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Abstract

Due to the high power density and wide speed range, a permanent magnet synchronous motor
(PMSM) is commonly used in industry. Efficient production requires optimized motion control
of the mechanism driven by the PMSM. Unfortunately, designing the controller is usually based
on a model of the mechanism without including parameters originating from the motor. Cogging
stiffness originates from the magnetic forces between rotor magnets and stator teeth and is one of
these forgotten parameters. The performance is sub-optimal when this stiffness is not considered
during control design. The stiffness also changes over time due to changing load conditions such
as temperature.

Aiming for optimized motion control of high-speed mechanisms, this paper proposes to
expand the classic motion controller with an on-line stiffness tracker. The tracker is based on the
sliding Discrete Fourier Transform (SDFT). The tracking technique is conceptually analysed and
experimentally validated on a PMSM-driven rod. The classic Welch technique having an update
time of at least 100 s is used as a benchmark. With similar accuracy and a much faster update time
of 1.25 ms, the stiffness is tracked on-line using SDFT. The developed stiffness tracker is
implemented on the provided commercial motion controller, proving its computational efficiency.

Keywords: Parameter tracking, System identification, Sliding discrete Fourier transform (SDFT),
Harmonic extraction, Gauss-Newton algorithm, Permanent magnet synchronous motor (PMSM),
Cogging torque

1. Introduction

Permanent magnet synchronous motors (PMSMs) are commonly used for driving
single-actuated mechanisms because of their advantages such as high power-density ratio, wide
speed range and fast dynamic response. A disadvantage leading to inaccuracy is a torque ripple
caused by the attractive forces between the permanent magnets on the rotor and the steel slots on
the stator. This ripple is known as the cogging torque (Keyhani et al., 1999). The magnets on the
rotor are pulled towards the equilibrium positions where the magnetic forces cancel each other out.

Two approaches are found in the literature to tackle the cogging effect. The first one is
improving the motor design. A few examples are magnet and slot skewing (Ocak and Aydin,
2020; Ueda et al., 2016; Shi et al., 2019; Mengesha et al., 2021), fractional slots (Dang et al.,
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2019; Nguyen et al., 2010; Zhao et al., 2018), teeth width variation (Petrov et al., 2015), pole-arc
optimization (Jiang, 2023), magnet placement and shape optimization (Anuja and Doss, 2021;
Islam et al., 2007), tooth tip optimization (Brescia et al., 2021), etc. All of these concepts are
validated through finite element analysis, leading to promising cogging torque reductions (Gilardi
et al., 2011). But when cost and complexity are considered many solutions are abandoned or the
full potential is not realized.

The second approach is to improve the motion controller. In (Bu et al., 2021) a torque signal is
added to the speed controller output resulting in smooth shifts of the equilibrium positions. Another
technique is to expand the controller with a disturbance observer (Wu et al., 2020). Or in (Houari
et al., 2018) a high-pass filter is added to the torque-generating current for suppressing the cogging
harmonics. Among others, these techniques are validated on experimental setups and can easily be
implemented in the industry as no additional hardware is required. The improvements are however
sub-optimal because the change of the cogging torque over time due to e.g. temperature changes
(Duan et al., 2021) is not considered.

As depicted in figure 1, this paper proposes to expand the classic motion controller with an on-
line stiffness tracker. The stiffness represents the position derivative of the cogging torque. Based
on the machine requirements, a cyclic motion profile is defined which relates the desired position
θ∗ of the mechanism with time t. A sensor, typically a built-in encoder on the motor shaft, measures
the actual position θ. Based on the error between θ∗ and θ, a control algorithm calculates the desired
motor torque T ∗m with the objective to minimise this error.

Common practice is to add both a speed- and torque feedforward enabling faster and more
accurate motion performance (Van Oosterwyck et al., 2019). The speed feedforward provides the
desired speed Ω directly to the speed controller and the torque feedforward provides the desired
torque T ∗m directly to the current controller. The purpose of the stiffness tracker is to maintain
optimised motion control by using the tracked stiffness k̂ and damping b̂ as feedback for the motion
profile definition, feedforward definition and controller tuning.

An important criterion shown in figure 1 is the parameter update time tp. Due to the
high-speed operation, it is desired to have fast updates. Next to that, the required memory of the
stiffness tracker must be low to be implementable on the provided motion control platform. A
computationally efficient technique is to use the sliding discrete Fourier transform (SDFT) for
on-line parameter tracking. Both efficiency and accuracy are proven in (Vanbecelaere et al., 2020,
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Figure 1: Classic control scheme for high-speed single-actuated mechanisms.
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2022) where a single tracking frequency is injected, resulting in on-line estimates of the varying
inertia of a PMSM-driven multi-body mechanism. In (Vanbecelaere et al., 2023) a multi-sine of 5
harmonics is injected, leading to simultaneous on-line estimates of mass, stiffness, and damping
of a lumped mass-spring system. The tracking capability is however not investigated as the
parameter values are constant. Experimental validation is also not included.

Building upon the previous works, the main research objective is to investigate the capabilities
of using SDFT for tracking changing stiffness and damping. Accurately tracking the stiffness is
the most important because this parameter determines the motion accuracy. The potential tracking
errors are revealed and it is shown how to suppress them. The developed parameter tracker is
evaluated in terms of update time and accuracy. The accuracy is compared with the commonly
used off-line technique, namely the Welch technique (Saarakkala and Hinkkanen, 2015; Wahrburg
et al., 2017).

After this introduction, section 2 presents the experimental setup and its model. The cogging
effect is explained and how to linearize the cogging torque. The control scheme during parameter
tracking is discussed. In section 3, the SDFT is implemented for parameter tracking. Tuning rules
for achieving accurate results are presented. The maximum achievable accuracy is investigated
through simulations. Section 4 presents the experimental results including a benchmark with the
Welch technique. A conclusion is formulated in section 5.

2. Experimental setup

2.1. Motion equation
The experimental setup is shown in figure 2a and consists of a 6p18s PMSM of which the rotor

is directly bolted to a rod. The PMSM has a nominal speed of 4000 min−1 and nominal torque of
1.11 N m. The CAD drawing is shown in figure 2b. From the CAD assembly, the inertia of the rod
is found as Jl = 288 kg mm2. From the datasheet, the inertia of the rotor is given as Jr = 27 kg mm2.
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Figure 2: Experimental setup (a) and CAD drawing (b).
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Both inertia values are defined around the z-axis which is aligned with the rotation axis of the rotor.
The total inertia equals J = Jr + Jl = 315 kg mm2. The torque on the z-axis originates from the
motor torque Tm and cogging torque Tc. Due to the movement in the horizontal xy-plane, gravity
does not contribute to the dynamics. The rotor is mounted on the frame with bearings of which the
rotational friction is modelled as a viscous damper with damping value b.

Using Newton’s second law with θ being the actuated position, Ω = θ̇ being the speed and α = θ̈
being the acceleration, the motion equation is found:

+
∑

Tz = Jα

Tm − Tc(θ) = Jα + bΩ
(1)

The setup in figure 2 is positioned at a stable equilibrium θeq where the deflection is defined as
δθ = θ − θeq = 0◦ and where the cogging torque equals Tc = 0 N mm. As explained in the
next subsection, the cogging torque Tc is position-dependent and has multiple stable equilibrium
positions.

2.2. The cogging effect
In the case of a PMSM, cogging torque is produced by the magnetic attraction between the

permanent magnets on the rotor and the stator teeth. This is clarified by a cross-section of a 2-
pole/4-slot (2p4s) PMSM in figure 3. This type of PMSM does not exist in practice and only serves
for clarification of the cogging effect. The rotor is equipped with a magnet having a north (N) and
south (S) oriented pole. The stator, typically made of stacked laminated steel, has 4 slots and teeth.
The slots are filled with copper windings.
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Figure 3: Cross section of a 2p4s PMSM with the indication of the flux lines in positions of an unstable equilibrium (a),
a peak (b), a stable equilibrium (c) and a next unstable equilibrium (d) and the accompanying cogging torque profile
(e).
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In the figure, four positions of the rotor are shown with the magnetic flux lines in the air gap
drawn in green. The preferred path of the flux is the one with the lowest magnetic reluctance.
Because the permeability of steel is much higher than air, the flux prefers the shortest path through
the stator teeth and lamination. This results in attractive forces that attempt to maintain the
alignment between the teeth and magnets. This alignment is shown in position figure 3c. In
position ’c’, the different components of magnetic forces cancel out. Thus, no net cogging torque
Tc is produced. A slight deflection of the rotor from ’c’ results in cogging torque Tc which
attempts to re-align the rotor to its stable equilibrium.

In figure 3e, a typical cogging torque cycle is depicted. The shape of the torque is inspired by
simulations in (Wang et al., 2019; Yang and Wang, 2022) using finite element analysis. The peaks
are noted with Ac. In position ’a’, equilibrium is achieved because the rotor is equally attracted to
the nearest stator teeth. The net torque is thus Tc = 0. This is an unstable equilibrium because,
at the slightest deflection, the attraction to one of the teeth becomes dominant and cogging torque
is produced. As an example, a slight deflection towards ’c’ is considered. While moving towards
’c’, the torque peaks at its amplitude Tc = Ac in position ’b’ where the flux takes a path of highest
reluctance. To move the rotor further from ’c’ to ’d’ an actuation torque is required to overcome
the cogging torque that tries to pull the rotor back to ’c’. The cogging cycle is completed when
position ’d’ is reached.

The same cycle repeats for every stable equilibrium position. The cogging torque is thus a
periodic signal with a period of ∆θ = 360/nc, with nc being the number of stable equilibrium
positions. This number nc equals the least common multiple of the number of slots and poles. In
the case of the principle 2p4s PMSM, the period equals ∆θ = 90◦. The used PMSM exists of 6
poles and 18 slots, which means that there are 18 equilibrium positions and the mechanical period
is ∆θ = 20◦.

2.3. Linearization of the cogging torque
The cogging torque Tc is characterised through static measurements. The rod is put in 1 of the

18 equilibrium positions where the deflection is δθ = 0◦. For any deflection δθ, an actuation torque
is required to have static equilibrium: Tm = Tc.

During a slowly increasing motor torque Tm, the deflection δθ is measured. The rate of change
of the torque is set sufficiently low to state that there is no speed and static equilibrium is achieved.
The experiment stops when the rod accelerates and static equilibrium is no longer possible. First,
the positive direction is characterized and then the negative direction.

The resulting torque-position characteristic is shown in figure 4. Only the peak-to-peak profile
(Ac1 to Ac2) can be measured. From the moment the motor torque Tm overcomes the peak Ac, the
load accelerates and static equilibrium is no longer possible. It is thus unknown how the profile
completes the cogging period of 20◦. The torque-position relation is strongly non-linear and not
symmetric as shown in figure 3e. In the positive direction, the peak of 25 N mm occurs at 7◦ and in
the negative direction the peak of 23 N mm occurs at −4◦.

The cogging stiffness k is calculated as the derivative of the load torque Tl. The result for an
increment of 0.2◦ is shown in figure 4b. The closer to equilibrium, the higher the stiffness.
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Figure 4: Identified and linearized cogging torque Tc (a) and cogging stiffness k (b).

The proposed frequency-domain tracking technique requires linear system behaviour. The
cogging torque Tc is linearized according to the position-dependent cogging stiffness k:

Tc(θ) = k(θ) · θ + εl(θ) (2)

In an arbitrary position θ, the cogging torque is modelled as a summation of a linear part k ·θ and the
linearization error εl. The stiffness k equals the slope of the torque in that position. The linearized
part is plotted in figure 4a showing that its validity is limited to small deflections.

Near equilibrium δθ ≈ 0◦, the stiffness reaches its maximum and the linearization error is
minimal εl ≈ 0. Further from equilibrium, the linearisation error increases towards the peak
positions. At these positions, the stiffness is k = 0, implying that there is no attractive force
towards the stable equilibrium which is untrue. An important linearisation condition is thus to
keep the deflection small during parameter tracking.

2.4. Linearized system and initial parameter values
Substitution of the linearized cogging torque in the motion equation (1) leads to a linear

differential equation. Through the Laplace transform, the torque-position transfer function H1(s)
is obtained:

H1(s) =
θ(s)

Tm(s)
=

1
Js2 + bs + k(θ)

(3)

Note that this transfer function is only valid if the linearization error is negligible εl ≈ 0. As
discussed in section 3, the settings of the stiffness tracker are tuned from initial parameter values.
The inertia J is known from the CAD assembly. The stiffness k is characterized in figure 4b but
the used method is time-consuming. The stiffness characteristic is therefore not used for obtaining
initial guesses but is used for comparison with the tracked stiffness using the developed stiffness
tracker.

A user-friendly method is to extract the initial values for the stiffness k and damping b from an
impulse response. The mechanism is put in a stable equilibrium position δθ = 0◦ and is manually
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actuated with a short tick on the rod. The response is measured and plotted in figure 5.
The plot shows damped oscillations, which is expected for an under-damped second-order

system. The plot confirms that stiffness is position-dependent as the period ∆t of the oscillations is
not constant: ∆t1 , ∆t2. The stiffness characteristic in figure 4b shows that the stiffness k increases
while the position θ decreases. According to the principle equations below (Brandt, 2011), this
means that the period ∆t decreases while the position θ decreases as the oscillations damp out:

fn =
1

2π

√
k
J

fd = fn

√
1 − ζ2 ζ =

b

2
√

kJ
∆t =

1
fd

(4)

In the above equations, fn is the natural frequency, fd is the damped natural frequency, and ζ is
the damping ratio. This damping ratio ζ is extracted from the exponential decay σ of the peaks A1

and A2 (Brandt, 2011):

σ = ln
(

A1

A2

)
ζ =

σ
√
σ2 + 4π2

(5)

By substituting the measured values of the impulse response peaks, the damping ratio is found as
ζ = 0.268. Substitution of the ratio ζ and given inertia J in (4) leads to an initial value of the
damping b = 0.142 N mm s/◦ and stiffness k = 12.79 N mm/◦.
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Figure 5: Impulse response measurement

2.5. Transfer function reduction
The transfer function scheme of the closed-loop speed controller is shown in figure 6. The

different transfer functions are the speed controller Cs(s), the current controller Cc(s), the torque-
position transfer function H1(s) and the feedback transfer function F(s). The current controller is

Cs(s)

In
++++++

-
+Ω* Tm

*

Tinj

θ

ΩOut F(s)

Cc(s)
Tm H1(s)

Figure 6: Transfer function scheme of the closed-loop speed controller.
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a field-oriented current controller of which the torque-current relation is expressed as (Bu et al.,
2021):

Tm =
3p
4

(ψ f iq + (Ld − Lq)idiq) (6)

In this equation Tm is the electromagnetic actuation torque or also called the motor torque, p is
the number of poles, ψ f is the magnetic flux linkage, Ld and Lq are the d-axis and q-axis stator
inductance, and id and iq are the d-axis and q-axis stator current. The torque-current relation can be
simplified because the rotor of the observed PMSM has surface-mounted magnets, enabling to state
Ld = Lq. It is further assumed that the magnetic flux linkage ψ f is a constant machine parameter.
As a result, the torque-current relation simplifies to:

Tm = KT iq KT =
3p
4
ψ f = 0.63

N m
A

(7)

It is clear from equation (7) that the motor torque can easily be controlled by the q-axis current iq,
which is generally called the torque-generating current. The factor between the torque and current
is called the torque constant KT . The desired d-axis current is set to i∗d = 0 because this component
does not contribute to the actuation torque.

It is generally accepted to simplify the relation between the desired T ∗m and actual torque Tm as
a first-order transfer function with an electrical time constant τe (Bu et al., 2021):

Cc(s) =
Tm(s)
T ∗m(s)

=
1

τes + 1
(8)

For a properly tuned current controller, the electrical time constant τe is much smaller than the
mechanical time constant. This allows to state that state that T ∗m = Tm with a negligible error
(Pollefliet, 2017). Therefore, T ∗m is selected as the input signal for parameter tracking. In figure 6,
this signal is marked with ”In”. An additional advantage of this selection is that measurement noise
originating from the current sensor of the q-axis current is automatically excluded.

Using the actual speed Ω as the feedback signal, the desired speed Ω∗ is regulated with a classic
PI-controller Cs(s):

Cs(s) =
Ω(s)
Ω∗(s)

= Kp

(
1 +

Ki

s

)
(9)

The actual speed Ω is computed as the derivative of the actual position θ. The position is measured
with a built-in encoder. To suppress high-frequency noise due to discrete derivation, a low-pass
filter is added resulting in the feedback transfer function F(s):

F(s) =
Ω(s)
θ(s)

=
s

τs + 1
(10)

The time constant τ = 1 ms is tuned to have a cut-off frequency of about 160 Hz. Multiplying the
torque-position transfer function H1(s) in (3) with F(s) results in the torque-speed transfer function
H2(s):

H2(s) =
Ω(s)
Tm(s)

=
s

(Js2 + bs + k(θ))(τs + 1)
(11)
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Because of the inherent noise suppression using the filter in F(s), the actual speed Ω is selected
as the output signal for parameter tracking. The signal is marked with ”Out” in figure 6. With
Tm being the input and Ω being the output, the torque-speed transfer function H2(s) is the selected
model for parameter tracking.

As discussed in section 3, an additional torque signal Tinj is injected to enable parameter
tracking. This signal ensures that the frequency content at the tracking frequencies is sufficiently
high. The relevant transfer functions are defined as:

• The closed-loop transfer function G1(s):

G1(s) =
Ω(s)
Ω∗(s)

=
Cs(s)H2(s)

1 +Cs(s)H2(s)

=
Kp(s + Ki)

Jτs3 + (J + bτ)s2 + (b + kτ + Kp)s + k(θ) + KpKi

(12)

• The transmission transfer function G2(s):

G2(s) =
Tm(s)
Tinj(s)

=
1

1 +Cs(s)H2(s)

=
(τs + 1)(Js2 + bs + k(θ))

Jτs3 + (J + bτ)s2 + (b + k(θ)τ + Kp)s + k(θ) + KpKi

(13)

Tuning of the speed control settings is based on the high-speed requirements when the
mechanism is operational. Setting the closed-loop bandwidth of G1(s) to 10 Hz allows fast and
robust operation. Using the magnitude of (12) and the objective of having a closed-loop
bandwidth of 10 Hz, Kp and Ki are tuned using a trial and error approach. Their values are listed in
table 1 and are used for simulations and measurements.

When parameter tracking is desired, the injected torque Tinj is added with the speed controller
activated. This ensures limited machine task interruption. Consequently, the controller manipulates
the injected torque Tinj and tuning is required through the transmission transfer function G2(s) for
achieving sufficient signal content at the tracking frequencies. This tuning procedure is discussed
in the next section 3.

3. Using SDFT for stiffness tracking

3.1. Magnitude tracking
The proposed SDFT technique is shown in figure 7 and consists of two parts: magnitude

tracking and parameter conversion. In the first part, the SDFT algorithm is used for tracking the
amplitudes of the input signal and output signal at the injected tracking frequencies fi. The tracked
magnitudes Mi are the ratio of the tracked output amplitudes |Ω|i over the tracked input amplitudes
|Tm|i.

The SDFT takes advantage of its sliding property by computing each new N−point DFT at time
instance n from the N−point DFT of one sample earlier (n − 1) using the circular shift property
(Jacobsen and Lyons, 2003). Because a new DFT is not calculated from scratch every time, the
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Figure 7: General parameter tracking approach.

SDFT is a computationally efficient and recursive algorithm for calculating the Fourier components
F [x]h of a given signal x(n) based on N samples (Liu et al., 2018):

F [x]h(n) =
1 − z−N

1 − e j(2π/N)h

1
N

x(n) hi = {h1; h2; ...; hl} (14)

In this equation, N equals the number of samples of the fundamental component and hi is the
harmonic pattern. The pattern is an array of integer multiples of the fundamental component h1 = 1.
The implementation of (14) is shown in figure 8 for the signal x(n). The SDFT can be configured to
match with a user-defined harmonic pattern. For each harmonic, one bin is added. For a pattern of
l harmonics, the SDFT requires 2 · l ·N additions and l ·N multiplications. With the multiplications
being the mathematical operation requiring the most effort, the computational complexity is found
as O(l ·N). This is much more computationally efficient than using the DFT having a computational
complexity of O(N2) (Rafii, 2018).

SDFT

-
+

z -N 

x(n) F [x]1(n)

F [x]2(n)

F [x]l(n)

z -1 

1
Nx+

+

e
j   (2π/N)h1

z -1 

1
Nx+

+

e
j   (2π/N)h2

...

Figure 8: Implementation of the SDFT algorithm.

The used signals are in this case the motor torque Tm and the actual speed Ω. The amplitude of
each frequency fi = f1 · hi is found from the real and imaginary part of their Fourier component:

|Ω|i =

√
ℜ(F [Ω]h)2

+ ℑ(F [Ω]h)2

|Tm|i =

√
ℜ(F [Tm]h)2

+ ℑ(F [Tm]h)2
(15)

Before having valid tracked amplitudes and magnitudes, the initial SDFT-window must be filled
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with data. The shifting time window δt of is determined by the fundamental frequency f1:

δt =
1
f1

N =
δt
ts
=

1
f1ts

(16)

This initialisation is taken into account by including a delay before the parameter conversion starts.

The first part of the SDFT technique relies on the accurate reproduction of discrete signals to
their continuous equivalent. Discrete signals are known to be prone to leakage, quantisation and
noise.

By injecting a leakage-free harmonic spectrum and configuring the SDFT accordingly, leakage
is fully suppressed. A spectrum is free from leakage if the fundamental frequency f1 and all its
harmonics have an integer-valued window size. Using equation (16), an array of fundamental
frequencies f1 resulting in integer values for the window size N is found. The sample time ts =

250 µs is fixed to the configured one of the provided motion controller. Once the fundamental
frequency f1 is selected, the harmonic pattern hi is limited to the ones resulting in integer-valued
sizes of their accompanying period. For example f1 = 1 Hz is leakage-free because the window
size equals N = 40000. The second harmonic h = 2 has a period N/2 = 20000 which is also
leakage-free, but the third h = 3 is not because one N/3 is a non-integer value.

The effect of quantisation and noise is studied after discussing the guidelines for tuning the
injection signal Tinj.

The used control scheme for parameter tracking is shown in figure 9. As concluded in the
previous section, the deflection around equilibrium must be small to have a negligible linearisation
error. The control strategy is therefore set to first move to the equilibrium position θ = 0◦. Then,
the speed is set to Ω∗ = 0 and the injection torque Tinj is enabled. This ensures to have motion
around equilibrium (Vanbecelaere et al., 2019).

Cs(s)
In++

Out

Tinj

θ++++

-
+Ω*=0 Tm

*

f1

{Ai}
{hi}

++

N(0,σ 2)

S(s)Ω

ΔTm

H1(s)

Figure 9: Control scheme expanded with multi-sine injection for parameter tracking.

The injected signal Tinj is defined as a multi-sine containing the tracking frequencies fi:

Tinj =

l∑
i=1

[Ai sin (2π fit + φi)] (17)

Tuning Tinj involves selecting the tracking frequencies fi and their accompanying amplitudes Ai

and optionally their phases φi. The tuning is based on a trade-off between limiting the linearisation
and quantization error. As shown in the control scheme in figure 9, the input torque Tm is quantized
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with an interval of ∆Tm. The interval is fixed and is determined by the resolution of the torque
generating current iq of 1 mA. According to (7), this gives an interval of ∆Tm = 0.63 N mm.

Setting the amplitudes Ai high leads to a high number of increments in the torque signal Tm and
a limited quantization error εq. But the higher the amplitudes Ai, the higher the deflection δθ and
the higher the linearization error εl.

To find a feasible trade-off, the magnitudes of the torque-position transfer function |H1(s)| and
transmission transfer function |G2(s)| are plotted in figure 10. The plots are achieved by substituting
the initial guesses of the stiffness k = 12.79 N mm/◦ and damping b = 0.142 N mm s/◦ in equations
(3) and (13) for frequencies from f = 0 to 20 Hz. The other parameters J, τ,Kp,Ki are known
constants. The f -axis is set to the leakage-free candidates. The frequencies fi and accompanying
amplitudes Ai are selected based on the following guidelines:

• All frequencies are selected in a range where the stiffness significantly affects the dynamics.
The magnitude |H1(s)| for k, b = 0 is plotted in figure 10a. The higher the frequency, the less
the stiffness affects the dynamics.

• The number of tracking frequencies is limited to l = 5. The more data points l, the more the
potential errors on the tracked magnitudes are suppressed. But more tracking frequencies
also lead to a higher deflection amplitude |δθ| and consequently a higher linearisation error
εl. Moreover, in the next subsection where the parameter conversion algorithm is
introduced, limiting the number of tracking frequencies is also required to limit the
computational complexity.

• To keep the deflection low δθ ≈ 0, the deflection amplitude |δθ|i caused by each harmonic fi

is limited. This amplitude |δθ|i equals:

|δθ|i = Ai · |G2(s)|i · |H1(s)|i (18)

Independent of the assigned amplitude Ai, it is avoided to select frequencies fi close to
resonance.

• Through simulations using the control scheme in figure 9, it is found that 10 increments of
the input signal Tm is sufficient to have a negligible quantisation error εq. This is guaranteed
by assigning 10 increments to the individual amplitudes |Tm|i. To do so, the amplitudes Ai

must respect the following condition for the given interval of ∆Tm = 0.63 N mm:

Ai · |G2(s)|i ≥ 6.3 N mm (19)

An example of the tuning procedure is given for clarification. The candidates fi = 5 Hz and
fi = 10 Hz are compared. Figure 10a shows that the leakage-free candidate fi = 5 Hz has a torque-
position magnitude of |H1|i = 2.03 and a transmission magnitude of |G2|i = 0.22. According to
(19) the injected amplitude is found as Ai = 29 N mm for having at least 10 increments. With
this amplitude Ai, the deflection amplitude is found using (18) as |δθ|i = 0.74◦. This candidate is
not selected because selecting fi = 10 Hz leads to only |δθ|i = 0.50◦ for the same amount of 10
increments in the actuation torque. The lower the deflection, the lower the linearisation error.
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Figure 10: Selection of the tracking frequencies fi based on the torque-position magnitude (a) and transmission
magnitude (b).

Using the control scheme in figure 9, the effect of quantisation and noise on the tracked
magnitudes is investigated. The model is set to the transfer function H1(s) with the parameter
values fixed to the known constants and the initial guesses of the stiffness and damping. Not only
the input torque is quantized, but also the actual position θ. Based on the encoder specifications,
the position is quantised with an interval of 360◦/220. This interval is not included in the simulation
because the effect is negligible. By measuring the position θ at rest for a long time, it is found that
normally distributed noise N affects the actual position θ. A mean value µ = 0 rad and a standard
deviation of σ = 0.0001 rad is determined and included in the control scheme.

Using the proposed guidelines, the tracking frequencies fi and Ai are set to the ones listed in
table 1. With these settings, the tracked magnitudes are nearly exact. To have a clear effect of the
potential errors, the tracked magnitudes Mi in figure 11a are presented with the amplitudes Ai set
10 times lower and the standard deviation σ set 5 times higher. It can be observed that the settling
time tset is larger than the time window δt of SDFT. The tracked magnitudes only correspond with
the actual ones after settling.

The distribution of the tracked magnitude M4 is plotted in figure 11b showing a normal
distribution. Normally distributed noise thus leads to normally distributed tracked magnitudes
with a standard deviation σε and mean µM. In the case of M4 the relative standard deviation equals
σε = 0.65 % for an absolute standard deviation of the noise on the position θ of σ = 0.0005 rad.
Due to the quantization, the tracked mean µM differs from the actual magnitude. In the case of M4

the quantization error equals εq = 0.06 % for an actuation torque Tm having 6 increments.

In general, it can be concluded that quantization causes a constant error on the tracked
magnitudes and noise causes a normally distributed error on top of it. With the proposed control
scheme for parameter tracking in figure 9 and the presented guidelines, the potential errors are
sufficiently suppressed. Note that the effect of the linearization error is not yet investigated. This
is provided in section 4 containing measurements on the experimental setup.
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3.2. Parameter conversion
As shown in figure 7, the second part of the SDFT technique is parameter conversion where the

tracked magnitudes Mi are converted to the tracked parameters p̂. This part requires a parameterized
function of the magnitude. In this case, the transfer function H2(s) is selected as the system model.
Substitution of s = jω in (11) and computing the modulus leads to the parametric magnitude
function M(ω, p):

M(ω, p) =
ω√

((J + bτ)ω2 − k)2 + (Jτω2 − b − kτ)2ω2
(20)

In this magnitude function, the independent variable is the frequency ω = 2π f and the parameters
are collected with the symbol p. The known constants are the inertia J and time constant τ. The
unknowns are the damping b and stiffness k. Inspection of the function shows that the magnitude
is not linear in its parameters b and k. This means linear algebra cannot be applied. Non-linear
curve-fitting techniques are required.

The objective function fmin for curve-fitting techniques equals the least-squares error between
the measured and estimated values according to the curve-fit function. In this case, the measured
value is the tracked magnitude Mi at frequency ωi = 2π fi and the estimated value is the value
M(ω, p) found by substituting the initial or estimated parameters p̂:

fmin =

l∑
i=1

[Mi − M̂(ωi, p̂)]2 (21)

The summation goes up to the number of harmonics l. An iterative algorithm minimizes the
least-squares error through a sequence of well-chosen updates of the parameter values. The most
common algorithms for non-linear curve-fitting are the gradient descent algorithm, the
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Gauss-Newton algorithm (GN) and the Levenberg-Margaurdt algorithm. A comparison between
their performance is made in (Gavin, 2013) where it is concluded that the fastest convergence is
achieved with GN for small-size problems. Because fast parameter tracking is one of the main
objectives, GN is selected for implementation.

The update algorithm of GN assumes that the objective function fmin is approximately quadratic
in the parameters p near the solution at its minimum value (Gavin, 2013). This approximation
requires the calculation of the gradients of the objective function with respect to the parameters.
The gradients are calculated from the partial derivatives and are collected in the Jacobian matrix J:

J =



∂M̂(ω1, p̂)
∂b

∂M̂(ω1, p̂)
∂k

∂M̂(ω2, p̂)
∂b

∂M̂(ω2, p̂)
∂k

...
...

∂M̂(ωl, p̂)
∂b

∂M̂(ωl, p̂)
∂k


(22)

The partial derivatives with respect to the parameters p are calculated analytically from the
magnitude function in (20):

∂M̂(ω, p̂)
∂b

=
−bτ2ω5 − bω3

(J2τ2ω6 + (J2 − 2Jkτ2 + b2τ2)ω4 + (b2 − 2Jk + k2τ2)ω2 + k2)3/2 (23)

∂M̂(ω, p̂)
∂k

=
−kτ2ω3 + Jω3 − kω

(J2τ2ω6 + (J2 − 2Jkτ2 + b2τ2)ω4 + (b2 − 2Jk + k2τ2)ω2 + k2)3/2 (24)

Using the Jabobian matrix, the update algorithm of GN for computing the updated parameters
p̂r+1 for the next iteration r + 1 from the current ones p̂r at iteration r is given as (Gavin, 2013):

ˆ{
b
k

}
r+1
=

ˆ{
b
k

}
r
−

[[
[J⊺

r Jr]−1
]

J⊺
r

]



M1

M2
...

Ml

 −
ˆ

M1

M2
...

Ml



 (25)

In order to start the iterations, initial guesses p̂0 must be provided. The algorithm stops when the
number of iterations r reaches a configured maximum rmax.

For the selected pattern shown in figure 10, the objective function in (21) is graphically
visualized in figure 12a for stiffness k and damping b values varying around the actual values. The
initial guesses {k0; b0} are set to the ones identified from the impulse response and are given in
table 1. The actual values are set at k = k0/2 = 6.40 N mm/◦ and b = 1.5b0 = 0.213 N mm s/◦. The
3D-plot proves that the optimisation problem is convex implying that any initial guess {k0; b0}

leads to convergence towards the solution at the minimum least-squares error. In figure 12b, a
contour plot of the objective function is given where the convergence is visualized. From the
initial guesses at r = 0, the parameters are iteratively updated with steps in the direction of the
gradients of fmin. At r = 3 the actual parameters are found where the least-squarer error equals
fmin = 0.
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Figure 12: Graphical visualization of the objective function (a) and a contour-plot (b).

3.3. Tracking performance
The implementation of the proposed stiffness tracker is shown in figure 13. As discussed in

the introduction, the objective is to track fast changes. The performance of the stiffness tracker is
analyzed using the control scheme in figure 9. The model is the torque-position transfer function
H1(s). The actual damping b is set as a constant. The actual stiffness k is set to change over time
with a slower rate of change of δk = 1 N mm s/◦ and a faster rate of change of δk = −2 N mm s/◦.
The quantization and noise are excluded to focus solely on the tracking performance.

Curvefitting b̂

{fi} M(ω,p)
J

SDFT

{|Ω|i}

f1

{|Tm|i}
{Mi}

δt tset

Tm

Ω

{hi}

k̂

rmax

b0
k0τ

Figure 13: Implementation of the stiffness tracker.

With the tracking settings listed in table 1, the tracked damping b̂ and stiffness k̂ are shown in
figure 14a. The time is set to t = 0 s after initialization. The first update from the initial guesses
b0, k0 to the first estimates k̂, b̂ is shown in figure 14b. The set maximum number of iterations
rmax = 5 is sufficient for reaching convergence. After 5 iterations, the tracked parameters are
updated with the iterative estimates b̂r, k̂r at r = 5. This means that the parameter update time
equals tp = ts · rmax = 1.25 ms. At each parameter update, the tracked parameters are set to the
initial ones for the next iterations.

After the first parameter update, the tracked stiffness k̂ follows the trend of the actual stiffness
k but with a tracking error εp depending on the rate of change δk. The zoom-in plots in figures 14c
and 14d show that the mean tracking error equals εp = δk/2. The faster the stiffness changes, the
higher the error.

The tracking error εp originates from using a sliding window. The parameters are computed
from the past N samples of the sliding window. Because the stiffness changes within the time
window δt = 1 s, the actual value cannot be tracked. A value close to the mean value is tracked
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Table 1: Settings of the stiffness tracker.

Controller
τ = 0.001 s

Ki = 0.02 N m s/rad
Kp = 80/s

Known inertia J = 315 kgmm2

Initial guesses
b0 = 0.142 N mm s/◦

k0 = 12.79 N mm/◦

Harmonic pattern
f1 = 1 Hz

hi = {1; 2; 4; 8; 10}
Ai = {21; 22; 25; 32; 18} N mm

Update
tinit = 1.2 s
rmax = 5
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Figure 14: Tracked stiffness k̂ and damping b̂ compared to the actual values (a); first iterations during curve-fitting (b);
zoom-in of the tracked stiffness at the slower stiffness change (c) and faster stiffness change (d).

instead. In this case of a constant rate of change δk, the mean tracking error equals εp = δk/2.
Consequently, the tracked stiffness lags with δt/2. The time window δt must be small to suppress
this tracking error. According to (16) this means that the fundamental frequency f1 must be set high
but figure 10a shows that the tracking frequencies fi are bounded to a low range where the stiffness
affects the dynamics. Selecting f1 thus determines the rate of change δk of the stiffness that can be
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tracked. The mean error εp is proportional to:

εp =
δk
2δt
=
δk
2

f1 (26)

Figure 14a further shows that when both parameters are constant, the tracked parameters are
exact. Note that the simulations only consider the potential tracking error due to using a sliding
window. In the next section, the developed stiffness tracker is validated on the experimental setup
where the other potential errors namely linearization, quantization and noise are present.

4. Measurements

4.1. Validation of the proposed stiffness tracker
The proposed stiffness tracker is validated by tracking the cogging stiffness and damping of the

PMSM-driven rod in figure 2. The identified cogging stiffness in figure 4b is used as a reference for
comparing with the tracked stiffness. The real-time controller is configured in torque mode and runs
on a commercially available industrial PC at a sample time of ts = 250 µs. The motion controller
and tracking scheme shown in figure 13 are developed in Matlab/Simulink and implemented on the
real-time control platform using the provided code generation toolbox.

The tracking settings are listed in 1 but some are adapted. Because stiction is observed during
experimentation, the amplitudes Ai are set higher: Ai = {50; 50; 50; 13; 8} N mm. To compensate
for the increased deflection δθ, the phases φi are shifted: φi = {15◦; 5◦; 45◦; 80◦; 90◦} N mm. Note
that the deflection must be limited to suppress the linearization error.

The measured control signals are plotted in figure 15 for 2 periods of the injected multi-sine.
The initial one is not shown because it is used for initializing the SDFT. The injected torque Tinj
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Figure 15: Injected torque Tinj, desired torque Tm, actual speed Ω and actual position θ during parameter tracking.
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is manipulated by the speed controller leaving the desired torque Tm for actuation. The desired
frequency content is sufficiently present. The actual speed Ω and position θ contain the desired
periodicity of 1/ f1. The deflection is limited to about 3◦ in both directions.

Combining the position-dependent cogging stiffness k(θ) plotted in figure 4b with the measured
position θ(t) leads to the time-dependent cogging stiffness k(t) plotted in figure 16. The stiffness
strongly changes within the sliding time window δt. As concluded in the previous section, only the
mean value µk = 5.32 N mm/◦ can be tracked. The mean µk is therefore used as the reference for
validation.
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Figure 16: Time-dependent cogging stiffness k for 1 time window and its mean µk.

The amplitudes |Tm|i and |Ω|i at the harmonic spectrum hi are tracked using SDFT and plotted
in figure 17. The amplitudes are nearly constant indicating that noise is not an issue and that quasi-
linear system behaviour is achieved. The quantization error is however not negligible because the
amplitudes |Tm|4 and |Tm|5 violate the condition in (19) of being at least 6.3 N mm. This is because
the tuning Tinj is performed with initial guesses of the stiffness k0 and damping b0 which deviate
from the actual values.
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Figure 17: Amplitudes of the torque Tm (top), speed Ω (middle), and magnitude M at the selected harmonics hi.
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After the initialization time tinit, steady-state is reached and the tracked magnitudes Mi are used
for parameter conversion with the curve-fitting algorithm.

Using the GN algorithm, the tracked magnitudes are converted to the tracked parameters. The
tracked stiffness k̂ and damping b̂ are plotted in figure 18. The tracked damping b̂ shows a slowly
decreasing trend. The tracked cogging stiffness k̂ remains constant for this tracking time of 10 s.
Compared to the reference µk, the mean tracking error is εp = 32 %. The inevitable trade-off
between the linearization and quantization error is the main cause of this deviation. In the next
subsection, a benchmark with the Welch technique is made for evaluating the accuracy.
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Figure 18: Tracked cogging stiffness k̂ and damping b̂ of the PMSM-driven rod.

The robustness of the curve-fitting algorithm is illustrated in figure 19 for the initial parameter
update at t = 1.2 s. The initial magnitude M̂0 at r = 0 converges to the estimated magnitude M̂ at
r = 5. A clear fit with the tracked magnitudes Mi is found. The least-squares fit however does not
equal fmin = 0 because of the tracking errors. The least suppressed one is the linearization error.
Despite the errors, the stiffness tracker provides feasible estimates proving its robustness.
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Figure 19: Tracked magnitudes Mi, initial magnitude function M̂0 and final magnitude function M̂.

Based on the experimental results, it can be concluded that the proposed SDFT technique for
stiffness tracking is successfully implemented on a commercially available real-time motion
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controller. A mean tracking error of εp = 32 % is obtained in an update time of only tp = 1.25 ms.
Due to the use of a sliding window of δt = 1 s, the mean of the changes within this window is
tracked.

4.2. Benchmark with the Welch technique
The classic off-line frequency-domain technique for parameter estimation is the Welch

technique (Villwock and Pacas, 2008) and is bench-marked against the proposed on-line SDFT
technique. The Welch technique uses noise injection to identify the magnitude characteristic at a
broad range of frequencies. Thereafter, some of the magnitudes are manually selected for
parameter conversion.

The injected torque Tinj is defined as a random sequence of values between a specified maximum
Tmax and minimum −Tmax. All values in between have the same probability of being selected.
The resolution ∆ f of the frequency content is determined by the measurement time. The higher
the measurement time, the finer the resolution ∆ f . Consequently, many non-periodic frequencies
are present leading to leakage. The Welch technique suppresses leakage through averaging with
window techniques.

The same control strategy as with the SDFT technique is used. Only now the injected torque
Tinj is replaced by the noise with a maximum of Tmax = 140 N mm. For leakage suppression and
having a fine resolution, the measurement time is set to have at least 100s of data. The number
of windows is set to w = 32 each having 50 % overlap. The measured torque-speed magnitude
characteristic is shown in figure 20 and is achieved using the tfestimate-function in Matlab which
consists of the Welch algorithm. During the measurement, the maximum deflection is 6◦.
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Figure 20: Identified magnitudes {M} using Welch and estimated magnitude M̂ using peak picking with the selected
coordinates indicated.

Rather than using the non-linear curve-fitting algorithm with the whole magnitude vector {M} as
data points, the peak picking method is suggested (Brandt, 2011) where the user selects 3 feasible
coordinates inside the resonance peak:

• Select M1 at the natural frequency fn.

• Calculate M2 =
M1
√

2
.
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• At M2, select the lower frequency fl < fn and the upper frequency fu > fn.

From these coordinates, first principle formulas allow estimation of the stiffness k̂ and damping b̂
(Brandt, 2011):

k = (2π fn)2J b = 2π
f 2
u − f 2

l

fn
J (27)

Substituting the 3 selected coordinates in (27), the estimated stiffness is found as k̂ = 5.17 N mm/◦

and the damping as b̂ = 0.18 N mm s/◦. Substituting these values in (20) leads to the estimated
magnitude function M̂ plotted in figure 20. A clear but not exact agreement with the identified
magnitude is found.

Similar to the proposed on-line SDFT technique, linearization error affects the off-line
identified magnitudes. An additional error in the case of the off-line Welch technique is caused by
leakage. The mean cogging stiffness µk during identification is determined to evaluate the
accuracy. Combining the measured position with the cogging torque characteristic in figure 4b
leads to the time-dependent stiffness k(t). The mean equals k̂ = 8.70 N mm/◦. With
k̂ = 5.17 N mm/◦ being the estimated stiffness, the estimation error is found as ε = 41 %.
Compared to SDFT, Welch is 10 % less accurate.

To improve the accuracy using Welch, the deflection of 6◦ should be limited. The only tuning
option in the case of using noise injection is to change the maximum value Tmax. Further decreasing
Tmax is however not feasible because the quantization error then affects the accuracy.

The on-line SDFT technique is not only more accurate but also much more computationally
efficient. This enables the parameter tracker to be implemented on the real-time motion controller.
The Welch technique requires a post-processor.

The final comparison is the update time. For the benchmark, this is the measurement time of
about 100 s added with some user interaction time. This user interaction time is the time needed
for exporting the measured input and output signals, achieving the identified magnitudes using the
Welch algorithm and applying the peak picking method. When a new parameter update is desired,
the whole process needs to be repeated.

The SDFT technique delivers parameter updates each 1.25 ms without user interaction. The
proposed stiffness tracker outperforms the classic Welch technique in terms of accuracy,
computational efficiency and parameter update time.

5. Conclusion

Through experimental validation on a PMSM-driven rod, the proposed SDFT technique is
proven to be applicable for tracking the cogging stiffness and accompanying damping. The
computational efficiency of the parameter tracker is sufficiently low to be implemented as an
expansion of the provided motion controller. The potential tracking errors are caused by
non-linear system behaviour, quantization, noise and the use of a sliding window. For this
experimental case, the maximum achievable accuracy is determined by a trade-off between the
linearization and quantization error.
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A benchmark with the classic off-line Welch technique shows that the proposed on-line SDFT
technique is 10 % more accurate. Compared to the Welch technique, the SDFT technique is not
prone to leakage and has more tuning capabilities for suppressing the linearization error.

Guidelines for suppressing the potential errors are presented and are based on initial guesses of
the stiffness and damping. It is proven that a rough estimate from an impulse response enables
selecting and tuning the tracking frequencies and allows convergence of the stiffness tracker.
Conceptual analysis shows that convergence is guaranteed even if the initial and the actual
stiffness deviate with a factor 2.

The objective is to track fast changes. Through conceptual analysis, it is found that the mean
tracking error is proportional to the set fundamental frequency. The frequency selection is
bounded to the low range where the stiffness affects the dynamics. The fundamental frequency
thus determines the maximum rate of change of the stiffness that can accurately be tracked.

For this experimental case, the cogging stiffness changes fast within the sliding window. The
proposed stiffness tracker is robust against these changes and delivers the mean value as the tracked
stiffness. The capabilities of optimizing the motion control on-line based on the mean stiffness is a
future research track.

A second topic for further research is limiting machine task interruption because this is not
desired in the industry. Because of the early design stage of the parameter tracker, the stiffness
is tracked around equilibrium to limit the linearization error. This requires interrupting the cyclic
motion profiles when tracking is desired. A future research track is to investigate the tracking
performance at both constant and varying speed.
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