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Abstract: This study assesses the usability of machine-translated texts in scholarly communication, us-
ing self-paced reading experiments with texts from three scientific disciplines, translated from French
into English and vice versa. Thirty-two participants, proficient in the target language, participated.
This study uses three machine translation engines (DeepL, ModernMT, OpenNMT), which vary in
translation quality. The experiments aim to determine the relationship between translation quality
and readers’ reception effort, measured by reading times. The results show that for two disciplines,
manual and automatic translation quality measures are significant predictors of reading time. For the
most technical discipline, this study could not build models that outperformed the baseline models,
which only included participant and text ID as random factors. This study acknowledges the need to
include reader-specific features, such as prior knowledge, in future research.

Keywords: machine translation quality; open scholarly communication; self-paced reading; reading
effort

1. Introduction

In recent years, increasing attention has been paid to the inequalities caused by the
monopoly of English as the language of science. Amano et al. [1] surveyed 908 researchers
in the environmental sciences and found that non-native English speakers, particularly
early in their careers, face greater challenges and spend more effort in conducting scientific
activities in English than native English speakers. In addition to the negative impact on
non-English-speaking researchers at an individual level, systematic reviews, which are
considered a reliable form of research evidence, often neglect non-English literature as
a source of important evidence [2]. Bowker et al. [3] carried out a systematic review to
examine the use of machine translation (MT) tools in scholarly communication and to
investigate whether such tools contribute to a more linguistically diverse ecosystem. The
study found that while there is interest and positive attitudes towards these tools, the
quality of MT tools is highly dependent on the data used to train the MT tool, and therefore,
translation quality varies across language pairs, text types, and scientific domains. In
addition, when custom-built prototypes were compared with general-purpose tools such
as Google Translate, the custom-built tools designed for scholarly communication showed
better performance on related tasks.

Several papers explored the usability of MT in the context of scholarly communication
from different perspectives. O’Brien and colleagues [4] explored the potential of using
MT and self-post-editing to support the academic writing process for authors writing in
English as a foreign language. An experiment was conducted in which participants wrote
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part of an abstract in their native language and part in English, and the native language
section was then machine translated. The results suggest that MT and self-post-editing
show promise as a tool that could help support academic writing in a foreign language
without compromising quality, although further research is needed. Two studies [5,6]
focus on improving the quality of MT from Russian to English for academic articles by
pre-editing the source text. The first study demonstrated that by minimizing abbreviations,
simplifying complex phrases, and ensuring grammatical accuracy, higher quality was
obtained when comparing the original versus pre-edited text translations from Russian
to English using the Google, Amazon, and DeepL machine translation systems. The
second study developed fifteen pre-editing rules based on common negative translatability
indicators in Russian life sciences texts. When these rules were applied, over 95% of the
sentences met the generally accepted threshold for publication-level quality with minimal
post-editing. Roussis and colleagues [7] present the development of domain-specific
parallel and monolingual corpora focused on scientific domains and their application
in the fine-tuning of general-purpose neural MT systems. They built large corpora for
the language pairs Spanish–English, French–English, and Portuguese–English, covering
general scientific texts as well as the specific domains of cancer research, energy research,
neuroscience, and transportation research. Their results suggest that domain adaptation
through targeted collection of scientific data and model fine-tuning can effectively improve
the performance of NMT for translating specialized scientific and academic texts. In this
study, we evaluate the performance of three different MT engines, one of which was
developed using a similar methodology to that described in [7]. In this study, we do not
pre-edit or post-edit the texts but evaluate the usability of the machine-translated texts by
means of reading experiments, which is a new contribution to the field.

In his 2021 paper, “Investigating how we read translations. A Call to Action for Exper-
imental Studies of Translation Reception”, Walker [8] stresses the need for more research on
the reception of written translation. He highlights that while there is a considerable amount
of research on the reception of audiovisual translation [9], less attention has been paid to
the reception of written translation. Whyatt and colleagues [10] responded to this call and
conducted a small exploratory study in 2023 to investigate the relationship between the
translator’s effort in producing a translation, the translation quality of the final translation,
and the reader’s reception effort. Twenty native Polish speakers were randomly assigned
to read either a high-quality or a low-quality translation of a product description translated
from English into Polish. The researchers fitted a linear mixed effects model to analyze
the data. The results show that the translator’s effort did not have a significant effect on
the readers’ reception effort. But there was a significant effect of translation quality on
readers’ reception effort, with participants showing greater effort when reading low-quality
translations compared with high-quality translations. Despite the small data set (the source
text consisted of 8 sentences and 162 words), the authors suggest that reading experience
can be used to evaluate the effectiveness of translation decisions, particularly in terms of
translation quality, but that further research is needed to explore the impact of translation
errors and the severity of their effects on the reading experience of translated texts.

Today, translation is not only performed by human translators. In many scenarios, MT
systems are used to generate translations, especially in scenarios where human translation
(HT) is too expensive or simply not feasible. Eye-tracking has previously been used to
evaluate the quality of MT output. In 2010, Doherty et al. [11] investigated whether eye
movement data reflected MT quality. Ten native French speakers were instructed to read
50 machine-translated sentences of either excellent or poor quality. The study found that
when participants read MT sentences that were rated poorly by human evaluators, the num-
ber of fixations and the average gaze duration increased. In 2020, Kasperavičienė et al. [12]
examined the eye movements of 14 participants when reading a news article automatically
translated from English into Lithuanian. According to the authors, the language of the
source text was simple and intended for a general audience. The study found that there
were more fixations and longer gaze duration for segments containing MT errors compared
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with correct segments. In 2022, Colman et al. [13] collected eye movements of 20 Dutch-
speaking participants reading an entire novel (Agatha Christie’s The Mysterious Affair
at Styles), comparing the published human translation with a machine translation. The
participants alternated between reading the human translation and a machine translation,
or vice versa. In line with earlier research, the average reading duration was slightly higher
in the MT condition compared with the HT condition, as well as the number of fixations,
and the average fixation duration. In 2023, Kapsere et al. [14] conducted a study using
eye-tracking to investigate the reading process of professional and nonprofessional users
of MT. The participants read a 371-word recipe that had been automatically translated
from English into Lithuanian. The results show that professional users spent more time
reading the machine-translated text and assessed the quality of the MT more critically than
nonprofessional users.

Although the papers we discussed above work on different language pairs, use dif-
ferent MT architectures and technologies, and vary in the type and size of the texts that
were read, there is a consensus that reading machine-translated output requires more
processing effort compared with reading human-translated text. Most studies, however,
have compared machine-translated texts with human-translated versions, compared high-
and low-quality translations, or focused on specific errors in the machine-translated texts.
We are not aware of any studies that have examined the reader’s effort when processing
the output of different MT systems of varying translation quality levels.

In recent years, the field of MT has seen rapid advancements, beginning with the
introduction of encoder–decoder transformer models [15] and more recently with the
development of decoder-only large language models (LLMs) such as, Mistral [16] and
Llama 3 (https://ai.meta.com/blog/meta-llama-3/, accessed on 5 July 2024). While there
is increasing interest in leveraging LLMs for MT due to their additional capabilities, such
as instruction following [17], their use does not necessarily lead to superior performance
in translation tasks, particularly in specialized domains (e.g., legal) or when translating
into less-represented languages (e.g., Czech or Russian) [18]. Several toolkits are available
to train MT models. Open-source NMT toolkits, such as OpenNMT [19] and Marian [20],
allow users to train NMT models from scratch with existing bilingual data sets, providing
flexibility while requiring substantial data and computational power. Additionally, open-
source NMT models, such as Opus-MT [21] and Microsoft’s NLLB (No Language Left
Behind) [22], and LLMs, such as Llama 3 and Mistral, offer pretrained models that can
be further fine-tuned with language- or domain-specific data sets, balancing ease of use
with customization potential. Commercial off-the-shelf MT solutions, like Google Translate
(https://translate.google.com/, accessed on 5 July 2024) and DeepL (https://www.deepl.
com/en/translator, accessed on 5 July 2024), offer user-friendly, high-quality translation
services without the need for any model training. However, they are limited in their ability
to be customized for specialized domains, specific styles, or terminology. Some commercial
toolkits, such as ModernMT (https://www.modernmt.com/, accessed on 5 July 2024) and
Google Cloud AI (https://cloud.google.com/, accessed on 5 July 2024), bridge this gap by
allowing further fine-tuning of user-specific data, combining the benefits of high baseline
performance and adaptability to particular needs.

MT output can be assessed through various methods, each providing insights into dif-
ferent aspects of translation quality. Existing MT assessment techniques can be categorized
into two types: human evaluation and automatic evaluation. Human evaluation typically
involves human annotators or evaluators who assess translations based on predefined
criteria. To this end, common human evaluation techniques consist of (i) direct assessment,
where MT output is scored on a predefined scale (e.g., from 0 to 100); (ii) ranking, where
translations produced by different systems are compared and ranked from best to worst;
(iii) intrinsic evaluation of fluency (i.e., well-formedness of translation in target language)
or accuracy (i.e., to what extent source text meaning is conveyed in the target text); and
(iv) fine-grained error annotation, where common errors in MT output are identified and
categorized on the word/phrase level. Error annotation tasks are based on existing MT

https://ai.meta.com/blog/meta-llama-3/
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error taxonomies, such as the MQM [23] or the SCATE taxonomy [24]. Notably, both the
MQM and the SCATE taxonomies categorize MT errors hierarchically within accuracy and
fluency as the two main error categories. While direct assessment, ranking, and intrinsic
evaluation techniques provide insights into the overall quality of MT output from different
perspectives, fine-grained error annotation allows for a detailed analysis of translation
quality, pinpointing error patterns and determining the relative strengths and weaknesses
of different MT systems, according to various linguistic aspects.

Despite that human evaluation offers a nuanced and more detailed linguistic assess-
ment of MT quality, this approach is also often resource-intensive and time-consuming,
which necessitates the use of automatic evaluation methods to provide efficient and cost-
effective assessments, particularly in large-scale evaluation tasks or real-time monitoring
scenarios. Automatic evaluation of MT involves the use of computational techniques to
assess the quality of translated texts without human involvement. Unlike human assess-
ment techniques, which compare source texts with machine-translated texts, traditional
automatic evaluation metrics often rely on reference translations (i.e., gold-standard transla-
tions) and assign a final quality score to a given MT output based on the degree of similarity
or divergence between them.

Existing automatic evaluation metrics vary in their methods for measuring the similar-
ity between MT output and reference translations. While some metrics, such as BLEU [25]
and METEOR [26], rely on word-level n-gram precision, others, such as chrF [27], utilize
character-level n-gram F-score, and some like TER [28] calculate word-level edit distance.
More recently developed metrics that rely on neural-based machine learning techniques,
such as BERTScore [29], BLEURT [30], and COMET [31], focus on computing the similarity
of sentence-level vector representations. Moreover, certain neural-based metrics are tailored
for specific evaluation tasks; for example, COMET, which additionally incorporates source-
text information, was specifically trained to predict various human judgments, including
post-editing effort, direct assessment, or translation error analysis [31].

In many evaluation scenarios where reference translations are not consistently avail-
able, the dependency on such reference translations restricts the usability of automatic
evaluation metrics. Consequently, there has been a growing interest directed toward devel-
oping quality estimation (QE) systems, metrics that aim to assess MT quality in the absence
of reference translations, relying solely on the source text and MT output. Examples of
recently developed neural-based QE metrics include COMETKiwi [32] and MetricX [33].
Besides enhancing the applicability of automatic metrics, by comparing source text with
MT output, QE systems can be argued to capture different characteristics of MT quality
compared with reference-based metrics.

While automated evaluation is generally faster and more cost-effective than human
evaluation, their performance is often measured by to what extent they emulate human
assessment. Hence, a reliable metric is often characterized by its ability to strongly corre-
late with human judgments [34]. Viewed from this standpoint, neural-based automatic
evaluation (and QE) metrics continue to stand out as the state-of-the-art approach for
automatic quality assessment, having achieved notably higher correlations with human
assessments compared with non-neural metrics across different domains and language
pairs in recent years [35,36]. In addition to employing advanced machine learning tech-
niques, the effectiveness of neural metrics can also be attributed to their superior ability
to capture semantic similarity between texts. By using word and sentence embeddings,
these metrics are not confined to surface form comparisons with the reference translation,
unlike lexical-based metrics, allowing them to more effectively identify semantically related
translations (e.g., paraphrases and synonyms) [37]. On the other hand, while neural-based
metrics generally offer better performance than non-neural metrics, they require a pre-
trained language model, human-labeled data, and additional training, which limits their
use for low-resource languages [37]. In addition to enabling comparisons with past research
to some degree, as Lee et al. [37] further argues, this is one reason why lexical-based metrics
like BLEU continue to be commonly used for MT assessment.
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Current Study

This study is part of the ‘Translations and Open Science’ project (https://operas-eu.
org/projects/translations-and-open-science/, accessed on 5 July 2024), which explores
the possibility of using MT to disseminate research results in different languages. More
specifically, it is part of a larger study on the evaluation of MT in the context of scholarly
communication, focusing on the language pair English–French in three scientific disciplines:

• D1: Human Mobility, Environment, and Space (Social Sciences and Humanities,
translated from French into English)

• D2: Neurosciences (Life Sciences, translated from English into French)
• D3: Climatology and Climate Change (Physical Sciences, translated from English

into French)

Three different engines were selected for evaluation: two commercial systems (DeepL
and ModernMT) and one open-source system (OpenNMT), which was trained on vari-
ous data sets [38]. ModernMT was further customized by uploading a domain-specific
translation memory. The OpenNMT system was trained from scratch on publicly available
data from the OPUS repository [39] and fine-tuned on collected in-domain data and the
SciPar data set [40]. In the larger study, automatic evaluations on held-out test sets revealed
that MT quality varied across MT systems, with DeepL achieving the best performance
and ModernMT the second best. For more information, we refer to the reports that are
publicly available.

The project evaluated the usability of the raw MT output in three different use cases:
(i) researchers specialized in the domain in question using MT to translate publications, as
a writing aid, or for gisting purposes; (ii) professional translators using MT for post-editing
to speed up the translation task; and (iii) nonexpert readers using MT to get an idea of the
content of a scientific publication. This study focuses on the assessment of MT quality for
nonexpert readers. The other use cases are described in Fiorini et al. [38]. Detailed reports
and resources are available in a Zenodo repository (https://zenodo.org/records/10972872,
accessed on 5 July 2024).

To assess the usability of the MT output for nonexpert readers, reading experiments
were combined with automatic evaluation and fine-grained error annotations using the
MQM framework [23]. The whole project was on a very tight schedule, which did not
allow for time-consuming eye-tracking studies. Instead, self-paced reading experiments
were set up [41]. Participants read translations in a cumulative, self-paced reading view,
where each key press revealed the next sentence, while the previous sentences of the text
remained in view. Although less fine-grained than eye-tracking, this set-up allowed us to
collect reading times per text.

In this study, we were not only interested in how readers rated the quality of MT but
also in the relationship between translation quality (either measured by fine-grained error
annotations or by automatic metrics) and the readers’ reception effort, measured by reading
times. More specifically, we were interested in whether different measures of translation
quality could predict reading times.

2. Materials and Methods
2.1. Data Collection

For each discipline, short text excerpts of 120–200 words were selected from the
evaluation sets created in the project. The evaluation sets contain held-out texts that
were not included in the training materials for the OpenNMT engine or in the translation
memory used to adapt the ModernMT system. For discipline 1, the texts were selected from
three different text types (thesis abstracts, journal articles and journal abstracts). For both
disciplines 2 and 3, it was rather difficult to select suitable texts for nonexpert readers as both
disciplines contained highly technical texts. No abstracts were available for discipline 2.
We selected text fragments from Cochrane reviews (https://www.cochranelibrary.com/,
accessed on 5 July 2024), and excerpts from journal articles. As the texts had to be similar
in length, coherent text fragments were occasionally manipulated by deleting intermediate

https://operas-eu.org/projects/translations-and-open-science/
https://operas-eu.org/projects/translations-and-open-science/
https://zenodo.org/records/10972872
https://www.cochranelibrary.com/
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sentences. There were no full texts available for discipline 3. The text excerpts were selected
from different sources of abstracts (project, journal, and thesis abstracts). In addition, the
human reference translations for discipline 3 were often too divergent from the source or
occasionally incorrect. Therefore, we were forced to manually correct 3 sentences of the
reference translation in one text of discipline 3. A summary of the source text characteristics
for the French source texts of discipline 1 is presented in Table 1 and for the English source
texts of disciplines 2 and 3 in Table 2.

Table 1. Source text characteristics of the selected text excerpts for discipline 1 (French originals).

Discipline Text Id No. Words No. Sent. Avg. Sent. Length Text Type

D1 T1 137 5 27.4 Thesis abstract
D1 T2 145 8 18.1 Thesis abstract
D1 T3 146 8 18.3 Thesis abstract
D1 T4 154 8 19.3 Thesis abstract
D1 T5 222 9 24.7 Journal article
D1 T6 152 8 19.0 Journal article
D1 T7 171 7 24.4 Journal article
D1 T8 198 7 28.3 Journal article
D1 T9 164 6 27.3 Journal abstract
D1 T10 186 6 31.0 Journal abstract
D1 T11 179 6 29.8 Journal abstract
D1 T12 201 5 40.2 Journal abstract

D1 Total 2055 83 24.8

Table 2. Source text characteristics of the selected text excerpts for disciplines 2 and
3 (English originals).

Discipline Text Id No. Words No. Sent. Avg. Sent. Length Text Type

D2 T1 136 7 19.4 Cochrane review
D2 T2 134 6 22.3 Cochrane review
D2 T3 125 5 25.0 Cochrane review
D2 T4 140 5 28.0 Cochrane review
D2 T5 204 8 25.5 Journal article
D2 T6 200 8 25.0 Journal article
D2 T7 201 8 25.1 Journal article
D2 T8 191 9 21.2 Journal article
D2 T9 132 6 22.0 Journal article
D2 T10 128 7 18.3 Journal article
D2 T11 123 6 20.5 Journal article
D2 T12 139 6 23.2 Journal article

D2 Total 1853 81 22.9

D3 T13 143 5 28.6 Project abstract
D3 T14 142 5 28.4 Project abstract
D3 T15 112 5 22.4 Project abstract
D3 T16 131 6 21.8 Project abstract
D3 T17 108 4 27.0 Journal abstract
D3 T18 104 5 20.8 Journal abstract
D3 T19 123 5 24.6 Journal abstract
D3 T20 106 4 26.5 Journal abstract
D3 T21 119 6 19.8 Thesis abstract
D3 T22 138 6 23.0 Thesis abstract
D3 T23 137 5 27.4 Thesis abstract
D3 T24 127 6 21.2 Thesis abstract

D3 Total 1490 62 24.0



Information 2024, 15, 427 7 of 18

Per discipline, the selected texts were divided into four different sets. For each set,
we made sure that all conditions (Human Reference, DeepL, ModernMT, and OpenNMT)
were evenly distributed (see the balanced design provided in Table 3). For each discipline,
sixteen participants took part in the self-paced reading experiments, which means that
four participants read all the texts of one set. All participants, aged between 24 and
58 years, were staff members of the Faculty of Arts and Philosophy at Ghent University
and were highly proficient in the target language (English for discipline 1 and French for
disciplines 2 and 3). All participants can be considered nonexpert readers, in the sense
that they are used to reading academic articles, but in other scientific fields. For practical
reasons, the experiments for disciplines 2 and 3 were combined in one session. Participants
were allowed to take breaks during the experiment. All participants signed an informed
consent form and received a financial reward of EUR 10 for discipline 1 and EUR 20 for the
combined discipline 2 and 3 experiments.

Table 3. Balanced design used for the self-paced reading experiments. All participants read the texts
of one specific set.

Set 1 Set 2 Set 3 Set 4

T1 ModernMT OpenNMT Reference DeepL
T2 OpenNMT Reference DeepL ModernMT
T3 Reference DeepL ModernMT OpenNMT
T4 DeepL ModernMT OpenNMT Reference

T5 ModernMT OpenNMT Reference DeepL
T6 OpenNMT Reference DeepL ModernMT
T7 Reference DeepL ModernMT OpenNMT
T8 DeepL ModernMT OpenNMT Reference

T9 ModernMT OpenNMT Reference DeepL
T10 OpenNMT Reference DeepL ModernMT
T11 Reference DeepL ModernMT OpenNMT
T12 DeepL ModernMT OpenNMT Reference

The self-paced reading experiments were conducted using the Zep Experiment Control
Application (version 2) (https://www.beexy.nl/zep/wiki/doku.php?id=home, accessed
on 5 July 2024), a toolkit used for experimental psycholinguistics. Reading times were
measured per sentence and aggregated at text level. During the experiments, participants
were alone in a room to minimize distractions. The experiment started with a practice text
to familiarize the participants with the task. Participants read the texts in a cumulative,
self-paced reading view in which each key press revealed the next sentence while the
previous sentences of the text remained in view. After each text, participants were asked
to answer a multiple-choice comprehension question as an incentive to read the text
attentively and answer a yes/no question to assess the perceived usability of the translation
for gisting purposes.

To assess the translation quality of the machine translations, we used both manual
and automatic metrics. A linguist used the MQM framework to annotate all errors in
the machine-translated texts. The MQM core error taxonomy (https://themqm.org/the-
mqm-typology/, accessed on 5 July 2024) and the MQM decision tree (https://themqm.
org/error-types-2/decisiontree/, accessed on 5 July 2024) were used as the basis for the
annotation guidelines. A fine-grained error annotation was carried out using all the
main and subcategories of the MQM core taxonomy, with the exception of the two main
error categories, ‘Audience appropriateness’ and ‘Design and markup’, which were not
considered relevant for this study. An overview of the error categories of the MQM core
taxonomy is shown in Figure 1.

As is common practice in the MQM framework, all errors have additionally been
given a severity label, namely ‘neutral’, ‘minor’, ‘major’, and ‘critical’, to reflect the effect
of a particular error on the usability of the text. The severity labels of the annotated

https://www.beexy.nl/zep/wiki/doku.php?id=home
https://themqm.org/the-mqm-typology/
https://themqm.org/the-mqm-typology/
https://themqm.org/error-types-2/decisiontree/
https://themqm.org/error-types-2/decisiontree/
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errors were used as penalties when calculating the MQM quality score for each given text
(https://themqm.org/error-types-2/the-mqm-scoring-models/, accessed on 5 July 2024).

Figure 1. Overview of the MQM taxonomy.

To assist the annotation of terminology-related errors, domain-specific terms were
annotated in the source sentences of the evaluation data prior to the annotation task. This
annotation was carried out, firstly, in an automated manner using provided term lists and,
secondly, manually by the same annotator responsible for the error annotation.

A set of annotation guidelines was developed, drawing upon MQM error definitions
and examples, severity levels of errors, and the decision tree utilized for identifying and
categorizing errors. The annotations were carried out using the LabelStudio toolkit (https:
//labelstud.io/, accessed on 5 July 2024), an open-source platform for data labeling. The
annotation guidelines incorporated sample annotations and screenshots from LabelStudio
for clarity and reference.

While annotating errors, each source sentence was presented to the annotator along-
side three MT outputs (referred to as SRC, MT1, MT2, and MT3), and the errors in each
MT output were annotated concurrently. To prevent any bias towards specific MT engines,
the order of the MT outputs was randomized for each source sentence and recorded in
a separate log file. This log file was utilized to automatically calculate the MQM quality
scores after the annotation process. Figure 2 provides a screenshot from the annotation
platform, which includes an example annotation.

Figure 2. Example annotation on LabelStudio displaying error taxonomy and severity labels (upper
section), alongside a source sentence paired with three translations from various MT systems,
complemented by error category and severity annotations (lower section).

In the annotation example provided in Figure 2, two terms were identified in the source
text (‘numerical tool’ and ‘stormsurges’). ‘Numerical tool’ was correctly translated by all
MT systems, but MT2 made an error translating the term ’stormsurges’ (which refers to the
rise in seawater level caused solely by a storm). As MT2 only provided a translation for the
word ‘storm’ (Fr: ‘tempête’), ‘tempêtes’ was labeled as a major ‘accuracy-undertranslation’

https://themqm.org/error-types-2/the-mqm-scoring-models/
https://labelstud.io/
https://labelstud.io/
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error. The second error identified by the linguist was the French translation ‘prédiction’
instead of ‘prévision’. Both translations are possible, but ‘prévision’ is the more specific
word when referring to predictions made based on scientific or statistical analysis. The
linguist labeled ’prédiction’ as a minor ‘accuracy-mistranslation’ error.

For the automatic translation quality assessment, we opted for three reference-based
neural metrics, namely BERTScore, BLEURT, and COMET. We used the MATEO web
interface [42] (https://mateo.ivdnt.org/, accessed on 5 July 2024) to calculate all the au-
tomatic metric scores. Aside from the reference-based metrics, we computed QE scores
using COMETKiwi (https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xl, accessed
on 5 July 2024), which derives its scores from the information extracted from the source
sentences and the MT output, without relying on reference translations.

As reading times are also likely to be influenced by general text characteristics, we
additionally calculated the following features of the machine-translated texts:

• Average sentence length.
• Automated Readability Index (ARI). We chose ARI because it is the most compara-

ble formula across both languages, as it is based only on the number of characters,
words, and sentences in a text. We used the implementation that is available in the
Textstat Python package version 0.7.3 (https://pypi.org/project/textstat, accessed on
22 January 2024)

• Moving Average Type–Token Ratio (MATTR) as a general measure of lexical di-
versity [43]. We used the implementation that is available in the Lexical-diversity
Python package version 0.1.1 (https://pypi.org/project/lexical-diversity/, accessed
on 22 January 2024) with the default window size of 50 words.

• The percentage of 3000 most frequent words (Perc-3KFreq) as a measure of lexical
complexity. We made use of a custom lexical profiler [44], which relies on the subtitle-
based frequency list SubtLex-UK [45] and its French equivalent Lexique [46].

2.2. Data Analysis

The data sets for each discipline were analyzed separately. In the first step, we
analyzed the reading times, the answers to the comprehension questions, and the perceived
usability of the whole data set (the machine translations and the reference translations). In
the second step, we focused only on the machine-translated texts. We calculated descriptive
statistics for all our measures of interest and fitted a series of linear mixed effects (LME)
models in R with average reading time as the dependent (or response) variable.

Mixed-effects models simultaneously model random effects in addition to fixed effects.
In our study, we included participant and text ID as random effects, as we expect both
individual differences between participants and text-specific aspects to influence reading
times. We built different models including three sets of variables as fixed effects (target text
characteristics, manual translation quality scores, and automatic translation quality scores),
as we expect that there is a relationship between target text characteristics (including trans-
lation quality) and reading times. In order to examine to what extent different measures of
translation quality could predict reading times, different linear mixed-effect models were
built and compared. As a baseline, we built a null model, which only contains the response
variable and the random factors. This model is compared with more complex models in
which predictor variables of three different categories are added:

• General text characteristics: Average sentence length, automated readability index,
mean average type-token ratio, and the percentage of 3000 most frequent words.

• Manual translation quality metrics: MQM quality score and the number of critical errors.
• Automatic translation quality metrics: BERTScore, BLEURT, COMET, and COMETKiwi.

We visually inspected the reading times of all participants for outliers and decided
to retain the outliers to ensure that the data remained as close to the original as possible
and to maintain the integrity of the data set. Models were built using individual predictors,
as well as combinations of predictors from the automatic or manual translation quality
metrics set and the general text characteristics set. Since we built models with multiple

https://mateo.ivdnt.org/
https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xl
https://pypi.org/project/textstat
https://pypi.org/project/lexical-diversity/
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predictors whose scores are measured on different scales, we standardized all predictors
before building the models. In addition, the average reading times per word were log-
transformed in order to obtain a more normal distribution. For each discipline, we had 144
data points (16 participants, each reading 9 machine-translated texts of one specific set).
Models with interaction between predictors were tested, but due to the limited size of the
data set, these models did not converge.

The statistical software package R (version 4.4.0) [47] was used to analyze the data. We
used the lme4 package [48] and the lmerTest package [49] to perform linear mixed effects
analyses. Model comparison was carried out with the ANOVA function from the base
stats package and the performance package [50]. The functions check_singularity(),
check_heteroscedasticity(), check_normality(), and check_collinearity() of the
performance package were used to carry out diagnostics tests. For all models, we report
the coefficient estimates, standard errors, degrees of freedom, and t- and p-values of the
fixed effects. For model comparison, we also report the marginal and conditional R2 and
the corrected Akaike Information Criterion (AICc) [51].

3. Results
3.1. General Analysis

Figure 3 presents average reading times per word, expressed in milliseconds per
word, per discipline, and per condition. In general, overall average reading times were
much higher than the reading times reported in the literature. In 2019, Brysbaert [52]
conducted a meta-analysis of 190 studies based on 18,573 participants and estimated that
the average silent reading rate for adults in English is 238 words per minute for nonfic-
tion, which corresponds to 252 milliseconds per word. Across all conditions, the texts of
discipline 3 (Climatology and Climate Change—Physical Sciences) required considerably
more processing effort than the texts of the other disciplines, with an average reading
time of 472 milliseconds per word. The average reading times of the other disciplines
were more on par with averages of 416 and 398 milliseconds per word for resp. disci-
pline 1 (Human Mobility, Environment, and Space—Social Sciences and Humanities) and
discipline 2 (Neurosciences–Life Sciences). Only for discipline 1, the human reference trans-
lations were read faster than the machine translations. In addition to the higher processing
time, participants also gave 52% incorrect answers to the multiple-choice comprehension
questions in discipline 3, whereas the results for disciplines 1 (11% incorrect answers)
and 2 (25% incorrect answers) were much better. The perceived usability scores of the
translations for gisting purposes were good for disciplines 1 and 2 (81%) and poorer for
discipline 3 (67%). For discipline 1, DeepL (89%) and the human reference translations
(83%) scored the best; for discipline 2, OpenNMT scored remarkably worse (65%), and for
discipline 3, there was not much difference across translation conditions.

Figure 3. Average reading times per word, expressed in ms per word, per discipline and condition.
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3.2. Statistical Analyses

Tables 4–6 present descriptive statistics for all the predictors included in the linear
mixed effects models. As mentioned above, these data refer only to the machine-translated
texts. When comparing the general target text characteristics across the three disciplines, we
find that there is little difference in the mean average sentence length values. As discipline
1 contains French texts that were translated into English and disciplines 2 and 3 contain
English texts translated into French, we cannot simply compare the other general target text
characteristics, as these metrics are (to some extent) language-dependent. Nevertheless, if
we examine the values of the Automatic Readability Index (ARI) scores and the percentage
of the 3000 most frequent words in discipline 2 and discipline 3, it becomes evident that
discipline 3 contains more challenging texts.

Table 4. Descriptive statistics of all predictors included in the LME models for discipline 1.

Mean SD Min Max

Average Sentence Length 24.05 6.00 15.88 38.40
ARI 16.77 3.55 11.50 25.00
MATTR 0.79 0.04 0.70 0.85
3K_subtlex 85.75 3.43 80.42 95.24

MQM_Score 77.28 23.12 0.00 99.47
Number of critical errors 1.14 1.52 0.00 5.00

BERTScore 91.71 2.43 86.64 96.40
BLEURT 78.63 3.20 72.69 87.01
COMET 88.66 1.78 84.55 92.98
COMETKiwi 0.76 0.03 0.69 0.81

Table 5. Descriptive statistics of all predictors included in the LME models for discipline 2.

Mean SD Min Max

Average Sentence Length 28.24 3.33 22.29 34.60
ARI 18.26 2.04 14.60 22.50
MATTR 0.79 0.03 0.74 0.86
3K_lexiq 84.10 4.83 76.43 93.52

MQM_Score 88.65 13.62 37.11 100.00
Number of critical errors 0.39 0.89 0.00 4.00

BERTScore 90.42 3.37 83.60 95.31
BLEURT 78.42 5.47 65.99 86.68
COMET 88.43 2.40 80.69 91.83
COMETKiwi 0.80 0.03 0.75 0.86

Table 6. Descriptive statistics of all predictors included in the LME models for discipline 3.

Mean SD Min Max

Average Sentence Length 28.81 4.11 22.60 36.25
ARI 19.70 2.01 16.60 24.30
MATTR 0.79 0.036 0.68 0.85
3K_lexiq 75.94 4.70 65.33 83.73

MQM_Score 81.56 15.55 44.08 100.00
Number of critical errors 0.58 0.80 0.00 2.00

BERTScore 90.86 2.81 85.17 95.79
BLEURT 75.17 6.24 60.40 89.02
COMET 87.33 2.62 79.91 91.93
COMETKiwi 0.79 0.05 0.61 0.86
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In terms of manual translation quality assessment, discipline 1 received the lowest
MQM quality scores and had on average the highest number of critical errors, while
discipline 2 received the best manual translation quality scores. In terms of automatic
translation quality metrics, there is not much difference between the disciplines. It should
be noted that the final MQM quality scores are heavily influenced by the penalties assigned
to the severity labels. A few critical errors can result in a score of zero for the whole text, as
was the case in discipline 1.

To assess whether different measures of translation quality could predict reading
times, we fitted a series of linear mixed-effects models in R with average reading time as the
response variable. Tables 7–9 present for each discipline the results of the baseline model,
including only the random factors, and all models that include significant predictors.

Table 7. Final LME models for discipline 1 (* p < 0.05; ** p < 0.01; *** p < 0.001).

Fixed Effects Variance Explained Goodness of Fit

Model Predictor Estimate SE df t p mar. R2 cond. R2 AICc

M0 (Intercept) 6.00 0.06 21.20 94.33 *** 0.000 0.458 59.2

M1 (Intercept) 6.00 0.06 20.08 101.11 ***
ARI_z 0.08 0.04 10.44 2.29 * 0.062 0.464 56.8

M2 (Intercept) 6.00 0.06 20.03 100.0 ***
3K_subtlex_z −0.10 0.04 14.82 −2.7 * 0.092 0.487 54.2

M3 (Intercept) 6.00 0.067 21.02 90.11 ***
MQM_Score_z −0.07 0.03 126.68 −2.63 ** 0.040 0.517 54.9

M3a (Intercept) 6.00 0.06 20.27 97.06 ***
MQM_Score_z −0.06 0.03 111.13 −2.27 *
3K_subtlex_z −0.09 0.04 14.99 −2.37 * 0.103 0.516 51.6

M4 (Intercept) 5.95 0.07 24.10 84.53 ***
CriticalErrors_z 0.04 0.02 100.51 2.23 * 0.037 0.513 56.8

M5 (Intercept) 6.00 0.06 20.76 98.71 ***
BERTScore_z −0.09 0.037 18.06 −2.53 * 0.073 0.485 55.1

M5a (Intercept) 6.00 0.05 18.89 109.20 ***
BERTScore_z −0.09 0.031 14.04 −3.08 **
3K_subtlex_z −0.10 0.031 12.54 −3.26 ** 0.153 0.494 47.5

M6 (Intercept) 6.00 0.06 20.60 100.09 ***
BLEURT_z −0.11 0.03 43.87 −3.53 *** 0.102 0.505 49.4

M6a (Intercept) 5.99 0.05 15.94 118.74 ***
BLEURT_z −0.12 0.024 22.86 −4.99 ***
3K_subtlex_z −0.11 0.024 12.95 −4.43 *** 0.191 0.493 37.6

M7 (Intercept) 6.00 0.05 15.07 117.75 ***
COMET_z −0.14 0.02 19.87 −6.38 *** 0.171 0.482 38.5

M8 (Intercept) 6.04 0.06 20.56 100.39 ***
COMETKiwi_z −0.14 0.04 17.83 −3.50 ** 0.122 0.510 49.8

M8a (Intercept) 6.03 0.05 19.64 105.57 ***
COMETKiwi_z −0.12 0.04 13.76 −3.25 **
BERTScore_z −0.07 0.03 13.09 −2.16 * 0.146 0.505 47.4

M8a (Intercept) 6.03 0.06 19.69 104.93 ***
COMETKiwi_z −0.10 0.04 13.02 −2.50 *
BLEURT_z −0.08 0.03 24.10 −2.52 * 0.146 0.510 45.7
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Table 8. Final LME models for discipline 2 (. p < 0.1; * p < 0.05; *** p < 0.001).

Fixed Effects Variance Explained Goodness of Fit

Model Predictor Estimate SE df t p mar. R2 cond. R2 AICc

M0 (Intercept) 5.92 0.07 21.80 80.77 *** 0.000 0.620 31.6

M1 (Intercept) 5.92 0.07 19.17 85.74 ***
ARI_z 0.07 0.03 12.20 2.01 . 0.036 0.605 30.6

M2 (Intercept) 5.92 0.07 19.61 85.30 ***
3K_lexiq_z −0.08 0.03 12.54 −2.51 * 0.057 0.621 28.2

M3 (Intercept) 5.92 0.07 20.87 82.93 ***
MQM_Score_z −0.05 0.021 125.97 −2.45 * 0.023 0.624 27.9

M3a (Intercept) 5.92 0.07 18.82 86.78 ***
MQM_Score_z −0.04 0.02 111.45 −2.11 *
3K_lexiq_z −0.07 0.03 11.31 −2.20 * 0.068 0.623 25.9

M4 (Intercept) 5.89 0.07 22.22 80.50 ***
CriticalErrors_z 0.06 0.03 114.60 2.23 * 0.022 0.631 28.8

M8 (Intercept) 5.92 0.07 21.56 81.22 ***
COMETKiwi_z −0.05 0.03 121.92 −1.84 . 0.015 0.628 30.4

Table 9. Final LME model for discipline 3 (*** p < 0.001).

Fixed Effects Variance Explained Goodness of Fit

Model Predictor Estimate SE df t p mar. R2 cond. R2 AICc

M0 (Intercept) 6.09 0.06 20.24 100.3 *** 0.000 0.468 45.7

For discipline 1 (Human Mobility, Environment, and Space—Social Sciences and
Humanities) and discipline 2 (Neurosciences—Life Sciences), both the automatic readability
index (ARI) scores and the percentage of 3000 most frequent words are significant predictors
(see models M1 and M2). The effect of both predictors is in line with expectations, with
higher ARI scores (representing more difficult texts) leading to longer average reading
times, and texts with a higher percentage of frequent words leading to shorter average
reading times. Average sentence length and average type-token ratio had no statistically
significant effect on average reading time in any of the three data sets.

Similarly, as can be seen in models M3 and M4, the two manual translation quality
metrics (MQM quality score and number of critical errors) are significant predictors of
average reading time for both discipline 1 and discipline 2. The effect of both predictors
is as expected, with higher MQM quality scores (representing higher quality translations)
leading to shorter average reading times, and texts with a higher number of critical errors
leading to longer average reading times. Combining the MQM quality score and the
percentage of 3000 most frequent words as predictors in models M3a leads to better models
for both disciplines.

Only for discipline 1, the reference-based automatic translation quality metrics (BERT-
Score (model M5), BLEURT (model M6), and COMET (model M7) were significant predic-
tors of average reading time, with higher scores leading to shorter average reading times.
When looking at the marginal and conditional R2 values and the AICc values, the model
with COMET as a predictor is the best model. Adding the percentage of the 3000 most
frequent words as predictors to the models with BERTScore (model M5a) and BLEURT
(Model M6a) improves both models, making the model with BLEURT and the percentage
of the 3000 most frequent words as predictors comparable to the model with COMET only.
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COMETKiwi, the automatic translation quality metric that does not rely on reference
translations, was a significant predictor for discipline 1 and was almost significant for
discipline 2 (see models M8). Combining COMETKiwi with reference-based automatic
quality metrics BERTScore (model M8a) or BLEURT (model M8b) improves the models for
discipline 1, which might be an indication that the reference-based and non-reference-based
translation quality metrics indeed capture different characteristics.

For discipline 3, none of the predictors we included in the linear mixed-effect models
were significant.

4. Discussion

The general analysis of the data showed that the reading times in our experiment were
much higher than those reported in previous studies. Nevertheless, for two of the three
disciplines, the quality of the translations was judged to be sufficient for gisting purposes
by the participants.

In more detailed statistical analyses in which we fitted a series of linear mixed effect
models, we examined the relationship between translation quality and readers’ reception
effort, measured by reading times. These results show large differences across the disciplines.

For discipline 1 (translations from French into English), both the automatic readability
index (ARI) scores and the percentage of the 3000 most frequent words are significant
predictors. In addition, all the manual and automatic translation quality measures were
significant predictors. The best models were obtained by including COMET as a predictor
or a combination of BLEURT and the percentage of the 3000 most frequent words.

Also, for discipline 2 (translations from English to French), both the automatic readabil-
ity index (ARI) scores and the percentage of the 3000 most frequent words are significant
predictors. The manual translation quality measures and the automatic non-reference-based
automatic measure (COMETKiwi) were significant predictors, but the reference-based au-
tomatic quality measures were not. This may indicate that the reference translations were
not optimal (either too divergent or of poor quality). The best model was obtained by
including both the MQM quality score and the percentage of the 3000 most frequent words
as predictors.

For discipline 3 (also translations from English to French), we were not able to build a
model that outperformed the baseline model that included only the two random factors
(participant and text). There could be several reasons for this. As there were no full texts
available for discipline 3, the text excerpts were selected from various sources of abstracts,
which may be denser and more difficult to read than excerpts from full texts. In addition,
discipline 3 contained texts from the field of Physical Sciences related to climatology and
climate change, and were the most technical texts of all disciplines, as evidenced by the
lowest number of high-frequency words, and the highest average reading times regardless
of translation condition. As all our participants were members of a university language
department, they were less familiar with the topics of discipline 3. As the impact of prior
knowledge has been recognized in previous reading research, the content of the texts in
discipline 3 was probably too difficult for the participants, and differences in translation
quality may not be apparent in this case.

5. Conclusions

In this study, we assessed the usability of machine-translated texts in the context of
scholarly communication. We conducted self-paced reading experiments with texts from
three different scientific disciplines, focusing on both the translation direction from French
to English and vice versa. A total of 32 participants took part in the study. For each scientific
discipline, the reading times of 16 participants (nonexpert readers, highly proficient in the
target language) reading 12 texts each were collected.
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The machine translations were generated by three different MT engines (DeepL,
ModernMT, and OpenNMT) and varied in terms of translation quality. The aim of the
experiments was to investigate whether there is a relationship between translation quality
and readers’ reception effort. The reading times collected in the experiment were used as a
proxy for the readers’ reception effort. Translation quality was assessed using manual and
automatic methods.

Overall, the results are promising. For two of the three scientific disciplines, both the
manual and automatic quality measures proved to be significant predictors of reading time.
For two disciplines, the human reference translations were not read faster than the machine
translations, which contradicts the consensus in the research community that reading
machine-translated texts requires more processing effort than reading human-translated
texts. Furthermore, in the second discipline, the non-reference-based automatic evaluation
measure was a significant predictor of reading time, whereas the reference-based measures
were not. These observations suggest that the reference translations of this domain may
not have been optimal, possibly because they were either too divergent or of poor quality.

For the most technical discipline (Physical Sciences), we were unable to build linear
mixed effects models that outperformed the baseline model. We mainly focused on different
translation quality measures and general text characteristics as predictors in our models,
but we did not include reader-specific features that influence reading such as reading habits
and readers’ prior knowledge, which has been acknowledged as an important factor for
comprehending scientific texts [53].

Due to the tight timeframe of the project, we were not able to conduct eye-tracking
experiments. Although the self-paced reading experiment provided us with useful data at
the text level, eye-tracking would allow us to carry out even more fine-grained analyses
on specific areas of interest, e.g., specific error types or problematic fragments. It would
also allow us to study the temporal aspects of reading a text. The tight timeframe also
meant that we were unable to have a second annotator for the MQM error annotations.
As the severity levels assigned to the errors have a strong impact on the MQM quality
score, working with more than one annotator is recommended for future work. With
32 participants, this is still a small-scale study. Larger and more diverse sample sizes would
of course provide more robust and more generalizable results.
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AICc Corrected Akaike Information Criterion
ARI Automatic Readability Index
HT Human Translation
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MT Machine Translation
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