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Abstract The present study compares the performance of three different supervised
machine learning methods, namely an Ensemble Neural Network algorithm (ENN), a Random
Forest algorithm (RF), and a K-Nearest Neighbor algorithm (KNN), in predicting residential
burglary hot spots across different cities in Europe, i.e., Brussels, Vienna and London. Crime
and crime-supporting data are collected for the three cities, spanning the period 2014-2016.
The data are (dis)aggregated to a 200x200m grid overlaying the study areas and monthly
predictions are made for each month in 2016 using the so-called rolling window approach. For
each method and city, four prediction performance measures are calculated and compared
(i.e., direct hit rate, near hit rate, precision and F1-scores). The results indicate that the ENN
and RF algorithm achieve comparable prediction performance when predicting a smaller
number of high-risk grid cells, outperforming the KNN algorithm. This suggests that in general,
law enforcement agencies wishing to apply a spatiotemporal crime prediction approach
should be cognizant of the enhanced performance exhibited by ensemble machine learning
models such as the ENN and RF compared to non-ensemble methods such as KNN. Moreover,
although the three algorithms achieved more consistent performance measures for London,
no substantial differences in performance were observed across cities, suggesting that the
predictive modeling approach used in this study holds premise for cross-city and cross-country
application. The implications and limitations of this study are furthermore discussed.

Keywords Crime prediction — Predictive modeling — Machine learning — Spatiotemporal
crime analysis — Big data policing — Algorithm



1. Introduction and background

The increasing prevalence of big data analytics in crime prevention is facilitating the
development and implementation of targeted policing approaches aimed at enhancing the
safety and sustainability of environments (Allam et al. 2019; Zhang et al. 2022). This trend
includes the growing global emphasis on leveraging advanced statistical methods, such as
machine learning, to predict crime. It is argued that this focus is of particular value due to its
potential to optimize the proactive deployment of police resources and foster a shift away
from ‘intuition-based’ decision-making to more objective forms of decision-making (Ratcliffe
2014). One main denominator to this evolution is the use of advanced statistical (big data)
methods to predict where and when a new crime event is most likely to occur (Caplan and
Kennedy 2016; Chainey et al. 2008; Haberman 2017; Levine 2008; Ratcliffe 2016; Rosser et al.
2017; Rummens and Hardyns 2021; Wheeler and Steenbeek 2021). This is often referred to as
place-based predictive policing, which generally involves “the use of historical data to create
a spatiotemporal forecast of areas of criminality or crime hot spots that will be the basis for
police resource allocation decisions with the expectation that having officers at the proposed
place and time will deter or detect criminal activity” (Ratcliffe 2014, p. 4).

Spatiotemporal crime prediction approaches are rooted within environmental criminology,
and spatiotemporal criminology more specifically, and mainly draw from the empirical
observation that crime is not evenly distributed in place and time (Hardyns and Khalfa 2023;
Kadar et al. 2019; Rummens et al. 2017; Weisburd 2015). Regarding the spatial distribution of
crime, it is argued for decades that crime tends to concentrate at only a few small micro-places
or crime hot spots (e.g., Sherman et al. 1989; Weisburd et al. 2015). However, although crime
hot spots usually persist ‘hot’ over a longer period of time (i.e., so-called chronic hot spots),
crime hot spots tend to fluctuate over shorter time periods or intervals (Johnson et al. 2008).
This implies that, although the same areas might be responsible for a cumulative proportion
of crime over the course of a longer period, it appears that these areas are usually only
exposed to crime between certain time intervals and thus that crime hot spots may
dynamically pop up during so-called ‘burning times’ (Brantingham et al. 2020; Tompson and
Coupe 2018). In that regard, spatiotemporal crime prediction approaches, such as the use of
machine learning methods (e.g., neural networks) (Kounadi et al. 2020), are considered a next
step into the analysis of short-term crime hot spots (Hart 2020). According to Hart, these
approaches represent “a shift away from retrospective and prospective mapping techniques”
(p. 98) (e.g., retrospective methods such as Local Tests of Spatial Association or Point Pattern
Analysis and prospective methods such as Kernel Density Estimation or Risk Terrain Modeling),
as these prioritize recent events over distant events. Additionally, machine learning models
enable to use new (big) data sources such as data derived from GPS-tracking systems of police
units or mobile phone data, providing enhanced opportunities to employ police resources in
or near real time (Dau et al. 2022; Rummens et al. 2021).

As a result of the rapid expansion of spatiotemporal crime prediction methods and
approaches, as well as their promised benefits for intelligence-led policing practices, multiple



cities of different countries are increasingly experimenting with different prediction methods
(e.g., Gerstner 2018; Hardyns and Khalfa 2023; Kadar et al. 2019; Mali et al. 2017). In the US,
for example, place- and/or time-based crime prediction methods and applications such as
Geolitica (formerly Predpol) and ShotSpotter’s ResourceRouter (formely Hunchlab) have been
implemented in several police departments across the country (Hardyns and Rummens 2018).
Although some of these US-based applications have been empirically evaluated against the
backdrop of their prediction performance and the effects of their application in terms of
deploying police resources more efficiently and effectively, there is still no empirical
knowledge on how well spatiotemporal crime prediction methods or applications perform
across different-sized settings, how contextual differences may influence prediction
performance and how crime prediction methods should or can be tailored to the
setting/contexts in which they are being employed. These issues also extend to the context of
Europe, where researchers and practitioners are increasingly exploring the potential of
spatiotemporal crime prediction methods and approaches for intelligence-led policing. In the
Netherlands, for example, the Criminaliteits Anticipatie Systeem (CAS) has been developed,
and even though a pilot study did not show a significant reduction in crime rates, the CAS
system has been rolled out regionally across all Dutch local police departments (Mali et al.
2017). This is also the case in Germany, for example, where spatiotemporal crime prediction
systems have been implemented across 16 federal states, with popular applications including
PreMap and PRECOBS (Gerstner 2018; Hardyns and Khalfa 2023). Hence, given that most
spatiotemporal crime prediction models were initially developed within or for a specific
context, it is important to assess whether these models can be transferred to other cities. In
other words, can we expect consistent performance from spatiotemporal crime prediction
models across different cities and countries, or does it require a more tailored approach for
each specific setting (such as a specific city) and context?

A recent study in Belgium has demonstrated that using a machine learning crime prediction
model, specifically an ensemble neural network, yielded relatively higher and consistent
performance measures in larger and denser urban cities, while for a smaller urban city, the
model was observed to be overfitted (Hardyns and Khalfa 2023). These findings are more or
less in line with the study of Kadar et al. (2019), which found that a machine learning model
tends to perform better in an area with high population density (in Switzerland). Accordingly,
it is argued that scale effects are important to consider when building and configuring crime
prediction models across several contexts, as larger and more densely populated settings
generally experience more crime, and more crime events result in more information for the
predictive model to learn discriminative patterns in the data. However, differences between
settings regarding the performance of spatiotemporal crime prediction models may also go
beyond scale effects, pertaining to other differences as regards structural characteristics such
as socio-demographic or socio-economic conditions, spatiotemporal crime patterns, law
enforcement practices or even country-specific characteristics such as the registration of
criminal offences and the availability of crime-supporting data. In that regard, besides the
efforts of a limited number of studies to evaluate the performance of a place- and/or time-



based crime prediction model across several cities in one country (e.g., Kadar et al. 2019;
Hardyns and Khalfa 2023), to the best of our knowledge, no study has yet applied nor
evaluated the performance of spatiotemporal crime prediction models across multiple cities
in different countries and thus different settings and contexts.

In this study, we focus on applying different supervised machine learning methods to derive
spatiotemporal crime prediction models. Unlike geospatial and near-repeat methods such as
Risk Terrain Modeling and self-exciting process models, which often apply relatively simple
statistical procedures, it is argued that supervised machine learning methods are more
versatile and provide enhanced opportunities to make more dynamic predictions regarding
spatiotemporal crime distributions (Rummens and Hardyns 2020). This is because supervised
machine learning methods are capable of learning patterns in (training) data to anticipate
future patterns and enable to incorporate additional spatial and/or temporal crime-related
features into the modeling process, including spatiotemporal features extracted from
different big data sources. In that regard, Rummens and Hardyns (2020) found that an
ensemble neural network machine learning model outperformed a Risk Terrain and near-
repeat model and suggested that machine learning models might be more successful in
generating both short-term and long-term predictions compared to these alternative
prediction methods. With regard to the latter, however, there is currently little empirical
evidence on which machine learning method performs better and is more consistent for such
a predictive modeling task. Kadar et al. (2019) suggest that this absence of evidence stems
from varied focuses in empirical studies. They contend that most studies have predominantly
scrutinized distinct prediction horizons, particularly in terms of time and place resolutions,
input features, and prediction tasks (regression vs. classification). Additionally, differences in
prediction contexts may have hindered consistent parameter comparisons.

This study aims to assess and compare the prediction performance of three different machine
learning methods in deriving crime prediction models predicting crime at micro places across
multiple European cities, specifically Brussels (Belgium), London (UK) and Vienna (Austria). The
machine learning methods employed in this study include an Ensemble Neural Network (ENN),
a Random Forest (RF), and a K-Nearest Neighbor (KNN) algorithm, which were selected based
on prior research within the field of place- and time-based predictive crime modeling,
suggesting these methods are most commonly applied and are effective and efficient in
making spatiotemporal crime predictions (e.g., Jenga et al. 2023; Kounadi et al. 2020).
Ensemble machine learning methods such as ENN and RF have demonstrated improved
prediction performance in contrast to using non-ensemble methods (Rummens and Hardyns
2020), rendering them useful within specific and complex domains such as crime prediction.
Nevertheless, in addition to these ensemble machine learning methods, KNN is employed as
a baseline machine learning method, which is also considered to be an efficient machine
learning method in deriving crime prediction models aimed at predicting crime in place and
time. However, although important differences exist among the ENN, RF and KNN algorithms,
KNN is a relatively simple machine learning method that can offer increased transparency and
interpretability in predicting outcomes compared to more complex machine learning methods



like the ENN algorithm or tree-based machine learning methods like the RF algorithm (Zhang
et al. 2020). Nonetheless, like ENN and RF, KNN is also capable of modeling complex non-linear
relationships without heavily relying on formal assumptions about the data distributions used
in predictive crime modeling. Therefore, KNN can introduce increased transparency and
interpretability, while still achieving comparable or even higher prediction performance
compared to more complex machine learning methods (Kuhn and Johnson 2013).

The chapter is structured as follows. First, we provide a comprehensive description of the data
and methods employed in this study. This entails presenting an overview of the features used
and explaining the machine learning methods that were used. Second, we present the results
of the study. We begin by discussing the prediction performance of each machine learning
method and for each city. Subsequently, we compare the performance measures of the crime
prediction models across the various cities and methods used. Finally, we conclude the
chapter by summarizing the main contributions of the study and discussing its significance in
the broader context of future research and policy.

2. Data

This study uses police-registered crime data on residential burglary collected from 2014 to
2016 from the Federal police department of Brussels, the Federal Criminal Police Office of
Vienna and the Metropolitan Police of London.! The data were obtained through requests
made to the involved police departments of each respective city.? A summary of the central
characteristics of these cities is provided in Table 1.3

The crime data were spatially aggregated on a 200 by 200-meter grid overlaying the cities with
a monthly temporal resolution. The choice of using grid cells as operationalization of micro-
places aligns with prior research on the spatial concentration of crime in European settings. In
this regard, it is argued that other operationalizations of micro-places, such as street
segments, are more difficult to reconcile with the geographical structure and morphology of
European settings, which typically lack the gridiron pattern commonly observed in US urban
landscapes. As highlighted by Hardyns et al. (2019), the absence of a gridiron pattern
complicates the use of alternative micro-place operationalizations, such as street segments,
due to challenges in maintaining consistent street segment lengths and subsequent variations
in crime concentrations. In contrast, employing grid cells offers flexibility in adjusting the level
of analysis while ensuring defined and stable boundaries within a given geographical area.

1 The Metropolitan Police of London provided the exact date and timestamps for the crime events. For Brussels
and Vienna, the midpoint of the provided time range was used to estimate the correct date and time of the crime
events. We excluded residential burglaries with a time range exceeding 31 days and we also excluded residential
burglaries that could not be linked to a specific grid cell

2The national definitions of residential burglary from each country (Austria, Belgium, and the UK) were compared
to each other to ensure that data collection was equally comparable across the three cities. The main criteria was
to include all thefts committed in a residence (house, flat, garage, etc.) by breaking, entering, or using false keys,
with or without violence.

3n this study, Brussels is defined as an agglomeration of 19 municipalities that encompasses six different police
departments, including Brussels city, which is the capital of Belgium and the centre of administration of the
European Union.



Moreover, adopting a grid size of 200 by 200 meters as the spatial resolution and a monthly
prediction window as the temporal resolution adheres to established methodologies in
predictive crime modeling research, also within European contexts. This approach is
underscored by previous studies such as those by Kadar et al. (2019), Hardyns and Khalfa
(2023), and Rummens and Hardyns (2020), which have demonstrated the efficacy of this
spatial-temporal aggregation framework within the context of crime prediction. Specifically,
Rummens and Hardyns (2020) have shown that monthly predictions at a spatial grid resolution
of 200 by 200-meters exhibit greater statistical reliability compared to alternative
spatiotemporal resolutions.*

Table 1 Central characteristics of the three cities.’

Brussels, Belgium London, UK Vienna, Austria
Population (2016) 1,187,890 8,798,957 1,840,226
Area (2016) 161 km? 1,569 km? 415 km?
Population density (2016) 7,315/km? 5,608/km? 4,434/km?
Number of grid cells 4,284 40,428 10,773
Number of residential burglaries (2016) 7,371 41,428 6,159

Furthermore, crime-supporting data were collected from various structural indicators for each
city, including socio-economic, demographic, and environmental indicators, sourced from all
national censuses of 2011 and OpenStreetMap. The decision to collect additional crime-
supporting data and include structural indicators is grounded in both theoretical and empirical
research. First of all, the structural indicators serve as proxies to account for underlying social
disorganization and opportunity structures that have been theoretically and empirically linked
to variations in spatiotemporal crime patterns (e.g., Hardyns et al. 2015; Jones and Pridemore
2019). Second, studies have shown that including additional structural indicators may increase
the performance of spatiotemporal crime prediction models in general, and machine learning
models more specifically (e.g., Kadar et al. 2019). Only openly and freely available data were
collected for each of the three cities and in doing so, we aimed to retrieve data on structural
indicators that were more or less comparable across the three cities. However, since not all
indicators were available for each city, the amount and type of data collected is restricted to
those indicators that were available across all three cities and were deemed most relevant for
integration within the prediction models. The socio-economic and demographic indicators
were only available at higher aggregated spatial scales, respectively at the statistical sector
and Lower Super Output Area for Brussels and London, which are comparable to the
neighborhood level, and at the district level for Vienna. Therefore, these data were
disaggregated on the 200 by 200-meter grid using simple areal weighted interpolation.

4 After data cleaning, 1,55% of the total number of residential burglaries for Brussels and 3,15% of the total
number of residential burglaries for Vienna were excluded, whereas for London, only 0,09% of the total number
of residential burglaries were excluded.

5 See also Appendix 2 for an overview of the monthly numbers of residential burglary incidents spanning the
period 2014-2016 in the three cities.



Environmental features, on the other hand, were available at point level and were aggregated
on the 200 by 200-meter grid.

Based on this data collection, as detailed in Appendix 1, several features were created and
modelled through different machine learning methods to predict residential burglary hot
spots across the three cities. These features include crime history features to account for
temporal crime patterns or (near) repeat victimization patterns, as crime events are more
likely to occur at locations where crime has previously taken place. This is due to some places
having higher crime concentrations because of more prevalent opportunities to commit
certain types of crime, which are in turn related to the distribution of opportunity and
structural characteristics (Brantingham and Brantingham 1995; Glasner et al. 2018). Alongside
the crime history features, the models thus also include socio-economic, demographic,
environmental and seasonal features to account for (the complex interplay between) social,
economic, and environmental factors that are known to influence spatiotemporal crime
patterns within urban areas. It is important to note, however, that the present study’s focus
is on comparing the methodological performance of different machine learning methods in
predicting crime spatiotemporally across disparate urban settings, rather than delving into the
relative importance of individual features within the models. This delineation underscores the
study's scope, which precluded a comprehensive examination of feature importance—an
endeavor that nevertheless requires dedicated attention in future research.

3. Methods
3.1. Predictive modeling approach

Following the data collection and construction of the input features, the data are modelled to
predict residential burglary hot spots for each of the three cities comparing the three different
machine learning algorithms as mentioned above and as explained in more detail below.® The
predictive modeling of residential burglary is done using a binary target variable. The binary
target variable signifies the presence or absence of residential burglaries within each grid cell
on a monthly basis. The use of a binary target variable thus encapsulates a classification task,
where the outcome is dichotomized into two classes: no crime (0) or crime (1). The algorithms
employed in the analysis therefore predict the probability of each grid cell's classification into
one of these two target classes, representing the likelihood of crime occurrence within a given
spatial unit (200 by 200-meter grid cells) over the specified time frame (one month); thus, the
models produce continuous probabilistic valued predictions.” Using such a probabilistic
classification approach allows for a more conservative model performance evaluation and is
very useful for determining the modeling confidence with regard to the predicted classification
output (Kuhn and Johnson 2013). In this regard, it is imperative to underscore that our
predictive framework does not aim to predict absolute crime counts within grid cells, as this

6 All analyses were conducted using R statistical software (version 4.3.3.).

7 For instance, a predicted probability of 0.80 indicates an 80% likelihood of the grid cell being classified as
belonging to the 'crime’' class, signifying a higher probability of burglary occurrence compared to a grid cell with
a predicted probability of, say, 0.30 or 30%.



would entail a regression problem. Instead, we employ a classification approach, which offers
a more straightforward method for predicting crime occurrences and mitigates the impact of
low crime count scenarios.

A rolling window approach is used to model the predictions, wherein monthly predictions are
made for each month of 2016 (Rummens et al. 2017). This implies that, for any given
prediction month, data from the preceding two years leading up to that month are used as
the training dataset, with 10-fold cross-validation being performed to determine and optimize
the tuning of the hyperparameters (for an overview of K-fold cross-validation see Anguita et
al. 2012).2 Cross-validation here refers to randomly partitioning the training dataset into ten
equally sized subsets, or ‘folds.” The model is then trained and evaluated ten times, each time
using a different fold as the validation set and the remaining nine folds as the training set.’
The remaining data are used as test data to evaluate the performance of the model in
predicting burglary hot spots.

The final training datasets contained 102,816 spatiotemporal observations for Brussels (4,284
grid cells x 24 months), 969,888 observations for London (40,412 grid cells X 24 months) and
258,576 observations for Vienna (10,774 grid cells X 24 months). However, since the binary
target features in each of the respective datasets were facing class imbalance, i.e., the number
of spatiotemporal observations of one specific class (in this case, no crime) outnumbered the
number of observations from the other class (in this case, crime), random under-sampling was
employed on the training datasets. This entails randomly selecting a subset of instances from
the majority class, which is in this case the ‘no-crime class’, such that its size matches the size
of the minority class, which is typically the class of interest (in this case the ‘crime’ class). This
subset is then combined with all instances of the minority class to form the balanced training
dataset used to train the predictive model. Exploratory analysis revealed that random under-
sampling of the training datasets resulted in enhanced prediction performance of the machine
learning models while concurrently reducing computational runtime. These findings are in line
with the study of Kadar et al. (2019).

A fixed number of burglary hot spots is determined for each city and prediction month based
on the probabilities predicted by the machine learning models. This involves ranking the
predicted probabilities for each grid cell in the test dataset in descending order and defining a
fixed number of grid cells as hot spots according to a predetermined area coverage percentage
or level (see infra). This approach allows for a better comparison of the model’s performance
across the different cities and prediction months, and it is also a more pragmatic approach
that can be easily adopted by police organizations, because in this way, police organizations

8 Automatic hyperparameter tuning was applied in order to standardize the methodology employed and to
increase the prediction performance obtained from applying the three machine learning algorithms. This
involved an automatic search for the optimal hyperparameters of the machine learning models, aiming to
enhance their performance without manually tuning the hyperparameters across the different iterations
(different settings, different periods).

9 Explorative predictive analyses showed that a 10-fold cross validation generally resulted in higher prediction
performance across the three cities.



are able to better align the number of hot spots with the actual police resources available
(Rummens and Hardyns 2020).

Machine learning methods

First of all, an Ensemble Neural Network (ENN) is applied, which is generally considered a
robust machine learning method that involves training an ensemble of single neural networks
by repeatedly fitting a single neural network with alternating random number seeds (Kuhn
and Johnson 2013; Ripley 1996). This approach allows for the averaging of model scores from
the individual neural networks before converting them into predicted class probabilities,
which helps to mitigate overfitting and produce a more reliable model. The ENN is based on a
simple artificial neural network approach, which draws from the internal representations of
the human brain, enabling it to learn and identify patterns in historical data to find the function
f (Bishop 1995; Ripley 1996). Neural networks typically consist of an input layer, output layer,
and one or more hidden layers in between, with each layer comprising one or more nodes or
neurons. The input layer encompasses all data points from the input features used in the
modeling process, while the output layer presents the neural network's results as output
vectors or nodes. The hidden layer(s) also typically consists of one or more neurons/nodes,
each of them receiving inputs from the nodes in the previous layer (input layer or the
preceding hidden layer(s)), following a mathematical operation that is performed on the
inputs from which the results are passed onto the next layer. This mathematical operation
involves the application of an activation function inputted by the weighted sum of the input
features that are part from the preceding layer. These initial random weights are updated and
fitted during the training process in order to decrease and minimize the predicted and
observed outputs, often referred to as the backpropagation process. The neurons/nodes of
the hidden layer are thus trained to output the classification boundaries, and these results are
then combined in the output layer (Kigerl et al. 2022; Kuhn and Johnson 2013). In case of the
ENN, the final result is derived from averaging the different model scores. The
hyperparameters that are tuned in the modeling of the ENN are the size of the network,
referring to the number of neurons in the hidden layer(s), the number of hidden layers and
decay, referring to the decay rate of the weights that are updated during the training process.

In addition, the Random Forests (RF) algorithm is also an ensemble machine learning method
combining the outputs of multiple decision trees to improve prediction accuracy and reduce
overfitting. Unlike the ENN, which uses a neural network as a baseline method for
classification, a RF aggregates the predicted outputs of different decision trees. In this regard,
the RF follows a tree-based modeling logic, implying that the data are partitioned into
increasingly smaller subsamples through a process initiated by nested 'if-then-statements’. As
Wheeler and Steenbeek (2021) mention, these statements can be visualized as trees: “starting
at the top, the decisions branch out downwards until the final prediction is reached” (p.451).
In that regard, tree-based methods split the data into several terminal nodes or leaves of the
tree and for each new subsample of the data, a prediction is obtained following the ‘if-then-
statements’ while using the values of the predictors until a terminal node is reached. The
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predictions are then generated by using the model formula in this terminal node. However,
unlike basic single classification trees, RF classifiers go one step further by aggregating the
results of the different trees that were trained. The training of the trees is done using
bootstrapped samples of the training datasets, implying that the different subsamples drawn
from the original training dataset are randomly resampled to decrease tree correlation and
further reduce variance (Berk 2013; Berk and Bleich 2013; Kigerl et al. 2022; Kuhn and Johnson
2013; Mohler and Porter 2018). The hyperparameters that are tuned for the RF model are the
number of trees, the number of features randomly sampled at each split, the number of
samples that need to be drawn, the number of data points in each terminal node and
eventually, the maximum number of nodes.

Finally, the use of a K-Nearest Neighbors algorithm (KNN), for classification tasks differs from
using the ENN or the RF. KNN uses a sample's ‘geographic neighborhood’ to predict classes or
class probabilities (Kigerl et al. 2022). In this regard, KNN predicts samples by using the K-
closest samples from the training data, based on specific distance metrics such as the
Euclidean distance, used to determine the distance between samples. In other words, the
classification of a sample is based on the classification of its K-nearest neighbors in the training
data, and the new predicted class equals the class with the highest estimated probability. The
number of Ks, referring to the number of K-nearest neighbor samples selected, largely
determines the model fit (Zhang et al. 2020). As a result, it is crucial to carefully select the
number of Ks to avoid under- and overfitting of the data. In this study, a weighted KNN method
is applied, implying that additional kernel functions are used to weight the KNNs based on
their distances and proximity to each other. The tuning hyperparameter that is set is the
number of K-neighbors used in the modeling process, and this hyperparameter determines
the model's complexity and generalization performance.

3.2. Prediction performance measures

The prediction performance of the derived machine learning models is assessed based on four
specific prediction performance measures, including the direct hit rate or recall, the near hit
rate, precision, and the F1 score (Hardyns and Khalfa 2023; Rummens and Hardyns 2020). The
direct hit rate or recall measures the proportion of correctly predicted crime hot spots relative
to the actual number of areas in which an actual criminal event occurred. The near hit rate is
a less restrictive measure as it considers crime events that occurred in grid cells adjacent to
the predicted burglary hot spots. Both the direct hit and near hit rates are commonly referred
to as measures of sensitivity in literature. Furthermore, precision reflects the proportion of
correct predictions made relative to the total number of predictions made, indicating the
model's efficiency. A good prediction model is characterized by high scores across all
performance measures. However, the values of the first three indicators are dependent on
the number of hot spots predicted, meaning that the direct and near hit rates will generally
be higher with more predicted hot spots, while precision will be lower, and vice versa, for a
lower number of predicted hot spots. Therefore, the F1 score is used to strike a balance
between recall and precision. The F1 score is the harmonic average of the precision and the
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direct hit rate and ranges from 0 to 1, with higher values indicating a better balance and
prediction performance equilibrium between recall and precision. By applying the same
performance measures to compare the performance of the three machine learning model
across the three cities, the aim is to establish a standardized basis for model evaluation.
Although the performance measures should be interpreted independently of each other, as
they each highlight different facets of model performance, collectively, however, they offer a
more holistic assessment of model performance.

4. Results
4.1. The spatial concentration of residential burglary

Prior to presenting the predictive modeling results, we present descriptive statistics on the
spatial concentration of residential burglaries in Brussels, London, and Vienna spanning the
period 2014 to 2016. As recommended by Bernasco and Steenbeek (2017), we use the Gini
coefficient for standardized crime concentration reporting. The Gini coefficient provides
insights into cumulative crime distributions at micro-places. In general, the Gini coefficient
guantifies the proportion of crime falling within a specific distribution of places. The Gini
coefficient ranges between 0 and 1, with 0 indicating perfect equality and 1 signifying perfect
inequality, where all crimes are concentrated in one place. The Gini coefficient (see equation
1) can be calculated using the following formula:

6=(;) @Xriiyi—n-1) (1)

where G is the Gini coefficient and n is the total number of places, y; is the fraction of crimes
that occur in place i, and i is the place’s rank order when places are sorted by the number of
crimes represented by y (Bernasco and Steenbeek 2017). However, due to having cases where
there are more places than crimes, we present Generalized Gini coefficients, as proposed by
Bernasco and Steenbeek (2017). Referring to the original Gini coefficient, the generalized Gini
coefficient (G’) can be calculated as a function of the original Gini coefficient (G), the number
of places (n) and the number of crimes (c), using the following formula (see equation 2):

G'=max(§,1) G-1)+1 2)

Table 2 shows that residential burglaries are most concentrated in Vienna, with a small
cumulative proportion of grid cells accounting for a large cumulative proportion of burglaries,
especially over the three-year period (2014-2016). For individual years, slightly lower Gini
coefficients are observed, but still indicate high burglary concentration. For London, the Gini
coefficients highlight high burglary concentration, especially when examining yearly counts
versus three-year aggregation. Interestingly, London's Gini coefficients exhibit greater stability
from 2014 to 2016 compared to Vienna and Brussels. In this regard, lower residential burglary
concentration is observed for Brussels, suggesting a less concentrated pattern with a larger
number of contributing grid cells. In general, these descriptive statistics reveal differences in
crime concentrations across the three cities, which may provide more context to the
predictive modeling results.
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Table 2 Residential burglary concentrations at the grid cell level (Gini coefficients).

Brussels, Belgium London, UK Vienna, Austria
2014 0.676 0.764 0.791*
2016 0.692 0.773 0.761*
2016 0.716 0.775 0.735*
2014-2016 0.643 0.724 0.809

* Generalized Gini coefficient®®

4.2. Prediction performance across machine learning methods within cities

Turning to the results of the predictive modeling, we first present the performance of the
models derived for each of the three cities in Figure 1, comparing the performance of the
different algorithms in deriving a spatiotemporal crime prediction model. The four
performance measures are presented in accordance with the fixed number of hot spots that
are predicted. As previously stated, the number of predicted burglary hot spots for each
prediction month and city is fixed and is determined by sorting the predicted probabilities
generated by the machine learning models in descending order. Specifically, the models
predict the top 5, 10, 20, and 50% of grid cells with the highest predicted probabilities out of
the total number of grid cells.!? In order to present the findings more succinctly, the resulting
means of the performance measures, averaged across the 12 prediction months, are
presented visually.

Brussels

In the case of Brussels, both the ENN and RF algorithm demonstrate increased performance
compared to the KNN algorithm in terms of direct hit rate. On average, they correctly predict
approximately 20% of grid cells associated with residential burglaries, while KNN achieves a
lower rate of around 15%. This advantage diminishes beyond predicting 50% of the total grid
cells. Notably, the KNN algorithm performs worse than ENN and RF algorithms when
predicting 5%, 10%, and 20% of grid cells. Regarding the near hit rates, KNN exhibits higher
rates compared to ENN and RF algorithms, suggesting its ability to predict adjacent grid cells
to actual burglary hot spots more accurately. However, predicting a larger number of hot spots
somehow compromises model precision, leading to increased false positives. In this context,
both ENN and RF algorithms outperform KNN, with ENN slightly surpassing RF on a monthly
average. As the number of predictions increases, the precision of all three methods converges,
making KNN less advantageous for predicting smaller numbers of hot spots. Similarly, F1-
scores increase with more predicted hot spots, with ENN and RF outperforming KNN. F1-

10 Here, generalized Gini coefficients are presented due to having cases where there are more places than crimes.
11 For instance, consider a city encompassing a total number of 4000 grid cells. In this scenario, the top 5% of hot
spots equals the 200 grid cells with the highest predicted probabilities. This method ensures a standardized
approach to hot spot identification, as all grid cells maintain uniform dimensions of 200 by 200 meters.
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scores of models derived from all three algorithms converge when predicting over 20% of total
grid cells, with ENN showing the highest scores but with no substantial difference from RF.
London

For London, both the ENN and RF algorithm display similar patterns in direct hit rates, with
ENN slightly outperforming RF. On average, they accurately predict around 25% of burglary
hot spots when predicting the top 5%, while KNN performs worse in direct hit rates. A
convergence in direct hit rates across all algorithms is observed when more hot spots are
predicted. While there is a noticeable difference in direct hit rates, the disparity in near hit
rates between the algorithms is less substantial. The three algorithms exhibit comparable near
hit rates, with ENN and KNN slightly outperforming RF, particularly when fewer predictions
are made. In terms of precision, both ENN and RF outperform KNN, especially when predicting
fewer hot spots, indicating KNN introduces more false positives. ENN demonstrates higher
efficiency in predicting the top 5% hot spots and slightly outperforms RF, with approximately
32% of ENN predictions being correct on average. Regarding Fl-scores, the difference
between ENN and RF is less pronounced, yet both outperform KNN when predicting the top
5% of burglary hot spots. F1-scores increase with more predicted hot spots across all models.

Vienna

In case of Vienna, the ENN and RF algorithms exhibit slightly better direct hit rates compared
to the KNN algorithm, particularly noticeable for the top 5% of hot spots. However, as the
proportion of predicted hot spots increases, the differences in direct hit rates among the
algorithms diminish. Conversely, the KNN algorithm shows a marginal advantage over the ENN
and RF algorithms in near hit rates for the top 5% of burglary hot spots. Although these
differences are relatively minor, they suggest that when assessing model performance with
less strict hit rate criteria, the efficacy of employing a specific algorithm for accurately
predicting burglary hot spots may diminish. However, all three algorithms demonstrate low
precision in modeling, especially evident when targeting the top 10% of hot spots. With
respect to the Fl-scores, the same conclusions can be drawn. The ENN algorithm outperforms
the RF and KNN algorithm when predicting a smaller number of hot spots, yet the F1-scores
remain below the 30% on a monthly average when predicting the top 5% of hot spots.
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Figure 1. Prediction performance measures across cities and methods for different percentages of area coverage.
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4.3. Comparing prediction performance across machine learning methods
and cities

In addition to evaluating the prediction performance of various machine learning methods
within each specific city, we now compare the prediction performance across three European
cities for each machine learning method used. Instead of computing average performance
measures over the prediction months, we visually present the prediction performance
measures for each individual month in 2016. In doing so, each of the four prediction
performance measures will be discussed separately. To enable a comparative analysis across
the different cities, the number of burglary hot spots predicted for each prediction month and
city is again fixed, but now the number of hot spots that are predicted is only based upon the
number of grid cells accounting for 10% of the total number of grid cells, rank-ordered in
descending order.

Direct hit rates

Figure 2 illustrates the direct hit rates obtained from applying the three machine learning
algorithms across Vienna, Brussels, and London throughout 2016. The ENN algorithm
consistently achieves higher direct hit rates for Vienna compared to Brussels and London. Over
time, the direct hit rates gradually increase for London and Brussels, with more consistent
rates observed for London, peaking in June and July. Conversely, Vienna's ENN models exhibit
an upward trend in direct hit rates from April 2016, followed by a decline after July 2016.
Similar patterns are observed for models generated using the RF algorithm, although initially
yielding lower rates for Brussels and Vienna, which gradually increase towards the summer. In
contrast, direct hit rates for London display greater consistency throughout 2016, with higher
rates during the summer. However, the KNN algorithm falls short in direct hit rate
performance, particularly for Brussels, where it struggles to predict more than 30% of burglary
grid cells accurately. Nonetheless, it introduces a more consistent pattern of direct hit rates
across the prediction months in 2016. For London and Vienna, although exhibiting slightly
lower rates, the KNN algorithm follows similar patterns to the ENN and RF algorithms.
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Fig. 2 Direct hit rates across machine learning methods and cities.
Near hit rates

Similar to the direct hit rates, the ENN algorithm consistently achieves more consistent near
hit rates for London as can be seen from Figure 3, whereas for Brussels and Vienna, more
fluctuations can be observed. Nevertheless, we clearly see that in general, despite the sudden
drop in October 2016, higher near hit rates are achieved for Vienna. The same patterns are
somehow observed for the near hit rates obtained from the RF algorithm compared to the
ENN algorithm, although we clearly see that the near hit rates are higher for Vienna. For
Brussels and London, there is almost no difference in near hit rates obtained from the ENN
and RF algorithms, suggesting both algorithms produce very similar near hit rates throughout
2016. Interestingly, the KNN algorithm vyields the highest hit rates throughout the year,
particularly for Brussels. Between May and June 2016, the KNN algorithm accurately predicts
nearly 85% of burglary grid cells for Brussels when considering adjacent grid cells as correctly
predicted.
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Figure 4 shows that in terms of modeling precision, the ENN algorithm demonstrates higher

precision scores for Brussels, indicating fewer false positives compared to London and Vienna.

However, it is worth noting that Brussels exhibits more fluctuations in modeling precision

compared to London. The same precision patterns are somehow produced by the RF

algorithm: a higher precision is observed for Brussels with more consistent precision scores

for London, and lower precision scores for Vienna. The precision scores for Vienna only tend

to increase towards the end of 2016, which again shows that there are more false positive

predictions for Vienna compared to the other cities. Moreover, based upon the precision

scores produced by applying the KNN algorithm, we only observe significantly lower precision

scores for Brussels compared to the ENN and RF algorithm, whereas for London and Vienna,

more or less the same precision scores are observed compared to the ENN and RF algorithm.
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Fig. 4 Precision scores across machine learning methods and cities.
F1-scores

In terms of F1-scores, Figure 5 shows that the ENN algorithm performs quite similar across the
three cities, yet with more consistent scores across the prediction months for London and
higher fluctuations for Brussels and Vienna. As previously observed, the summer period
demonstrates increased performance, followed by a slight decline in modeling performance
towards the end of the year. Notably, London exhibits more consistent modeling performance
throughout 2016, with fewer fluctuations overall. The same is true for the F1-scores derived
from applying the RF algorithm. The RF algorithm produces a more comparable pattern of F1-
scores for London, whereas for Brussels and Vienna, the F1-scores are slightly lower, especially
after June 2016. However, it seems that for all cities, a better equilibrium between the direct
hit rates and the precision scores is achieved throughout the summer period and in December
2016. In case of the KNN algorithm, a slightly different picture is observed. Overall, the F1
scores are slightly lower for Brussels and London, whereas for Vienna, more or less the same
patterns are observed compared to the patterns obtained from the ENN and RF algorithm.
However, compared to the scores produced by the ENN and the RF algorithm, fewer
fluctuations in Fl-scores are now observed for Brussels and London. Only in July and
September 2016, the F1-scores are slightly higher for Brussels compared to the F1-scores for
London.
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Fig. 5 F1-scores across machine learning methods and cities.
5. Discussion and conclusion

The present study uncovers important insights into the applicability and robustness of
machine learning methods for predicting spatiotemporal crime patterns across three different
European cities. It should be acknowledged already at this point, however, that while our
findings offer significant contributions, their generalizability is limited solely to the specific
settings, methodologies, and crime type (residential burglary) investigated throughout.
Nevertheless, the crime prediction framework delineated within this study holds promise for
informing forthcoming research endeavors and practical applications focused on deploying
tailored machine learning techniques or algorithms to address spatiotemporal crime
prediction challenges. Consequently, the findings of this investigation stand to provide
valuable guidance to scholars and practitioners focusing on analogous urban contexts, where
the prediction of spatiotemporal crime occurrences remains a pertinent concern.

Within each city, the ENN algorithm exhibited higher overall performance when predicting a
lower number of burglary hot spots. Notably, when focusing on the top 5% of burglary hot
spots, the ENN algorithm slightly outperformed the RF algorithm and significantly
outperformed the KNN algorithm, particularly in terms of modeling precision. However, it is
important to highlight that both the ENN and RF algorithms yielded highly comparable
performance measures, indicating their enhanced capacity to accurately predict grid cells
associated with monthly residential burglaries. An intriguing observation is the convergence
of the three algorithms' modeling performance as more burglary hot spots are predicted,
particularly for London and Vienna. This suggests that when generating a higher number of
predictions, the algorithms exhibit similar abilities to identify burglary hot spots. This implies
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that the choice of a specific algorithm may become less critical when attempting to capture a
broader range of potential burglary hot spots, especially on the long-term, e.g., within the
context of defining strategic objectives. However, although predicting a larger number of
potential hot spots will eventually increase the number of correctly predicted hot spots, it will
nevertheless also increase the number of false positives. This trade-off underscores the
significance of resource allocation. From a strategic standpoint, predicting a larger number of
potential burglary hot spots may compromise the cost-effectiveness of deploying police
resources on the basis of predicted spatiotemporal crime patterns: although a broader
coverage of potential burglary areas can be achieved, it requires the allocation of police
resources to a larger number of predicted hot spots, which could potentially result in a more
dispersed resource allocation pattern. In this regard, we should also ask ourselves whether it
is even meaningful/realistic to predict for example 50% of the areas. As we are aware of the
fact that crime is highly concentrated, wherein a minority of micro-places, typically comprising
around 4 to 5%, contribute to approximately 50% of criminal incidents, this would be a waste
of time and efforts of police forces.

An important question that arises is why the KNN algorithm performs worse in each city
compared to the ENN and RF algorithms. One plausible explanation may lie in the inherent
differences between the algorithms in terms of their modeling logic. As the modeling of
spatiotemporal crime patterns often involves capturing nonlinear relationships, it is possible
that the KNN algorithm is less adept at learning such discriminative patterns in the data,
leading to less accurate predictions on unseen test data, especially when a smaller number of
predictions is required. KNNs operate based on the assumption of local similarity, meaning
that they predict class probabilities of data points based on the classes of their nearest
neighbors. This assumption works best when data points with similar characteristics are
located in close proximity to each other in a feature place. However, when it comes to
predicting complex, often nonlinear, spatiotemporal crime patterns, this assumption may not
hold true due to the influence of important spatial and temporal factors that may extend
beyond ‘local neighborhoods’ and thus similar data points. Another notable factor is that both
the ENN and RF algorithms are ensemble classifiers, which often yield improved prediction
performance compared to individual classifiers like KNN. By harnessing the collective
predictive power of multiple individual models, both the ENN and RF algorithms could have
captured a broader range of patterns, relationships, and interactions within the training data
compared to the individual KNN model. After all, the KNN algorithm is often depicted as a ‘lazy
learner’, implying that the algorithm postpones the processing of the training data until the
prediction phase, using the entire dataset to make predictions by searching for the nearest
neighboring data points. Consequently, the KNN algorithm may struggle to generalize well to
unseen data and capture the complex relationships present when modeling spatiotemporal
crime patterns (Kigerl et al. 2022).

Moreover, our study compared the prediction performance of the derived prediction models
across the three cities. Intriguingly, both the ENN and RF algorithms exhibit markedly
enhanced performance for Brussels during the entire summer period, implying their capacity
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to predict crime patterns more accurately within this temporal context. Conversely, for
London, no substantial increase in prediction performance is observed throughout the
summer period and more stable patterns are observed. Important to note is that in terms of
modeling precision, both the ENN and the RF algorithm performed substantially better for
Brussels, introducing a larger number of false positives for London and Vienna. In case of the
KNN algorithm, however, lower performance is observed for Brussels, but no substantial
differences are observed for London and Vienna, suggesting that the three algorithms perform
relatively well on these datasets. Despite the lower precision, the three algorithms tend to
perform very consistent for London, and no real fluctuations are observed across all
performance measures compared to Brussels and Vienna, for which performance measures
were more fluctuating over time. The consistency in the performance measures for London
could indicate that the underlying crime patterns and distributions are relatively stable and
somehow more predictable in London and that the three algorithms were able to successfully
capture these underlying patterns when modeling the data. The latter is somehow reflected
by the Gini coefficients in Table 2, suggesting that residential burglaries are quite concentrated
in London between 2014-2016, showing less fluctuations and thus more stable yearly crime
concentrations. The same could be true for Vienna and Brussels, as it is apparent that higher
direct hit rates are achieved for Vienna, while lower direct hit rates were achieved for Brussels,
which may be explained by the higher and lower clustering of residential burglaries at grid
cells in Vienna and Brussels, respectively. However, even though differences in burglary
concentrations provide some context for the observed modeling performance across the
three cities, it is evident that additional structural factors may have also influenced the
predictive modeling performance across these cities. As previously mentioned, for example,
areas with higher population densities tend to experience more crime (so have higher crime
counts), resulting in a larger number of positive instances (crime occurrences) and a wider
distribution of features within the datasets. This provides increased opportunities for the
algorithms to learn discriminative patterns and establish more accurate models. In this
regards, it is important to acknowledge that there might be significant differences between
the three cities in terms of how prediction performance is influenced by the features that are
included in the predictive modeling. While the present study does not assess the impact of
these features on modeling performance, Kadar et al. (2019) demonstrate that the importance
of crime history features tends to increase in areas with higher population densities.

However, it is crucial to note that cities with lower population densities and crime counts are
not necessarily unable to benefit from predictive crime models. If the frequency of a specific
crime type is too low, alternative approaches can be employed to compensate for this
limitation. For instance, the data can be aggregated to a higher spatial or temporal level, or
related crime types can be grouped together into a larger category (Hardyns and Khalfa 2023).
This increased scale can not only enhance prediction performance but may also facilitate the
detection of cross-border crimes that transcend the boundaries of different police
departments. Nevertheless, despite considering these factors, it should be acknowledged that
scale and frequency alone do not provide a comprehensive understanding of the situation. For
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example, in the case of the present study, important differences arise regarding the level of
aggregation for the collected crime-supporting data among the cities, which could have
introduced an additional layer of complexity when modeling the data. Specifically, data for
Vienna were only available at the higher aggregated level of political districts, in comparison
to the neighborhood-level data collected for Brussels and London. This discrepancy in data
quality and granularity could have affected the ability of the algorithms to effectively capture
fine-grained variations and nuances in the data, due to a potential loss of localized information
and lower variability when disaggregating the data to a lower spatial scale. Evidently, other
factors that are associated with crime type and/or a combination of contextual factors such
as variations in socioeconomic (e.g., income level, unemployment level etc.) and demographic
characteristics (e.g., population composition) or cultural (e.g., community dynamics) and
environmental characteristics (e.g., the presence of crime opportunity factors such as lower
street connectivity) could also have contributed to differences in modeling performance.

5.1.1. Implications of this study for law enforcement and academia

The present study has implications for police decision-making processes within the context of
intelligence-led and big data policing and contributes to the existing scientific knowledge
regarding the reliability of spatiotemporal crime prediction methods when applied across
various European cities. The findings may prove especially valuable on a European and
international scale, providing insights for policymakers and law enforcement agencies
worldwide seeking to adopt (big) data-driven approaches to crime prevention and resource
allocation. The results will also contribute to the further development of predictive models
and tools that will become increasingly interesting for law enforcement agencies in the future.
Previous research (Hardyns and Khalfa 2023) has already shown that these models need to
strongly consider different degrees of urbanization within the same country, hence the
importance of international comparative research.

Our findings indicate that when law enforcement agencies seek to deploy police resources
based on spatiotemporal crime predictions, they should be cognizant of the enhanced
performance exhibited by ensemble machine learning models compared to individual models
like KNN. Although we did not specifically test other individual models in relation to the
ensemble methods employed, namely ENN and RF, our results clearly demonstrate that
relying solely on individual machine learning methods may vyield suboptimal outcomes in
terms of prediction performance. By employing ensemble methods such as ENN and RF, law
enforcement agencies can optimize resource allocation to address residential burglary hot
spots, as these methods exhibit lower rates of false negatives and false positives.
Consequently, this enables a more targeted approach, enhancing the probability of deterring
potential offenders or detecting criminal activity more effectively.

Furthermore, although some differences in prediction performance are observed across cities,
mainly depending on the prediction performance measure that is assessed, the differences
are not that substantial. This suggests that the predictive modeling approach used in this study
holds premise for cross-city and cross-country application. For law enforcement, this implies
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the feasibility of employing such a standardized predictive modeling approach across cities
and even national borders, allowing the establishment of standardized resource allocation
strategies, crime prevention efforts and collaboration. Moreover, the observation that the
predictive modeling approach somehow maintains its efficacy across various cities presents a
promising avenue for comparative research, introducing a transferable framework that may
potentially contribute to a broader understanding of the applicability of machine learning
approaches to predict crime spatiotemporally across cities and countries. However, while the
core methodology may remain robust and transferable, it is still crucial to recognize that
adopting context-specific and tailored approaches when applying machine learning methods
across cities can be imperative. For example, areas characterized by lower population
densities or lower crime concentrations and rates may potentially benefit from the inclusion
of different or supplementary features in predictive models that are contextually relevant
(Kadar et al. 2019). Conversely, for areas with higher population densities or elevated crime
concentrations or rates, a model encompassing fewer features may suffice. For instance, such
areas may derive greater benefit from incorporating solely crime history features into the
predictive models resulting in a less intricate model that excludes sensitive features from a
human rights perspective (e.g., percentage of immigrants). It is important to note, however,
that while existing literature indicates that certain area characteristics explain a significant
proportion of the variance in crime outcomes, the utilization of these features may surpass
the scope of a crime prediction task.

Furthermore, with regard to the allocation of police resources to crime hot spots, it is our firm
belief that law enforcement agencies should consider deploying police resources to a smaller
number of predicted hot spots, based on their capacities, priorities and actual crime trends
and patterns. While this may result in a higher number of false negatives, it enhances the
precision of the predictive models, leading to a decrease in false positives. However, this
approach lightens the burden on police officers while enabling a greater concentration of
resources in the predicted hot spots, thereby maximizing efforts to reduce crime in those
areas. To assess the cost-effectiveness of such a strategy, an intriguing tactic to explore is the
deployment of police resources not only to predicted crime hot spots but also to the micro-
places, such as grid cells, adjacent to those hot spots. The findings of this study indicate that
while the direct hit rates substantially decrease when predicting a smaller number of hot
spots, the near hit rates consistently remain higher. This suggests that incorporating micro-
places adjacent to predicted crime hot spots in the calculation of hit rates results in fewer false
negatives. Consequently, adopting a more focused approach by deploying police resources to
fewer crime hot spots while maintaining a presence at the micro-places adjacent to the
predicted hot spots could potentially enhance the effectiveness of crime prevention and
detection. Although this approach entails allocating resources to additional micro-places,
which may again reduce precision, it is possible that the time required for officers to travel
from a predicted hot spot to its adjacent grid cells could be lower compared to the time
needed to travel between predicted hot spots solely. Consequently, it is worth considering a
comparative analysis of the (cost-)effectiveness achieved by deploying police resources to
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both predicted crime hot spots and their adjacent grid cells, in contrast to deploying resources
to an increased number of predicted hot spots without considering adjacent grid cells. It is
important to acknowledge, however, that the effectiveness of such an approach may depend
on the concentration of crime. Furthermore, the evaluation of this approach would
necessitate data collected within the framework of a rigorous evaluation study.

5.1.2. Limitations and avenues for future research

Although the present study contributes to the current scientific literature on the use of
machine learning methods for predicting crime in place and time, it is important to
acknowledge several limitations that may provide potential avenues for future work.

First, the focus of the present study is solely on residential burglary, excluding other crime
types from the predictive modeling. While spatiotemporal prediction models are commonly
applied to property crimes like residential burglary or car theft, previous research suggests
that better and more stable prediction performance is often achieved when focusing on
violent crime types, such as aggravated assault, or combination crime types, like aggressive
theft (e.g., Hardyns and Khalfa 2023). Future research should explore the application of
predictive models to a broader range of crime types to assess their performance and validity
across different criminal activities.

Second, it is important to acknowledge that the number of features used in this study to
predict crime in place and time is somewhat limited compared to previous studies within this
area of research. This limitation mainly arises from the need to employ comparable features
across the cities for a meaningful comparative analysis and the differences in data availability
across the three cities. In this regard, it should be noted that is beyond the scope of the present
study to estimate the relative importance of the features included in the machine learning
models. Therefore, future studies should explore the question to what extent specific features
add to the performance of machine learning models in predicting crime spatiotemporally
across diverse settings and contexts. While the selected features were carefully chosen to
capture relevant aspects related to crime patterns and contextual factors from a theoretical
point of view, and although considerable levels of prediction performance were achieved for
each city considering the limited number of features, the inclusion of additional or more
granular features could provide further insights and potentially enhance the performance of
the predictive models. For example, including additional features grounded in crime
opportunity theories could have further improved the capabilities of the prediction models to
account for important factors known to shape crime in place and time. With regard to the
latter, the use of alternative types of data such as big data derived from electronic devices
such as mobile phones, Automatic Number Plate Recognition systems, GPS devices from police
patrol units, satellites etc. may prove valuable (Snaphaan and Hardyns, 2021). Drawing from
Routine Activity Theory (RAT) (Cohen and Felson 1979), for instance, big data sources may
enhance the measurement of the distribution of suitable targets, potential offenders and
capable (formal and informal) guardians in particular places and during specific moments in
time. In this regard, future studies could investigate using GPS data from police patrol units to
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generate measures of police presence (e.g., the frequency, duration, and intermittency of
police presence) at microgeographic units as proxies of formal guardianship. In addition,
Rummens and colleagues (2021) have shown that mobile phone data provide more accurate
reflections of population mobility in terms of spatiotemporal resolution, enabling the
extraction of specific ambient population features (e.g., the number of people that are ‘most
likely to live in a specific area’). Integrating diverse big data sources related to criminological
concepts and crime characteristics could therefore facilitate a more nuanced and fine-grained
analysis of spatiotemporal crime patterns, both from a theoretical and methodological point
of view. As place-based predictive policing applications are mainly revolved around predicting
short-term crime hot spots in or near real time, incorporating features at fine-grained
spatiotemporal levels may prove valuable and increase variability, instead of only using static
data sources that limit predictive power at such fine-grained spatiotemporal levels.

Third, only monthly predictions were made. In this regard, the present study did not explore
to predict crime hot spots at fine-grained temporal resolutions such as bi-weekly, weekly, or
daily resolutions. Future research should investigate the value and costs associated with
predictions at different temporal (and spatial) resolutions, considering the trade-off between
prediction performance, data quality, and costs. It is important to note that when predicting
crime at higher temporal resolutions, such as daily or weekly predictions, the incorporation of
real-time or near-real-time information may vyield greater benefits compared to lower
temporal resolutions.

Fourth, in interpreting the results of the present study, researchers and policymakers should
keep in mind the so-called ‘No Free Lunch Theorem’ (Wolpert 1996). This theorem suggests
that algorithms may perform differently across specific prediction (crime) problems (Kigerl et
al. 2022). Although the present study focused on three specific algorithms commonly used to
predict crime in place and time, it is possible that these algorithms may perform differently or
be outperformed by other algorithms when applied to other crime types or crime-related
problems. Therefore, future work should consider the comparative performance of various
algorithms to identify the most effective approaches for different crime prediction tasks. In
this regard, it could also be interesting to explore whether combining the outputs of different
algorithms, such as the ones used in the present study, into a ‘hyper ensemble model’, yields
a better prediction performance (Kadar et al. 2019). This would provide more insights into the
complementary strengths of individual algorithms and their collective predictive power.
Furthermore, it is important to acknowledge that in this study, specific methodological
decisions were made with respect to e.g., data aggregation, spatiotemporal resolution of
predictions, and the amount and type of data collected. While many of these decisions were
informed by prior research, there remains a need for further investigation into how different
configurations of these choices may impact the performance of spatiotemporal crime models.
Despite this, it is worth emphasizing that extensive efforts were undertaken throughout this
study to ensure a comprehensive and comparative perspective by maintaining consistency in
the modeling of crime predictions through these methodological choices.
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While the predictive modeling approach used in this study has potential for further
optimization, its value lies in its practical implementation by law enforcement agencies.
Merely deploying officers to predicted crime hot spots may be considered satisfactory, but
further investigation is needed to determine the optimal conditions for police presence when
allocating resources to daily, weekly, or monthly predicted crime hot spots. Hence, future
research should also address strategic and tactical questions concerning what the police
should do at crime hot spots and how to evaluate these approaches within the context of
proactive and dynamic intelligence, while equally taking into ethical and legal risks associated
with the development and implementation of crime prediction models within police
organizations. In this regard, the comparative nature of this study may serve as a model for
future international research endeavors seeking to elucidate the effectiveness of predictive
modeling approaches across diverse urban contexts. In this regard, both scholars and
practitioners may think of further comparing different crime prediction methods across
different settings (e.g., cross-country, cross-region) or across different contexts within a
setting (e.g., applying the crime prediction framework for individual police departments within
a setting). The collaborative efforts between researchers and law enforcement agencies in
implementing and refining predictive modeling strategies can contribute to the ongoing
evolution of crime prevention practices, ultimately enhancing public safety and community
well-being.
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Appendices

Appendix 1: Overview of the included features

(1) Crime history features
Number of crime events in the previous month
Time since last crime event (in months)
Number of crime events in the past year
Number of crimes in the previous period in the neighbourhood*
Number of crimes in the same month last year
(2) Demographic features
Total residential population*
Percentage youth*
Percentage of non-domestic inhabitants*
Percentage single households*
(3) Socio-economic features
Unemployment rate*
Percentage of houses occupied by homeowners*
Dwelling stock*
(4) Environmental features
Number of shops
Number of bars/cafés
Number of restaurants
Number of snack bars
Presence of green space (Boolean)
(5) Proximity features
Distance to nearest station (m)
Distance to nearest highway (m)
Distance to nearest bus/metro/tram stop (m)
(6) Additional feature(s)
Seasonal indicator (winter, summer)
*Only available at the neighbourhood level for Brussels and London and at the district level
for Vienna



Appendix 2: Monthly number of residential burglaries in each city (2014-2016)

Appendix 2.1. Monthly number of residential burglaries in Brussels (2014-2016).
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Appendix 2.2. Monthly number of residential burglaries in London (2014-2016).
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Appendix 2.3. Monthly number of residential burglaries in Vienna (2014-2016).
1000
900
800
700
600
500

400

300
200

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

—2014 - 2015 === 2016

33



