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Abstract — In this contribution, the exact solution of the
electric field integral equation (EFIE) combined with the
differential surface admittance (DSA) operator is presented for
scattering at a homogeneous dielectric sphere. By employing
a Galerkin Method of Moments with two complete sets of
orthogonal vector spherical harmonics as basis functions, both
operators involved are constructed with closed expressions. By
comparing to the classic Mie series solution for illumination by
a radial electric dipole, the DSA-EFIE approach is confirmed to
yield the exact solution within 12 digits of accuracy.
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I. INTRODUCTION

The differential surface admittance (DSA) operator is
one of the many techniques developed over the decades to
tackle the issue of accurate broadband modeling for a wide
variety of materials. The central approach in DSA-based
methods consists of the application of the single source
equivalence principle to impose a fictitious current density on
the boundary that preserves field quantities on the outside.
The fictitious current itself is consequently expressed as
an operator, computed via the volume’s eigenmodes [1],
the Fokas method [2] or through the replaced medium’s
Greens function [3], acting on the boundary electric field.
Uniquely, the first two approaches circumvent the need for
the sometimes challenging numerical integration of medium’s
Greens function, e.g., for good conductors in skin effect
regime [4], while the third path can rely on well-established
routines to overcome potential hurdles.

First established for 2-D rectangular and circular
cross-sections [1], the method has seen its fair share of
development over the last 20 years, including extensions
to other shapes such as triangles and polygons [5], the
inclusion of semiconductors and magnetic materials [6],
alternative approaches to obtain the matrix form of the
operator [2], [3], and the development of a 3-D equivalent
for cylinders and cuboids [7], [8]. Although the various
publications and incarnations of the DSA approach have shown
excellent accuracy, competitive computation times and diverse
application opportunities, some fundamental questions about
the eigenmode-based computation approach remain in terms
of frequency-dependent properties, convergence and rigor.

Thereto, we start the analysis of these properties in
this paper by following the approach proposed in [9], [10],
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Fig. 1. Illustration of the considered geometry and equivalence principle with
(a) the original situation and (b) the single-source equivalence.

which look at scattering by PEC and homogeneous dielectric
spheres, respectively, using the Galerkin Method of Moments,
employing vector spherical harmonics as test and basis
functions. By decomposing both the electric field integral
equation (EFIE) and the DSA operators, which handle the
outside and inside region, respectively, in terms of these
harmonics as well, all inner products involved in the Galerkin
technique can be evaluated analytically; hence, establishing
an exact analytic solution of the DSA-EFIE for a dielectric
sphere. The closed expressions are found for all relevant field
quantities and compared to the classical Mie series solution.

II. THE DIFFERENTIAL SURFACE ADMITTANCE OPERATOR

Take a homogeneous dielectric object V with (complex)
relative permittivity ϵ and permeability µ0 as shown
in Figure 1a. According to the single-source equivalence
theorem [11], the material inside V can be replaced by the
background medium, with parameters ϵ and µ0, by imposing
a surface current density js on the boundary S (see Figure 1b).
The fields outside then remain the same and are given by the
electric field integral equation:

n̂×et0(r) = n̂×einc(r) + T ◦ js r ∈ S, (1)

= n̂×einc − jωµ0n̂×
∫
S

G(|r− r′|)js(r′) dr′, (2)

with et0 the tangential component of the electric field at S , einc

the incoming field, T the EFIE operator and G the Green’s
dyadic of the background medium. An expression for the
(presently) unknown surface current density js is obtained by



means of the DSA operator. In this contribution, we will focus
on the 3-D expansion of its original form [7]:

js(r) = Y ◦ et0 r ∈ S, (3)

= −η
∑
ν

Kν

N 2
ν

∫
S

(n̂×h∗
ν(r

′)) · et0(r′) dr′
(n̂×hν(r)) ,

(4)

with Y the DSA operator, k0 and k the wavenumber of the
background medium and the volume’s medium, respectively, η
the contrast parameter (k2 − k20)/(jωµ0), Kν a shorthand for
k2ν/[(k

2
ν −k2)(k2ν −k20)], and hν the magnetic eigenmode of a

cavity with perfect electric conducting walls in the shape of V
filled by the background medium with kν its wavenumber and
Nν its normalization constant.

III. GALERKING MOM ON A SPHERE

A. Expansion into basis functions

To analyze the specific configuration of a dielectric
sphere, we follow the Helmholtz decomposition procedure and
notation put forward in [10] to expand the unknown surface
quantities js and et0 as

js =

N∑
n′=0

n′∑
m′=−n′

α
(1)
n′m′u

(1)
n′m′ + α

(2)
n′m′u

(2)
n′m′ , (5)

et0 =

N∑
n′′=0

n′′∑
m′′=−n′′

β
(1)
n′′m′′u

(1)
n′′m′′ + β

(2)
n′′m′′u

(2)
n′′m′′ , (6)

with u
(1)
nm and u

(2)
nm two sets of orthogonal, complete sets of

vector basis function defined on the surface of a sphere with
radius a as

u(1)
nm (θ, ϕ) =

√
dnm∇tY m

n (θ, ϕ) , (7)

u(2)
nm (θ, ϕ) =

√
dnmr̂×∇tY m

n (θ, ϕ) . (8)

The exact definition and corresponding normalization choice
of the scalar spherical harmonics Y m

n and their normalization
constant dnm can be found in [10].

The Green’s dyadic in (1) can be expanded over vector
spherical harmonic functions as well:

G (r, r′) =−jk0
∑
n,m

dnm

·

{
p
(1)
n,m(r)p

(2)
n,−m(r′) + q

(1)
n,m(r)q

(2)
n,−m(r′) , r < r′

p
(2)
n,m(r)p

(1)
n,−m(r′) + q

(2)
n,m(r)q

(1)
n,−m(r′) , r > r′

, (9)

with p(j) and q(j) defined as in (21)-(22) in [10]. The
relevant magnetic eigenmodes hν for a nonmagnetic sphere
can be found in [12] and belong to two distinct classes,
i.e., transversal magnetic (TMr) and transversal electric (TEr)
eigenmodes, which are defined as:

hTM
nms = ∇×[rjn(knsr)Y

m
n (θ, ϕ) r̂] (10)

hTE
nms =

1

κns
∇×∇×[rjn(κnsr)Y

m
n (θ, ϕ) r̂] , (11)

where jn(x) is the spherical Bessel function, kns = xns/a
with xns the roots of [xjn(x)]

′ = 0, and κns = yns/a with
yns the roots of jn(x) = 0.

B. Radial dipole illumination

In this contribution, we limit ourselves to one particular
excitation, viz., a radial dipole. This source aligned along the
z-axis with dipole moment 1A·m is placed on the z-axis at
a distance r0 from the origin, which is also the center of the
sphere. In this configuration, the solution will be independent
of ϕ due to circular symmetry in the azimuth plane. Moreover,
it can be shown [10] that only TMr waves are present in this
set-up and that only the basis functions u(1) are required in
this solution, greatly simplifying the analysis in the remainder
of this work.

Turning our attention first to the EFIE (1), we will
discretize (1) into a matrix equation by substituting (5) and (6)
and testing both sides with u

(1)
nm

∗
. Fully making use of the

orthogonality of the spherical harmonics ((72)-(75) in [9]), it
is shown that every individual u(1)

n′m in (5) maps onto only its
counterpart in (6). As such, the discretized equation is given
by

β(1)
nm = γnm + Z2,1

nmα(1)
nm, (12)

with γnm and Z2,1 given by (96) and (35) in [10] (see details
of the derivation therein), respectively:

γnm = −ωµ0

√
dnm

n(n+ 1)

k0r0
h(2)
n (k0r0)[k0ajn(k0a)]

′δm,0,

(13)

Z2,1
nm = −ωµ0

k0
[k0ah

(2)
n (k0a)]

′[k0ajn(k0a)]
′, (14)

with [xzn(x)]
′ a shorthand for zn(x) + xz′n(x).

The discretization strategy for the DSA operator follows
the same blueprint. Fortunately, we can rely once again on
the same properties of the orthogonal spherical harmonics
since (10) is of the same form as p(1), albeit with k
replaced by kns. Introducing the closed form expression for
the normalization constant of the TM eigenmodes (10) (see
(A9.22) in [12]), we find the following relation

α(1)
nm = Y1,1

nmβ(1)
nm, (15)

with

Y1,1
nm =

−1

jωµ0a

∞∑
s=1

2k2ns
(
k2 − k20

)
(k2ns− k2)(k2ns− k20)

[
1− n(n+1)

x2
ns

] . (16)

C. Generalized Fourier series

Evaluating (16) with a high level of accuracy is challenging
as the summation can be slow to converge and requires the
roots xns. Propitiously, a closed sum for this series was
obtained through the application of the generalized Fourier
series concept, in particular an adaptation of the Fourier-Bessel
expansion [13]. For the application at hand, it states that



a square-integrable function on the interval [0, a] can be
expanded as

f(r) =

∞∑
s=1

cs jn(knsr) =

∞∑
s=1

⟨f, jn(knsr)⟩
||jn(knsr)||2

jn(knsr), (17)

with ⟨f, g⟩ =
∫ a

0
f(r)g(r)r2 dr. When we apply this

expansion for the following function:

f(r) =
(ka)2

[kajn(ka)]′
jn(kr), (18)

and invoke standard Bessel function integral identities, we find
the following expression for cs

cs = − 2k2

jn(xns)

1

(k2ns− k2)
[
1− n(n+1)

x2
ns

] . (19)

Evaluating f in r = a and subtracting the analogue expression
for k = k0, we recover the sum in (16). Therefore, we can
rewrite that expression in a closed form as

Y1,1
nm =

−1

jωµ0a

[
(ka)2jn(ka)

[kajn(ka)]
′ − (k0a)

2jn(k0a)

[k0ajn(k0a)]
′

]
. (20)

With all elements fully defined, (12) and (15) can be
solved jointly to find expressions for the unknown expansion
coefficients α

(1)
nm and β

(1)
nm. The nonzero coefficients for the

tangential electric field, for example, are given by

β
(1)
n0 = γn0/(1−Z2,1

n Y1,1
n ). (21)

IV. NUMERICAL RESULTS

To validate the analytic result obtained in the previous
section, we first consider the illumination of a sphere with
radius a = 1m filled by a dielectric with relative permittivity
ϵr = 10 at a frequency of 599.584916MHz (ka = 4π),
following the example in [10]. The dipole is located on the
z-axis at a distance of 10m from the origin with unit dipole
moment. We compare the field components on the boundary
with the classic Mie series solution. Both methods employ 50
terms in their expansion which are computed using the routines
of Wolfram Mathematica 12.

The e0,θ component on the sphere’s surface is shown in
Figure 2a as a function of θ and the relative error between the
presented DSA-EFIE solution and the Mie series reference in
Figure 2b shows machine precision agreement. The maximum
relative error is of the order 10−12 while the average relative
error equals 7.4 · 10−14 (see Figure 2b). The same field
component is computed for a high contrast sphere with ϵ =
100 and shown on Figure 2a as well. For the same number of
terms, the maximum and relative error are 3·10−13 and 10−13,
respectively. The third example comprises a lossy sphere with
ϵr = 10 − 5j, for which the two relative error measures now
equal 5 · 10−13 and 8 · 10−14 (see fig. 2b). These low error
values in all three cases confirm the validity, exactness and
rigor of the DSA solution.
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Fig. 2. Polar electric field component e0,θ (a) and its relative error (b) on
the surface of the sphere as a function of θ. (a) The DSA result is plotted
in a solid line while the Mie series reference is shown in black in dashed
lines for a sphere with ϵr = 10 (yellow), ϵr = 100 (red) and ϵr = 10− 5j
(green). (b) The relative error between both solutions in (a) is plotted for all
each material.

V. CONCLUSION

In this paper, we presented an analytical solution for
scattering at a dielectric sphere using the differential surface
admittance operator. Through a Galerkin approach involving
vector spherical harmonics, we obtained closed expressions
for the electric field integral operator governing the outside
problem and the differential surface admittance operator
dealing with the inside problem. For the latter, a closed sum
for the infinite series involving spherical Bessel zeroes is
constructed, which greatly improves the convergence of the
analytical solution. A comparison with the classical Mie series
showed a match of at least 12 significant digits, establishing
the rigorous nature of the approach. In the future, the analysis
will be extended to completion to include the tangential dipole
case and a spectral analysis to determine appropriate functional
spaces and frequency-dependent properties.

REFERENCES

[1] D. De Zutter and L. Knockaert, “Skin effect modeling based on a
differential surface admittance operator,” IEEE Trans. Microw. Theory



Techn., vol. 53, no. 8, pp. 2526–2538, Aug. 2005.
[2] D. Bosman, M. Huynen, D. De Zutter, and D. Vande Ginste,

“Construction of the differential surface admittance operator with an
extended fokas method for electromagnetic scattering at polygonal
objects with arbitrary material parameters,” Computers & Mathematics
with Applications, vol. 128, pp. 44–54, Dec. 2022.

[3] U. R. Patel and P. Triverio, “Skin effect modeling in conductors of
arbitrary shape through a surface admittance operator and the contour
integral method,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 9,
pp. 2708–2717, Sep. 2016.

[4] J. Peeters, I. Bogaert, and D. De Zutter, “Calculation of MoM interaction
integrals in highly conductive media,” IEEE Trans. Antennas Propag.,
vol. 60, no. 2, pp. 930–940, Feb. 2012.

[5] T. Demeester and D. De Zutter, “Construction of the Dirichlet to
Neumann boundary operator for triangles and applications in the analysis
of polygonal conductors,” IEEE Trans. Microw. Theory Techn., vol. 58,
no. 1, pp. 116–127, Jan. 2010.

[6] D. Bosman, M. Huynen, D. De Zutter, H. Rogier, and D. Vande Ginste,
“A 2-D differential surface admittance operator for combined magnetic
and dielectric contrast,” Computers & Mathematics with Applications,
vol. 102, pp. 175–186, Nov. 2021.

[7] M. Huynen, M. Gossye, D. De Zutter, and D. Vande Ginste, “A
3-D differential surface admittance operator for lossy dipole antenna
analysis,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1052–1055,
2017.

[8] M. Huynen, K. Y. Kapusuz, X. Sun, G. Van der Plas, E. Beyne,
D. De Zutter, and D. Vande Ginste, “Entire domain basis function
expansion of the differential surface admittance for efficient broadband
characterization of lossy interconnects,” IEEE Trans. Microw. Theory
Techn., vol. 68, no. 4, pp. 1217–1233, 2020.

[9] G. Hsiao and R. Kleinman, “Mathematical foundations for
error estimation in numerical solutions of integral equations in
electromagnetics,” IEEE Trans. Antennas Propag., vol. 45, no. 3, pp.
316–328, 1997.

[10] O. Goni and V. I. Okhmatovski, “Analytic solution of
surface–volume–surface electric field integral equation on dielectric
sphere and analysis of its spectral properties,” IEEE Trans. Antennas
Propag., vol. 69, no. 12, pp. 8479–8493, 2021.

[11] E. Martini, G. Carli, and S. Maci, “An equivalence theorem based on the
use of electric currents radiating in free space,” IEEE Antennas Wireless
Propag. Lett., vol. 7, pp. 421–424, 2008.

[12] J. G. Van Bladel, Electromagnetic Fields. John Wiley & Sons, Inc.,
May 2007.

[13] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST
Handbook of Mathematical Functions. Cambridge Univ. Press, 2010.


