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Abstract 

The visual world paradigm is one of the most influential paradigms to study real-time language 

processing. The present study tested whether visual world studies can be moved online, using 

PCIbex software (Zehr & Schwarz, 2018) and the WebGazer.js algorithm (Papoutsaki et al., 2016) 

to collect eye-movement data. Experiment 1 was a fixation task in which the participants looked 

at a fixation cross in multiple positions on the computer screen. Experiment 2 was a web-based 

replication of a visual world experiment by Dijkgraaf, Hartsuiker and Duyck (2017). Firstly, both 

experiments revealed that the spatial accuracy of the data allowed us to distinguish looks across 

the four quadrants of the computer screen. This suggest that the spatial resolution of WebGazer.js 

is fine-grained enough for most visual world experiments (which typically involve a two-by-two 

quadrant-based set-up of the visual display). Secondly, both experiments revealed a delay of 

roughly 300 ms in the time course of the eye movements, most likely caused by the internal 

processing speed of the browser or WebGazer.js. This delay can be problematic in studying 

questions that require a fine-grained temporal resolution and requires further investigation.  

 

Keywords:  Web-based eye-tracking, Visual world paradigm, Online experiments, Language 

comprehension, Psycholinguistics 
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Moving visual world experiments online?  

A web-based replication of Dijkgraaf, Hartsuiker, and Duyck (2017) using PCIbex and 

WebGazer.js 

1. Introduction 

Over the last decades, the visual world paradigm has proven to be one of the most fruitful 

techniques to study real-time language processing (see Huettig, Rommers & Meyer, 2011, for 

review). The typical set-up of a visual world experiment is relatively simple: Participants listen to 

auditory linguistic stimuli while they look at a display that contains visual stimuli (although the 

paradigm has also been used to test language production, e.g., Bock & Griffin, 2000). An eye-

tracking device is used to track the eye-movements of the participants. Since there is a tight 

temporal link between visual attention and language processing, this set-up provides informative 

data.  

This link was first observed by Cooper (1974), who let participants listen to short narratives 

while they looked at a display that contained nine pictures. Cooper’s results showed that the 

participants tended to look at objects in the visual world that are related to the linguistic input that 

they are processing at that moment of time. For instance, the participants looked more often at a 

picture of a zebra upon hearing the word zebra in the narrative compared to when the word zebra 

is not mentioned. This effect emerged rapidly: People tended to fixate on the related object within 

200 ms after the word onset (see also Matin, Shao & Boff, 1993; Saslow, 1967). Since Cooper’s 

seminal findings, the visual world paradigm has been used to test real-time language processing at 

a wide range of linguistic levels, such as phonemic or phonological processing (e.g., Allopenna et 
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al., 1998; Snedeker & Trueswell, 2004), syntactic processing (e.g., Altmann & Kamide, 1999, 

Kamide, Altmann & Haywood, 2003; Tanenhaus, Spivey-Knowlton, Eberhard & Sedivy, 1995) 

or semantic and pragmatic processing (e.g., Degen & Tanenhaus, 2016; Huang & Snedeker, 2009; 

2018; Sun & Breheny, 2020).  

 Even though the visual world paradigm has become one of the most fruitful and versatile 

paradigms to study real-time language processing, it has an important limitation: It requires 

expensive and stationary eye-tracking equipment, as well as a researcher that is present in the lab 

to administer the experiment. This makes eye-tracking-based experiments rather cumbersome, 

especially in comparison to other behavioural experiments that can be carried out remotely over 

the internet (e.g., Gosling & Mason, 2005; Gibson, Piantadosi & Fedorenko, 2011; Pinet et al., 

2017). The advantages of web-based testing are eminent: Because participants do not have to come 

to the lab, it is easy to recruit many participants (see Hartshorne, Tenenbaum & Pinker, 2018, for 

a particularly successful attempt of recruiting a large sample size) or target a specific group of 

participants (e.g., speakers of a language that is not commonly spoken in the country in which the 

researcher resides). Moreover, since online experimentation does not require a researcher 

supervising the experiment, data collection is also much faster and more efficient compared to lab-

based experimentation.  

Fortunately, there is hope that the visual world paradigm, as well as other eye-tracking-

based paradigms, could be moved to the internet. Most remote high-end eye-tracking devices use 

a near-infrared illumination to cause a reflection on the participants’ cornea and a high-end video 

recorder to capture images of the eye. Image processing techniques then locate the pupil based on 

the visible reflection on the cornea, and use this information to estimate the participants’ eye 
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movements  (e.g., SR Research, 2021; Tobii, 2021). Recent software developments allow us to 

estimate gaze locations on videos with a lower resolution than those recorded with a high-end eye-

tracking device (e.g., Valenti, Staiano, Sebe & Gevers, 2009; Valliapan et al., 2020; Xu et al., 

2015). In particular, Papoutsaki et al. (2016) developed a JavaScript-based library named 

WebGazer.js. WebGazer.js’s algorithm consists of two main components: A pupil detector that 

looks for the position of the pupils in the webcam stream and a gaze estimator. This gaze estimator 

uses regression analysis to approximate the location of the looks on the screen. These regression 

analyses used by the gaze estimator are guided by the interactions of the participant, such as mouse 

clicks and cursor movements.  WebGazer.js can therefore be used to collect eye-movement data 

in web-based experiments, but we know relatively little about the spatio-temporal resolution of the 

eye-movement data that WebGazer.js provides, or whether the data is accurate enough to use in 

psycholinguistic research.  

The first studies that used WebGazer.js to conduct eye-tracking experiments showed 

promising results. In a lab-based experiment, Papoutsaki et al. (2018) used a high-end eye-tracking 

device (a Tobii Pro X2-120) and WebGazer.js in combination with a consumer-grade webcam to 

track participants’ eye movements while they were typing. Their results showed that distinct eye 

movement patterns can be distinguished for touch and non-touch typists. Moreover, these eye 

movement patterns were found in both the data collected with the Tobii eye-tracker and in the data 

collected with WebGazer.js. WebGazer.js was thus able to replicate data collected with a high-end 

eye-tracker, although visualisations of this data do suggest that the quality of the WebGazer data 

is somewhat poorer relative to the Tobii data, showing more variance in both the spatial and the 

temporal domains. 
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In another study, Semmelmann and Weigelt (2018) tested the viability of web-based eye-

tracking experiments using WebGazer.js and consumer-grade webcams by conducting an 

experiment that consisted of three tasks: (i) A fixation task in which the participants fixated on a 

circle that appeared on the screen for 2000 ms, (ii) a pursuit task in which the participants followed 

a circle that moved on the screen, and (iii) a free-viewing task in which the participants looked at 

a photograph of a face. Their results showed that WebGazer was suitable for all three tasks, 

although the spatial and temporal resolution was poorer compared to the standards of a high-end 

eye-tracking device. Looking at the spatial resolution of the data from the fixation and the pursuit 

tasks, the in-lab acquired data revealed an offset between the estimated fixation position and the 

stimulus of roughly 15-19% of the screen size. Nevertheless, Semmelmann and Weigelt’s free-

viewing task showed that WebGazer.js was able to replicate previous findings from lab-based 

experiments: The participants tended to fixate on the eyes when they look at an image of a face 

compared to other regions of interest (such as the mouth and the nose), which corroborates findings 

that Westerners tend to focus their attention at the eyes when they see a face (e.g., Blais, Jack, 

Scheepers, Fiset & Caldara, 2008). Regarding the temporal resolution of the data, the fixation task 

data showed that the saccade towards the stimulus started roughly 250-375 ms after stimulus onset 

and lasted 450-750 ms on average. Finally, it must be noted that Semmelmann and Weigelt’s 

experiment showed considerable variance between participants. This variance is not only due to 

individual differences between participants, but also in terms of the hardware they used to do the 

experiment (e.g., quality of the webcam, stability of the internet connection, lighting used in the 

room). 
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These few previous studies revealed that, in principle, web-based eye-tracking can detect 

eye-movement patterns. However, these studies also reveal that the quality of the data is 

considerably weaker compared to data from lab-based experiments that used high-end eye-

trackers. Especially the temporal resolution observed in Semmelmann and Weigelt (2018) may be 

worrisome: Based on lab-based experimentations, we know that it takes roughly 200 ms to execute 

a saccade (e.g., Matin et al., 1993), whereas Semmelmann and Weigelt’s results showed that it 

took roughly 750 ms until participants settled their gazes on a stimulus. This raises the question of 

whether webcam-based techniques are suitable to conduct visual world experiments (or 

behavioural research in general), which often requires a precise temporal resolution.  

In the present study, we gain insight in this question by conducting two web-based 

experiments that used WebGazer.js to track participants’ eye movements. Experiment 1 was a 

fixation task that was inspired by Semmelmann and Weigelt’s (2018) fixation task. In this 

experiment, the participants looked at a fixation cross that appeared on the screen for 1500 ms. 

The aim of this experiment was to gain further insight in the spatial and temporal resolution of 

web-based eye-tracking data, and to see how this data quality is influenced by properties of the 

hardware, such as webcam sample rate or the calibration threshold of the webcam eye-tracker 

(more below).  

Experiment 2 was a web-based replication of a visual world study that was previously 

conducted by Dijkgraaf, Hartsuiker, and Duyck (2017) in an in-lab setting using a high-end eye-

tracker. This experiment investigated predictive processing based on verb meaning in sentence 

comprehension. Predictive processing based on verb information is a finding that is often observed 

in visual world studies: If the visual display contains only one picture of an object (e.g., a picture 
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of a letter) that would be a fitting argument following the verb in the auditory stimulus (e.g., a 

sentence like Mary read a letter), participants already tend to fixate on the fitting picture during 

the processing of the verb, before the onset of the second noun (see Altmann & Kamide, 1999; 

Altmann et al., 2003; Borovsky, Elman & Fernald, 2012; Hintz, Meyer & Huettig, 2017; 2020, 

inter alia). By replicating Dijkgraaf et al.’s visual world experiment in a web-based setting, and 

by comparing our web-based data with their lab-based data, we aim to gain a rich insight in the 

viability of the use of WebGazer.js in visual world studies.  

2. Experiment 1: Fixation task 

2.1. Participants  

This experiment was approved by the Ethics Committee of the Faculty of Psychological and 

Educational Sciences at Ghent University. All participants gave informed consent by selecting a 

check box on one of the first web pages in the experiment, before the task started.  

We tested 57 native speakers of English via Prolific (https://www.prolific.co/), who were 

paid £1.25 for their participation. Although the task was non-linguistic, and therefore did not 

necessarily require native speakers of English, we set these screening restrictions so that the 

participants were comparable to those of Experiment 2 (which did require native speakers of 

English). Prior to the experiment, the participants were instructed to not wear glasses during the 

experiment, and none of the participants reported to have worn glasses in a post-experimental 

questionnaire. Finally, all participants opened the experiment in the Google Chrome Desktop 

browser. They were instructed to open the experiment on Google Chrome, and then were not able 
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to continue to the experiment unless if they indicated that they were on Google Chrome in a pre-

experimental question. 

The results of two participants were not saved on the server due to connectivity issues, and 

therefore we could include these participants the data analysis. Thus, the data of 55 participants 

were included in the final analyses.  

2.2. Stimuli materials 

The participants looked at a fixation cross that appeared in one of thirteen positions on the screen 

(Figure 1). An important difference between remote web-based eye-tracking and in-lab eye-

tracking is that the computer screens of participants in web-based studies vary in sizes and 

resolution, whereas the participants of a lab-based eye-tracking experiment usually all carry out 

the experiment on the same hardware. To ensure that the experiment appeared at least similar for 

all participants, we set the size and position of the fixation cross relative to the screen size of the 

participant: the height (and width) of the cross is 15% of the height of the participant’s screen (for 

example, if a participant’s screen had a resolution of 1440 by 640, the size of the fixation cross is 

96 by 96 pixels, because the experiment was shown in full screen). Note that four of the thirteen 

positions were in the middle of each quadrant of the screen, which are typically the positions where 

the images are shown on the visual display in a visual world experiment. The other nine positions 

were spread out over the screen. The addition of these positions allowed us to do a more fine-

grained calculation of estimated gaze-location accuracy, which may be beneficial for future 

studies. The fixation cross appeared 6 times at each of the 13 positions, resulting in 78 trials. Trial 

order was fully randomized for each participant. 
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Figure 1. The thirteen positions in which the stimuli could appear on the screen in Experiment 1.  

2.3.  Procedure  

The task was carried out remotely over the internet and implemented using PennController for 

Ibex (PCIbex; Zehr and Schwarz, 2018). PCIbex has an eye tracker element that uses WebGazer.js 

to estimate the locations of the participants’ eye gazes. The code that was used to implement this 

experiment is available at GitHub (https://github.com/MiekeSlim/Moving-visual-world-

experiments-online). 

The experiment started with a welcome page, an informed consent form, and instructions 

on how to set up the webcam. On the welcome page, the participants were asked to give the 

browser permission to use the webcam. Here, they were informed that we are not recording any 

videos, but only save information about where they look on the screen. Moreover, we instructed 
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the participants to ensure that they were correctly seated in front of the webcam and that they were 

in a well-lit environment. Once the participant went through the welcome screens, the browser was 

prompted to switch to full screen.  

The participants then continued to a calibration procedure, which consisted of four steps 

(Figure 2). First, participants saw the webcam stream along with a green frame indicating the 

required head position, so they could position themselves correctly in front of their webcam (Step 

1). Then, the participants clicked on eight buttons that were placed along the edges of their screen 

(Step 2). Once they had clicked on all these buttons, a new button appeared in the centre of the 

screen (Step 3). The participants clicked on this button and then fixated on the centre of the screen 

(indicated by the phrase ‘Look here!’) for three seconds (Step 4). During these three seconds, the 

webcam eye tracker calibrated by calculating the proportion of estimated looks on the centre of 

the screen. This proportion of estimated looks (ranging from 0% to 100%) indicated the success 

of calibration (the calibration score).  
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Figure 2. The four steps of the calibration procedure. In the first step, the participants need to position themselves in front of their 

webcams by positioning the image of their head in the green square. They can then start the calibration by pushing the button in 

the middle of the screen (which says ‘Start calibration’). In the second step, they click on eight buttons (that all say ‘Click here’) 

that are placed along the edges of the screen, while they follow the cursor closely with their eyes. After they have clicked on all 

eight buttons, a new button appears in the centre of the screen (step 3). After they have clicked this button, step 4 will begin. In this 

final step, the participants fixate on the middle of the screen (marked by the words ‘Look here!’) for three seconds. During this 

step, the calibration score is calculated.  
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The required calibration threshold was set at 5% (meaning that the calibration is considered 

successful if the eye tracker calculated that at least 5% of the estimated looks fell on the centre of 

the screen in the last step of the calibration procedure). If this threshold was not met, the participant 

went through the full calibration procedure again. Because one of the goals of Experiment 1 was 

to test the influence of calibration score on the accuracy of the eye-tracking data, we wanted to 

obtain a wide range of calibration scores. Therefore, we chose to use a low calibration threshold 

in Experiment 1.  

The fixation task started after successful calibration. Each trial started with a 500 ms black 

fixation cross in the centre of the screen. The target fixation cross then appeared in one of the 

thirteen positions of the screen for 1500 ms and then the next trial started automatically. In case 

the participant exited the full screen modus of the browser (e.g., by hitting the escape key), the 

browser was prompted to switch to full screen at the end of each trial.  Every thirteen trials were 

interspersed with a calibration trial. The participants clicked on a button that appeared in the middle 

of the screen, and then fixated on the middle of the screen for three seconds so that the eye tracker 

can calibrate (Step 3 and 4 of the calibration procedure). If more than 5% of the estimated looks 

fell outside the target region in the centre of the screen, the participant went through the full 

calibration again. If calibration was successful, the next trial started automatically.  

2.4. Analyses and results 

2.4.1. Data treatment 

The data and analysis scripts are online available at: https://osf.io/yfxmw/. Experiment 1 collected 

two types of gaze measurements: screen coordinates of the estimated gaze location and the 
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quadrant on which each gaze was directed. The screen coordinates are given as pixel coordinates. 

This is not a uniform measure, because the location of pixels on the screen depends on the 

participant’s screen size and resolution. Therefore, we first standardised these coordinates by 

defining the position of the estimated gaze as a percentage of the participants’ screen width and 

height (e.g., the coordinate of the pixel in the centre of the screen is defined as (50, 50), regardless 

of the participants’ screen resolution).  

 We then aggregated the data into 100 ms bins, so that we had the same number of 

observations per participant and per trial. Here, however, we noticed that the duration of each eye-

tracker recording did not always have the expected length of 1500 ms (mean duration: 1456 ms; 

sd: 122 ms; range: 801 – 2210 ms). Longer recordings are likely due to short lags in the experiment. 

For instance, browser glitches (possibly caused by poor browser performance, i.e., the speed by 

which the browser renders and executes the functions prompted by the experiment script) may 

lengthen the trials/recordings by several milliseconds. Shorter recordings, on the other hand, seem 

to be due to the sample frequency of the participant’s webcam (see below): In some cases, the 

webcam only recorded one frame per several 100 ms. In these cases, the eye-tracker did record for 

the full 1500 ms, but the last recorded frame came in well before 1500 ms. It is noteworthy that 

both the particularly long and short recordings were observed in the same (few) participants, which 

suggests that both the longer and the shorter duration of the eye-tracking recording may be caused 

by the same underlying problem, most likely browser processing speed and/or webcam quality. 

We did not remove any trials or participants prior to our analyses due to this issue, since the 

variation between the participants and their hardware are relevant for these analyses. However, we 
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did remove the data of each bin that was above 1500 ms (484 of 4279 recorded bins, i.e., 11.31% 

of the total number of recorded bins) to create more homogeneity in our dataset. 

 Finally, for each time bin, we calculated the Euclidean distance between the estimated gaze 

location and the centre of the stimulus, using the following formula:  

 

(1) !"𝑋!"#$%&%!	&()*"#(+ − 𝑋,!"#$*",-	.*/,	&()*"#(+%
0 +	"𝑌!"#$%&%!	&()*"#(+ − 𝑌,!"#$*",-	.*/,	&()*"#(+%

0	 

 

The analyses of the Euclidean distance between the stimulus location and the estimated gaze 

location will give information about both the temporal resolution of the data (since we expect this 

distance to become smaller over time) and the spatial resolution of the data (since this Euclidean 

distance expresses the offset of the estimated gaze location and the actual stimulus location). 

2.4.2. Analyses of Euclidean distance 

We first tested whether the Euclidean distance between the gaze location and the stimulus position 

changed over the time course of the trials. Due to the explorative nature of this experiment, we 

mostly relied on visual inspection of the data in this part of the analyses. Looking at the 

visualisation of the time course of the data (Figure 3A), the start of each trial is characterised by a 

saccade towards the stimulus location, which can be identified as a decrease in the Euclidean 

distance between the stimulus position and the estimated gaze location. On average, this decrease 

in distance started at roughly 200 ms after the stimulus onset. After 500 ms, the distance between 

the estimated fixation location and the stimulus position remains relatively stable over time, which 

suggests that the participant’s fixations were settled on the stimulus. Within this fixation time 
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window of 500 - 1500 ms, the mean distance between the estimated gaze location and the centre 

of the stimulus was still roughly 30% of the screen size. 

 

 

Figure 3. The mean Euclidean offset, measured in percentage of screen size, over the duration of the trials. Panel A shows the mean 

Euclidean offset averaged across all participants. Here, the blue ribbon represents the standard deviation, to represent the large 

distribution of the data. Panel B shows the mean Euclidean offset divided into separate mean calibration bins. In Panel B, the 

ribbons represent the standard error, since showing the standard deviations would have made the figure difficult to interpret. Note 

that the standard errors in Panel B increase substantially towards the end of the trial. Here, the number of observations decrease 

because the recordings of some trials are shorter than 1500 ms, which results in larger standard errors (see Section 1.6.1.).  
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The data shows considerable variability, as can be seen in the large standard deviation visualised 

in Figure 3A. Possibly, this variability can partly be explained in terms of calibration success. We 

plotted the mean gaze location over time again, but now split up the data following the mean 

calibration scores of the participants in ten-point bins (Figure 3B; resulting in a total of nine bins, 

since no participant had a higher mean calibration score of 90). This plot suggests that calibration 

score affects both the spatial and the temporal accuracy of the data. First, we see that the estimated 

gaze locations are closer to the stimulus for participants with a higher mean calibration score 

compared to those with a lower mean calibration score. Second, it also seems that the fixation time 

window (in which the estimated gaze locations are settled on the stimulus) starts earlier for the 

participants who scored higher calibration scores in general. Note that the number of participants 

in each bin is unbalanced (see the legend of Figure 3B). 

In addition, we investigated whether the position of the stimulus on the screen influences 

the spatial accuracy. Here, we analysed the spatial resolution of the data in the time window 

between 500 and 1500 ms after the stimulus onset, because the participants fixations settled on the 

stimulus roughly 500 ms after the stimulus onset (Figure 3). Visual inspection of the data (Figure 

4) suggests that the webcam eye-tracker can discriminate between the quadrants of the screen. 

However, it seems that the accuracy is better if the stimulus is displayed in the centre of the screen 

and less accurate if the stimuli are presented in the far corners of the screen (as was the case in the 

bottom-left, top-left, bottom-right, and top-right positions). It is worth noting that previous studies 

have also shown that professional-grade eye-tracking devices also estimate the gaze location more 

precisely if the participant looks at the centre, rather than on the edge, of the screen; e.g., Ehinger, 

Gross, Ibs & König, 2019). 
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Figure 4. The density of looks over the screen in the fixation time window (500 - 1500 ms) broken down in all thirteen fixation 

cross positions. Note that each panel represents the full screen. The stimulus positions that correspond to the centre of each quadrant 

are shown in the second and fourth row.  The black crosses show the centre of the fixation target positions.  

2.4.1. Analyses of the quadrant-based data 

We also recorded the screen quadrant in which each estimated gaze location fell. Here, our 

analyses focussed on the central locations of each quadrant (0.25, 0.25 – 0.25, 0.75 – 0.75, 0.25 – 
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0.75, 0.75). This type of data is relevant in the context of a visual world experiment, which 

typically involves the presentation of four images in the quadrants of the screen.  

 We started these analyses by comparing looks on the target quadrant to looks on the other 

three quadrants (Figure 5). This way of data coding allowed us to perform explorative inferential 

statistics over the time course of the trial. We binarized the data (per trial and participant, a bin 

was coded as 1 if more than 30% of looks fell on the target quadrant, otherwise it was coded as 0). 

These data were analysed with a cluster permutation analysis to identify temporally-adjacent time 

bins that showed a significant difference in the likelihood of looks on the target quadrant and the 

likelihood of looks on the other quadrants (p < 0.05). Each bin was tested for significance using a 

logit mixed-effect model (which contained random intercepts for Subject and Position), and then, 

the data were randomly permuted and tested for significance again. This latter step was repeated 

10000 times to create an empirical null distribution. Finally, the empirical distributions were 

compared to the differences in the observed clusters, to test the reliability of the differences in the 

observed clusters (e.g., Huang & Snedeker, 2020; Maris & Oostenveld, 2007). This cluster 

permutation analysis was conducted using the permutes package in R (Voeten, 2021). 

 This analysis showed two clusters of adjacent time bins in which there was a reliable 

difference in the likelihood of target quadrant fixations compared to fixations on the other 

quadrants (Figure 5A). First, between 0 and 200 ms, participants were more likely to look at the 

other three quadrants than on the target quadrant. Second, between 400 and 1400 ms, they were 

more likely to look at the target quadrant than on any other quadrant. This suggests that, on 

average, participants settled their gazes 400 ms after the stimulus onset, although participants may 

launch their fixations as early as 200 ms after stimulus onset. 
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Figure 5. The proportion of looks on the target quadrant increases after 200 ms, and becomes significantly higher than looks at any 

of the other three quadrants after 400 ms (Panel A). In addition, WebGazer.js is able to discriminate looks on any of the four 

quadrants, and the highest proportion of non-target looks are directed to the quadrant that is either above or below the target 

quadrant (Panel B). Note that this figure only shows data of the four-quadrant based positions.  

 In addition, it is worth noting that there were no substantial differences in the spatio-

temporal accuracy across the four quadrants (Figure 5B), although the proportion of fixations is 

descriptively slightly lower if the stimulus was presented in the top-right quadrant compared to 

any of the three other quadrants. Moreover, most of the estimated looks that were recorded as non-
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target looks after 400 ms fell on the quadrant above or below the target quadrant. This suggests 

that WebGazer.js is better in discriminating left-right looks from top-down looks (Figure 5B).  

 Finally, we tested the variation across participants in the temporal domain by calculating, 

for each participant, the first time bin in which there was a higher proportion of estimated looks 

on the target quadrant than on any of the other quadrants on average.  This time bin was not 

observed for four participants, because their estimated looks fell mostly on the non-target 

quadrants on average throughout the time course of the trials. For the other 51 participants, this 

time bin fell between 200 and 1300 ms of the stimulus onset (Figure 6).   

 

Figure 6. The distribution of the first time bin with a higher mean proportion of target fixations than non-target fixations is skewed: 

There is larger variation across the participants who, on average, settle their gazes on the target later than 400 ms after stimulus 

onset (which is the mean) than before 400 ms after stimulus onset.  

Figure 6 shows that the distribution of the first time bins in which the estimated gaze 

locations predominantly fell on the target quadrant across participants is skewed: This time bin 
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was observed before 400 ms for 21 participants, at 400 ms for 14 participants, and between 500 

ms and 1300 ms for the other 16 participants (and again, not even observed for 4 other 

participants).  

2.4.2. The influence of calibration 

Altogether, our data shows considerable variation across participants. In Section 2.4.2, we briefly 

hinted that this variation can partly be explained in terms of calibration score: Descriptively, the 

estimated gaze locations of participants who obtained a higher calibration score seemed to be more 

temporally and spatially accurate (Figure 3B). Here, we briefly report some additional calculations 

on the influence of eye tracker calibration on the quality of the data. A more elaborate description 

of these calculations can be found in Appendix A. First, we observed that calibration score 

correlated with the participants’ webcam quality (expressed in the number of frames that are 

recorded each second, the so-called fps or frames per second rate; ρ = 0.852, p < 0.001). This 

indicates that the eye tracker can calculate a more precise calibration score if there are more 

recorded frames. Second, we also observed that calibration score correlated with the spatial 

accuracy of the data. Focusing on all thirteen stimulus positions, we observed that the Euclidean 

offset between the estimated gaze locations and the stimulus was larger for participants who 

obtained lower calibration scores on average in the fixation time window (500-1500 ms; ρ = -

0.472, p < 0.001). Taking the data from the four centre-quadrant positions, we observe a similar 

correlation between mean calibration score and proportion of target quadrant looks in the fixation 

time window (ρ = 0.395, p = 0.002). This suggests that calibration score also influences the spatial 
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accuracy of the data if proportion of quadrant looks are measured, rather than more fine-grained 

estimate gaze coordinates.  

Finally, we also observed a correlation between calibration score and the temporal accuracy 

of the data. Focussing on the four quadrant-based positions, the participants for who the first time 

bin in which most of the looks were target looks were on average also the participants with lower 

calibration scores (ρ = 0.747, p < 0.001). Recall that there were four participants for who this first 

time bin of target fixation was not observed. There participants were not included in this correlation 

test.  

Altogether, the analyses of Experiment 1 showed that it takes roughly 400-500 ms until the 

participants’ gazed settled on the stimulus location. In addition, we observed that both the temporal 

and the spatial accuracy seemed to be better for participants who obtained higher calibration 

scores. Therefore, we raised the calibration threshold to 50 in Experiment 2, which is reported 

below.  

3. Experiment 2: Replication of Dijkgraaf, Hartsuiker and Duyck (2017) 

3.1. Participants  

This experiment was approved by the Ethics Committee of the Faculty of Psychological and 

Educational Sciences at Ghent University. All participants gave informed consent by selecting a 

check box on one of the first web pages in the experiment before the task started.  

 Based on the finding from Experiment 1 that data quality improves with a higher 

calibration score, we set the calibration threshold at 50. However, some participants were not able 

to (consistently) reach this threshold in the calibration procedure (more below). These participants 
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were redirected to another experiment that did not involve webcam eye-tracking (not reported 

here).  

 We pre-set our desired sample size at ninety participants, following a rule-of-thumb to 

recruit three times the size of the original sample size of Dijkgraaf et al.’s (2017) experiment (n = 

30). We recruited 330 native speakers of English via Prolific. We redirected 240 participants to 

another experiment, because they did not reach the calibration threshold in five attempts. The 

remaining 90 participants all took part in the visual world experiment. We did not exclude any of 

these participants in the analyses. All participants were paid £4.50 for their participation.   

3.2. Stimulus materials 

The materials and design were identical to the English monolingual version of the experiment 

reported by Dijkgraaf et al. (2017). The experiment involved eighteen experimental trials and 

eighteen filler trials. In all these trials, the participants listened to a recording of a sentence while 

looking at a display of four pictures (arranged over the four quadrants of the screen). The 

experimental trials were presented in two conditions: the constraining and the neutral condition. 

In the constraining condition, only one of the four pictures depicted an appropriate post-verbal 

object (e.g., a letter following the verb read). In the neutral condition, on the other hand, all four 

pictures displayed appropriate post-verbal objects (e.g., a letter, a backpack, a car, and a wheelchair 

following the verb steal; Figure 7). 

In the filler trials, the display contained either no, two, or three pictures that depicted 

appropriate post-verbal arguments. All pictures are black-and-white line drawings that were taken 

from a normed database constructed by Severens, Van Lommel, Ratinckx, and Hartsuiker (2005). 
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Dijkgraaf et al. (2017) matched the object names of the pictures for frequency, phoneme count, 

and syllable count across the conditions.  

 

Figure 7. Example of a visual scene used in Dijkgraaf, Hartsuiker, and Duyck (2017). In the constrained condition, the sentence 

that accompanied this display was Mary read a letter. In the neutral condition, the sentence Mary steals a letter was played.  

The sentences were simple four-word active transitive sentence (e.g., Mary reads a letter). The 

subject phrase was the same in all trials (Mary). The object noun always started with an indefinite 

article. The object noun always started with a consonant, so the article could not serve as a 

prediction cue. The sentences were pronounced by a female native speaker of Dutch, who speaks 

English as a second language (and majored in English linguistics and literature at university).  

Dijkgraaf et al.’s (2017) original study did not only involve monolingual English participants, but 

also Dutch-English bilingual participants. They selected this speaker for the sentence recordings 

because of her clear pronunciation of both English and Dutch sentences. Her accent was rated by 

native speakers of English as 5.3 on a 7-point scale (where 1 = ’very foreign accented’ and 7 = 
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’native speaker’). We decided to re-use these recordings, to keep our replication as close as 

possible to Dijkgraaf et al.’s original experiment. 

The eighteen experimental stimuli and eighteen filler trials were divided into two stimulus 

lists (named A and B). We took the lists from Dijkgraaf et al. (2017), who in turn assigned the 

experimental and filler trials pseudorandomly to the two lists, with the constraint that two 

sentences that belonged to the same stimulus set were not put in the same list. Each list contained 

nine constraining trials, nine neutral trials, and nine filler trials. Each trial contained a unique verb, 

but the displays were repeated across blocks. Within each list, the trials were fully randomised for 

each participant. The order of the lists was counterbalanced across participants.  

3.3. Procedure 

Like Experiment 1, the experiment was implemented using the PennController for Ibex library 

(Zehr & Schwarz, 2018). The code of this experiment is freely available on GitHub 

(https://github.com/MiekeSlim/Moving-visual-world-experiments-online).  Like Experiment 1, 

Experiment 2 started with a general information and an informed consent page. Following these 

pages, the browser switched to full screen and the webcam calibration procedure started. The 

calibration procedure was similar to the one in Experiment 1, with the difference that the 

calibration threshold was now set to 50. If this threshold was not met, the last step of the calibration 

procedure was repeated (in which the participant clicked on a button in the middle of the screen 

and then fixated at the centre of the screen for three seconds). If the threshold of 50 was not met 

in five attempts, the participant was redirected to another online experiment that did not involve 

webcam eye-tracking (not reported here). 
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After successful calibration, the participants listened to a sentence recording, so they could 

adjust the volume of their computer. The participants could replay this recording as often as 

needed. Once they indicated that they had set their volume, another sentence recording was played 

once. The participants typed in this sentence, so that we could check whether the participant had 

indeed set up their audio properly (which was the case, because all participants correctly typed in 

the sentence). These two sentence recordings were used as practise trials in Dijkgraaf et al.’s 

(2017) original experiment, but not in the present experiment.  

Following the audio set-up, a brief practise block of two trials was presented. Afterwards, 

the participants started the first block of the experiment by clicking on a ‘start’ button. After 

eighteen trials (i.e., the first list of stimuli), the participants could take a short break. The second 

block of the experiment started with the presentation of an audio recording again, so the 

participants could check whether their volume was still set correctly. Then, all trials in the second 

list were presented in the second half of the experiment.  

Each trial started with a calibration check, which consisted of step four of the calibration 

procedure (Figure 2). If the threshold of 50 was not met, the full calibration procedure was 

repeated. If the threshold was met, the trial started automatically. As in Dijkgraaf et al. (2017), the 

four-picture display was shown for 2200 ms before the sentence recording started playing. Unlike 

Dijkgraaf et al., however, the display remained on the screen for an additional 500 ms after the 

auditory stimulus stopped playing. We added this short overspill time window because Experiment 

1 suggested that WebGazer.js tends to be slower in recording the participants’ eye movements than 

a remote high-end eye tracking device (see also Semmelmann and Weigelt, 2018). After this 500 
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ms overspill time, the next trial started automatically. Similar to Experiment 1, if a participant 

exited the full screen modus, the browser was prompted to full screen after each trial.  

3.4. Data treatment and analyses 

The data and analysis scripts are online available at https://osf.io/yfxmw/. In this experiment, we 

did not record the screen coordinates of the estimated gaze locations. Instead, we only recorded on 

which quadrant of the screen each estimated gaze location fell (like Dijkgraaf et al., 2017). 

Dijkgraaf et al. aggregated their data in 50 ms time bins. However, if we were to aggregate the 

online-acquired data in 50 ms time bins, we would create some empty bins due to the low sampling 

frequency of some participants’ webcams. Instead, we aggregated the data in 100 ms bins, and 

applied this to Dijkgraaf et al.’s original data as well. 

 Dijkgraaf et al. (2017) tested the time course of the effect of Condition (neutral vs. 

constrained) on the proportion of target fixations by first determining a critical time window for 

analyses through visual inspection of the data. Then, each time bin was separately analysed by 

modelling the likelihood of fixation on the target quadrant using generalised mixed-effect models 

(e.g., Jaeger, 2008). In these models, the dependent variable was the proportion of target fixation 

(transformed using the empirical logit formula, Barr, 2008). Condition (neutral vs. constrained) 

was included as a fixed effect, and Subject and Item were included as random effects (both slopes 

and intercepts).  

We, however, used cluster permutation analysis (e.g., Hahn, Snedeker, and Rabagliati, 

2015; Huang and Snedeker, 2020; Maris & Oostenveld, 2007). This analysis procedure, which we 

described in Experiment 1, has some important advantages over the procedure used by Dijkgraaf 
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et al., (2017): It is less sensitive to the multiple-comparisons problem, and it is not needed to set 

an a priori time window, since cluster permutation analysis investigates adjacent clusters of 

statically reliable effects and then tests whether these clusters are statistically sound or whether 

they have occurred by chance. We conducted these cluster permutation analyses on both Dijkgraaf 

et al.’s data and on our online-acquired data. The analyses were done in R (R Core Team, 2021), 

using the permutes package (Voeten, 2021). 

3.5. Results and discussion 

3.5.1. The effect of constraining verbs: in-lab vs web-based data collection 

Dijkgraaf et al. (2017) analysed the time window between 350 ms after verb onset and 200 ms 

after noun onset. Their time course analyses revealed that the effect of Condition first showed 

significance in the 450-500 ms after verb onset time bin.  

Our cluster permutation test revealed that the difference between the neutral and the 

constrained condition was significant in the time window between 500 and 1300 ms after verb 

onset (p < 0.001; Figure 8, top panel). In this time window, the proportion of fixations on the target 

image was higher in the constrained condition than in the neutral condition. Crucially, this time 

window starts before the mean onset of the second noun, which indicates that these looks are 

predictive looks based on the action denoted in the verb, as also observed by Dijkgraaf et al. (2017). 

Note that our re-analysis revealed that the significant time window started 50 ms later than in 

Dijkgraaf et al.’s original analyses. This is most likely a consequence of our choice to aggregate 

the data in 100 ms bins rather than in 50 ms bins.  
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The cluster analysis on our online-acquired data also showed an effect of Condition, 

although this effect emerged later than in the in-lab acquired data from Dijkgraaf et a. (2017): The 

cluster analysis revealed a significant effect of Condition in the time window between 700 and 

1600 ms after the verb onset (Figure 8, bottom panel; p < 0.05). This indicates that the overall 

effect observed in Dijkgraaf et al. (2017) is replicated, but the significant time window starts 200 

ms later in the online-acquired data than in the lab-acquired data. 

 

 

Figure 8. Results from Dijkgraaf et al.'s (2017) lab-based study (upper panel) and our web-based replication (bottom panel). Our 

web-based study replicated the global pattern observed by Dijkgraaf et al.: Participants looked at the target image earlier in the 

constrained condition than in the neutral condition. However, there is a delay in the time course of the online-acquired data 
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compared to Dijkgraaf et al.’s data: In Dijkgraaf et al.’s original study, this effect emerged 500 ms after the verb onset, whereas 

this effect emerged 700 ms after the verb onset in the online-acquired data.  

The online-acquired data in Experiment 2 thus seem to show a time lag compared to the lab-

acquired data from Dijkgraaf et al. (2017).  Therefore, we descriptively analysed variation 

across participants in the time course of the recorded eye movements by calculating the first bin 

where, on average, there was a higher proportion of looks at the target quadrant than on any of the 

other three quadrants (aggregated across both conditions; similar to the analysis reported in 

Experiment 1; Figure 6). This analysis showed considerable variation across participants: On 

average, the 1500 to 1600 ms time bin was the first time bin in which more looks on the target 

picture than on any of the other pictures were recorded. However, this time bin ranged between 

300 and 2000 across participants. This analysis thus suggests that the time lag observed in the 

online-acquired data of Experiment 2 is (at least partly) caused by individual variation across 

participants. We will return to this point in the General Discussion.   
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Figure 9. The distribution of onset of the first time bin per participants in which there is, on average, a higher proportion of target 

fixations than non-target fixations seems to be somewhat skewed. 

3.5.1. The role of calibration 

Here, we briefly report calculations that tested whether variation in the (spatio-temporal) accuracy 

of the data can be explained by calibration scores. More detailed descriptions of these calculations 

are reported in Appendix A.  

 First, we tested whether calibration correlated with the spatial accuracy of the data, by 

taking the subset of data recorded 1600 ms after verb onset until the end of the trial (i.e., the time 

window in which participants settled their gaze on the target picture, because there was no effect 

of Condition anymore). A Spearman’s rank correlation test showed a weak and non-significant 

negative correlation between the proportion of target fixations and mean calibration scores (ρ = -

0.197, p = 0.063). Second, we tested variation across participants in the time course of the recorded 

eye movements by calculating the first bin where, on average, there was a higher proportion of 
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looks at the target quadrant than on any of the other three quadrants (aggregated across both 

conditions). A Spearman’s rank correlation test revealed no correlation between the mean obtained 

calibration score and the onset of the average first time bin of target fixation (ρ = 0.116, p = 0.282).   

These analyses suggest that variation in calibration score in Experiment 2 did not seem to 

correlate with the spatial or temporal resolution of the eye tracking data. This contrasts with 

Experiment 1, where the calibration threshold was much lower (5 instead of 50; a point we will 

return to in the General Discussion).   

3.5.2. Effect size and power considerations 

Descriptively, the difference between the proportion of looks on the target in the Constrained and 

Neutral condition seems to be smaller in the online-acquired data than in the in-lab-acquired data 

from Dijkgraaf et al. (2017), suggesting that the effect size is smaller in the online-acquired data. 

This observation has important implications for the required sample size for web-based eye-

tracking compared to lab-based data, since the required sample size to obtain adequate statistical 

power relies on the size of the effect (e.g., Brysbaert & Stevens, 2018; Green & MacLeod, 2016). 

We tested the difference in effect size in both the online-acquired and lab-acquired data by taking 

the data from the time window that showed a significant effect of Stimulus Condition (as revealed 

by our cluster permutation analysis: 700-1700 ms in the online-acquired data and 500-1300 ms in 

the lab-acquired data). We then modelled the likelihood of target fixations with a logit mixed-

effect model (which contained Stimulus Condition as a (sum-coded) fixed effect, and random 

intercepts for Participant and Sentence), which was constructed using the lme4 package in R (Bates 

et al., 2015). As expected, this model showed that participants were more likely to fixate on the 
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target quadrant during this time window in the constrained than in the neutral condition in both 

the online-acquired data (beta = 0.164, z = 3.983, p < 0.001) and in the lab-acquired data (beta = 

0. 274, z = 3.50, p < 0.001). The beta coefficients of these models provide an estimate of the effect 

size, and this coefficient is considerable smaller in the online-acquired data than in the lab-acquired 

data (i.e., 0.164 vs. 0.274, which is roughly 60% of the effect observed in-lab).  

To test whether Experiment 2 was indeed sufficiently powered given this finding, we 

conducted an explorative simulation-based power calculation on Dijkgraaf et al.’s (2017) data 

using the mixedpower package in R (Kumle, Vo & Draschkow, 2021), in which we tested the 

number of participants required to obtain an effect that is half the size of the observed effect. The 

full details of this power analyses are given in Appendix B, but it was a simulation-based power 

calculation in which we simulated the data in the significant time window 1000 times for different 

numbers of participants. Each dataset was tested for significance using the same logit mixed-effect 

model procedure given above. This power analysis showed that we reach sufficient power (i.e., 

80% or higher) to detect an effect half the size observed in Dijkgraaf et al.,’s data with 70 to 75 

participants. This suggests that our experiment may be slightly overpowered (as also indicated by 

the small standard errors in Figure 8; it is also worth noting that the observed effect size in our 

replication was slightly bigger than half the size of in Dijkgraaf et al.’s observed effect).  

Altogether, it seems that (i) the effect size in a web-based visual world study is roughly 

half as observed in an in-lab experiment (which should be considered in determining the required 

sample size for a web-based eye-tracking study), and (ii) collecting two to two-and-a-half times as 

many participants as an in-lab study eye-tracking study may be sufficient to obtain sufficient 

power. However, since the power analysis conducted here is explorative and the size of the effect 
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may depend on calibration scores, design of the display, or population, these observations require 

further validation. 

4. General Discussion 

This study aimed to gain insight in the viability of web-based visual-world eye-tracking 

experimentation using the WebGazer.js algorithm in combination with consumer-grade webcams 

to track participants’ eye-movements. In Experiment 1, we tested the spatial and temporal 

resolution of the webcam eye-tracker in a simple fixation task. The experiment revealed that it 

took roughly 400 to 500 ms until the participants settled their gaze on the stimulus. Once they 

fixated on the stimulus, the mean offset between the stimulus and the estimated gaze location was 

still roughly 30% of the screen size. The spatial and temporal accuracy, however, improved with 

calibration score. In Experiment 2, we replicated a visual world study from Dijkgraaf et al. (2017) 

that tested predictive processing based on verb information in language comprehension. 

Experiment 2 replicated the overall pattern observed in Dijkgraaf et al.’s original data (which was 

acquired in a lab-based setting): Participants tended to fixate earlier on a picture displaying the 

object argument if the verb was semantically constraining. However, we observed a delay in the 

latencies of the eye movements: The anticipatory looks to the object image surfaced on average 

roughly 200 ms later in our online-acquired data compared to Dijkgraaf et al.’s lab-acquired data. 

Below, we will discuss the implications of these findings for the efficacy of web-based visual 

world experiments.  

4.1. Spatio-temporal accuracy of online-acquired eye movement data 
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In Experiment 2, we conducted a web-based replication of a visual world experiment from 

Dijkgraaf et al. (2017). This experiment looked at effects of predictive processing based on verb 

information, which is an often-observed effect in visual world studies (e.g., Altmann & Kamide, 

1999) and also observed in Dijkgraaf et al.’s data. The results of our web-based replication in 

Experiment 2 mirrored the overall pattern observed in Dijkgraaf et al.: Participants looked at the 

image depicting the post-verbal argument earlier in case the verb was semantically constraining 

compared to if the verb was not constraining towards one of the four pictures on the display. 

However, the onset of this effect emerged roughly 200 ms later in our online-acquired data 

compared to Dijkgraaf et al.’s in-lab acquired data.  

 Firstly, this finding reveals that the spatial resolution of the webcam eye-tracker is accurate 

enough to discriminate fixations across the four quadrants of the screen, which is needed for most 

visual world experiments. In Experiment 1, we observed that the spatial accuracy improved with 

increasing calibration score, but Experiment 2 (with a calibration threshold of 50) found no such 

relation. However, the data of Experiment 2 still showed variation across participants, which 

resulted in a smaller effect size in our web-based replication (Experiment 2) compared to Dijkgraaf 

et al.’s (2017) original lab-based study. This suggests that web-based eye-tracking is suitable for 

visual displays with four images that are arranged in quadrants (or less), but a larger sample size 

is required for web-based than for in-lab experimentation. Moreover, our results indicate that web-

based eye tracking is less suitable for visual displays and paradigms that require a fine-grained 

spatial resolution, like visual search paradigms, eye-tracking-while-reading, or visual world 

paradigms that test small effects on more crowded displays.  
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 Secondly, the data of both Experiment 1 and Experiment 2 revealed a latency in the 

expected time to execute a saccade. In Experiment 1, this latency could partly be explained in 

terms of calibration success: Participants who obtained lower calibration scores showed a delay in 

fixation onset. In Experiment 2, however, we did not observe a clear relation between calibration 

and temporal resolution of the eye-tracking data. It is worth noting that the delay observed in 

WebGazer.js data seems to be systematic. It was also observed by Semmelmann and Weigelt 

(2018), who used WebGazer.js to track eye movements in a fixation task similar to the one in 

Experiment 1. They observed that it took roughly 600 ms to execute a saccade, which is 400 ms 

longer than typically observed (e.g., Matin et al., 1993). Moreover, a direct comparison between 

the performance of a high-end eye-tracking device and WebGazer.js conducted by Papoutsaki et 

al. (2018) also descriptively suggested a delay in the WebGazer.js data compared to the data from 

the high-end eye-tracker. 

 The time lag in the temporal resolution seems to be an artefact of the web-based nature of 

our experiment, especially because there is no plausible reason to assume that the cognitive 

mechanisms involved in language processing and visual attention systematically differ depending 

on whether participants are tested in the lab or from home. In fact, numerous studies have shown 

that web-based testing is a viable alternative to lab-based testing to study language processing 

(e.g., Gibson et al., 2011, Hartshorne et al., 2018, Hilbig, 2016; inter alia). Therefore, we think 

that the delay may be caused by two separate factors. First, the internal processing speed of the 

WebGazer.js algorithm and/or the rendering speed of the browser may be slower compared to the 

software that high-end eye-trackers use to estimate the gaze locations. Second, individual variation 

across participants and the contexts in which they participate (e.g., hardware, attendance, 
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environment, et cetera) may produce outliers which causes a skewed distribution. This skewed 

distribution can cause a delay of the effect in the overall data patterns. In Experiment 1, we 

observed that this variation correlated with calibration scores; Experiment 2 used a calibration 

threshold which reduced the impact of variation in calibration. However, other factors such as 

attendance or certain environmental factors, could still have influenced the accuracy of Experiment 

2. Future work is required to characterise these factors and test how they can be filtered out, which 

could reduce the delay in the online-acquired eye-tracking data.  

 This delay and noise in the temporal resolution seems to be the biggest challenge for web-

based visual world experiments, because this paradigm is often used to study questions about the 

fine-grained time course of real-time language processing. The problematic impact of this 

systematic delay becomes clear in the results of Experiment 2. This experiment studied 

anticipatory effects in eye movements, which are characterised as the tendency to look at a target 

image prior to the onset of the targeted linguistic fragment (in our case, the noun in the object 

phrase of the auditory stimulus). However, due to the delay in the observed time course, the 

assumed predictive looks were not detectable until after the onset of the object noun. (However, 

we assume that they are, given the global similarity in pattern in Dijkgraaf et al.’s (2017) original 

data and our online-acquired data). Therefore, the results of Experiment 2 thus show that care is 

required in interpreting the time course of online-acquired eye-tracking data. Therefore, web-based 

eye-tracking in its current form may not be suitable to study questions that require a fine-grained 

temporal resolution, such as predictive processing in a small time window.  

4.2. Variation across participants  



  39 

 

The previous subsection already discussed that part of the inaccuracy in online-acquired eye-

tracking data seemed to be caused by the variation across participants, which can partly be 

attributed to differences in the hardware used by the participants. In both Experiment 1 and 2, we 

found that the accuracy of the eye-tracker (measured in terms of calibration scores) was influenced 

by the sampling frequency of the webcam.  

As hinted in the previous subsection, there are many more aspects that can influence eye-

tracker calibration and data accuracy, such as ambient lighting, facial characteristics, 

environmental distractions, or other individual differences between participants. This variation can 

be somewhat reduced through clear and explicit instructions: Participants should not only be 

instructed to move their head as little as possible and that they are centrally seated in front of their 

screen and webcam, but they also need to make sure that they are in a well-lit room with few 

distractions, and that they should look at the screen throughout the experiment. However, there is 

reason to think that the performance of the webcam eye-tracker is also dependent on unalterable 

facial characteristics. Papoutsaki et al. (2018), for instance, observed that the face detector used by 

WebGazer.js recognises faces with a lighter skin tone more often than faces with a darker skin 

tone, which is a bias that is more often observed in facial recognition systems (e.g., Garvie & 

Frankle, 2016). Encouragingly, there seems to be a trend in software development to reduce biases 

in automated facial recognition software (e.g., Atay, Gipson, Gwyn & Roy, 2021; Lunter, 2021), 

so these biases will hopefully be reduced in the future. 

Moreover, note that the influence of calibration on the spatio-temporal accuracy was only 

detectable in Experiment 1, whereas it was less clear in Experiment 2. We already attributed this 

difference in findings to two factors: (i) In Experiment 1, we measured spatial accuracy in terms 
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of screen coordinates of the estimated fixation instead of larger region of interests, and (ii) the 

calibration threshold in Experiment 2 was set at 50% whereas that in Experiment 1 was set at 5%. 

This suggests that our calibration threshold of 50% successfully served as a filter to reduce (part 

of) the variation across participants. However, we still observe considerable variation across the 

participants in Experiment 2, both in terms of spatial and temporal accuracy. As also mentioned in 

the previous subsection, this is not a surprise because many differences between participants are 

not filtered out by calibration score. A participant who looks away from the screen during the trial, 

for instance, may still go through calibration successfully. Do note that it is inherent to web-based 

testing that there is less control over the participants’ attendance and environment compared to 

lab-based studies, but these issues may be minimized by clear instructions, attention checks, and 

frequent calibration checks (which requires the participant to look at the screen).  

4.3. Recommendations and further studies 

Experiments 1 and 2 revealed that web-based visual world eye-tracking using the participants’ 

webcams may be a suitable alternative to lab-based testing, at least if the study does not require a 

very fine-grained spatio-temporal resolution. Here, we will give several recommendations for 

future inquiries on web-based eye-tracking.  

 As already mentioned, we do not recommend web-based eye-tracking in its current state 

for paradigms that require fine-grained spatial data, like visual search, reading-based paradigms, 

visual world paradigms with more than four items on the display, or visual world studies that test 

small effects. This is because the spatial accuracy of WebGazer.js is considerably poorer than that 

of high-end remote eye-trackers. 
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However, the biggest threat to the viability of web-based visual world studies using 

WebGazer.js may be the temporal resolution of the data. We observed a lag in the  time course of 

online-acquired data, and we would therefore not recommend web-based eye-tracking for 

temporally sensitive data (like reading-based paradigms or visual world paradigms with a short 

time window of interest). However, we also believe that there are reasons to be optimistic for the 

future of web-based eye-tracking. Once the nature of this time lag is more precisely defined, we 

could take it into account in the processing of online-acquired eye-tracking data. Moreover, this 

information could also be used to improve web-based eye-tracking techniques (see Yang and 

Krajbich, 2021). Despite our optimism about the future of web-based eye-tracking, we emphasize 

that care is required in using current web-based eye-tracking methods to study questions that 

require a precise temporal resolution. 

Additionally, we can give recommendations regarding calibration threshold based on the 

experiments reported here. As mentioned above, there was no correlation between calibration 

score and spatio-temporal accuracy in Experiment 2 in contrast to Experiment 1. This suggests 

that the calibration threshold in Experiment 2 (50) successfully reduced variation that influenced 

calibration across participants. A disadvantage of using a threshold is that many participants 

needed to be excluded: In Experiment 2, we needed to recruit 330 participants to obtain a sample 

size of 90 participants. This may be a discouraging finding at first glance. However, we should 

note that we did not do any efforts (besides giving the instructions again) to improve the calibration 

scores for participants who consistently failed calibration. Now, however, we know that webcam 

sampling rate was a major influence on calibration threshold. Therefore, the number of participants 

that do not meet the calibration threshold could be reduced by testing the webcam sampling rate 
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before calibration. If webcam fps rate is poor, the participant could be instructed on how to improve 

sampling rate (e.g., change devices if possible). Else, if the participant is unable to improve 

sampling rate, they can be excluded without having to go through the full calibration procedure.  

However, we should note that many other factors besides fps rates may affect the calibration scores 

and many participants may not be able to change devices. Therefore, we do recommend to clearly 

communicate to the participants that they may not be able to do the experiment, and/or have them 

redirected to another non-eye-tracking experiment. 

In addition, the results of Experiment 2 suggested that we may not have needed to recruit 

as many participants as we did: We collected data of 90 participants, whereas explorative post-hoc 

power analyses suggested that 75 participants would have been sufficient (Appendix B). We 

encourage authors of future web-based replications to test the difference in effect size in web-

based visual world studies compared to that in in-lab studies, because these data could help further 

improve recommendations for sample size in web-based visual world experiments.  

5. Conclusion 

Across two experiments, we tested the efficacy of web-based visual world studies using 

WebGazer.js in combination with the participants’ own webcams. We observed firstly that the 

spatial accuracy of the web-based eye-tracker is accurate enough to discriminate looks across the 

four quadrants of a computer screen. Secondly, we observed a delay in the latency of the eye-

movement data compared to what we would expect (based on previous studies). We hypothesized 

that this delay is due to variation across participants and the browser performance and/or internal 

processing speed of WebGazer.js. The spatial resolution of the webcam eye-tracker therefore 
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seems to be accurate enough for many visual world studies, since the typical display of a visual 

world study contains four items arranged in quadrants over the screen. However, at its current 

state, web-based eye-tracking is not ideal to study questions that require a close temporal 

resolution, given the time lag in the eye movement data although future inquiries may reduce the 

observed time lag. Nevertheless, the ease and efficiency in collecting data online makes web-based 

eye-tracking an ideal technique to study questions that may not require a very fine-grained spatio-

temporal resolution).  
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Appendix A: Role of calibration scores 

 

1. Experiment 1 

Our analyses of Experiment 1 revealed considerable variation across participants. Possibly, this 

variation can (partly) be explained in terms of calibration: The accuracy of the data may be better for 

participants who obtain higher calibration scores, because calibration score is an indicative to how well 

the online eye tracker is able to estimate the participants’ gaze location.  

 First, we tested whether the calibration of the eye tracker was influenced by the participants’ 

webcam quality (expressed in the number of frames that are recorded each second, the so-called fps or 

frames per second rate). To test this correlation, we calculated the mean score obtained in the six 

calibration trials for each participant (mean: 41; sd: 18.5; range: 6.0 – 81.5; Figure 1), and the mean fps 

rate for each participant’s webcam (mean: 18.1; sd: 8.1; range: 1.3 – 38.5; Figure 1). A Spearman rank 

correlation test revealed a significant strong positive correlation between these two values (ρ = 0.852, 

p < 0.001; Figure 1). This indicates that a higher fps rate can result in a higher mean calibration score: 

The eye-tracker can calculate a more precise calibration score if there are more recorded frames. Given 

this strong correlation between fps rate and mean calibration score, we only focused on the influence of 

the mean calibration scores in the further analyses. 

 

 

 

 

 

 



  

 

 

Figure 1. The mean calibration scores obtained by the participants (averaged over the six times that the participants needed to 

check the calibration of the eye tracker, Panel A), the mean fps rate of each participant’s webcam (Panel B), and the strong 

positive correlation between these two values. Each point represents one participant. The ticks on the axes represent the 

smallest recorded value, the standard deviations from the mean, the mean, and the largest recorded value. 

Second, we tested whether calibration influenced the spatial accuracy of the eye-tracking data. Here, 

we analysed the spatial resolution of the data in the time window between 500 and 1500 ms after the 

stimulus onset, because the participants fixations settled on the stimulus roughly 500 ms after the 

stimulus onset. We calculated the mean Euclidean offset (in percentage of screen size) in the fixation 

time window of each participant and correlated this with the mean calibration score of each participant. 

A Spearman rank correlation test revealed a negative correlation (ρ = -0.472, p < 0.001; Figure 2) which 

indicates that Euclidean offset between the estimated gaze locations and the stimulus was larger for 

participants who obtained lower calibration scores on average. 

 

 



 

Figure 2. The data shows a negative correlation between spatial accuracy and mean calibration score: Data of participants who 

obtained a higher mean calibration score show a smaller Euclidean distance between estimated gaze location and stimulus 

position. Each point represents one participant. The ticks on the axes represent the smallest recorded value, the standard 

deviations from the mean, the mean, and the largest recorded value. 

Third, we tested whether a similar correlation was observed between mean calibration and looks on the 

target quadrant, rather than the more fine-grained distance between the estimate gaze and stimulus 

coordinates. Taking the quadrant-based data (i.e., only the data of the four quadrant-centre stimulus 

positions), a Spearman’s rank correlation test showed a positive correlation: Focusing on the fixation 

time window, we observed a higher proportion of target fixations participants who obtained higher 

calibration scores on average (ρ = 0.395, p = 0.002; Figure 3). This shows that calibration score can still 

(partly) explain variation across participants if we focus on analyse quadrant looks, which is a less fine-

grained measure than the Euclidean distance between the stimulus position and the estimate gaze 

location.  

  



 

Figure 3: This positive correlation between mean calibration scores and proportion of target fixation looks suggests that the 

spatial accuracy of the data is improved for participants who obtained higher calibration scores on average. The labels on the 

axes indicate the range, the standard deviation, and the mean.  

Finally, we tested whether the variation in the temporal domain can also be (partly) explained by 

differences across calibration scores, by investigating the possible correlation between the obtained 

mean calibration score of each participant and the first time bin in which there was a higher mean 

proportion of estimated looks on the target quadrant than on the other quadrants. A Spearman’s rank 

correlation test showed such a (negative) correlation (ρ = 0.747, p < 0.001; Figure 4): The first time bin 

in which the mean proportion of target fixations was higher than the mean proportion of other looks 

tended to occur later for participants who obtained a lower mean calibration score. Note that the four 

participants for who this first time bin of target fixation was not observed were not included in this 

correlation test (although they are included in Figure 4). 

 



 

Figure 4. A negative correlation between the onset of the first time bin with a higher mean proportion of target fixations and 

mean calibration indicates that the eye-tracker detected the onset of target fixations later on average for participants who 

obtained lower calibration scores. This relevant time bine was not observed for four participants, who are included in the graph 

above but not in the correlation test. The labels on the y-axes indicate the range, standard deviation, and mean calibration 

scores.  

2. Experiment 2 

In Experiment 2, we set the calibration threshold at 50. Despite this threshold, however, we still observe 

a positive correlation between mean calibration score and fps rate, as revealed by a Spearman’s rank 

correlation test (ρ = 0.747, p < 0.001; Figure 5): Participants that used webcams with a higher fps rate 

obtained higher calibration scores on average.  



 

Figure 5. The positive correlation between mean calibration scores and mean fps rates: Participants who used webcams with 

higher fps rates obtained higher calibration scores on average.  

We then tested whether calibration scores correlated with the spatial accuracy of the eye-tracking data. 

Here, we took the subset of the data recorded from 1600 ms after the verb onset until the end of the 

trial. In this tie window we did not observe an effect of Condition anymore, which suggests that this is 

the time window in which the participants predominantly fixated on the target picture. A Spearman’s 

rank correlation test showed a weak and non-significant negative correlation between the proportion of 

target fixations and mean calibration scores (ρ = -0.197, p = 0.063; Figure 6), indicating no evidence 

that the spatial accuracy improved with calibration score.  



 

Figure 6. There was no correlation between the proportion of target fixations in the target fixation window (1600-2100 ms 

after verb onset) and the mean calibration scores in Experiment 2. This suggests that calibration scores are insufficient to 

explain (part of) the variation in the spatial accuracy across participants   

Finally, we tested whether calibration scores affected the temporal resolution of the data. Like in 

Experiment 2, we did this by testing variation across participants in the time course of the recorded eye 

movements by calculating the first bin where, on average, there was a higher proportion of looks at the 

target quadrant than on any of the other three quadrants (aggregated across both conditions). A 

Spearman’s rank correlation test revealed no correlation between the mean obtained calibration score 

and the onset of the average first time bin of target fixation (ρ = 0.116, p = 0.282; Figure 7). This 

indicates that, in Experiment 2, variation across calibration scores does not explain the observed 

variation in the temporal resolution of the eye-tracking data.  



 

Figure 7.  We observed no correlation between calibration scores and the mean first time bin of predominantly target fixations. 

This suggests that the variation in the temporal resolution of the data across participants cannot be explained in terms of 

differences in calibration sores.   

 

 



Appendix B: Power analyses 

 

The analyses of Experiment 2 revealed that the size of the verb bias effect was smaller in the 

online-acquired data than in the lab-acquired data: The observed effect in our web-based 

experiment was roughly 60% of the size as the observed effect in Dijkgraaf et al.’s (2017) in-

lab study using a remote eye-tracking device. Importantly, a smaller sample size requires a 

larger sample size to reach sufficient statistical power to reliable detect such a small effect 

(refs). To test whether our web-based replication of Dijkgraaf et al.’s experiment had sufficient 

power, we conducted two post-hoc power calculations, which are reported here.  

1. Power analysis 1: 50% of the observed effect in Dijkgraaf et al. (2017) 

Our online replication of Dijkgraaf et al. (2017) reported in Experiment 2 yielded an effect size 

that was roughly 60% the size of the effect observed in Dijkgraaf et al.’s original lab-based 

experiment. Based on this observation, a slightly conservative rule of thumb could be to 

calculate the power that is needed to detect an effect that is roughly half the size of the effect 

that would be expected in the lab.  

 We tested whether our sample size in Experiment 2 (n = 90) was sufficient to meet this 

criterium by conducting a simulation-based power analysis, that used the existing (lab-

acquired) data from Dijkgraaf et al. (2017) to simulate novel datasets. We used Dijkgraaf et 

al.’s original data, rather than our novel online-acquired data, in this power simulation to mimic 

a conceivable scenario for future researchers that want to use an online visual world paradigm 

to test an often-observed effect and have access to lab-acquired data. 

 In this power analysis, we took the time window that showed a significant effect of 

Stimulus Condition (between 500 and 1300 ms) in Dijkgraaf et al.’s data, as revealed by our 

cluster permutation analyses. For each participant and trial, we binarized the data of this time 



window (1 if more than 30% of recorded looks fell on the target quadrant, and 0 otherwise). 

We then modelled the likelihood of target fixations with a logit mixed-effect model (which 

contained Stimulus Condition as a (sum-coded) fixed effect, and random intercepts for 

Participant and Sentence), which was constructed using the lme4 package in R (Bates et al. 

2015). Unsurprisingly given the outcome of our cluster permutation test, the output of this 

model revealed that participants were more likely to fixate on the target quadrant during this 

time window in the constrained than in the neutral condition (beta = 0.274, z = 3.49, p < 0.001). 

 We used this model in a simulation-based power analysis conducted using the 

mixedpower package in R (Kumle, Vo & Draschkow, 2021). This power analysis used 

Dijkgraaf et al.’s (2017) data and the structure of the fitted logit mixed-effect model described 

above to simulate new datasets. These new datasets, in turn, are tested for significance using 

the fitted model described above. Power is expressed in the proportion of simulations that 

revealed a significant effect (alpha: < 0.05). An important feature of the mixedpower 

functioning is that it allows us to specify a smallest effect of interest (SESOI): It does not only 

test the power needed to detect the effect observed in the entered data (as indicated by the beta 

coefficient in the output of the fitted model, in our case 0.274), but we can also specify a smaller 

effect size. We set the SESOI at 0.137, which is half the size as observed in Dijkgraaf et al.’s 

data.  

This power analyses indicated that 75 participants are required to reach the tradition 

80% power threshold if we want to detect an effect that is half the size as observed in Dijkgraaf 

et al.’s (2017) data (Figure 1). This sample size is two-and-a-half times larger than the sample 

size in Dijkgraaf et al.’s in-lab study (n = 30), but smaller than the sample size in our web-

based replication in Experiment 2 (n = 90). This suggests that our web-based replication is 

slightly overpowered.   

 



 

 

 

2. Power analysis 2: 75% of the observed effect in Experiment 2 

We also conducted a more explorative post-hoc power analysis on our online-acquired data of 

Experiment 2. The aim of this power analysis was to further explore whether we would have 

reached sufficient power with fewer participants. 

 This power analysis followed the same procedure as the power analysis reported in the 

previous section. We took the time window that showed a significant effect of Stimulus 

Condition (between 700 and 1700 ms), and then binarized the data of this time window for 

each participant and trial (again, 1 if more than 30% of recorded looks fell on the target 

quadrant, and 0 otherwise). We modelled the likelihood of target fixations with a logit mixed-

effect model (which contained Stimulus Condition as a (sum-coded) fixed effect, and random 

intercepts for Participant and Sentence). Again, this model revealed a significant effect of 



Stimulus Condition, which is unsurprising given the outcome of our permutation test (beta = 

0.164, z = 3.983, p < 0.001).  

 Using this model and our online-acquired data, we simulated the data 1000 times for  

60, 65, 70, 75, 80, 85, 90, 95, and 100 participants using the same procedure with the 

mixedpower package described in the previous subsection. Because power analysis that take 

an observed effect size as input have the risk of analysing on inflated effect sizes, we analysed 

the power to find the observed effect size (beta = 0.165) as well as to find a sesoi that is 75% 

of the observed effect size (beta = 0.124). This power analyses (Figure 2) indicated that the 

traditional 80% power threshold is reached with 75 participants for the smallest effect of 

interest. 

 

 

Like our first power analysis reported in the previous subsection, this power analysis suggests 

that Experiment 2 may have been overpowered. We recruited 90 participants, whereas 75 



participants would have been sufficient to reach 80% power to detect an effect that is 75% the 

size of the effect observed in Experiment 2.  

3. Conclusion and tentative recommendations 

The comparison between Dijkgraaf et al.’s (2017) original lab-acquired data and our web-based 

replication (Experiment 2) shows that online eye-tracking using WebGazer.js yields smaller 

effect sizes compared to in-lab experimentation using high-end eye-tracking devices. This 

should be considered in deciding the sample size for online visual world experimentation: web-

based visual world eye-tracking requires a larger sample size than lab-based eye-tracking 

studies. 

 Based on our results, a tentative rule of thumb could be to estimate the power needed 

to detect an effect that is roughly 50% the size of what would be the expected effect size of a 

lab-based visual world study.  In our study, this difference in effect size meant that two-and-a-

half times as many participants needed to be recruited (i.e., n = 75) in the web-based replication 

compared to the in-lab study from Dijkgraaf et al. (2017; who recruited 30 participants). 

However, note that this power analysis is explorative and that the size of the effect may also 

depend on research questions, calibration threshold, population, or design of the display. 

Therefore, these recommendations require further testing and need to be interpreted with care.  

 


