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ABSTRACT

The computational resources required to solve the full 3D inversion of time-domain electromagnetic
data are immense. To overcome the time-consuming 3D simulations, we construct a surrogate model,
more precisely, a data-driven statistical model to replace the 3D simulations. It is trained on 3D data
and predicts the approximate output much faster. We construct a surrogate model that predicts the
discrepancy between a 1D subsurface model and a deviation of the 1D assumption. The latter response is
fastly computable with a semi-analytical 1D forward model. We exemplify the approach on a two-layered
case. The results are encouraging even with few training samples. Given the computational cost related
to the 3D simulations, there are limitations in the number of training samples that can be generated. In
addition, certain applications require a wide range of parameters to be sampled, such as the electrical
conductivity parameters in a saltwater intrusion case. The challenge of this work is achieving the best
possible accuracy with only a few thousand samples. We propose to view the performance in terms
of learning gain, representing the gain from the surrogate model whilst still acknowledging a residual
discrepancy. Our works open new avenues for effectively simulating 3D TDEM data.
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1 INTRODUCTION

Airborne Electromagnetic (AEM) mapping is an increasingly used method to image near-surface geologi-
cal features over large areas via the bulk electrical resistivity. Common applications are, for example, in
mineral exploration (Macnae and Milkereit, 2007), contamination (Pfaffhuber et al., 2017), hydrogeo-
logical mapping (Mikucki et al., 2015), and saltwater intrusion (Siemon et al., 2019; Deleersnyder et al.,
2023c). Part of the AEM systems collects time-domain electromagnetic (TDEM) data, but those systems
require significantly more computer power to run 3D modelling simulations, compared to frequency-
domain electromagnetic (FDEM) data. 3D FDEM forward modelling is becoming applicable for smaller
areas (Ansari et al., 2017; Cockett et al., 2015; Haber et al., 2004; Werthmiiller et al., 2019), while 3D
TDEM forward modelling remains impractical (Borner et al., 2015; Haber et al., 2007). For example,
Engebretsen et al. (2022) could carry out a 2D TDEM inversion with 418 soundings, which took 30 hours,
97 GB of memory for only 16 iterations. Auken et al. (2017) argues that the computational demand for a
full 3D AEM survey is still too large so that only few companies are capable of realizing such inversions.

By consequence, quasi-2D/3D inversion methods, using a much faster and approximate (1D) forward
model, methods are standard for large-scale mappings. The 1D forward model assumes cylindrical
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symmetry and is thus limited to horizontally layered conductivity models. Using that forward model in a
quasi-2D/3D method may yield erroneous interpretations and the results may better not be interpreted
quantitatively. Deleersnyder et al. (2022) provide an appraisal tool which verifies whether an erroneous
interpretation may occur as a result of the approximate 1D forward model, and indicates areas that should
be reinterpreted with a full 3D forward model.

To overcome the time-consuming simulations, a common data-driven approach is to construct surrogate
models. It is a statistical model that can approximate the simulation output. A single evaluation of the
trained statistical model is much faster than a simulation. The statistical relation is built from pairs of
full simulation data and its inputs. Surrogate modelling is thus a case of supervised machine learning.
Surrogate modelling and machine learning may replace 3D forward modelling on a mesh during a 3D
inversion, sometimes coined Fast Forward Modelling (FFM).

The existing literature of using Machine Learning (ML) and 1D forward modelling is already significant.
Bording et al. (2021) use a conventional Neural Network (NN) for ground-based TDEM data and claims
a factor 13 speed up compared to the accurate 1D forward models with 98% accuracy within the 3%
relative error limit. Other examples of 1D surrogate models are found in surface wave dispersion (Hou
et al., 2019), seismic and marine controlled-source EM data (Puzyrev and Swidinsky, 2021) and seismic
full-waveform inversion (Wu et al., 2018). For AEM modelling, Asif et al. (2022) train a NN for 1D
forward modelling, including the flight altitude as additional parameter, which adds complexity to the
learning problem. Additionally, two separate NNs were trained, one to predict the forward response and
one for the partial derivatives. A speed-up with a factor 50 is claimed. Wu et al. (2023) have trained an
alternative NN with a long short-term memory (LSTM) architecture with similar ‘functionalities’ and
claim a factor 2700 speed-up. The step towards 3D modelling has already been made for gravity data
(Zhang et al., 2021) or frequency domain magnetotellurics (Conway et al., 2019; Peng et al., 2023), which
suffer less from the computational burden to generate training data.

Other work shows that NNs can be used for a direct inversion (Noh et al., 2020; Feng et al., 2020; Bai
et al., 2020; Li et al., 2020; Puzyrev and Swidinsky, 2021; Laloy et al., 2021). This avoids the potentially
time-consuming optimization step of the inverse problem, but one loses control over the specific tunable
aspects of the inversion process. The trained NN needs to handle the non-uniqueness of the geophysical
problem, as well as the noise. By training a separate forward/surrogate model, one retains control over the
inversion: The type of regularization and the regularization parameter(s) can be easily modified. This
allows to use the trained surrogate forward model in flexible regularization schemes where, for example,
the sharpness can be tuned (Deleersnyder et al., 2023c; Klose et al., 2022).

While much work has been done in exploring the surrogate modelling and Machine Learning for 1D
forward problems in TDEM problems, the step towards multidimensional forward modelling, to our
knowledge, has not yet been made. While the literature above has used up to a million samples in the
training dataset, this is not feasible for 3D TDEM simulations. The challenge of this work is achieving
the best possible accuracy with only a few thousand (5090) samples. We, therefore, limit the parameter
space to subsurface models with two layers. Rather than predicting the 3D data directly, we predict the
relative error between the 3D and 1D data (Deleersnyder et al., 2023b). The computation of the 1D
approximate forward model is fast and explains most of the variability in the geophysical data. The
discrepancy, originating from the multidimensional nature of the subsurface, is predicted with machine
learning tools. We focus on a minimal, well-defined context, namely a central-loop airborne system flying
at 40 m altitude, covering an area with high conductivity contrasts, such as when imaging a fresh saltwater
interface.

We have opted for more classical ML methods which are well-established in geosciences and are more
insightful, rather than using (advanced) neural networks that are often data hungry for the learning step.
We will use Gaussian Process Regression, typically used in forecasting (Ferkous et al., 2021; Satija and
Caers, 2015), kriging (Gongalves et al., 2022; Ching and Yoshida, 2023) or in geohazard mitigation
applications (Dikshit et al., 2021; Gao et al., 2022). We work with the common Principal Component
Analysis (PCA) as dimensionality reduction technique, which finds many applications (Grana et al.,
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2019; Scheidt et al., 2018; Michel et al., 2020). Functional Component Analysis, e.g., used in Satija and
Caers (2015), is less common in geosciences (Suhaila and Hamdan, 2023) as a dimensionality reduction
technique. Demonstrating the performance of a surrogate model for a simplified case without advanced
ML leaves room to use more advanced ML in more extensive contexts (with more parameters).

We first discuss the data generation in Section 2.1 in terms of low and high fidelity data, the 1D forward
model and 3D simulations respectively. In Section 2.1.2, we discuss the data transformations used in this
work. Inspired by the characteristics of the transformed data (discussed in Section 3.1) and preliminary
tests, a Gaussian Process Regression (GPR) is picked as surrogate model (Section 2.2). In Section 3.2, the
performance of the trained surrogate models is described, suggesting successful routes for future work.

2 METHODS

2.1 Data generation

The objective of this work is to construct an ML-based correction model on an incomplete, but fast
evaluable low-fidelity forward model. For TDEM data we use a 1D semi-analytical model (Hunziker
et al., 2015), which assumes horizontal layers, to generate Low Fidelity (LF) data. A Python, open-source
implementation is used (Werthmiiller, 2017) . The correction model is trained using High Fidelity (HF)
data, which must be generated by a forward model that can accommodate multidimensional structures.
The only viable method is through numerical simulations, described in Section 2.1.1. Data transformations,
before training, are described in Section 2.1.2.

The surrogate correction model predicts the target with the following listed features:
* The depth d (in meter) of the interface between the two layers, d € [10,50],
* the angle 6 (in °) of the dipping layer (0° being purely horizontal), 6 € [—75,75] and,

« the Electrical Conductivity of the first (EC1) and second (EC2) layer (in Sm™!), EC1,EC2 €
[0,0.75]..

To test the generalizability of this approach, the prior (or the training data) is not specifically adapted to a
specific application. The data points are sampled uniformly within the feature space within the specified
boundaries.

2.1.1 Finite Volume Method simulations to generate High Fidelity data

The finite volume method (FVM) is a numerical discretization technique for representing and evaluating
partial differential equations by conversion to algebraic equations. The FVM evaluates exact expressions
for the average value of the quantities over some (finite) volume and uses this discretization to construct an
approximate solution. In this work, we resort to the SimPEG package (Cockett et al., 2015; Heagy et al.,
2017), which is an open-source project in Python which implements the Maxwell’s equations and the
most common geophysical electromagnetic sources, and the parallel, direct PARADISO-solver (Schenk
and Gdirtner, 2004).

The High Fidelity mesh in this work is a 3D regular rectangular mesh with 288 000 cells. The core ranges
from —50 to 50 m in the lateral orientations and from —140 to 60 m in the vertical orientation with cell
sizes of 5-by-5 m. Outside the core region, cells are progressively increased with a rate of 20% up to a
cell size of 200 m. The total mesh extent is 2,35 km in the lateral orientation and 2,80 km in the vertical
orientation. The accuracy of the HF data is illustrated on a two horizontally layered case with 0.1 and
0.4 Sm~! and an interface at 50 m depth. The HF and LF data are shown in Figure 1. It is unavoidable
to have a small discrepancy. In this case the relative discrepancy averages 0.19% per time gate and a
maximum of 0.8% at late time gates; see Figure 1.

2.1.2 Dataset and transformations
The training and test dataset consists of 5090 and 566 samples, respectively. The target variable %—? is

sampled logarithmically from 107> to 10~2 seconds with 100 time steps. The target output is thus a vector
of 100 data points, calling for a dimensionality reduction, which is described in Section 2.2.1. Before the
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Figure 1. Illustrative comparison of Low Fidelity (LF) and High Fidelity (HF) data with horizontal
layers for 0.1 and 0.4 Sm~"! and an interface at 50 m depth illustrate the accuracy of the HF mesh. The
relative discrepancy between the HF and LF data is also shown; it indicates larger errors at later times.

dimensionality reduction, the magnetic data is transformed to a relative error RE between the LF and HF
data.

_HF —LF
~ LF

RE )
By predicting the error, solely the residual multidimensional variability has to be learned. Transforming
the target to a relative error, rather than an absolute error, ensures that the target outputs are within the
same range, as the original magnetic data (and consequently the absolute noise) spans multiple orders of
magnitude.

The sensitivity of the forward response does not vary linearly with changes in the conductivity. Bording
et al. (2021) suggests the following normalization for a better optimization:

(b—a)(log;o EC —logo(minEC)

EC=
at log,omax(EC) —log;omin(EC) ’

@

where EC is the normalized electrical conductivity. The minimum and maximum correspond to the
minimum and maximum electrical conductivity in the training dataset. The values are transformed within
the interval [a, b], which is [—1, 1] in our case.

Before training and after the dimensionality reduction of the target, all features and target outputs are
standardized (by substracting the mean and dividing by the standard deviation). This is a common
requirement for many machine learning estimators.

2.2 Surrogate modelling

2.2.1 Dimensionality Reduction

The target consists of 100 variables. However, the smoothness of the underlying physics implies that
neighbouring variables are correlated, i.e., the HF data varies smoothly throughout time, which calls for a
dimensionality reduction technique. Dimensionality reduction techniques transform high-dimensional
data into a lower dimensional space, retaining the most descriptive features, depending on the technique
considered. Dimensionality reduction is often used in machine learning, as it combats the computational
cost and is able to control overfitting (Lopez-Alvis et al., 2021).

In this work, the target variables are consecutively transformed to the functional and principal component
space. This is called Functional Component Analysis (FCA) (Silverman, 1996; Satija and Caers, 2015).
First, the target is represented in a functional data space via Functional Data Analysis (FDA) (Ramsay
et al., 2006), which represents the original data as a linear combination of differentiable mathematical
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functions:
K
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k

where @(¢) is a set of basis functions. The true, underlying basis of our target is unknown. Therefore,
we view each functional datum (each sample), using a non-parametric representation, meaning that each
value of the 100 target variables are stored in a finite grid of points. The underlying physics is smooth and
thus the functional data are smooth and one may use interpolation to evaluate between the grid. With
FDA, we represent that data in a parametric fashion, using the linear combination of Eq. (3). Common
systems rely on the Fourier basis, monomial basis, finite element basis etc. We work with the B-spline
basis. It can represent smooth functions in a sparse fashion and it is computationally efficient.

We can now reduce the dimensionality, by representing the non-parametric (original) data in a parametric
fashion, i.e. coefficients of the corresponding spline basis, where the number of coefficients K < 100 can
still relatively accurately represent the original data.

On those functional data coefficients, Principal Component Analysis (PCA) is performed, providing a
representation in terms of the principal vector basis. It consists of a linear mapping which maximizes the
variance of the data in that principal vector basis or principal components. Those principal components
are linearly uncorrelated and are ordered by decreasing variance. By excluding the principal components
which explain little variance, the dimensionality can be further reduced. We denote the number of retained
components with L.

Note that FCA is different than the method coined Functional Principal Component Analysis (FPCA),
which retains modes in functional variation of longitudinal data (Hall et al., 2006).

2.2.2 Gaussian Process Regression

In Gaussian Process Regression (GPR), the concept of a Gaussian Process (GP) is used for making
predictions. Williams and Rasmussen (2006) defines a GP as a collection of random variables, any finite
number of which have a joint Gaussian distribution and is fully specified by second order statistics: a
mean and a covariance function. In a GPR context, the latter is referred to as the kernel. The kernel
encodes the type of structure that is found in samples drawn from the GP prior by defining the “similarity”
of two datapoints combined with the assumption that similar datapoints should have similar target values.
When making a prediction, we evaluate the samples at a given point, but we must first incorporate the
knowledge from the training data (Scheidt et al., 2018, p. 77).

Our proposed model is a GPR and relies on the Radial Basis Function (RBF) in combination with a White
Noise kernel. The RBF is a squared-exponential kernel

2 “

kRBF(x,‘,Xj) = exp (—

where £ is the length-scale of the kernel and d(-,-) the Euclidean distance. It is a default kernel with
appealing properties (it is stationary, i.e., it does not directly depend on the value of x, but the distance
between two points, and it has infinitely many derivatives) (Duvenaud, 2014, p. 9). The RBF generates
smooth samples in the GP prior and is generally a good choice if no discontinuities are expected, as in our
case. Increasing the length scale leads to more slowly varying GPs.

The White Noise kernel is included,

o2

kWN(-xi>-xj): { 0 lei:Xj

else %)
meaning that the GPR will explicitly learn the variance ¢ of the noise, rather than to solely rely on the
Tikhonov regularization (smoothing) which is assumed on the training point’s covariance matrix, as the
covariance matrix may be ill-conditioned, controlled by parameter ¢ within the GPR, it works similarly
as the White Noise Kernel, but the variance is not a free parameter). The main origin of the noise in the
dataset is due to the discretization of the subsurface model for the HF fidelity data. For example, when
the interface at depth d does not coincide with the edges of a cell, the depth is rounded to coincide with
the edge of that cell, causing an apparent random noise. We are not interested in the noise and want to
prevent overfitting, such that the fitted length scales of the RBF kernel follow the slowly varying, general
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trend, rather than the short-scale variations due to the noise. The latter would limit the interpolating power
of the GPR.

We train a separate GPR for each functional component, without using a multiple-output GPR. The latter
could exploit output correlations, however, we train in the functional component space, where PCA was
used to create uncorrelated functional components. In Section 4, we discuss the simplicity of using
single-output GPRs over one multiple-output GPR which has the advantage of considering correlation
between responses. This means that we will optimize for each functional component separately. The
length scales and the noise-level will potentially be different for each component.

3 RESULTS

3.1 Insights from transformed data

We can easily apply the interpretation of the diffusing currents to the obtained relative error (RE) curves
in Figure 2. The peaks in the RE can be explained by the bulk of the current distribution reaching the
interface, where the subsurface deviates from the horizontally layered models. If we perform a sweep over
the angle, we find that larger angles yield larger maxima in the RE. A sweep over the depth shows, not
unexpectedly, that a deeper interface yields a maximum at later times, because the diffusing currents travel
longer to reach the discrepancy at the interface. The EC of the first layer has a large impact on the ‘arrival
time’ of these diffusing currents. We know that electrical currents diffuse faster in lower conductive
media, which is confirmed in the RE curves. The EC in the second layer does not impact the time of the
peaks in RE, but the figure nicely illustrates that the contrasts between two electrical conductivities are
more significant to explain the value of the RE peaks, rather than the actual electrical conductivities itself.
We need to check to what extent the target can represent the original relative error after dimensionality
reduction. With L < 100, the number of functional components will no longer be able to represent all
relative errors RE accurately. For this analysis, the dimensionality reduction was trained on the training
dataset and its performance, expressed in Mean Absolute Error (MAE), tested on the test dataset. The
MAE is computed between the original data (RE) and the back transform of the reduced data RE,

MAE = % i |RE; — RE;|, (6)
i=1

where n is the number of samples in the training dataset. The minimum MAE in this analysis will be the
infimum for the surrogate model performance.

With the FDA, the dimensionality is reduced to K = 10,20 and 30 dimensions, meaning that we use K
B-spline basis functions to represent our original RE. Then, L functional components are retained after
PCA on the coefficients of the FDA. The MAE is shown in Figure 3 for each L < K. Also, the MAE for
all K in [1,30], while retaining all functional components, is shown (black dotted line). This MAE is
identical to the MAE as if you would not perform PCA on the FDA coefficients.

From Figure 3, we observe that an increase in the number of B-spline functions K can better represent
the original relative error RE, as expected. However, this effect becomes insignificant for K > 20. Note
that the minimum number of B-splines is 4. This does not hold for PCA. Secondly, we learn that
many functional components are required to represent the original data in a reduced dimensional space
accurately. If K is low, the results suggests to retain almost all L functional components. For larger K, one
can gain quite a bit of dimensionality reduction by using PCA. For example, for K = 30, one can easily
further halve the dimensions without much loss of accuracy.

We do not decide on the optimal number of B-spline basis functions K and the number of functional
components L using this analysis. It will serve as a guide to reduce the optimization for these parameters
during the training of the GPR. The MAE of the predicted relative error in our original space will be the
only criterion to determine K and L.

3.2 Performance

The performance of the trained surrogate model is measured with the MAE in terms of (original) data
(RE) and the back transform of the reduced data RE. The surrogate model is trained for the number of
basis functions K in the functional data analysis and the number of functional components L to retain. The
parameter ¢ controls the Tikhonov regularization (smoothing) and during optimization, we experienced
that a higher value for @ was required for functional components that explain less variance (apparently,
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Figure 2. Relative error (RE) curves in a parameter study. In each plot, only one parameter is varied at a
time. The fixed parameters were 8 = 15°, d = 50 m, EC1 = 100 mSm~!, EC2 = 400 mSm~!.

Table 1. The features from four samples from the test dataset shown in Figure 5.

| dm) | 6(°) | ECL(S/m) | EC2 (S/m)

Case A 50 50.5
Case B 29 -16
Case C | 11.6 | -2.33
CaseD | 375 8.3

0.47 0.80
0.69 0.89
0.91 0.77
0.016 0.72
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the White Noise Kernel could not handle the apparent noise properly). A value of 10~ was used for the
first four functional components, 10~ for the next two and 10~ for [ > 6.

Based on our insights from the dimensionality reduction in Figure 3, we have optimized the surrogate
model for ten different Ks. The MAE of the predicted data for varying K is shown in Figure 4A, where
the maximum number of functional components L = K is retained. Starting from K = 8§, the prediction
accuracy starts to stabilize with K = 16 as minimum. In Figure 4B, we show the MAE in terms of number
of functional components L for K = 16. Starting from L = 8, not much is gained from adding more
functional components. Note that this type of optimization leads to a different choice than relying on the
(cumulative) explained variance ratio, which is often done for PCA. For the remainder of this text, we
proceed with K = 16 and L = 8.

To illustrate the reduction in the computational burden, the HF data production requires one hour and
20 minutes of computation time on one 36-core High Performance Computing node (2 x 18-core Intel
Xeon Gold 6140 (Skylake @ 2.3 GHz)) and requires 150 GB of RAM. Evaluating the correction model
takes two milliseconds on a laptop (MacBook Pro, 10-core M1 Pro chip, 16 GB). The initialization of
a pre-trained GPR requires 30 seconds for a training dataset with 5000 samples (this initialization time
grows with the number of training samples).

In Figure 5, we show some samples illustrating some typical behaviour from the test dataset. Figure SA
and B are quite successful, the MAE is 0.00455 and 0.0028 respectively, which is in the order of best
MAE given the dimensionality reduction (see Figure 4). The sample from Figure 5C is an example where
the angle 0 is small (—2.33°). The trend in the predicted relative error RE is good, however the absolute
values are too small. The surrogate model thus underestimates the true relative error. The sample in
Figure 5D is a curious one, as it does not really resemble the typical shape that is observed in the other
samples and in the sweeps in Figure 2. Yet, it cannot be ascribed to the dimensionality reduction: the
MAE of the relative error of the back transformed reduced representation is only 0.00040. The reason can
be ascribed to the underlying physics, where the dissipated currents move much more rapidly in more
resistive media. This calls for a more thorough sampling of this part of the parameter space.

We can also view the performance per test sample separately in Figure 6A. The test samples are ordered
from small discrepancies between LF and HF data to large discrepancies. The overall green part is what
one gains by using the correction/surrogate model to correct the 1D forward LF model. The bottom
orange parts indicate the residual error, which remains after applying the surrogate model correction. In
some cases, the surrogate model corrects the LF data such that the predicted HF data is worse than when
only the LF data was used (red bars), this is in 6% of the cases. Those cases correspond to low angles,
small EC contrasts between layers or a low EC of the first layer and combinations thereof. No particular
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Figure 7. The learning curve suggests that more data could increase the overall accuracy.

cause could be identified. In Figure 6B we apply PCA to the four input parameters or features. By
plotting the first two coefficients, we show the sampled parameter space in reduced dimensions. Samples
far from the center (the origin) are extreme values in the sampled data set. The 10% predictions with
the largest MAE are usually in the periphery, suggesting that the limiting extrapolating capabilities of
the GPR in combination with the RBF kernel is the cause of the large MAE. Additional sampling in
those parameter regions could improve the MAE. A zone of the parameter space was demarcated where
the samples of the test data space performed well. We defined the sphere based on the first two PCA
components of the feature space, with the median as the centre and a radius as a cut-off parameter. Points
outside this sphere lie in a less densely sampled area, and a prediction in that region is less reliable. We
have implemented a warning in the accompanying code that alerts when the correction model is used for
parameters outside this trusted region. Furthermore, we uncovered that the surrogate correction model
performs less satisfactorily at low total MAE, occurring for small angles and for low contrasts in electrical
conductivity between the layers. In this case, the maximum relative error at any time is less than 1.5%,
and the surrogate is less relevant. With small angles (less than 2°), slight contrasts (less than 0.025) or a
combination of these (contrast® times the angle), the surrogate will warn the end-user that the relative
error prediction is less accurate, which is not a problem as the 1D model is then sufficiently accurate.
These warnings filter out 62% of the few test samples for which the MAE after prediction is larger than
without using the surrogate model.

Figure 7 shows the learning curve of the training. It shows the MAE of the GPR accuracy for various
training dataset sizes. The MAE was each time computed on the same test dataset of the above correction
model. It is of course impossible to make predictions for the course of the curve for more training samples,
but it is reasonable to assume that the accuracy can be further improved by providing more training data.

4 DISCUSSION

As expected, perfect accuracy is not achievable with these straightforward ML techniques, even in
this simplified case with two layers. To our knowledge, we lack a measure to determine the overall
performance of such a correction model. The effect of a modelling error, e.g., on an inversion model, is
still relatively unknown. The approach to look at the learning gain, i.e. to look at what we gain with such
correction model compared to only relying on a LF model, requires further validation. However, such a
performance measure will be needed. Better accuracy could be achieved by adapting the prior or feature
space to the specific application, which will require significant HF data for each project and may not be
the most elegant and sustainable approach.

GPR provides relatively simple data fit models, meaning that it interpolates between observations. It is
versatile, due to the option for different kernels. The RBF (default) kernel works in most smooth cases. It
is difficult to obtain general models, however, and extrapolation is only possible ¢ (see Eq. (4)) units away
from the trained prior (Duvenaud, 2014, p. 10). If one could identify or construct a more closely related
underlying kernel, a more general GPR can be constructed with some extrapolating power. This would
mean that sampling can be done with a lower data density in the space parameter. Note that GPR’s are
not sparse and thus use the whole dataset to perform one prediction. If one would have the resources to
produce millions of training samples, alternatives to GPR, such as neural networks, should be considered.
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In Section 2.2, we have explicitly opted to train a single-output GPR on each functional component, rather
than using a multiple output GPR. The latter turns out not to be so trivial (Wang and Chen, 2015; Liu et al.,
2018; Constantinescu and Anitescu, 2013). A truly multi-output GPR should not only describe the corre-
lation between data points, but also the correlation between responses (Wang and Chen, 2015). Hence, it
could leverage information from one output to provide a more accurate prediction for another output, rather
than modeling them individually (Liu et al., 2018). However, multiple-output GPR is still a field of active
research and existing codes are sparse. Constantinescu and Anitescu (2013) point out the difficulty of
finding good covariance functions, which turn out to be much more challenging than for single-output GPs.

This correction model to the 1D approximation is relevant in contexts with significant modelling errors,
such as with large electrical conductivity contrasts between layers and even for relatively small angles
(6 = 10°) (see Section 3.1). For example, we are thinking about imaging the freshwater lenses resting
on top of salt water, which exhibit large conductivity contrasts and lateral variability. The two-layered
forward model may already be sufficient. The correction model can be used with the traditional quasi-
or pseudo-2D/3D inversion. The angle is an extra parameter in the inversion and can vary for each
sounding. A smoothening constraint could be applied between neighbouring soundings, similar to the
height parameter in AEM inversion.

Alternatively to TDEM applications, the proposed approach could be applied to frequency-domain
electromagnetic data. For example, to image the environmental contamination of former gypsum landfills
which exhibit large conductivity contrasts with the backfill material (Deleersnyder et al., 2023a) The
applicability of the proposed methodology to other geohazard mitigation applications, which tend to
become increasingly important in the rising circular economy (Koley, 2022) and climate change, should
be further verified.

5 CONCLUSION

We have presented a novel approach to constructing a surrogate model for 3D forward TDEM simulations
with only a few thousand (5090) training samples with relatively simple data-fit models. Rather than
predicting the 3D data directly, we predict the relative error between the 3D and 1D data, as the computa-
tion of the 1D approximate forward model is fast and explains most of the variability in the geophysical
data. By analysing the relative error, we have uncovered that the features of relative error can easily be
explained (both height and time of the peak). The contrast in electrical conductivity between the two
layers and the deviation from the 1D assumption (via its angle) explain the magnitude of the relative error.
In contrast, the interface’s depth and the first layer’s conductivity determine when the peaks occur.

The surrogate model in the form of a correction term for the 1D forward model leads to a better prediction
of the 3D data. Due to its limited extrapolating capabilities, a warning was implemented when the model
is evaluated outside the sufficiently sampled parameter space. In summary, we have successfully tackled
the challenge alluded to in the abstract.

Possible improvements could consider (1) active learning, to more knowingly sample the parameter
space which maximizes the accuracy gain per extra training sample, especially because the 3D forward
simulations are so expensive, (2) generating data on a ‘Medium fidelity’ mesh to increase the number of
training samples (while the test dataset should still be generated on an accurate high-fidelity mesh), (3)
examine alternative sparse dimensionality reduction techniques (fitting functions to the RE curves did not
turn out to perform better, so we did not include these in the current work.). Eventually, as a community,
we should define meaningful targets to evaluate the performance of different surrogate models.
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