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Abstract—The evolution of artificial intelligence (AI) solutions
in various fields has raised concerns about managing and
understanding these solutions. Ultra-wideband (UWB) radar,
known for its precision and reliability, is extensively applied in
localization scenarios. However, the increasing use of AI in this
field has led to concerns regarding the ambiguity of analytical
reasoning in AI solutions. To address these concerns, XAI has
been introduced to make these solutions more trustworthy and
understandable. This study explores the integration of XAI within
UWB radar technology, emphasizing the identification of target
zones through zone-based obstacle detection. We investigate the
integrated gradient method and its application in a convolutional
neural network (CNN) model. A significant portion of the study
is dedicated to analyzing the distance and angle for zone-based
obstacle detection facilitated by the XAI-empowered CNN model.
This analysis aims to provide deep insights into the reasoning
mechanics of AI solutions in UWB radar technology, thereby
addressing concerns in the field.

Index Terms—UWB Radar, Machine Learning (ML), Ex-
plainable Artificial Intelligence (XAI), Angle of Arrival (AOA),
Localization, Integrated Gradients

I. INTRODUCTION

AI has appeared across various sectors, revolutionizing
many aspects of technology. However, it has also raised
concerns regarding the interpretability and transparency of
AI-driven solutions. Explainable Artificial Intelligence (XAI)
is proposed as a solution to improve understandability and
trust in such wireless applications by focusing on clear ex-
planations, allowing a better understanding of which input
features are used by the neural network, which potential bias or
generalizability problems might occur, and providing a better
understanding of why the solution outperforms traditional
algorithms.

The main focus of this paper is to address the need for more
transparency and clarity in AI-driven communication systems.
It explores the application of one XAI method (“integrated
gradients”) in CNN models. As a typical example of a wireless
technology that increasingly relies on AI techniques, we will
consider UWB radar technology, which often uses neural
networks for tasks such as Angle of Arrival (AOA) estimation,
distance estimation, and activity recognition. While AI-based
AOA estimation in UWB [1] demonstrates superior perfor-
mance compared to traditional benchmarks like MUSIC [2]
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and PDOA [3], these AI solutions lack explicit explainability
and interpretability and are often treated as ”black boxes,” not
providing any motivation on why their performance is better,
nor explaining which boundary conditions might arise that
negate the improved performance of the used neural networks.

The main contributions of this paper are as follows:
• Investigate the integration of XAI, particularly integrated

gradients, for AOA estimation and distance estimation in
UWB radar systems.

• Design and develop an XAI-empowered CNN model for
AOA estimation and distance estimation.

• Provide a detailed analysis of distance and angle classi-
fications facilitated by the XAI-empowered CNN model,
offering insights into AI decision-making.

The paper is structured as follows: First, Section II provides
an overview of related work. Next, Section III delves into
the system model, presenting UWB radar technology and an
overview of AOA and distance estimation methods. Section
IV discusses the experimental setup and dataset, providing
insights into the practical aspects of the research and the
data used for model training and testing. Section V elaborates
on the methodology, including the explanation of integrated
gradients and the proposed CNN for classifying the radar data.
Section VI presents the results, highlighting the findings from
applying the CNN model to distance and AOA classification
for zone-based obstacle detection and the insights gained
through XAI. Finally, Section VII concludes the paper by
summarizing the key findings, discussing the implications of
the research, and suggesting directions for future work in the
field of UWB radar and AI.

II. RELATED WORKS

A. UWB Radar for AOA and Distance Estimation

Whereas AOA estimation is well-studied for determining the
angle of tags that transmit signals, tag-free angle estimation of
persons or objects using UWB radar is less studied. A notewor-
thy exception is the study conducted by Hong et al. [4]. This
paper proposes a two-stage learning-based method employing
a single-antenna transmitter and multi-antenna receivers. This
approach achieved Root Mean Square Errors (RMSEs) of 7.13
and 6.61 degrees for 4 and 8 antenna scenarios, demonstrating
the method’s efficacy.

Prior work is more common for UWB tag-free distance
estimation of humans or obstacles using UWB radar. [5]
demonstrates how selecting data processing methods and
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distance estimation techniques (mean- and variance-based)
influences the detection accuracy of low-cost DW1000 UWB
transceivers. [6] develops an IR-UWB distributed MIMO
radar system that supports multi-object localization and vital
sign monitoring, demonstrating an advantage over existing
methods. [7] presents a UWB device-free person recognition
and range technique that performed well in a variety of
scenarios while also admitting potential concerns with outliers.
[8] creates a multi-static radar network that demonstrates
promise for IoT applications despite issues with low signal-
to-noise ratios and range specifications. [9] unveils a novel
approach to Device-free Localization that leverages UWB
channel impulse responses, delivering improved accuracy. [10]
studies the capabilities of UWB radar for detecting static
humans behind various wall materials, employing Singular
Value Decomposition (SVD) and Wavelet Transform to im-
prove distance estimate, particularly with low dielectric wall
materials.

The works showcase the potential uses and difficulties of
utilizing UWB radar systems to measure distance and angle.
However, they need to consider the antenna’s significance and
the specific areas of the Channel Impulse Response (CIR) that
contain the necessary information for their models, should they
be using AI. Our work delves into the reasoning behind the
AI model in depth.

B. XAI Approaches in Related Applications

The utilization of XAI to interpret complicated sensor data
is a recent research trend aiming to improve awareness of
model predictions and the importance of their features. As an
illustration, [11] addresses fall detection systems utilizing a
multi-sensor method and Local Interpretable Model-Agnostic
Explanations (LIME). This work uses XAI to optimize sensor
location and comprehend temporal sensor patterns. Similarly,
[12] uses a deep learning network for real-time occupancy
identification using WiFi sensing, with the Grad-CAM algo-
rithm used to assess feature significance, demonstrating the
relative insignificance of certain ambient input parameters such
as humidity and temperature. A third example of XAI is used
to analyze sleep stages. [13] uses an attention-based technique
combined with bidirectional LSTM and IR-UWB radar to
understand the input sensors’ interpretation better.

Our review has shown that no studies have utilized Inte-
grated Gradients to improve the interpretability of models in
this area. Furthermore, we have discovered that no previous
research has applied XAI principles to analyze AOA and
distance in the context of UWB radar systems. This gap
presents a chance for our XAI approach to shape future
research directions.

III. SYSTEM MODEL

This section will provide a concise overview of UWB radar
fundamentals and discuss how this technology enables angle
and distance estimation.

A. Introduction to UWB radar technology

We consider a UWB radar setup to consist of a transmitter
sending a signal, which is reflected by both the environment
and one or more objects of interest. The reflected signal is
received by a secondary receiver with one or more antennas.

UWB technology is distinguished by its capability to spread
data across a broad frequency band via short pulses, with a
higher tolerance to multipath interference than narrowband
signals. The UWB radar received signal known as CIR can
be modeled as follows [14], [15]:

CIR(t) =

L∑
i=1

Aiδ(t− τi) + ν(t) (1)

where Ai represents the amplitude of the lth path, τi is the
time of the delay, δ(t− τi) is the received pulse, and ν(t) is
the noise. Due to its complex representation, the CIR sample
captures not only the intensity (amplitude) but also the arrival
timing (phase) of each reflected path, enabling a thorough
understanding of the received signal.

B. Overview of AOA and distance estimation methods

Based on the received signal, the distance to and the angle of
the object of interest can be estimated relative to the receiver.

1) AOA estimation: To effectively implement AOA estima-
tion, it is necessary to have at least two antennas; however,
more antennas can be used to enhance accuracy and resolution.
The phase difference between these antennas, which captures
the time displacement between received signals, is the main
component used for accurately determining the direction of an
incoming signal. A common technique to determine the angle
of arrival of a signal at a receiver is PDOA. The angle θ can
be calculated using the following equation:

θ = arcsin

(
αλ

2πd

)
(2)

where α, λ, and d represent the phase difference of arrival,
the wavelength of the signal, and the distance between the
antennas, respectively.

2) Distance estimation: Various distance estimate methods,
such as clutter subtraction, target detection, and target localiza-
tion procedures, are extensively used in UWB radar systems.
If we assume that a CIR is received in an environment that is
free from clutter and noise, we can use the following formula
to calculate the distance of the target from the setup:

Dist = (c× (TR− FP ))/2 (3)

where TR−FP represents the round-trip time (RTT), which
is the total time it takes for the transmitted signal to travel to
the target, reflect off it, and return to the receiver. Dividing
this value by two gives us the one-way travel time. In this
equation, TR is the target reflection time stamp, FP is the
first path time stamp received from the transmitter, and c is
the speed of the signal, which is approximately 3× 108 m/s.

In cluttered environments, clutter subtraction uses advanced
signal processing methods to reduce the impact of unwanted
reflections or clutter in received signals. This allows for the
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Fig. 1: UWB setup for zone-based obstacle detection. Each
zone X corresponds to a sampling point. A transmitter with
a single antenna is used, and a receiver with 4 antennas. The
object of interest in the zone consists of a metallic pipe.

extraction of appropriate target signals and improves distance
estimate accuracy. Target detection methods entail recognizing
and isolating possible target objects in radar data, often via the
use of thresholding or statistical analysis techniques. Finally,
target localization algorithms determine the precise location
or position of the target using the observed time-of-flight
(ToF) of the UWB signals. These distance estimate algorithms
work together to provide precise and dependable range and
localization in UWB radar systems.

IV. EXPERIMENTAL SETUP AND DATASET

In our UWB radar experiment, we focus on detecting the
zone of presence of an obstacle (metallic pipe (22×8×150cm))
based on the target’s location. The radar setup incorporates
two essential components: a transmitter and four receivers,
similar to the setup from [1] where AOA was investigated in
a non-radar, tag-based setup. The configuration, depicted in
Fig. 1, involves employing a DW1000 with an integrated chip
antenna as the transmitter device responsible for emitting radar
signals. On the other hand, the receiver device consists of a
board housing four DW1000 chips designed to capture and
process the reflected signals transmitted by the transmitter. A
separation distance of 75 cm between the devices is chosen
to achieve precise and controlled radar signal transmission. In
this experiment, the radar system operates on channel 7 of the
UWB standard, utilizing a center frequency of 6.49 GHz and
a bandwidth of 1.08 GHz.

To simulate an industrial environment resembling a ware-
house with metallic objects, the dataset is captured in the
Industrial IoT Lab in UGent IDLab [16], representing a
realistic warehouse environment consisting of an open area
surrounded by walls and metallic racks. A metallic galvanized

cubic tube is positioned at three distances from the radar
setup: 1.5m, 2m, and 2.5m. Additionally, the tube is set at
16 different angles, ranging from -60 to 60 degrees. This
configuration facilitates the capture of a comprehensive dataset
encompassing 48 possible zones for the obstacle (3 distances,
16 angles). Considering varying distances and angles, this
dataset provides insights into the interaction between the radar
signals and the metallic target.

The captured data are CIR samples with real and imaginary
parts with the size of 1000 samples in each experiment;
however, to simplify the training process, we only used 100
samples to improve the visualizations. In our dataset, we
calculate the respective amplitude and phase of the CIR
samples as data points for each of the four antennas. As a
result, we can have two data types, one based on the amplitude
and the other based on the phase of the CIR samples. Each
of these amplitudes and phases has the exact size of the CIR
sample and can be directly incorporated into the same CNN
model.

V. XAI METHODOLOGY

A. Integrated gradients
Integrated Gradients [17] is designed to attribute importance

to the individual features of deep neural networks, providing
feedback about which input features are most used by the
neural network. The core idea involves comparing the model’s
prediction for an actual input against a predefined baseline
(denoted as x′), which represents the absence or neutral state
of input features. To this end, it satisfies the sensitivity and
implementation of invariance axioms, ensuring meaningful
attributions.

Let IGi(x) denote the Integrated Gradient for the i-th fea-
ture of input x. This computation combines several elements.
Firstly, the input feature xi corresponds to the value of the i-th
feature in the input data. Alongside this, the baseline feature
x′
i is defined as the value of the i-th feature when it is in

a neutral or absent state, serving as a point of reference or
baseline for comparison. The process also involves calculating
a path integral, integrating gradients along a direct path from
this baseline state x′ to the actual input x, which is scaled
using α from baseline to input. This path integral, calculated
for the i-th feature, captures how changes in the feature’s value
influence the model’s output, providing a detailed attribution of
the feature’s importance. The function F refers to the neural
network model being analyzed. The formula for IGi(x) is
expressed as:

IGi(x) = (xi − x′
i)×

∫ 1

0

∂xi

∂F (x′ + α(x− x′))
dα. (4)

Due to computational limitations, a practical approximation is
employed for m number of steps, and larger steps result in a
finer approximation in the below equation:

IGapprox
i (x) =

(xi − x′
i)×

m∑
k=1

(
∂xi

∂F (x′ + k
m (x− x′))

)
× 1

m
. (5)
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Fig. 2: CNN model for Angle and distance-based zone classification

This approach uses a finite number of steps, typically
between 20 to 300, to calculate the sum of gradients. This
enables a proper allocation of input features to the model’s
output. As explained in [17], in our study, the baseline x′ is a
zero vector of the same size as the input. The input x refers
to the amplitudes or phases of the CIR samples that serve
as the input for the CNN model. The CNN model is further
explained in the following subsection and is represented by F
in (4) and (5).

B. Proposed CNN model

In this study, we use a CNN model shown in Fig. 2 to
classify the angle and distance in our dataset separately to
determine the zone of the object of interest. The architecture of
the selected model is derived through hyperparameter tuning,
designed to enhance its performance for this particular task.
The input shape of the model is established as (100, x), where
100 signifies the length of the CIR sample for each antenna.
The value of x varies according to the attributes chosen from
the dataset. For instance, if only the phase or amplitude from
each of the four antennas is used, then x will be 4, reflecting
the four attributes from the four receivers in our setup.

Conversely, when both phase and amplitude are utilized for
training to evaluate their significance using XAI, the value
of x becomes 8. By setting the input shape to (100, x), the
data is reformatted into a 2-dimensional array, conforming to
the spatial requirements that the CNN model necessitates. This
allows CNN to learn and efficiently predict classification based
on the discerned features and patterns.

VI. RESULTS

Here, we analyze both the performance of zone-based
obstacle detection and use XAI to explain and understand the
inner workings and limitations of the trained neural network.
The zone estimation consists of two steps: distance estimation
and angle estimation.

A. XAI-Based Distance Classification

This section is focused on classification outcomes for
distance estimation using the CNN from Section IV using
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Fig. 3: Sample visualization of integrated gradients to color-
code AOA classifications in a CIR sample taken 1.5m away
from the setup. In Fig. 4, each antenna is represented by a
column filled with these color-coded explanations. In each
experiment, four antennae are used.

different CIR inputs (Amplitude, Phase, or both). We use
XAI to analyze the importance of the input features. To this
end, Fig. 3 depicts an example of one of the CIR samples
where the color is depicted on the CIR. Each column of this
visualization represents a color code of the importance of each
time sample. Fig. 4 visually displays the integrated gradients
for all three input features. For instance, We note the following
observations:

Observation 1: For distance estimation, the integrated
gradients for the amplitude data are much more focused
than the ones from the phase information. Fig. 4a demon-
strates that the amplitude information focuses clearly on the
CIR peak corresponding to the correct distance. For the phase
information Fig. 4b, the input features focus on a broad range
of CIR peaks, resulting in less clear identification of the correct
distance. Finally, Fig. 4c shows that adding both input features
results in a mixture of both behaviors.

The improved focus of the CNN for amplitude data is
confirmed by the actual classification results in TABLE I.
The classification accuracies obtained from the CNN model
indicate the importance of CIR amplitude, with a remarkable
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Fig. 4: Integrated gradients for 400 random samples tested
in the trained model for distance classification, a) XAI Am-
plitude information, b) XAI Phase information, c) XAI using
amplitude and phase information.

TABLE I: Distance classification test accuracy of the CNN for
different input features: Amplitude, Phase, or both.

Amplitude Phase Amplitude + Phase

99% 94% 93%

accuracy rate of 99%, as opposed to the phase’s accuracy
of 94%. Furthermore, we conducted experiments using both
amplitude and phase information as input. Surprisingly, this
combined data achieved a lower accuracy rate of approxi-
mately 93%, suggesting that including phase data does not
provide substantial additional information and actually com-
plicates learning distance patterns.

Observation 2: The XAI analysis reveals a further obser-
vation: distance calculations based on amplitude primarily
focus on only a single antenna, specifically the one closest to
the transmitter Fig. 4a. This stands in contrast to the behavior
of phase-based computations, which demonstrate less precise
regions of significance in XAI visualizations, as depicted in
Fig.4a and Fig.4b. This result makes intuitive sense since the
distance from the transmitter to the reflector and back to the
receiver will be the shortest for this antenna, resulting in less
signal degradation and less errors due to the increased distance
between sender and receiver. On the other hand, the phase-
based results include a range of noise and possible reflectors,
along with important information, including the reflection from
the target.

1) Lessons learned : Several lessons were extracted from
applying XAI to distance classification in a UWB radar setup.
First, experimental results strongly confirm the superiority
of amplitude over phase for accurate distance measurement
and emphasize the effectiveness of a single, closest antenna.
Additionally, joint analysis of amplitude and phase data
demonstrated the CNN model’s primary reliance on amplitude,
highlighting the low influence of phase, as clearly shown in
Fig. 4c. As such, the XAI-based optimization approach pro-

TABLE II: AOA classification test accuracy based on the
distance of the target

Distance (m) Amplitude + Phase Amplitude Phase

1.5 99% 98.4% 65.51%
2 97.1% 96.33% 62%

2.5 95.2% 94.4% 61%

vides valuable insights indicating distance estimation solutions
should minimize the input features to the CNN to include only
amplitude information from the first antenna.

B. XAI-Based AOA Classification

This section uses the same structure as the previous section,
but this time focuses on AOA classification. Fig. 5 visually
shows the importance of the different input features using the
integrated gradients XAI method, whereas TABLE II shows
the actual accuracies.

1.5 2 2.5

(a)

1.5 2 2.5

(b)

1.5 2 2.5

(c)

Fig. 5: XAI results for AOA classification at three distances
using amplitude, phase, and joint amplitude and phase., a)
XAI Amplitude information, b) XAI Phase information, c)
XAI using amplitude and phase information.

Observation 3: As shown in Fig. 5 AOA using CNNs
rely on information from all four antennas., This is in
stark contrast with the distance information, where a single
antenna was used for input. This makes intuitive sense since a
single antenna can not differentiate between different angles.
However, it also indicates that the CNN utilizes all four
antennas, in contrast to PDOA methods that use the phase
difference between only two antennas. As such, this fact is
a likely explanation for the improved accuracy obtained by
many ML-based AOA estimators in scientific literature, such
as the one reported in [1].

Observation 4: For AOA classification, the amplitude
CIR input shows much more focused regions (and is hence
more reliable) than phase input for angle classification.
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This higher focus density is visible both when using amplitude
only Fig. 5a and when using the combination of amplitude
and phase Fig. 5c, compared to a diffuse input relevance
from Fig. 5b. This seems to indicate that the amplitude in-
formation is more relevant for angle estimation than the phase
information. This result might be surprising since traditional
methods such as PDOA utilize mainly phase information as
input. However, the results, shown in TABLE II, confirm
that a method using amplitude, analyzed through a CNN,
leads to better accuracy in determining AOA. Specifically, the
amplitude-based approach was around 33% more precise than
phase analysis, particularly when measuring AOA at different
distances. This finding suggests that amplitude could be a more
accurate factor for AOA zone classification in UWB systems.
This has the important implication that the zone recognition
most likely focuses on creating a specific lookup table, linking
specific amplitude values from all four antennas to a specific
zone, which might be an indication that the CNN would not
generalize well in new environments.

Observation 5: The AOA classification in UWB radar sys-
tems, as reflected in the data from Table II, confirms that AOA
classification accuracy decreases with increased distance
between the radar and the target object. The accuracy
decreased consistently across different data types—Amplitude
+ Phase, Amplitude alone, and Phase alone—as the target’s
distance extended from 1.5 m to 2.5 m. This reduction in
accuracy is likely due to the weakening of the reflection signal
strength over longer distances. These results demonstrate the
negative correlation between the accuracy of AOA classifi-
cation and the target’s distance in UWB radar systems. In
the UWB radar setup, the CNN model’s approach to AOA
classification primarily focuses on target reflections from a
distance, incorporating data from all four antennas. The study
of CIR samples at different distances shows that in the UWB
radar system, the initial reflection from the transmitter remains
consistent, but the later reflections, which are specific to the
target, change and become delayed as the distance increases.
This requires the CNN model to adjust its focus area for
larger distances. As demonstrated in Fig. 5, when the model
processes amplitude data, it specifically targets the reflections
from the object to establish the angle, and this targeted area
is dynamically adjusted based on the target’s distance. This
indicates the model’s capacity to adapt its analysis to varying
distances for effective AOA classification.

Observation 6: In contrast to the situation for distance
classification, the combination of amplitude and phase
input data results in more focused decision regions in the
XAI visualization for AOA. Based on this result, it can be
concluded that both input types should be used to obtain the
highest accuracy. Table II, confirms that using both amplitude
and phase together yields better AOA classification results
at every distance measured than using either amplitude or
phase alone. This finding underscores how input selection can
already happen before the validation phase through the XAI
visualizations.

Observation 7: The investigation into the UWB radar sys-
tem reveals that a reduced number of antennas can still
effectively perform AOA classification. This conclusion is

drawn from an analysis illustrated in Fig. 5. It was observed
that the system only required the first two antennas for accurate
angle classification in some cases, such as at a 200cm distance
using amplitude data. This finding suggests that two antennas
are sufficient for AOA classification under certain conditions.
However, the complexity of AOA estimation with UWB radar
means that while some antennas may have a lesser role at
different distances, they are still utilized. Further supporting
this observation, additional training and testing with just
two and three antennas showed consistent results with only
minor accuracy variations of about ± 2%. This indicates that
fewer antennas can indeed be effective for AOA classification.
Nonetheless, employing more antennas enhances the system’s
robustness, especially over greater distances or in more com-
plex scenarios.

1) Lessons learned : Several key lessons have been learned
throughout implementing XAI for AOA classification in a
UWB radar system. Firstly, the high accuracy of the model in a
specific environment indicates that it might be overfitting to the
amplitude data of that particular setting, raising concerns about
its ability to generalize to new environments. This suggests the
need for the model to understand better and incorporate phase
information patterns for broader applicability and accurate
predictions in varied settings. Secondly, the insights from the
XAI approach reveal opportunities for optimizing the CNN
architecture used for AOA classification. This includes refining
the number and size of variables, which could lead to more
efficient training and evaluation processes.

Another insight is balancing complexity and performance in
the model design. While a simpler model with fewer antennas
can be effective, using more antennas could enhance robust-
ness, especially in complex or changing environments. This
highlights the need for a tailored approach in designing radar
systems, where the trade-offs between simplicity, accuracy,
and adaptability are carefully considered.

VII. CONCLUSION AND FUTURE WORK

The research paper demonstrated how XAI can be integrated
within UWB radar technology. Specifically, this research
demonstrates how XAI can enhance the understanding of the
workings of CNN models, thereby allowing additional insights
and dedicated CNN designs that take these insights into
account. The combined evaluation of CNN accuracy with XAI
explainability results in more transparent and interpretable
algorithms for AI systems on UWB radar. The findings also
represent a significant step forward in addressing the chal-
lenges posed by AI’s ”black box” nature, thereby increasing
the understanding and acceptance of AI in critical techno-
logical areas. Future research should explore the scalability
of the proposed XAI approach in more complex UWB radar
scenarios and its applicability across different AI models and
domains, further enhancing the reliability and generalizability
of AI-driven technologies.
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