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Abstract: Recurrent neural networks (RNNs) transmit information over time through recurrent
connections. In contrast, biological neural networks use many other temporal processing mechanisms.
One of these mechanisms is the inter-neuron delays caused by varying axon properties. Recently,
this feature was implemented in echo state networks (ESNs), a type of RNN, by assigning spatial
locations to neurons and introducing distance-dependent inter-neuron delays. These delays were
shown to significantly improve ESN task performance. However, thus far, it is still unclear why
distance-based delay networks (DDNs) perform better than ESNs. In this paper, we show that by
optimizing inter-node delays, the memory capacity of the network matches the memory requirements
of the task. As such, networks concentrate their memory capabilities to the points in the past which
contain the most information for the task at hand. Moreover, we show that DDNs have a greater total
linear memory capacity, with the same amount of non-linear processing power.

Keywords: distance-based delays; inter-neuron delays; echo state networks; recurrent neural networks;
reservoir computing; memory capacity

1. Introduction

Many real-world machine learning problems are temporal in nature and require
learning spatio-temporal patterns. Recurrent neural networks (RNNs) are commonly
used to model temporal tasks and rely on recurrent connections to represent temporal
dependencies in the data, passing information from one time step to another. In contrast,
an important property of temporal processing in biological networks, besides recurrent
connections, are inter-neuron delays, which have mostly been overlooked in artificial RNNs.
It has been shown that the brain relies on axon delay in neural circuits for coincidence
detection [1], for sensory processing [2], and for shaping the spatio-temporal dynamics of
motor control [3]. Most mammals show a large variety in inter-neuron signal propagation
delays [4]. Many of these delays are caused by the integration of signals such as in dendrites,
somata, and synapses, which additionally perform non-linear transformations. However,
axons propagate action potentials unchanged and only introduce a delay that varies with
the axon length, diameter, and myelination. In this paper, we present an analysis of the
effect of “axon-like” inter-neuron delays on temporal processing of RNNs and show that
delays can be adapted to task memory requirements.

One of the RNN-based strategies for modeling temporal data is reservoir computing
(RC), a paradigm originally proposed as an alternative to gradient-based RNN training
such as back-propagation through time (BPTT) [5]. RC makes use of a dynamical system
called a reservoir, and a readout layer that can be trained to estimate task labels based on
reservoir dynamics. Software simulated RC systems are generally based on fixed RNN
reservoirs, with weights that are randomly sampled from a task-optimized distribution. The
reservoir performs non-linear, history-dependent transformations on the input sequence.
This can also be viewed as a temporal kernel [6], which projects the data to a higher
dimensional space, increasing the linear separability of the task. In principle, any model
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can be used as a readout layer, but generally linear models such as ridge regression are
used [7]. This projection to a higher dimensional space can in fact be carried out with any
type of dynamical system, not exclusively RNNs. This is the basis of physical reservoir
computing, where instead of simulating an RNN, the reservoir is a physical substrate (e.g.,
an electronic [8], photonic [9], or memristive [10] circuit) [11]. Physical RC has the benefit
of being fast and energy efficient, due to not having to simulate a reservoir, and physical
reservoirs generally being very low power (and sometimes even fully passive). Although
software simulated RC has somewhat decreased in popularity, recent years have seen ongoing
development in physical RC. Nevertheless, software simulated RC serves as a model system
for physical systems and can be used as a convenient testbed for novel RC features.

Echo state networks (ESNs) [12] represent one of the most commonly used types of
reservoirs. These RNNs make use of simple sigmoid or hyperbolic tangent activation
functions as opposed to the spiking neuron models used in liquid state machines [13],
another major class of reservoirs. However, from the perspective of biological plausibility,
ESNs can also be framed as a model for rate-based neural networks. Besides the recurrent
connections used in conventional RNNs, ESNs usually also employ leaky nodes, which act
as low-pass filters, internally integrating information over time. This offers another way to
optimize the temporal dynamics of the reservoir. In fact, this leak mechanism serves as a
way of separating the effect of self-connections from recurrent connections, by providing
a separate tuneable parameter. Moreover, it was shown that a distribution of different
leak rates in a network further improves performance on temporal tasks by improving
temporal richness of the reservoir [14]. The importance of temporal diversity of networks
is not limited to RC. Similarly, the use of adaptive and diverse temporal parameters also
improved performance and memory capacity of conventional RNNs [15]. Although both
recurrent connections and leaky neurons pass over information to the next time point,
none of these mechanisms can do so over multiple time steps without transforming the
information through non-linear activation functions. Past work in the field of RC has shown
the importance of obtaining multi-scale dynamics through delays, to the extent that single-
node reservoirs were able to achieve a similar performance as multi-node reservoirs when
time-delayed feedback was used [16,17]. Just by tuning the feedback strength in this type of
single-node delayed systems, a range of different behaviors can be achieved. These findings
are useful for physical RC implementations, as they are easier to implement in hardware
than RNN reservoirs. In fact, delays are a fundamental property of any physical and
biological system. Whereas before, delays in physical reservoirs were seen as a limitation,
since the introduction of time delay reservoirs in [16], it has become clear that the intrinsic
delay properties of physical systems can be exploited to improve reservoir performance.

Besides feedback delay, a time-delayed input was shown to reduce hyperparameter
optimization requirements of reservoirs [18,19]. Furthermore, the inclusion of past inputs
into the reservoir allows for smaller reservoirs without reducing performance [20]. Our
recent work related to time-delays has even further explored the importance of delayed
reservoirs by introducing delays in multi-node systems (ESNs) as inter-node delays instead
of only feedback delays, further highlighting the importance of multiscale dynamics [21,22].
It was shown that in these distance-based delay networks (DDNs), the use of variable
inter-node delays can improve task performance on temporally complex tasks compared to
conventional, single-step delay systems [21].

Although this consistent increase in ESN task performance was shown empirically,
the question remains what the underlying mechanism is that leads to this improvement.
Classical RNNs, which are used as reservoirs for ESN, pass the network activity through
non-linear activation functions at every timepoint, thus continuously decreasing the amount
of information about the past states. This means that the memory capacity of RNNs
will monotonically decrease in time. Many real-world machine-learning problems are
temporally complex and require memory of previous inputs and system states at specific
points in the past. Others require the synchronization of inputs at specific temporal intervals
(e.g., coincidence detection [1]). Due to their monotonically decreasing memory capacity, in
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RNNs, we can only increase the memory capacity at time t by increasing t-1 as well. We
hypothesize that the improvement in task performance seen in DDNs can be explained
by the effect that the delays have on memory capacity. The optimization of delayed
connections can result in non-monotonically decreasing memory capacity profiles, which
allows for peaks of memory capacity at specific points in time. Following this reasoning,
we would expect optimized DDN to have peaks in memory capacity coinciding with high
memory demand of the task for which they are optimized.

Linear memory capacity is a metric introduced by [23], often used to characterize
computational properties of reservoirs (e.g., [24,25]). Memory capacity quantifies how well
past inputs to the reservoir can be reconstructed based on current reservoir activity. This
concept was later extended by [26] to non-linear computations. In this paper, we compare
the linear memory capacity with the task memory requirements, which we here call task
capacity. The novel contribution of this paper is an in-depth analysis on the effect of variable
inter-node delays (both optimized and random) on linear memory capacity, and how this
relates to the task capacity. We show that evolving inter-neuron delays in DDNs indeed
results in memory capacity profiles that match the task profile for which they are optimized.
More specifically, without inter-node delays, it is not possible to achieve peaks of memory
capacity at specific lags. To our knowledge, the ability to distribute memory to specific time
points, without relying on simply increasing the total memory capacity, and instead using
inter-node delays, has not been studied before. Considering the fact that DDNs serve as
model systems for physical reservoirs, this has important implications for the development
of novel time-delay reservoirs that include in-reservoir delays, in addition to previously
explored input delays and feedback delays [16–18].

The remainder of this paper is structured as follows. In Section 2, we discuss the
formalization for DDNs (Section 2.1), Adaptive DDNs Section 2.2), the corresponding
optimization procedure (Section 2.3), the benchmark tasks that we use (Section 2.4), and
the concept of linear memory capacity (Section 2.5). Next, we present our experimental
setup and results in Section 3. Lastly, we discuss our findings in Section 4.

2. Methods

In this section, we discuss the ESN models used in this paper, along with the training,
hyperparameter optimization and benchmark tasks used. ESNs were first presented as a
computationally efficient alternative to classical RNNs that are trained using BPTT. Instead,
ESNs make use of a fixed, recurrent ‘reservoir’ of (usually leaky) sigmoid or hyperbolic
tangent neurons. Only a linear readout layer is trained. The ESN update equation is
as follows.

x(n) = (1 − a)x(n − 1) + a · f (Wresx(n − 1) + bres + Winv(n − 1)) (1)

Here, x(n), a, f (·), v(n) and bres are, respectively, the reservoir activity at time n, the
leak rate, the activation function, the task input at time n, and the reservoir bias weights.
Wres is the N by N recurrent reservoir weight matrix, and Win is the N by T input weight
matrix, with N being the number of neurons and T the input dimensionality.

Although ESNs as such have lost popularity as an alternative to BPTT, the simplicity
of training makes them particularly convenient as a model system for physical RC and as
a test bed for novel features such as distance-based delays, because they do not require
the development of a gradient-based optimization technique. Both DDNs and ADDNs are
extensions of ESNs and similarly require task-specific hyperparameter optimization next to
training a readout layer. Since a reservoir is randomly initialized, it can be seen as a sample
from a distribution, defined by its hyperparameters (e.g., connectivity parameters, weight
scaling, etc.). Although training a single readout layer is fast and requires few data points,
optimizing hyperparameters requires training and evaluating task performance of readout
layers for a number of reservoir samples from each candidate hyperparameter set. In this
paper, we use the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [27]
for optimizing reservoir hyperparameters. This evolutionary strategy works by sampling



Biomimetics 2024, 9, 355 4 of 18

new candidate hyperparameter sets from a multivariate Gaussian. Each candidate is
assigned a fitness score. The covariance matrix of this distribution is adapted in subsequent
generations, such that the likelihood of previous successful candidates is increased.

In the following subsections, we describe the previously introduced DDNs and
ADDNs, and we discuss the optimization procedure. Next, we describe the tasks used to
evaluate these models. Lastly, we explain the Linear Memory Capacity metric.

2.1. Distance-Based Delay Networks

DDNs are based on conventional leaky ESNs, as defined by the state update equation
from [28]. Note that the ESN contains information about previous states only through the
leak mechanism and the recurrent reservoir connections. As mentioned, DDNs include
the mechanism of variable inter-node delay according to the models presented in [21,22],
which can combine the current reservoir state with node activity up to Dmax time steps ago,
with Dmax being the largest delay present in the reservoir. DDNs are modeled in Euclidean
space (2D in this paper). Each neuron is characterized by a position vector containing the
x and y coordinate for each neuron i, described by li = (xi, yi). A distance matrix S is
defined, with element Si,j =

∥∥li − lj
∥∥. An ESN can be defined with inter-neuron delays

proportional to the inter-neuron distances. However, because this is simulated in discrete
time, the distance matrix also needs to be discretized as such: D =

⌊
S

∆t·vp

⌋
, where ∆t and

vp are, respectively, the duration in seconds of one time step and the pre-defined signal
propagation velocity between neurons in meters per second. ⌊·⌋ refers to the rounding
down operator. Instead of a single reservoir weight matrix, a set of sparse, delay-specific
weight matrices can be defined as follows.

Wi,j,D=d = δd,Di,j
· Wi,j (2)

Here, δ·,· is the Kronecker delta operator. As such, the elements of matrix WD=d, for
which the corresponding inter-neuron distance is d delay steps, are given by the original
weight matrix. All other elements are set to 0. Based on these delay-specific weight matrices,
the DDN reservoir activity is defined by the state update Equations (3) and (4) [21].

x(n) = (1 − a)x(n − 1) + aσ(y(n − 1)) (3)

y(n) =
Dmax

∑
d=0

(
Wres

D=dx(n − d) + Win
D=dv(n − d)

)
+ bres (4)

Here, x(n), a, σ(·), v(n), and bres have the same meanings as in Equation (1). y(n) can
be seen as a pre-activation term at time n, i.e., the summed inputs for each neuron activation
function. The software implementation of DDNs are provided in the Supplementary Materials.

2.2. Adaptive Distance-Based Delay Networks

Originally, the main proposed benefit of ESNs has been the use of randomly initialized,
fixed reservoirs. Avoiding the training of recurrent weights saves computation time and
allows for physical implementations without the difficulties of modeling weight updates
in hardware. However, in simulated ESNs, efforts have been made to depart from the
idea of a fixed reservoir. Several RC implementations make use of Hebbian plasticity such
that reservoir weights can adapt to better model input dynamics. In [29], the anti-Oja
rule [30] was used in ESNs to improve Mackey–Glass performance in ESNs. In addition
to Oja’s rule, Yusoff et al. also tested the BCM rule [31] in both temporal (Mackey–Glass
and sun spot datasets) and classification (Breast Cancer and Adult Census Income datasets)
tasks [32]. Both neural plasticity rules were tested in combination with on-line and off-line
learning. BCM was found to outperform Oja, especially in off-line learning. The ESN
implementation introduced in [33] combines Hebbian plasticity and intrinsic plasticity,
which is shown to outperform conventional ESNs and gated recurrent units (GRUs [34]) in
several benchmark tasks. Furthermore, in [35], different plasticity rules and learning rates
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are evolved within the same reservoir, thus allowing flexibility in the type and rate of neural
plasticity. All of these approaches for task adaptive RC are software simulated. Although
software simulated reservoirs offer enough flexibility to implement such task-dependent
adaptive rules, doing the same in physical RC poses a significant challenge. However,
recently adaptive reservoirs have also been implemented in physical systems by [36]. By
adapting the thermodynamical phase space of the physical substrate, the same reservoir
could be optimized for multiple tasks.

More generally, Hebbian plasticity is based on local learning rules: a weight update
strategy inspired by biology that only make use of local information (i.e., information
present at the synapse). This is generally understood to be pre- and postsynaptic firing or
firing frequency. Since there is usually no error signal, local learning rules are suitable for
unsupervised learning. The combination of adaptive reservoirs based on unsupervised
local learning rules with supervised readout layers combines the benefits of both learning
schemes, while still avoiding the computational cost of backpropagating through the entire
reservoir. Adaptive DDNs (ADDNs), introduced in [22], have adaptive reservoirs with
delay-sensitive BCM synapses in addition to delay connections, allowing the reservoir to
adapt to input dynamics. Delay-sensitive BCM differs from the regular BCM rule (see [32])
in what is considered local information (see Figure 1). Since delays (modeled by physical
distance) between the pre- and postsynaptic neuron are included, the presynaptic rate is not
local information at the synapse. Instead, the presynaptic activity delayed by d timesteps is
used, where d is the amount of delay applied by the connection, resulting in the following
weight update equation.

∆WD=d = η ⊙ x(n)⊙ (x(n)− θM(n))xT(n − d) (5)

Here, ∆WD=d is the weight change for all weights with d delay steps (i.e., all elements
corresponding to connections of different delays are set to 0), ⊙ is the element-wise multi-
plication operator, η is the matrix of learning rates (i.e., each weight is updated according
to a separate learning rate), and θM(n) is the adaptive threshold at time n, defined in
Equation (6).

θM(n) = E2[(x(n)/yo)] ≈
(

1
T

T

∑
t=0

x(n − t)
yo

)2

(6)

where y0 is a scaling parameter, and E[·] is the expected value. This is estimated using a
sliding average with a time window of T simulation steps.

The software implementation of BCM in DDNs is provided in the Supplementary Materials.

Figure 1. Schematic representation of a(n) (A)DDN connection, with a delay of d time steps. The
activity of neuron A is present at the input of neuron B after d steps, so the input for neuron B at time
n will be xA(n − d). In the case of ADDNs, where connections can be adaptive, the weight change
∆wAB is computed based on the postsynaptic activity xB(n) (represented in orange), and the delayed
presynaptic activity xA(n − d) (represented in green).
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2.3. Training and Optimization

DDN readout layers are trained using the same procedure as in conventional ESNs.
Task input is fed into the reservoir, with the first 400 reservoir states being discarded to
account for the transient dynamics. A ridge regression model is fitted to predict the task
labels based on the reservoir activity. Next, the network activity is reset, and the readout
task performance is evaluated on a validation set, with the first 400 reservoir states again
being discarded.

As mentioned, this procedure is performed for each hyperparameter candidate evalua-
tion, such that each candidate can be assigned a fitness score based on a specified validation
performance metric. Using CMA-ES, the hyperparameters are optimized to maximize this
fitness score. The hyperparameters that need to be optimized for DDNs consist of the
standard ESN hyperparameters (e.g., weight scaling and connectivity), as well as location-
specific hyperparameters (e.g., location mean and variance). However, DDNs are based on
a multi-reservoir approach. In this case, the hyperparameters are not defined for the entire
reservoir, but the reservoir consists of several sub-reservoirs, or clusters of neurons. As such,
instead of having for example, a single connectivity parameter, the connectivity is defined
between and within each sub-reservoir. The location of the neurons can then be sampled
from a Gaussian Mixture Model (GMM), with each of the GMM components corresponding
to a sub-reservoir. This introduces the mixture weights as additional hyperparameters. A
detailed overview of DDN hyperparameters as a function of number of sub-reservoirs K is
given in Table 1.

Table 1. DDN hyperparameters as a function of number of reservoir clusters K.

Standard ESN Hyperparameters

Name Shape Description

Weight scaling K by K Weight scaling factor for weights from cluster i
to cluster j.

Bias scaling K Bias scaling factor for each cluster.

Connectivity K by K Fraction of non-zero weights for connections
from cluster i to cluster j.

Decay K Decay/leak parameters for each cluster.

Location-Related Hyperparameters

Name Shape Description

Component means K by 2 Location mean of each cluster.

Component variance K by 2 GMM component variance along the x- and y-
axis.

Component correlation K GMM component x- and y-axis correlation.

Mixture weights K Mixture weights define how neurons are dis-
tributed over GMM components.

Next to readout training (supervised), ADDNs require reservoir adaptation (unsu-
pervised). As such, the training procedure for each reservoir consists of an unsupervised
pre-training step where task data are fed into the reservoir, without recording reservoir
states. Reservoir weights are updated according to delay-sensitive BCM. After pre-training,
reservoir weights are fixed, and the readout layer is trained as before.

In addition to the DDN hyperparameters presented in Table 1, ADDNs include
learning-rate hyperparameters, which indicate how adaptive each cluster to cluster pro-
jection is, and an adaptive threshold scaling parameter, defined for each cluster. These
are optimized together with all the previously introduced hyperparameters, similar to the
approach presented in [35].
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2.4. Tasks

In this paper, we use the following benchmark tasks to quantify and analyse reser-
voir performance.

Mackey–Glass Signal Generation is a commonly used benchmark task for RC. The
Mackey–Glass timeseries are generated using the following Equation [37]:

dx
dt

= β
x(t − τ)

1 + x(t − τ)n − γx(t) (7)

where the parameters were τ = 17, n = 10, β = 0.2 and γ = 0.1. However, because we
simulate in discrete time, we make use of the discrete version of this equation, with τ being
a positive integer.

x(t + 1) = x(t) + β
x(t − τ)

1 + x(t − τ)n − γx(t) (8)

For the signal generation task, the goal is to generate Mackey–Glass sequences as far
into the future as possible, based on a limited number of previous steps, without receiving
new feedback during signal generation. This is achieved by first training the network
readout layers for one step ahead prediction. During validation, new Mackey–Glass state
estimations are re-used as inputs for subsequent predictions. We refer to this as ‘blind
prediction’. We evaluate task performance using the Prediction Horizon metric introduced
in [22], which is the amount of blind prediction steps that the network can perform, while
maintaining an absolute prediction error lower than a pre-defined error margin. In this
paper, we use an error margin of 0.1σ2

l , where σ2
l is the label variance.

NARMA system approximation is another commonly used RC benchmark task.
NARMA stands for nonlinear auto-regressive moving average and is characterized by
the order, which defines the temporal dependencies in the system. In this paper, we use
10th order NARMA (NARMA-10) and 30th order NARMA (NARMA-30) systems, which
are defined by, respectively,

y(t + 1) = 0.3y(t) + 0.05y(t)
9

∑
i=0

y(t − i) + 1.5u(t − 9)u(t) + 0.1 (9)

y(t + 1) = 0.2y(t) + 0.04y(t)
29

∑
i=0

y(t − i) + 1.5u(t − 29)u(t) + 0.001 (10)

where y(t) is the system state at time t, and u(t) is the system input at time t, which is
uniformly distributed between 0 and 0.5. The goal in this task is to predict the next state of
the NARMA system based on the previous, serially presented inputs. During evolution, the
reservoirs are trained and validated using the same input as given to the NARMA systems.

2.5. Linear Memory Capacity

One of the metrics commonly used to quantify reservoir dynamics independent of
tasks or read-out layers is memory capacity (MC) [23,26]. We use Equation (11) for total
linear MC and Equation (12) for lag-specific MC.

MCtot =
∞

∑
k=1

MCk (11)

MCk = r(u(n − k), ûk(n))2 (12)

Here, r(·, ·) is the Pearson correlation coefficient, u(n) is the input to the reservoir
at time n, and ûk(n) is the output generated by a readout layer trained to reproduce the
input from k steps ago, or u(n − k). We refer to the term k as lag, which is simply the time
difference between the current input, and the past input to be reproduced. Because the
readout layer consists of a simple linear regression for each reservoir, the MC is considered
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to be a property of the reservoir, independent of the readout layer [26]. The input to
be reproduced that is used for computing MC should be independently and identically
distributed (i.i.d.).

In theory, total linear MC is defined as the sum of memory capacities for lags 1 to ∞.
This sum is upper bounded by the number of observed reservoir states. In a conventional
ESN, this equals the number of neurons. For the experiments presented in this paper, we
only report on MC values up to a fixed maximum lag of 150. This corresponds to 6Dmax.

Memory capacity is a measure of how much short-term memory a reservoir has, which
is defined by how well the input at time n − k can be reproduced based on reservoir activity
at time n. Two systems with the same total MC can have different capacity profiles (i.e.,
different values for MCk for each k) and can be useful in different types of tasks, as tasks
can require linear memory from different points in the past. In regular ESNs, it has been
shown that the total linear MC of a reservoir is maximized when all reservoir nodes are
linear and serially connected [28]. More generally, linear MC is in trade-off with non-
linear computation [26]. Simply maximizing total linear MC is not useful, as real-world
tasks generally require not just recalling as many past inputs as possible but recombining
inputs from specific times, often also with non-linear transformations. Without non-linear
transformations, reservoirs are not able to increase the linear separability of the input data.
It has been shown that mixture reservoirs, which combine non-linear and linear nodes,
considerably outperform purely non-linear reservoirs [38].

With the same number of non-linear nodes in a reservoir, the amount of information
and duration for which any information is kept in the system unchanged (i.e., transformed
only linearly) is greatly increased by adding inter-node delays. In fact, the main function of
biological axons is to propagate signals through space without performing any integration
or non-linear computations. However, axons can be found with vastly different lengths
and propagation speeds depending on several properties such as diameter and insulation.
Similar to this phenomenon, one of the proposed effects of distributed distance-based
delays in reservoirs is the increase in MC without the reduction of non-linear computation,
since the addition of delays does not reduce the number of non-linear nodes in the reservoir.

3. Results

In this section, we first describe the experimental setup used to obtain the optimized
networks. Based on these networks, we show that the addition of delay increases total
linear memory capacity. Secondly, we show that delays evolve such that reservoir’s MC
profile starts to match the tasks memory requirements. To this end, we computed the linear
MC profiles of the DDN models that we optimized on the NARMA system approximation
task and the (A)DDN models optimized for the Mackey–Glass signal generation task. To
quantify the memory requirements of a task, we define the task capacity profile. This is
simply the correlation between the correct task output y(n) (i.e., label) and the delayed
input u(n − k), delayed by some lag k, plotted against k.

TCk = r(u(n − k), y(n))2 (13)

In case of auto-prediction tasks, where the system state is the input at the next time
point (i.e., u(n) = y(n − 1)), this is equivalent to the autocorrelation function of the
system state. For tasks where there is a separate input signal, this corresponds to the
cross-correlation between the input and system state. Both of these functions are commonly
used in reservoir computing as characterization of task memory requirements [18]. Since
ESN readout layers are linear models, it is reasonable to assume that this input–output
correlation profile of the task system indicates at which lags the most information about
the next time point can be obtained.

3.1. Experimental Setup

We optimized the hyperparameters of a DDN, ADDN and conventional ESN on the
Mackey–Glass signal generation task using CMA-ES, as described in Section 2.3. We used



Biomimetics 2024, 9, 355 9 of 18

reservoirs consisting of 300 neurons and 4 clusters. CMA-ES populations consisted of
25 candidates and were evolved for 200 generations. Mackey–Glass training sequences for
DDNs and ESNs consisted of 1500 samples, and validations sequences were 1000 samples.
For ADDNs, we used pre-training sequences of 500 samples, readout training sequences of
1000 samples, and 1000 sample validation sequences. As such, the total amount of training
samples is equal between adaptive and non-adaptive reservoirs. For each evaluation step
(pre-training, training and validation), five sequences were used, and each sequence was
preceded by 400 ‘warmup’ samples to account for initial transient dynamics. The validation
performance of this evolution (in terms of prediction horizon) can be seen in Figure 2A.
Here, we see results consistent with previous experiments, with ADDNs performing best
(i.e., they achieve the highest prediction horizon), followed by DDNs and standard ESNs.
Next, we optimized the hyperparameters of 50-node DDNs and ESNs for NARMA-10
and 100-node DDNs and ESNs for NARMA-30. Note that we do not optimize ADDNs
for the NARMA tasks. Since NARMA systems use random, uniformly distributed input,
there are no temporal patterns to be learned in the input data using unsupervised learning
rules. Again, 25 CMA-ES candidates were generated per generation, and the reservoirs
were evolved for 200 generations. A training sequence of 8000 samples and a validation
sequence of 4000 samples were used in both experiments, again preceded by 400 warmup
samples. The resulting validation NRMSE throughout CMA-ES evolution is shown in
Figure 2B. Unless otherwise specified, an optimized model refers to a reservoir generated
using the best performing candidate hyperparameter set.

A B

Figure 2. Validation performance throughout CMA-ES hyperparameter optimization (evolution).
The x-axes refer to the CMA-ES generations. The shaded areas represent the standard deviation in
performance of the best candidate of the generation. (A): DDN, ADDN, and baseline ESN Mackey–
Glass Performance expressed in prediction horizon (e.g., number of blind prediction steps during
validation until error margin is reached). These reservoirs are evolved to optimize task performance
on the Mackey–Glass signal generation task, where the goal is to predict as many future states of the
Mackey–Glass system (Equation (8)) as possible based on previous states, while maintaining a low
enough absolute error. (B): DDN and baseline ESN performance on NARMA system approximation
tasks expressed in normalized root mean squared error (NRMSE). The goal is to predict the next
output of the NARMA system (Equations (9) and (10)), based on all previous inputs. We use 50 node
and 100 node ESNs and DDNs for the NARMA-10 and NARMA-30 task, respectively.

3.2. Memory Capacity and Delay

The simplest way to demonstrate the effect of delay on linear MC is by observing what
happens if delay is removed from a DDN optimized for Mackey–Glass signal generation.
We measure MCk of an optimized DDN for k = [0, 150], and we do the same for a delay-
less, otherwise identical copy of this network. This network is obtained by generating
a conventional ESN with the same reservoir, input and bias weights, and the same leak
parameters as the DDN. We show their respective MC profiles in Figure 3. The total MC is
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lower in the network without delays. Moreover, we note that the capacity profile of the
optimized DDN is concentrated at higher lags (with a prominent peak around 20 timesteps
lag), compared to the delay-less network. The linear MC in conventional ESNs is (mostly)
monotonically decreasing with lag, with the highest MC at a lag of 0, due to the fading
memory property. Intuitively, if the relevant input was given further in the past, it has
been altered by more non-linear activation steps and is thus harder to reproduce. This is
not the case for DDNs and ADDNs. Due to inter-neuron delays, the MC profile can be
non-monotonically decreasing with lag, instead having peaks and valleys in the MC profile,
which we observe in Figure 3.
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Figure 3. A comparison between the memory capacity profile of a DDN optimized for Mackey–Glass
with a maximum delay of 25, and a conventional ESN with the same parameters (i.e., a non-delayed
copy). The linear memory capacity is averaged over 20 trials, with the error bars representing
standard deviation. Here, the average total memory capacity (MCtot, the integral of the MC profile,
averaged over the 20 trials) of the DDN and the ESN is, respectively, 18.92 and 11.82. We see that the
optimized DDN has a concentration of higher memory capacity at higher lags and is spread out over
more lags. In contrast, the memory capacity of the delay-less network is concentrated on smaller lags
and spans fewer lag values.

In Figure 4, we present the inverse of this experiment, adding random delays to
an optimized ESN in two different network topologies. We take the ESN optimized for
Mackey–Glass signal generation, and we create four DDN copies of this network. Recall
from Section 2.1 that when generating DDNs, neuron locations need to be specified, as
delays are calculated based on neuron locations. In the experiment shown in Figure 4A,
the neuron locations were sampled from a 2D Gaussian with mean (0, 0), an x-axis and
y-axis variance of the distance equivalent to one delay step, and 0 x-y correlation. The input
neuron location is at (0, 0). A representation of the network layout can be seen in Figure 4B.
For each of the four DDN copies, we multiply the same original neuron coordinates by,
respectively, 25, 50, 75, and 100, thus maintaining their topology. This simply means that all
the delays are scaled by the same factor. In Figure 4C, we repeated this experiment using
an input neuron that is positioned far away from the reservoir, as shown in Figure 4D.
We compare the memory capacity profiles of the nine resulting networks. Note that the
DDN copies of the optimized ESN are not re-optimized with the added delays (i.e., the
delays are not tuned to the task). Nevertheless, we see that this random introduction of
delays increases the total linear memory capacity of the system, with more delay generally
leading to higher memory capacity in both network types. With the topology shown in
Figure 4B, we see that the MC profiles are simply stretched out over more lag values, while
still having their first peak close to a lag of zero. In contrast, the topology from Figure 4D



Biomimetics 2024, 9, 355 11 of 18

shows a smaller increase in total linear MC, but the MC profiles are shifted towards higher
lag values, such that the first peak occurs later. With the distal input neuron, most of the
delay is present at the input weights, such that inputs simply arrive later in the reservoir,
thus delaying any reservoir response useful for input reproduction. Note that for these
experiments, we do not include any performance measures on the task that these networks
were originally optimized for (in this case Mackey–Glass). Altering the optimized networks
by randomly introducing or removing delays means that they need to be re-optimized for
the task. As such, here, we are not interested in the task-performance.

A B

C D

Figure 4. We optimized conventional ESNs for 200 generations with CMA-ES. The best candidate
hyperparameter set was used to generate a network. (A): Four DDN copies with normally distributed
neuron locations and different (spatial) network sizes were made, with the input neuron in the centre
of the network. In this graph, we show the linear MC profiles of these original ESN and the four
DDNs of increasing spatial dimensions. The total linear MC is mentioned in the legend. (B): A spatial
representation of the network corresponding to (A). We see that the input neuron (blue) is located in
the centre of the normally distributed reservoir neurons (green). (C): Analogous to (A), this graph
shows the linear MC profile of increasingly larger DDNs. In this case, however, the input neuron
(blue) is in a distant position. (D): A spatial representation of the network corresponding to (C).

In conclusion, we see that removing delays from an optimized DDN decreases (linear)
memory capacity and that adding delays to an optimized ESN increases it. Moreover,
we observe a shift in the memory capacity profile towards larger lags as we increase the
distances between neurons. In addition, the linear MC profiles become increasingly spread
out over larger lag ranges with increasing inter-neuron distance. In contrast, the linear MC
profile of the task optimized DDNs presented in Figure 3 show sharp peaks of concentrated
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MC instead of spread-out profiles. This suggests specific task memory requirements at the
respective lags. As such, in the following section, we analyze the relation between task
memory requirements and linear MC.

3.3. Memory Capacity and Task Capacity

As mentioned in Section 1, we suggest that variable-delay-based models evolve such
that their MC profile matches the task memory requirements. To test this hypothesis, we
computed the linear memory capacity profiles of ESNs, DDNs and ADDNs throughout
evolution, for the best model of every tenth generation. During ADDN evolution, before
training the readout-layer, each candidate ADDN reservoir is adapted to input dynamics
using delay-senesitive BCM in an unsupervised pre-training stage. Similarly, ADDN MC
profiles are computed for adapted networks (i.e., after using delay-sensitive BCM).

In all three cases (ESNs, ADDN and DDN), for each hyperparameter candidate solu-
tion, the MC profiles are computed and averaged over five reservoirs. The MC profiles are
computed up to a lag of 100. In the following subsections, we first discuss the results for
the NARMA tasks. These tasks make use of uncorrelated input sequences, and as such,
the results are clearly interpretable. Next, we discuss the results for the Mackey–Glass
signal generation task, for which the networks use self-generated predictions as new inputs.
Because these networks are optimized for such temporal dependencies in the input data,
the resulting MC profiles are harder to interpret.

3.3.1. NARMA

As mentioned in Section 3.1, we made use of 100-node DDNs and baseline ESNs for
NARMA-30 and 50-node DDNs and baseline ESNs for NARMA-10. We decreased the
reservoir size for NARMA-10 so that the memory requirements of the task are high enough,
since the number of nodes has a large influence on total memory capacity. With enough
nodes, the reservoir will be able to evolve towards a memory capacity of 1 up until the
largest lag necessary. This obscures any effect that the evolvable inter-node delays have
on matching memory capacity to task capacity. We evaluate the linear memory capacity
of the best candidate in every tenth generation. The results for both DDNs and ESNs
evolved for NARMA are shown in Figure 5A–D. The task profile is shown in Figure 5E,F.
For conventional ESNs (Figure 5C,D), we see monotonically decreasing memory capacities
throughout evolution. For ESNs evolved for NARMA-30, we see that the lag of 30, which
corresponds to the second peak in task capacity, is reached in later generations. In the case
of DDNs, however, we see a clear alignment between the evolved memory capacity profiles
and the task profiles, for both tasks. For the first few generations, the not yet evolved
networks show a more ESN-like MC profile without distinct peaks, which start to shift to
higher lags and finally splits into two peaks, coinciding with the peaks in the task profile.
We see a third intermediary peak around lag 15 in the case of the NARMA-30 evolution.
This can be explained by the fact that not enough delay was present in the reservoir to
cover the full gap from lag 6 to 30. The maximum possible delay in this setup was 25,
which means that the reservoirs had to evolve to reach a total lag of 30 with two sets of
delayed connections.
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A B

C D

E F

Figure 5. DDN linear memory capacity profiles throughout evolution optimized for NARMA
system approximation task. In (A,B), we see the DDN linear MC profiles of the best performing
candidate hyperparameter set of every tenth generation. These were computed based on five
networks generated from each candidate. MC was computed up to a lag of 100 and averaged over
the five networks. (C,D) show the same for baseline ESNs for the same tasks. (E): the NARMA-10
task profile, computed as the squared correlation between lagged input and output, plotted against
lag. (F): Analogous for NARMA-30 task.

3.3.2. Mackey–Glass

For the DDNs, ADDNs and ESNs optimized for Mackey–Glass, the results are shown
in Figure 6A, Figure 6B and Figure 6C, respectively, represented as a heatmap with genera-
tion on the y-axis and lag on the x-axis. In Figure 6D, we show the task capacity profile of
the Mackey–Glass sequences used during hyperparameter optimization. Note that because
the Mackey–Glass input at time n is the output at time n − 1, applying Equation (13) on
the Mackey–Glass system is equivalent to an autocorrelation profile, as the input from k
steps ago u(n − k) is equivalent to the output from k + 1 steps ago y(n − k − 1). Again, we
expect to see that throughout evolution, the linear MC profiles start to overlap with the
task capacity profile.

Similar to the NARMA experiments, we observe monotonically decreasing linear MC
profiles for the baseline ESNs (Figure 6C). In Figure 6A,B, we observe that the (A)DDNs
start out with a MC profile similar to that of a regular ESN: highest for a low lag and
monotically decreasing. In later generations, peaks in MC form that start shifting towards
the lags corresponding to peaks in task capacity, where ADDNs show slightly better overlap
with the first task capacity peak. Additionally, we see that ADDNs evolve towards a lower
total linear MC compared to DDNs. This could be due to more non-linearity present in the
reservoirs, which could lower linear MC.
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A

B

C

D

Figure 6. (A): DDN linear memory capacity profiles throughout evolution, optimized for the Mackey–
Glass signal generation task. The best performing candidate hyperparameter set of every 10th
generation is used to generate five networks. The linear memory capacity profiles up to a lag of
100 is computed for each of these five networks and averaged. (B): Analogous for ADDNs. In this
case, reservoirs are first adapted using delay-sensitive BCM before computing MC. (C): Analogous
for baseline ESNs. (D): The task capacity profile of the Mackey–Glass system. This represents the
correlation between the lagged state of the system with the current state of the system.

In this experiment, the final MC profile and task profile only somewhat overlap. One
possible explanation is that there is not enough delay present in the system to achieve such
a large gap between MC peaks. Recall that a non-monotonically decreasing MC profile
is not possible with conventional ESNs and is only made possible here due to inter-node
delay. The maximum distance between two peaks in MC depends on the maximum delay
present in the reservoir.

Furthermore, note that the networks are trained to carry out one-step ahead prediction
(i.e., readout parameters are chosen to minimize one-step-ahead prediction error), but are
validated using the measure of prediction horizon (i.e., the network hyperparameters are
optimized to maximize the prediction horizon). However, prediction horizon is defined as
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the amount of blind prediction steps the network can perform, while maintaining a low
enough error. Although one-step-ahead prediction can be carried out based on the past
actual inputs, blind prediction must be carried out based on past predicted inputs, since
past predictions are used as new inputs. The past inputs that the reservoir received are
not inputs generated by a perfect Mackey–Glass system, but self-generated inputs of the
current reservoir. The currently used Mackey–Glass task capacity shows for which lags
the past labels of this task give most information about future states. As such, it might
not be a good approximation of the true task capacity. A better approximation would be
the correlation between the Mackey–Glass labels (i.e., the actual sequence) and the past
blind predictions generated by the DDNs (i.e., the inputs used). This shows how well
we could predict the next label based on each of the past inputs. However, since the past
DDN predictions are not perfect, and the errors are fed back into the input, we expect
to see the error compound over time. Due to this compounding error, the correlation
between past predicted Mackey–Glass states and real Mackey–Glass states can differ from
the Mackey–Glass autocorrelation shown in Figure 6. However, the amount of error that
compounds during blind prediction differs per model and decreases throughout evolution.
Moreover, it is known that the use of non-i.i.d. inputs complicates the characterization of
the memory requirements of tasks [39].

In conclusion, due to the nature of non-i.i.d. input in a signal generation task, it is
hard to disentangle the causes for the slight mismatch of task capacity profiles and memory
capacity profiles. In contrast, the experiments presented in Section 3.3.1 made use of i.i.d.
inputs instead of using the next state as inputs. This resulted in a very clear overlap
between task capacity and memory capacity.

4. Discussion

In this work, we first reproduced earlier findings on DDNs and ADDNs. We showed
that DDNs outperform conventional ESNs on the Mackey–Glass blind prediction task, and
that ADDNs outperformed DDNs. Since these models are stochastic in nature and require
long hyperparameter optimizations, any replication of the findings presented in [21,22] is
useful, showing that these results are consistent.

Secondly, we investigated the earlier presented hypothesis that DDNs, through the
use of delays, can overcome the limitations associated with the memory–nonlinearity
trade-off, by increasing memory capacity without increasing the number of nodes or
switching non-linear nodes with linear nodes. To test this, we showed that total linear MC
is lowered by removing the delays from an optimized DDN. Next, we randomly added
variable inter-node delays to an optimized conventional ESN and showed that total linear
MC grows as we increase the delays. This shows the effect of delay on linear MC, even
without any optimization. Moreover, in both cases, we see that delays allow for non-
monotonically decreasing memory capacity profiles. With delays in input connections, as
seen in Figure 4C,D, we observe MC profiles that are shifted towards larger lags. However,
specifically inter-neuron delays inside the reservoirs allow for multiple peaks in memory
capacity (see Figure 4A,B), whereas input delay only shifts the first peak towards larger lags,
while keeping the rest of the MC profile monotonically decreasing. Herein lies an essential
difference between DDNs and previously explored delay reservoirs, such as discussed
in [18,20]. As such, we see that input delays facilitate tasks that require memory at larger
lags but fail to provide the reservoir with memory at lags that are farther apart.

Next, we proposed that DDNs and ADDNs optimized with CMA-ES evolve such that
the memory capacity profiles of their reservoirs match the task profile (i.e., the memory
requirements of the task, represented as correlation between the task output and lagged
input, plotted against lag). We showed that the peaks in DDN and ADDN memory capacity
profiles indeed start to move towards peaks in the task capacity profile as they evolve. In
the case of DDNs optimized for the NARMA system approximation tasks, where we have
random, uncorrelated inputs, we see that the linear MC profiles quickly match their task
capacity profiles after several (approximately 40) generations of CMA-ES hyperparameter
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optimization. This supports the hypothesis that delays can be evolved to increase the
memory of reservoirs, in a way that matches the memory requirements of tasks. However,
in the case of (A)DDNs optimized for Mackey–Glass signal generation, we do not observe
a clear overlap. This is likely due to the non-i.i.d. nature of the input sequences, and the
compounding prediction error associated with blind prediction tasks.

The tuning of intra-reservoir delays to specific task requirements could be exploited in
physical reservoir computing applications. All physical systems inherently implement some
delay. Consider that the delays investigated in this paper do not each require individual
tuning. Instead, for each cluster to cluster projection, they are sampled from a distribution.
Similar to other reservoir hyperparameters, the tuning of individual delays is tolerant
to a high degree of stochasticity. Optimizing the within- and between-cluster timescales
for specific tasks should be achievable prior to implementation in physical systems and
could help to reduce the cost of finding task-optimal physical reservoirs. Several physical
reservoir realisations, including all-optical [40] and electrical [16], have shown the benefits
of delay tuning for input or feedback delays.

Future work should study how delays affect non-linear processing capacities of reser-
voirs next to the effects on memory by using non-linear memory capacity measures. Next,
it is necessary to further analyze the effect of reservoir adaptation in ADDNs on memory
capacity, e.g., by studying the change in MC profiles as ADDNs adapt to changing input
dynamics. Lastly, as mentioned in [39], autocorrelation in the task system makes it difficult
to characterize task memory requirements. Therefore, it is important to further investi-
gate how the temporal properties of tasks relate to optimal delay and memory capacity
in reservoirs.

Supplementary Materials: The experiment source code used to generate the data can be found at
https://github.com/StefanIacob/DDN-public.git.
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