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Abstract—In the evolving landscape of vehicular networks, the
need for robust, scalable, and decentralized learning mechanisms
is paramount. This paper introduces a novel Decentralized
Federated Learning (DFL) framework for wireless technology
recognition in vehicular networks, essential for intelligently
allocating spectrum resources in Multi-Radio Access Technology
(Multi-RAT) scenarios. In contrast with centralized learning at
the base station level, our approach leverages Roadside Units
(RSUs) for model training and aggregation, eliminating central
server dependency and enhancing resilience to single points of
failure. Each vehicle trains a Convolutional Neural Network
(CNN) for wireless technology recognition using the Fourier
transform of In-phase and Quadrature (IQ) samples collected
from a specific combination of technologies. The proposed frame-
work is comprised of two steps. First, Centralized Federated
Learning (CFL) is employed at the RSU level to create an
aggregated model, considering the users’ connectivity status.
Second, DFL is utilized to establish a global model at each
RSU by sharing models with neighboring RSUs. This approach
not only preserves data privacy and security but also optimizes
learning by leveraging local computations and minimizing the
need for extensive data transmission. Our experimental analysis
validates the viability of this approach in providing a scalable
and resilient solution for technology recognition in vehicular
networks. Our results indicate that DFL surpasses its centralized
counterpart by 30% in sparse deployments with low connectivity
rates.

Index Terms—Decentralized Federated Learning, multi-RAT,
Technology Recognition, Vehicular Networks

I. INTRODUCTION

The exponential growth of wireless networks and the in-
creasing demand for high-speed data have driven the need
for more efficient and scalable wireless communication sys-
tems [1]. As the demand for high-speed data and efficient
communication systems grows, integrating multiple Radio
Access Technologies (RATs) has emerged as a pivotal strategy,
enabling the harmonious coexistence of different wireless
standards. Multi-RAT scenarios aim to leverage the strengths
of each technology to ensure optimal performance, coverage,
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and user experience. However, this integration is not without
challenges, as it involves complex management of the shared
spectrum and coordination of various technologies in a unified
manner [2].

Dynamic spectrum sharing allows multiple technologies
to utilize the same frequency bands simultaneously or in
a coordinated manner, preventing interference and ensuring
quality of service. This approach facilitates coexistence and
optimal utilization of the spectrum among diverse RATs, such
as Wi-Fi, 5G New Radio Unlicensed (NR-U), and Unlicensed
Long Term Evolution (LTE-U) [3]. Wireless technology recog-
nition can enhance spectrum sharing further by detecting the
presence of signals in the spectrum and identifying the specific
types of technologies being used. This capability enables
sophisticated spectrum sharing mechanisms [4].

Two primary Vehicle-to-everything (V2X) communications
technologies, Intelligent Transport Systems G5 (ITS-G5) and
Cellular Vehicle-to-Everything (C-V2X), have emerged as
frontrunners in facilitating vehicular connectivity. Sharing the
5.9 GHz spectrum, these technologies must coexist harmo-
niously to satisfy the stringent requirements of transport ser-
vices in terms of latency, reliability, and coverage [5]. This
coexistence poses significant challenges due to potential in-
terference, necessitating sophisticated technology recognition
strategies [6].

Technology recognition in multi-RAT scenarios is typically
achieved through signal processing techniques and machine
learning methods. These methods analyze the signals in the
spectrum, their characteristics, patterns, and other features to
determine the technology or RAT in use [7]. In the context of
vehicular intelligence, multi-RAT scenarios and spectrum shar-
ing have become even more crucial. As vehicles move, they
may need to switch between wireless technologies, ensuring
uninterrupted communication. This becomes more crucial with
the advent of autonomous vehicles [8].

Deep learning has emerged as a powerful tool for technol-
ogy recognition, offering significant improvements over tradi-
tional methods. Neural networks can learn intricate patterns
in data without explicit feature engineering. In the context
of wireless signal recognition, these models can be trained on



raw In-phase and Quadrature (IQ) signal data or pre-processed
spectral features, learning to distinguish between different
types of signals and communication standards effectively [9].

Applying deep learning in technology recognition is partic-
ularly advantageous in environments with high signal overlap
and interference, as is common in multi-RAT scenarios. These
models can adapt to new and evolving signal types, making
them highly suitable for dynamic spectrum sharing and man-
agement. However, most current state-of-the-art technology
recognition algorithms are based on Centralized Learning (CL)
paradigms, where data from various sources are collected
and processed in a central location [10]. This approach,
while effective in specific contexts, raises concerns regarding
scalability, latency, and privacy, as it requires the aggregation
of large volumes of potentially diverse data from multiple
edge devices across the network. Furthermore, CL may not be
entirely suitable for scenarios requiring real-time processing
at the edge devices, such as vehicular networks.

This highlights the need for more decentralized approaches,
such as Federated Learning (FL), that can provide a more scal-
able, efficient, and privacy-enhancing solution for technology
recognition in wireless networks [11]. Centralized Federated
Learning (CFL), a subset of FL, enables collaborative model
training across multiple devices, with a central server or-
chestrating the learning process. Consequently, CFL addresses
some of the critical limitations of CL approaches, such as
robustness and generalization, while enhancing the robustness
and generalization capabilities of the model.

While CFL offers significant advantages in technology
recognition within wireless networks, it has drawbacks. One of
the primary challenges is managing communication overhead
and latency, especially when edge devices are geographi-
cally dispersed or have varying computational capabilities.
Aggregating and updating the global model from numerous
local models can be bandwidth-intensive and slow, potentially
leading to model convergence and update delays. Moreover,
CFL is impractical in sparse deployments where only a small
portion of edge devices are connected simultaneously.

Decentralized Federated Learning (DFL) mitigates these
challenges by further distributing the learning process. In con-
trast to CFL, where a central server is required for aggregation
and coordination, DFL allows edge devices to directly commu-
nicate and share model updates with each other or indirectly
through a decentralized framework. The decentralized archi-
tecture eliminates the dependency on a central server and di-
minishes communication bottlenecks, improving stability and
security. Additionally, DFL can potentially improve efficiency
in managing non-Independent and Identically Distributed (IID)
data by enabling localized model training, reflecting each
node’s unique data distributions [12]. Fig. 1 compares the
various learning schemes for a vehicular network.

Aiming to address the inherent challenges of data het-
erogeneity and communication constraints, we introduce a
new decentralized framework for technology recognition in
multi-RAT vehicular networks. The considered system model
integrates various communication technologies, including C-
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Fig. 1. Overview of the CL, CFL, and DFL approaches. In all scenarios, the
physical link is established between vehicles and the RSUs, while the logical
link can vary depending on the scenario.

V2X PC5, ITS-G5, LTE, 5G NR, and Wi-Fi, to establish
a robust and flexible vehicular network. Each user device
employs a Convolutional Neural Network (CNN) for wireless
technology recognition using the Fast Fourier Transform (FFT)
of IQ samples.

Our proposed framework comprises two steps. First, CFL
is employed at the RSU level to create an aggregated model
with respect to edge devices’ connectivity status. Second, a
global model is established at each RSU by sharing models
with neighboring RSUs. The framework enables edge devices
connected through different RSUs to share model weights,
facilitating the creation of a generalized and resilient wireless
technology recognition model.

The key contributions of this work can be outlined as
follows:

• We propose a novel DFL framework for technology
recognition within vehicular networks. Our framework
eliminates the reliance on centralized servers, fostering a
collaborating model weight sharing among edge devices
via RSUs and addressing the challenge of intermittent
device connectivity.

• Our study considers a system model incorporating edge
devices with diverse technologies, including Wi-Fi, LTE,
NR, ITS-G5, and C-V2X PC5. This inclusion underlines
the versatility of our framework in modern vehicular
networks with heterogeneous communication capabilities.

• Through an empirical analysis, we evaluate the efficacy
of our DFL-based approach against CFL using real-
world data. This evaluation considers various scenarios
with differing numbers of edge devices and connectivity
conditions. Results illustrate that our proposed approach
outperforms CFL in scenarios of low connectivity.



II. RELATED WORK

FL has emerged as a pivotal approach in distributed machine
learning, offering significant advantages for applications that
involve classification and signal processing. For instance, Shi
et al. [13] explore the application of FL in signal modulation
recognition, addressing the limitations of deep learning meth-
ods that require a large amount of data. By adopting a dis-
tributed learning approach, the authors achieve an acceptable
recognition rate across 11 modulation schemes and enhance
privacy protection and data security.

Further addressing challenges such as class imbalance and
varying noise conditions, authors in [14] propose an FL-based
automatic modulation classification method. This method is
designed to maintain privacy without significantly compromis-
ing performance, addressing the issues of data leakage and
suboptimal performance. The simulation results suggest that
the proposed solution achieves an average accuracy gap of less
than 2% compared to centralized classification methods. Sim-
ilarly, Qi et al. [15] introduce federated incremental learning
to manage heterogeneous local datasets in modulation clas-
sification effectively. Their approach enhances the federated
averaging algorithm’s efficiency by treating private classes of
local users as incremental classes, thereby facilitating incre-
mental learning.

In the setting of vehicular networks, the study in [16] inves-
tigates the spectrum scarcity caused by the rapid expansion of
intelligent vehicles. It presents an innovative federated transfer
learning framework that leverages Unmanned Aerial Vehi-
cles (UAVs) for modulation classification in cognitive radio
systems while ensuring spectrum efficiency and reliability.
Experiment results underscore the superiority of FL-based
methods over centralized approaches regarding classification
accuracy.

Finally, an FL-based framework for technology recognition
is introduced in [17], aiming to overcome the drawbacks
of centralized training. The authors propose a model where
users independently train a local CNN model on their data,
subsequently aggregating the model weights through a central
server. This method notably excels in efficiency and privacy
protection, outperforming centralized approaches while ensur-
ing robust performance across various network conditions.

Distinct from the CFL architectures discussed in preceding
studies, our work introduces a decentralized topology. This
novel approach not only preserves the data privacy and security
benefits inherent in FL but also tackles the challenges posed by
intermittent connectivity, single points of failure, and network
bottlenecks. Specifically designed for the dynamic and mobile
environment of vehicular networks, where connectivity is often
sporadic, our system facilitates continuous learning and model
improvement. By enabling local aggregations at the RSU level
and allowing for model updates without direct central server
connectivity, our method represents a significant advancement
over traditional FL techniques, which typically depend on
consistent network connectivity for model aggregation and
updates.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a vehicular network comprising edge devices
(mainly vehicles and mobile user equipment) equipped with
various communication technologies, including Wi-Fi, LTE,
NR, ITS-G5, and C-V2X PC5. The network consists of N
edge devices, denoted as the set V = {v1, v2, . . . , vN},
each embedded with one or more of the aforementioned
communication technologies. These devices are dispersed over
a geographical area, such as a highway, and interact with M
RSUs, represented by the set R = {r1, r2, . . . , rM} through
a short-range link.

RSUs, interconnected via a backhaul link, play a pivotal
role by facilitating the communication and aggregation of FL
model updates among the edge devices. The connection status
of each edge device vi (i = 1, 2, . . . , n) to an RSU at any
given time is modeled as a Bernoulli random variable Xi

with success probability p, encapsulating the mobility and
intermittent connectivity of vehicles to RSUs. The equation
representing this connectivity can be expressed as

Xij =

{
1 if edge device vi is within range of j-th RSU
0 otherwise.

(1)
Edge devices are tasked with capturing and processing IQ

samples from signals transmitted by different RATs, identi-
fying and labeling them using a neural network detailed in
Section IV. The L-point FFT of these IQ samples, expressed
by

S(k) =

L−1∑
i=0

(I(i) + jQ(i)) · e−
2πj
L ki,∀ k = {0, 1, ..., L− 1},

(2)
serves as the input for the technology recognition model. Here,
I(i) and Q(i) denote the in-phase and quadrature-phase com-
ponents of the IQ samples at the i-th point, respectively, and
S(k) is the FFT result at the k-th frequency bin. This process
effectively transforms time-domain IQ samples captured in a
specific Time Resolution Window (TRW) into their frequency-
domain representation.

Consequently, each edge device forms a local private dataset
Di through capturing, transforming via FFT, and augmenting
IQ samples. The device participates in the learning process by
training a local technology recognition model with weights wi

on Di, with the aim of minimizing a global loss function. This
function, L, is a weighted sum of local loss functions and can
be expressed as

min
w

L(w) = min
w

N∑
i=1

|Di|
|D|

Li(wi,Di), (3)

where Li is the loss function of the i − th device’s model,
|Di| is the number of samples in the dataset of i− th device,
and |D| =

∑N
i=1 |Di|.

Fig. 2 depicts the proposed DFL framework. Initially, edge
devices update their models at the RSU level using CFL.
Subsequently, RSUs collaborate with neighboring units to
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Fig. 2. Framework of the proposed DFL scheme. Model training is done at the edge device level, and model aggregation is done at two levels: a) device-to-
RSU and b) RSU-to-RSU. CFL is employed at the RSU level in the first level to create an aggregated model. In the second level, DFL establishes a global
model at each RSU by sharing models with neighboring RSUs.

train a shared global model through a structured peer-to-peer
network, exchanging model updates to achieve decentralized
aggregation. Each device i (if connected to an RSU) updates
its model wi using its local data Di and then shares these
updates with the RSU, facilitating a collaborative and efficient
learning process across the network.

IV. METHODOLOGY

The technology classification within the vehicular network
utilizes a CNN-based architecture inspired by the model
described in [7]. This architecture incorporates three con-
volutional layers, each designed to capture different levels
of feature abstraction. To manage complexity, max pooling
follows each convolutional layer, reducing the dimensions of
the feature maps. After feature extraction, the classification
is done by two densely connected layers, where a softmax
classifier outputs the probability estimation of the technology
type.

This CNN-based model is deployed across edge devices
within the vehicular network with the same parameters, serv-
ing as the local technology recognition model. It is designed
to be lightweight yet practical, catering to the on-device
computational constraints while achieving high classification
accuracy. By leveraging DFL, the model benefits from a
diverse and rich dataset from other edge devices, enhancing its
generalization capabilities and robustness to varying channel
conditions while mitigating the risk of a single point of failure.
This decentralized approach ensures that the network remains
resilient and the learning process continuous, even if some
nodes or communication links fail.

RSUs act as pivotal nodes in the DFL framework, aggre-
gating local model updates from edge devices within their

vicinity. The aggregation for an RSU rj during a specific round
t is expressed as

wrj (t) =
1

|Vrj (t)|
∑

vi∈Vrj
(t)

wvi(t), (4)

where wrj (t) denotes the aggregated weights at RSU rj ,
wvi(t) indicates the weight vector of device vi after local
training, and Vrj (t) represents the set of devices connected to
RSU rj at round t. The subsequent model update process for
the next round is obtained by

wrj (t+ 1) = wrj (t) + η
∑

vi∈Vrj
(t)

∆wvi(t), (5)

with ∆wvi(t) being the update from device vi at round t, and
η symbolizing the learning rate.

The aggregation process within the proposed framework
occurs at two levels: local device-to-RSU aggregation and
global RSU-to-RSU aggregation through the backhaul links.
The local aggregation at an RSU is conditioned on the pres-
ence of devices within its proximity. In contrast, the global
aggregation is a function of the RSU’s ability to communicate
with other RSUs. The global aggregated weights at each round
t, denoted wg(t), are obtained by

wg(t) =
1

M

M∑
j=1

wrj (t). (6)

This hierarchical aggregation process, outlined in Alg. 1,
allows for decentralized learning to take place. RSUs serve as
intermediary nodes, facilitating model updates between edge
devices and achieving the global model. This setup eliminates



Algorithm 1 Overview of the DFL approach for Technology
Recognition
Input: Number of communication rounds (T )
Output: Global model wg

1: Initialize global model wg(0) with random weights
2: for t = 0 to T − 1 do

Level 1: Aggregation at RSU level
3: for edge device vi ∈ Vrj (t) do
4: Capture IQ samples
5: Apply FFT to obtain Di

6: for RSU rj ∈ R do
7: if Xij = 1 then
8: Receive global parameters wg(t) from rj
9: Compute local gradient and update wvi(t+ 1)

10: Transmit local weights to rj
11: else
12: Compute local gradient and update wvi(t+ 1)
13: end if
14: end for
15: end for

Level 2: Aggregation at system level
16: for RSU rj ∈ R do
17: Aggregate the received parameters at RSU-level

wrj (t+ 1) using (5)
18: Transmit the aggregated model to other RSUs and

form the global model Wg(t+ 1) using (6)
19: end for
20: end for

the need for direct communication between all devices, reduc-
ing the communication overhead. Additionally, it ensures that
the learning process is scalable and can accommodate a large
number of vehicles and RSUs, which is essential in vehicular
networks.

V. NUMERICAL ANALYSIS

This section presents the performance evaluation of our
decentralized technology recognition solution deployed within
a simulated vehicular network environment. We utilize the
publicly available IQ sample dataset [18] collected from
multiple RATs using the Smart Highway Testbed [19]. This
dataset was collected with a sampling rate of 20 Msps within
44 µs TRW. We consider 80% of the samples for the training
dataset and the other 20% for the testing dataset, which is used
to assess the performance of our aggregated model throughout
various rounds.

The training data is initially distributed across different edge
devices at the start of each communication round to foster a
realistic simulation. Each device is assigned a distinct set of
IQ samples, limited to two specific classes. This distribution
scheme reflects the varied capabilities found in real-world
devices such as vehicles and smartphones, with each type
capable of identifying and labeling combinations of signals
from different RATs. For instance, contemporary smartphones

are equipped to detect and classify signals from Wi-Fi, LTE,
and NR, while devices dedicated to ITS applications can
process and label C-V2X PC5 and ITS-G5 signals.

This approach not only simulates a diverse and realistic
vehicular network environment but also allows for evaluating
the decentralized scheme across different configurations of
devices and RSUs, each harboring unique combinations of
signal classes, as outlined in Table I.

Each device intentionally introduces a Gaussian noise of
differing power levels to its dataset before applying the FFT
to simulate and account for different channel conditions and
unforeseen scenarios. This step ensures that our model training
and subsequent evaluations reflect the practical challenges
inherent in real-world networks. The training procedure is
iterative, with each round initiating with local model updates
at the device level, followed by aggregation at the RSUs.
The aggregation is computed by averaging the weights of the
local model weights. Devices positioned out of the RSU range
perform local training but are excluded from the aggregation
process until they re-enter the effective range of an RSU. The
mobility of the edge devices is modeled using the Bernoulli
process of (1). Finally, local model training is done within five
epochs using the Adam optimizer, with a learning rate set at
0.001 and a batch size of 256 samples.

TABLE I
DIFFERENT NUMBER OF DEVICES AND THEIR CLASS COMBINATIONS USED

THROUGHOUT THE SIMULATION.

Number of devices Number of RSUs Classes per device

7 2

LTE & 5G NR
C-V2X PC5 & ITS-G5
WiFi & LTE
WiFi & 5G NR
C-V2X PC5 & LTE
C-V2X PC5 & 5G NR
ITS-G5 & WiFi

11 3

LTE & 5G NR x2
C-V2X PC5 & ITS-G5 x2
WiFi & LTE x2
WiFi & 5G NR x2
C-V2X PC5 & LTE
C-V2X PC5 & 5G NR
ITS-G5 & WiFi

14 4

LTE & 5G NR x2
C-V2X PC5 & ITS-G5 x2
WiFi & LTE x2
WiFi & 5G NR x2
C-V2X PC5 & LTE x2
C-V2X PC5 & 5G NR x2
ITS-G5 & WiFi x2

Fig. 3 illustrates the testing accuracy curves for the proposed
DFL-based technology recognition for different settings of
Table I with the connectivity rate of 50% compared against
CFL with full connectivity as baseline. We can observe that
the accuracy of the aggregated DFL model is slightly lower
than that of the CFL model. Specifically, after convergence, the
accuracy of the DFL model is approximately 7% lower than
its CFL counterpart. The observed marginal reduction can be
primarily attributed to intermittent connectivity, as only half
of the devices participate in model aggregation at every round.
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Fig. 3. Comparison of the aggregated model accuracy in CFL and DFL schemes across various device size scenarios reveals two prominent trends. The
accuracy performance of DFL improves with the increase in devices and RSUs. However, DFL’s convergence is slower than CFL, regardless of the number
of devices and RSUs involved.

This contrasts with the CFL scheme, in which all edge devices
participate in learning. Furthermore, as the number of devices
and RSUs increases, the accuracy of the DFL scheme slightly
improves, whereas in the FL scheme, the accuracy remains the
same.

Additionally, Fig. 3 demonstrates that the convergence rate
of DFL is slower compared to CFL. This observation holds
true across different device sizes, highlighting a trade-off
inherent to the decentralized nature of DFL. While DFL offers
advantages in terms of resilience and scalability, owing to
its lack of reliance on centralized coordination for model
updates, this benefit comes at the expense of a more gradual
convergence. The slight noise in the accuracy curve of the
DFL can be linked to the variance in model updates due to the
decentralized aggregation process. Factors such as intermittent
connectivity and the non-IID nature of data across devices
further accentuate these fluctuations.

In our subsequent experiments, we aim to investigate the
impact of connectivity on performance. We define three lev-
els of connectivity: low connectivity (p = 0.1), medium
connectivity (p = 0.5), and high connectivity (p = 0.9).
The results, as depicted in Fig. 4, suggest that the model
accuracy improves as p increases, indicating a higher chance
of devices being within an RSU range. Under low connectivity
conditions, the sparse interactions between devices and RSUs
lead to slower model convergence and diminished accuracy.
This effect stems from the reliance on isolated local datasets
and fewer aggregations, while more connectivity results in
more frequent and substantive device-RSU model exchanges.
The exposure of the aggregated model to a broader spectrum of
data accelerates the convergence rate and enhances accuracy.

Furthermore, the significant advantage of DFL in low
connectivity scenarios is highlighted in Fig. 4. While both
approaches experience challenges in achieving maximum ac-
curacy, the accuracy of the DFL surpasses that of the CFL
by 30%. The proposed approach is more resilient as the dis-
tributed aggregation process accommodates sparse connectiv-
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Fig. 4. Impact of connectivity probability on aggregated model accuracy for
both CFL and DFL. Here, a setting with 14 devices and 4 RSUs is used. DFL
shows a significant improvement in low connectivity and equal performance
in medium and high connectivity settings.

ity. However, as connectivity improves, the gap between DFL
and CFL narrows, with both models exhibiting substantial
gains in accuracy and equal performance. The marginal differ-
ence in model performance between the high and medium con-
nectivity suggests an optimal connectivity threshold. Despite
this equal performance in higher connectivity scenarios, DFL
holds a distinct advantage in terms of system reliability and
resilience, specifically through its inherent capacity to mitigate
the risks associated with a single point of failure.

At medium connectivity, devices already have a significant
opportunity to participate in model aggregation, substantially
improving accuracy and learning efficiency. Connectivity be-
yond this point only offers marginal improvements, as the



model is already approaching its optimal learning capacity
based on the available data and network interactions. Hence,
moderate levels of connectivity are sufficient for DFL to
leverage the advantages of distributed learning without the
severe penalties seen in lightly connected environments. This
offers a critical perspective on RSU deployment in real-world
scenarios, as full connectivity is not required for models to
achieve sufficient performance.

VI. CONCLUSION

This paper has presented a novel DFL framework for tech-
nology recognition in vehicular networks, demonstrating its
efficacy in a dynamic and mobile environment. Our approach
successfully integrates a range of advanced communication
technologies within edge devices, catering to the diverse and
evolving needs of modern vehicular networks. The use of
RSUs as intermediate aggregators of model updates plays a
crucial role in increasing the overall reliability and robustness
of the system, as it mitigates the risk associated with a single
point of failure. The experimental analysis underscores the
potential of DFL in managing large-scale, distributed learning
tasks in vehicular networks. Specifically, the results suggest
an accuracy gain of 30% in settings with low connectivity.

Our approach offers a promising direction for other real-
world applications within V2X communications where decen-
tralized data processing and decision-making are critical. Ex-
tending this framework to different use cases, such as network
selection and vertical handover management, could provide
valuable insights into decentralized approaches’ broader appli-
cability and effectiveness in vehicular networks. Additionally,
exploring advanced algorithms for more efficient decentral-
ized data aggregation and model synchronization among edge
devices, particularly in scenarios characterized by high mo-
bility and fluctuating connectivity, is another valuable area of
research.
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