy of 
a compound.134

Although the specificity of lysins against a panel 
of bacteria is almost standardly examined, the fol-
low-up assessment of microbiome-friendliness is 
usually not implemented. While in vitro and ex 
vivo models have already been performed to assess 
the microbiome-friendliness of lysins for the skin49 

and the vaginal microbiome,51 up till now, no such 
studies have been done regarding the intestinal 
microbiome. However, the impact of other anti-
bacterial proteins has been tested using in vitro and 
ex vivo models, for example for the bacteriocins 
nisin,135 pediocin PA-1136 and plantaricin NC8,137 

which shows that these models are amenable for 
assessing microbial impact of proteins as well.

Up till now, only a limited number of in vivo 
studies have been performed to evaluate the impact 
of a lysin on the intestinal microbiome. On the one 
hand, Harhala et al. demonstrated that no signifi-
cant microbiome compositional changes occurred 
in mice after intraperitoneal injection of 
a pneumococcal lysin, either Pal or Cpl-1.138 On 
the other hand, the composition of the microbiome 
of mice changed after intraperitoneal injection of 
an enterococcal lysin, LysEF-P10, albeit not signif-
icant. More specifically, a reduction in the relative 
abundance of the Gram-positive phyla Firmicutes 
and the Gram-negative phyla Proteobacteria and 
Deferribacteres was observed, as well as an 
increased relative abundance of the phyla 
Bacteroidetes and Verrumicrobiota.139 In terms of 
targeting Gram-negatives, administration of 
a broad-spectrum lysin targeting Gram-negative 
bacteria, being either LysAm24, LysAp22, 
LysECD7, and LysSi3, induced some observable 
changes in microbiome composition, albeit not- 
significant, after intraperitoneal injections in 
mice. In general, the major quantitative changes 
were observed as a reduction in the Gram- 
negative phyla Proteobacteria and Bacteroidetes 
and an increased abundance of the Gram-positive 

phylum Firmicutes.140 These apparent contrasting 
results show that each lysin has a different impact 
on the microbiome and thus should be evaluated 
individually, including at lower taxonomic levels, 
instead of assuming microbiome-friendliness based 
on the specific nature of a lysin. Moreover, minor 
differences between methods during the assess-
ment could also contribute to the contrasting 
results. Therefore, standardized approaches should 
be implemented in the evaluation of microbiome- 
friendliness.

Delivery of proteins in the gut

Oral administration is the preferred route for 
microbiome modulation because of patient com-
pliance, low cost, and the noninvasive character. 
However, this requires the protein to transit 
unharmed through the intestinal tract, a process 
complicated by the proteolytic action of digestive 
enzymes, which can degrade the enzymes, and 
a low pH in the stomach, which can irreversibly 
disrupt protein structure. To overcome these hur-
dles, multiple techniques and materials have been 
developed, including the administration of probio-
tics that recombinantly express the protein of inter-
est, and formulation of the protein of interest using 
particle-based or macroscopic systems.141

Probiotic delivery
True probiotics are defined as viable and active 
microorganisms that confer a health benefit on 
the host when administered in sufficient 
amounts.142 While the administration of probiotics 
in itself is considered a viable technique for micro-
biome modulation, probiotic strains can be engi-
neered, e.g., to recombinantly express phage- 
derived lysins, adding a specific antibacterial activ-
ity against pathogenic strains to their already ben-
eficial probiotic effect.143

Phage-derived lysins have already been expressed 
in bacterial and yeast probiotic strains (Table 1). For 
example, the Gram-positive probiotic strains 
Lactobacillus johnsonii FI985144 and Lactococcus lac-
tis NZ9000146,147 were already applied to produce 
and secrete phage-derived lysins. More specifically, 
L. johnsonii FI9785 produced CP25, a lysin with lytic 
activity against its target bacterium, Clostridium 
perfringens.144 L. lactis NZ9000 was able to express 
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PlyE146, a lysin targeting multiple Gram-negative 
bacteria, which showed bactericidal activity after 
protein purification.146 Similarly, this same strain 
was able to produce two different lysins originating 
from Staphylococcus bacteriophage 88, Endo88, and 
VAH88.147 The purified proteins possessed lytic and 
growth inhibitory activity against staphylococcal 
strains.147 The ability of this strain to produce active 
lysins against both Gram-positive and Gram- 
negative bacteria could indicate its wide applicability 
as a delivery vehicle. However, problems with the 
toxicity of phage-derived endolysins toward bacter-
ial expression strains can occur because the pepti-
doglycan of the bacterial delivery vehicle could 
possibly also be degraded by the protein. Yeast pro-
biotic microorganisms could therefore be used to 
express phage-derived lysins, thereby circumventing 
these possible toxicity problems. While true yeast 
probiotic strains such as Saccharomyces boulardii 
have not yet been used for lysin secretion, work 
with Saccharomyces cerevisiae showed the potential 
to express different phage-derived lysins, which 

were shown to be active when displayed on the 
yeast surface.149 Moreover, work with Pichia pastoris 
X-33, a Pichia strain with probiotic characteristics, 
demonstrated the capability of this strain to express 
a lysin, which was proven to be active after protein 
purification.151,152

Although probiotic strains have successfully 
produced phage-derived lysins, no studies have 
been reported on the delivery of these lysins to 
the intestinal tract by probiotic delivery vehicles. 
This could potentially be due to additional chal-
lenges encountered when engineering probiotics 
for the delivery of proteins to the gut. Specifically, 
the probiotic strain should not only produce the 
protein of interest in an in vitro pure culture but 
should be able to survive passage through the gas-
trointestinal tract, multiply within it, compete with 
resident bacteria for nutrients and space, and 
express the active protein of interest. Additionally, 
safety concerns about the application of bioengi-
neered probiotics could hinder translation into 
pharmaceutical products. Therefore, multiple 

Table 1. Probiotic delivery methods to deliver phage lytic enzymes.
Expression host Protein expressed Target bacterium Observation References

Lactobacillus 
johnsonii 
FI9785

Endolysin CP25L of Clostridium 
perfringens prophage vB_CpeS-CP51

Clostridium perfringens L. johnsonii FI9785 constitutively expressing and 
secreting active endolysin CP25L, which reduces 
Clostridium perfringens in turbidity reduction assay 
and breaks down autoclaved Clostridium perfringens 
cell walls.

144,145

Lactococcus 
lactis 
NZ9000

PlyE146 Gram-negative bacteria L. lactis NZ9000 expressed PlyE146 with His-tag upon 
induction with nisin. Purified protein had 
bactericidal activity against E. coli, Acinetobacter 
baumannii and P. aeruginosa.

146

Lactococcus 
lactis 
NZ9000

Endolysin Endo88 and virion- 
associated peptidoglycan hydrolase 
VAH88 S. aureus bacteriophage 88

S. aureus L. lactis NZ9000 expressed Endo88 and VAH88 with His- 
tag upon induction with nisin. 
Purified proteins had muralytic and growth 
inhibition effect on Staphylococcus strains.

147

Saccharomyces 
cerevisiae 
strain 
BY4727

LysA and LysA2 of respectively 
Lactobacillus johnsonii prophage 
Lj928 and Lactobacillus casei 
bacteriophage A2

Limosilactobacillus 
fermentum, 
Levilactobacillus brevis, 
Lactobacillus mucosae

Purified LysA and LysA2 expressed by S. cerevisiae 
showed bacteriolytic activity, although bacteriolytic 
activity was higher for the same amount of purified 
enzyme expressed by E. coli. 
Induced S. cerevisiae reduced the presence of 
L. fermentum in a fermentation setup.

148

Saccharomyces 
cerevisiae 
EBY100

LysKB317 Limosilactobacillus 
fermentum

S. cerevisiae cells displayed the lysin LysKB317. 
S. cerevisiae expressing LysKB317 reduced viable 
L. fermentum upon simultaneous incubation. 
S. cerevisiae expressing lysin LysKB317 reduced the 
abundance of viable L. fermentum in a corn mash 
fermentation setup.

149

Saccharomyces 
cerevisiae 
EBY100

Endolysin LysSA11 of staphylococcal 
phage SA11

S. aureus S. cerevisiae cells displaying LysSA11 reduced the 
number of viable S. aureus cells.

150

Pichia pastoris 
X-33

Endolysin (Vplys60) of Vibrio 
parahaemolyticus bacteriophage 
qdv001

Vibrio parahaemolyticus Pichia pastoris X-33 expressed Vplys60 with His-tag. 
Purified proteins were active, as determined by the 
turbidity reduction assay. 
Maximum yield was 340 ± 18 U/mg expression.

151

Pichia pastoris 
X-33

Endolysin LysP2 Salmonella phage 
YSP2

Salmonella pullorum Pichia pastoris expressed LysP2 with an expression 
yield of 239 µg/mL. 
Purified protein was able to alleviate Salmonella 
infection in chickens.

152
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biocontainment strategies have been developed to 
limit the dissemination into other environments 
and to regulate the temporal presence of the pro-
biotic, including, e.g., the engineering of kill 
switches and auxotrophic requirements into the 
probiotic strain.153–155 Notwithstanding safety 
concerns, the use of engineered probiotics holds 
great promise for protein delivery to the gut. In 
this regard, a recent phase 1b/2a clinical study that 
used an engineered Lactococcus lactis strain expres-
sing human proinsulin and IL-10 to treat the devel-
opment of Type 1 diabetes is illustrative. The study 
showed that the administration of the bioengi-
neered probiotic is safe and well tolerated by the 
patients. Moreover, metabolic variables stabilized 
or even improved upon administration.156

Protein formulation systems
Proteins can be formulated in specific ways to 
enhance their bioavailability by oral drug delivery. 
Indeed, multiple systems and materials are explored 
to circumvent their enzymatic degradation and pH- 
induced inactivation during gastrointestinal transit 
and to enhance protein absorption through the gas-
trointestinal barrier, as reviewed elsewhere,141,157 

and some systems could also be employed for deliv-
ery to the gut itself. In general, oral drug delivery 
systems of proteins are classified either according to 
their size into particle-based (having a size in the 
range of nano- to micrometer) and macroscopic 
systems (materials bigger than 0.1 mm),141 or 
according to the material used for formulation into 
inorganic nanoparticles, polymer-, and lipid-based 
systems.158 For example, proteins for oral delivery 
can be encapsulated into inorganic particles,159 poly-
meric particles,160 liposomal carriers made up of 
a lipid bilayer,161 or by surfactant molecules into 
micelles.162 In addition, proteins can be loaded 
onto polymeric nanofibers.163 Besides those particle- 
based systems, macroscopic systems such as hydro-
gels are also being developed for the oral delivery of 
proteins.164 By thoughtfully combining and choos-
ing between techniques and materials, specific deliv-
ery properties can be obtained. For example, the site- 
specific release of proteins within the colon can be 
achieved by using materials that degrade or swell 
upon differences in pH164,165 or interaction with the 
microbiota, microbial metabolites, or enzymes pre-
sent in the gastrointestinal tract.163

Using one of the formulation techniques, the 
successful delivery of phage-derived lysins topically, 
systemically, pulmonary, and musculoskeletal, on 
catheters and implants has already been achieved, 
as reviewed elsewhere.47,78,166–168 Moreover, encap-
sulation of complete phages has also been success-
fully used to deliver phages to the intestinal tract for 
microbiome modulation.169,170 However, to our 
knowledge, these techniques have not yet been 
used to deliver lysins to the intestinal tract for micro-
biome modulation. At the same time, bacteriocins 
and other proteinaceous antimicrobial proteins, 
have been successfully formulated for oral adminis-
tration to achieve microbiome modulation. For 
example, Carpena et al. developed hydrogel micro-
capsules, allowing pH-dependent release of colicin 
E9 and Ia bacteriocin, resulting in selective decolo-
nization of the intestinal tract from E. coli.168 

Another research group developed a polymeric 
nanoparticle composed of milk protein for delivery 
of the pediocin from Pediococcus pentosaceus 
CRA51. These particles significantly reduced the 
number of E. faecalis MTCC 439 and S. aureus 
MTCC 740 cells adhering to HT-29 cells in an 
in vitro intestinal model.171 Interestingly, a recent 
study found that both encapsulated and unencapsu-
lated nisin, a broad-spectrum Lactococcus lactis bac-
teriocin, was able to modulate the gut microbiome of 
pigs.172 This suggests that at least some proteins can 
transit intact through the intestinal tract to modulate 
the microbiome. Together, these encapsulation stu-
dies show the potential of particle-based and macro-
scopic systems to deliver proteins, such as phage- 
derived specific lysins, to the gut for microbiome 
modulation. However, more research is required to 
fully exploit their potential.

Conclusion

The importance of the microbiome on human 
health has gained increasing attention, and research-
ers have made increasing efforts to improve health 
by altering the function or composition of the 
microbiome during a process called microbiome 
engineering. In this review, opportunities and chal-
lenges to develop phage-derived lysins to modulate 
the gut microbiome by depleting specific species are 
identified. Phage lysins are enzymes that specifically 
degrade the bacterial cell wall and are considered to 
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be microbiome-friendly. To develop phage-derived 
lysins for microbiome modulation, several chal-
lenges are identified. First, although lysins are con-
sidered specific, their host range can vary from 
strain- to genus-level, or even broader, which can 
possibly result in off-target effects. Protein engineer-
ing and specific delivery vehicles can be implemen-
ted to overcome this hurdle. Second, lysin specificity 
does not always translate into microbiome- 
friendliness. While the meaning of microbiome- 
friendliness is equivocal, future research could give 
more information about microbiomes, sparking the 
debate to achieve a more clarifying definition. In any 
case, the impact of a treatment on a microbiome 
should be assessed using in vitro, ex vivo, and in vivo 
models. These models are already existing for the 
intestinal tract. Finally, delivery of a protein to the 
intestine can be challenging due to possible proteo-
lysis and degradation within the gastrointestinal 
tract. The use of probiotic organisms and particle- 
based and macroscopic systems can be implemented 
to overcome this challenge.
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