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ABSTRACT
In this paper, we present ECAPA2, a novel hybrid neural
network architecture and training strategy to produce robust
speaker embeddings. Most speaker verification models are
based on either the 1D- or 2D-convolutional operation, often
manifested as Time Delay Neural Networks or ResNets, re-
spectively. Hybrid models are relatively unexplored without
an intuitive explanation what constitutes best practices in re-
gard to its architectural choices. We motivate the proposed
ECAPA2 model in this paper with an analysis of current
speaker verification architectures. In addition, we propose a
training strategy which makes the speaker embeddings more
robust against overlapping speech and short utterance lengths.
The presented ECAPA2 architecture and training strategy at-
tains state-of-the-art performance on the VoxCeleb1 test sets
with significantly less parameters than current models. Fi-
nally, we make a pre-trained model publicly available to
promote research on downstream tasks.

Index Terms— speaker verification, speaker embed-
dings, ECAPA2

1. INTRODUCTION

Speaker verification tries to determine if two speech utter-
ances originate from the same speaker. In recent years, the
field has gained significant performance improvements due to
the availability of large, labeled datasets [1, 2] and the devel-
opment of specialized neural network architectures [3, 4].

Most speaker verification architectures are based on the
1D- or 2D-convolutional operation. Examples of the former
include Time Delay Neural Networks (TDNNs) such as the
popular x-vector model [3] and ECAPA-TDNN [4]. 2D-
convolutional architectures are mostly based on the ResNet
architecture, such as the fwSE-ResNet model presented in [5].
Recently, hybrid architectures [5, 6] that try to combine the
benefits of both convolutional operations have been proposed.

However, relatively little research is done on assessing the
impact of the usage of either or a combination of these archi-
tectural choices besides raw speaker verification performance.
For example, the authors of [7] propose an architecture con-
sisting of separate 1D- and 2D-convolutional subnetworks
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processing the input independently. The resulting model
outperforms the singular TDNN- and ResNet-based speaker
verification models. A similar observation is made in system
fusions often employed in speaker verification competitions,
where the fusion of TDNN- and ResNet-based models proves
to be the most complementary, indicating both models learn
distinct speaker characteristics [8]. A 2D-convolutional stem
on top of the ECAPA-TDNN model is proposed in [5]. As
the kernels of a TDNN-based model span the complete fre-
quency range, the 2D-convolutional stem should alleviate
the limited capability of the TDNN architecture to model
frequency-independent features. A similar approach is used
in [6], resulting in a performance improvement compared to
a regular TDNN-based architecture.

In this paper, we perform a series of model interpretabil-
ity analyses to better understand the impact of architectural
choices on the resulting speaker embeddings. This includes a
feature ablation analysis to assess input robustness and neu-
ron conductance experiments to determine the impact of dif-
ferent kernel types in the network. Subsequently, we base our
proposed ECAPA2 architecture on the findings of the afore-
mentioned model interpretability analysis. In addition, we
enhance the model training strategy to produce speaker em-
beddings which are robust against overlapping speakers and
short utterance durations. Finally, we provide a publicly avail-
able1, pre-trained model with straightforward APIs to extract
embeddings to foster further research on the usage of speaker
embeddings in downstream applications.

2. ARCHITECTURAL ANALYSIS

In this section, we provide a series of model interpretabil-
ity experiments to establish the structural differences of 1D-
and 2D-convolutional speaker verification architectures and
the characteristics of the resulting speaker embeddings. The
1D- and 2D-convolutional architectures are represented by
the E-TDNN and ResNet34 models described in [4], respec-
tively. Both models perform similar on the VoxCeleb1 test
sets [2] and have a comparable number of parameters. The in-
put features consists of 80-dimensional Mel-filterbanks. Ar-
chitectural details and the training strategy can be found in
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Fig. 1. Effect of temporal frame masking on a TDNN- and
ResNet-based speaker verification model measured on the
VoxCeleb1-O test set.

the accompanying paper [4]. All interpretability experiments
in this section are performed using these models unless de-
scribed otherwise.

2.1. Input feature robustness

First, we want to establish how the different architectures be-
have towards alterations of the input features. Figure 1 depicts
the impact on the VoxCeleb1-O test set when masking a vary-
ing amount of consecutive temporal frames of the input Mel-
filterbanks. While the baseline performance is nearly identi-
cal, we see a greater degradation of the TDNN-based architec-
ture in comparison to the ResNet model when the amount of
masked frames grows. A similar behaviour can be observed in
Figure 2, which depicts the speaker verification performance
when masking varying numbers of filterbanks. Again, the
ResNet-based model seems much more robust against alter-
ations to its input features, with a relatively modest decrease
in performance when the number of masked filterbanks is low.

These results corroborate the notion that ResNet-based
architectures learn spatially invariant features [5]. While a
TDNN-based model could theoretically learn kernels span-
ning a limited range of frequencies at different positions, the
characteristics of a 1D-convolutional kernel seems to push
it towards learning features depending on the full frequency
spectrum. This results in a severe degradation when not all
frequency information is available.

2.2. Effective receptive fields

The receptive field of a model indicates the region of the input
space that influences the response of an individual neuron in a
network. We can distinguish between the theoretical receptive
field, which simply defines the region of the input which can

Fig. 2. Effect of input filterbank masking on a TDNN- and
ResNet-based speaker verification model measured on the
VoxCeleb1-O test set.

affect a neuron, and the effective receptive field (ERF), which
provides a measurement of the proclivity of different input
regions to affect a neuron [9]. It has been shown that a limited
ERF can have a negative impact on performance [9, 10].

We calculate the ERFs of the speaker verification models
similarly to [9] by placing a gradient signal of 1 at the spa-
tially centered neuron in the layer before the pooling opera-
tion. Subsequently, the input gradients are gathered by back-
propagating the gradient signal trough the randomly initial-
ized model. We disabled striding in the ResNet models as to
focus the analysis on the effect of the convolutional layers.

Figure 3 depicts the ERF of the spatially centered neuron
in the last layer before the pooling operation of both models.
We observe the same Gaussian-shaped receptive field as re-
ported in [9] for both architectures. In contrast to the TDNN
architecture, the ERF of the ResNet model is centered around
the frequency dimension of the output neuron. This indicates
that the neurons before the pooling operation are more in-
clined to focus on input features around the center of the re-
ceptive field, potentially not exploiting frequency information
at the edges of its ERF.

Figure 4 illustrates the relationship between the depth of
a ResNet-based model and its corresponding ERF. We also
plot the gradient response of the TDNN model. We observe
a tendency towards a uniform receptive field in the frequency
dimension of the ResNet models when the number of convo-
lutional layers increases. With a growing number of convo-
lutional layers, the receptive field is expanding, which results
in a more uniform area around the mean of the Gaussian re-
flecting the ERF. This indicates that larger ResNet models are
eventually more inclined to exploit the complete frequency
range, although at a significant computational cost due to the
increased convolutional operations.



TDNN (8 x 1D-conv)

ResNet (34 x 2D-conv)

ResNet (34 x 2D-conv) + TDNN (1 x 1D-conv)

Fig. 3. Effective receptive field (top) and conductance (bot-
tom) of the spatially centered neuron before the pooling layer
in speaker verification architectures.

2.3. Neuron conductance

To establish the impact of the ERF on a trained speaker ver-
ification model, we apply a neuron conductance analysis fol-
lowing the method described in [11]. Neuron conductance
is based on the Integrated Gradients [12] attribution method
and assigns importance scores to input features by integrat-
ing the gradients of the output of the model with respect to
the inputs along a path from a baseline to the desired input.
Examples of neuron conductance responses are depicted in
Figure 3 based on a speech sample of 4 seconds. We note that
these results where consistent across different input utterances
and pre-pooling neurons.

We observe that the attributions of both the TDNN- and
ResNet-based model are closely related to their correspond-

Fig. 4. Intersection of the effective receptive field at the corre-
sponding temporally centered input frame of a spatially cen-
tered output neuron before the pooling layer in increasingly
larger ResNet speaker verification architectures. Notice the
tendency of the receptive field to become uniform across the
frequency dimension when the number of 2D-convolutional
layers increases.

ing ERFs. The TDNN model has a uniform-like attribution
in the frequency dimension while the ResNet network has a
much more localized attribution with the magnitude of the at-
tributions at the edges of its ERF diminishing quickly. This
corroborates the observation that the Gaussian-like ERF of a
singular ResNet-based architecture results in pre-pooling fea-
tures based on a limited input frequency range. While large
ResNet models somewhat alleviate this issue, as depicted in
Figure 4, we attempt to solve this more efficiently with the
proposed ECAPA2 architecture.

3. PROPOSED ECAPA2 ARCHITECTURE

In this section, we describe and motivate our proposed
ECAPA2 architecture based on observations from the pre-
vious section. Mainly, we want our model (1) to be robust
against the negative performance impact of input alterations
observed in Section 2.1, and (2) to have pre-pooling hidden
features with an ERF covering the complete frequency range
uniformly to exploit all frequency information. ECAPA2
achieves this by defining two main modules, each focusing
on either local or global frequency regions. An overview of
the final architecture is depicted in Figure 5.

3.1. Local feature extractor

The first module of the proposed ECAPA2 model consists
of a cascade of Local Feature Extractor (LFE) blocks. Each
LFE block consists of three 2D-convolutional operations fol-
lowed by the previously proposed frequency-wise Squeeze-



Fig. 5. Topology of the ECAPA2 architecture. T denotes
the number of temporal frame-level features and k indicates
kernel size.

Excitation (fwSE) module [5] as depicted in Figure 6. This
enables the network to learn robust, spatially-invariant fea-
tures and counteracts the sensitivity to input alterations as ob-
served in Section 2.1. The fwSE module allows the model
to inject global context information in the intermediate hid-
den features, resulting in more capable frame-level represen-
tations. A learnable positional encoding vector across the fre-
quency dimension is added to enable the module to integrate
frequency positional information into the features as shown
in [5].

Strided convolutions in the frequency dimension are ap-
plied at specific locations in the LFE module to widen the
receptive field. This has the additional benefit of increas-
ing the computational efficiency by downsampling the hidden
feature map dimensions. The strided convolutions are only

Fig. 6. Local Feature Extractor block of the ECAPA2 archi-
tecture. k denotes kernel size with s indicating an optional
striding value. h determines the hidden feature dimension of
the fwSE block.

introduced later in the network to avoid the loss of potential
useful information in the frequency dimension.

The output hidden features of the LFE block will focus
on a local frequency region due to the Gaussian-like shape
of the corresponding ERF, similar to ResNet-based speaker
verification architectures. This makes it harder for the net-
work to model more expressive features based on the com-
plete frequency range. While increasing the number of 2D-
convolutional layers will make the ERF more uniform, this
requires a substantial increase in model parameters. We at-
tempt to solve this limitation efficiently with a subsequent
Global Feature Extractor (GFE) module.

3.2. Global feature extractor

The GFE module consists of a small TDNN network to in-
tegrate the frequency information learned in the local feature
extractor and is depicted in Figure 5. The kernel size of each
1D-convolutional layer is 1, except for the Res2Net [13] 1D-
convolutional layer, which is set to 3. The kernel character-
istics of 1D-convolutions create a uniform ERF across the
frequency dimension. This is illustrated in Figure 3, where
the addition of a single TDNN layer at the end of a ResNet-
based structure results in a uniform ERF in the frequency di-
mension of the pre-pooling hidden features. By placing the
1D-convolutional layers at the end of the network, we also
circumvent the robustness and spatial dependency issues cov-
ered in Section 2.1. Subsequently, we use channel-dependent
attentive statistics (CAS) pooling [4] to integrate global con-
text in the attention module and project the pooled statistics
to a 192-dimensional speaker embedding using a linear layer.



4. PROPOSED TRAINING STRATEGY

The architecture described in Section 3 is optimized using
the subcenter Additive Angular Margin (AAM) softmax loss
function [14, 15]. AAM promotes intra-class compactness
and inter-class dispersion by applying a margin penalty on
the target class during training. The subcenters mitigates the
performance impact of potential noisy samples during train-
ing due to the short utterance cropping and aggressive aug-
mentation methods often applied in speaker verification train-
ing stages. To obtain speaker embeddings which are robust
against overlapping speakers and short-duration utterances,
two additional training enhancements are employed.

4.1. Overlapping speaker robustness

We incorporate the recently proposed margin-mixup training
strategy [16] to support an embedding space with overlap-
ping speakers. During margin-mixup, the network has to pre-
dict the target classes of an input speech mixture consisting
of two speakers with a random energy mixing ratio λ. The
margin penalty of the AAM-softmax loss function is applied
proportionally to both target classes according to λ. More
details can be found in the accompanying paper [16].

4.2. Short utterance robustness

Most speaker verification systems are trained and tested with
the assumption of long input utterances. However, in real-
world scenarios this assumption does not always hold. Previ-
ous work has already shown that models trained with long ut-
terance conditions perform poorly on short speech segments
and vice versa [17]. We alleviate this issue by altering the
large-margin fine-tuning (LM-FT) stage [8] with a variable
length training (VLT) strategy. During the LM-FT stage, we
randomly crop the input utterance between 1 and 5 seconds
with a probability of α, otherwise we take the standard crop
length of 5 seconds. We argue this should enable the model to
generate features fit for both short and long input utterances.

5. EXPERIMENTAL SETUP

We train our ECAPA2 model using the development parti-
tion of the VoxCeleb2 [2] dataset. We use a two-fold speed
augmentation with factors 0.9 and 1.1 to create additional
speakers from the training set, similar to [18]. We take
random crops of 2 seconds and apply a random augmenta-
tion using the MUSAN [19] (noise, music, babble) and RIR
dataset [20] (reverb). We use 256-dimensional FFTs as input
with a window and hop length of 25 ms and 10 ms, respec-
tively. SpecAugment [21] is applied to increase robustness of
the speaker embeddings by randomly masking between 0 and
5 time frames and 0 and 32 FFT bins.

The AAM-softmax margin penalty is set to 0.2 while the
α and β parameter of the margin-mixup training protocol [16]

is set to 0.05. The number of subcenters is set to 2 for each
class. Our model is trained using the Adam [22] optimizer
with a cyclical learning rate (CLR) [23] using the triangular2
policy with a minimum and maximum learning rate of 1e-8
and 1e-3, respectively. The cycle length is set to 120k steps.
Weight decay is applied on all layers with a value of 2e-4.

After the initial training stage, we apply the LM-FT strat-
egy as proposed [8]. Additionally, we employ our proposed
short utterance sampling strategy described in Section 4.2
with α = 0.4. During this stage, the AAM-softmax penalty
and maximum crop size are increased to 0.4 and 5 seconds,
respectively. The MUSAN-, RIR- and SpecAugment-based
augmentations are disabled. The sampling probability of the
speed-augmented speakers is reduced to 0.2 to prevent do-
main mismatch. The CLR cycle length is set to 60k iterations
while the maximum learning rate is decreased to 1e-5. For
both the initial and fine-tuning stage, the system is trained for
one cycle using a batch size of 256 and 512, respectively.

We apply top-500 adaptive s-normalization [24] on the
cosine similarity scores of the verification trials with an im-
poster cohort existing of the average of the length-normalized
embeddings for each speaker in the training partition of Vox-
Celeb2. Finally, a logistic regression based calibration stage
is applied as described in [8] with the utterance duration as
our only quality measurement.

Speaker verification performance is verified on the stan-
dard VoxCeleb1 test sets with the equal error rate (EER) and
MinDCF metric using a Ptarget value of 10−2 with CFA and
CMiss set to 1. To verify performance on overlapping speak-
ers, we use the Vox1-M test set as introduced in [16], which
consists of the same trials as Vox1-O with the trial utterances
heavily mixed with audio from an interfering speaker. To
asses performance on short-duration utterances, we create an
additional Vox1-S test set based on Vox1-O with the trial ut-
terances randomly cropped between 0.5 and 2 seconds. No
score normalization and calibration are applied when validat-
ing on Vox1-M and Vox1-S.

6. RESULTS

The results of the proposed ECAPA2 model on the stan-
dard VoxCeleb1 benchmarks and our additional Vox1-M and
Vox1-S test sets is given in Table 1. We compare the ECAPA2
model with the previous ECAPA-TDNN architecture and
the more recent speaker verification models fwSE-ResNet-
87 [27] and ECAPA-CNN-TDNN [5]. We also include the
best published single-system EER results on the VoxCeleb1
test sets of models trained only on the development part of
VoxCeleb2. The number of parameters is based on the em-
bedding extraction partition of the models during inference.

ECAPA2 attains state-of-the-art performance on the
Vox1-O and Vox1-E test sets and is only surpassed with a
minor margin on Vox1-H by the ResNet-101-64 system de-
scribed in [26], a model using significantly more parameters



Standard Benchmarks Custom

System Params Vox1-O Vox1-E Vox1-H Vox1-M Vox1-S

EER MinDCF EER MinDCF EER MinDCF EER EER

SE-ResNet-100 [25] 40M 0.43 0.032 0.53 0.058 1.04 0.105 - -
SE-ResNet-100 + CAS [25] 42M 0.36 0.037 0.55 0.060 1.05 0.104 - -

ResNet-101-64 [26] 206M 0.50 0.035 0.64 0.051 0.97 0.078 - -

ECAPA-TDNN [4] 14M 0.87 0.106 1.12 0.131 2.12 0.210 24.78 11.05
ECAPA-CNN-TDNN [5] 60M 0.61 0.037 0.76 0.079 1.32 0.135 22.07 9.23

fwSE-ResNet-87 [27] 30M 0.50 0.037 0.71 0.077 1.26 0.120 21.32 9.02

ECAPA2 27M 0.34 0.029 0.52 0.058 0.99 0.098 17.42 7.92

Table 1. Speaker verification performance of the proposed ECAPA2 model compared to other state-of-the-art architectures.

due to a 16-head attention module in the pooling layer. This
trend continues, with the three best competing systems in
Table 2 consisting of large ResNet-based models with a sig-
nificantly higher number of parameters. This corroborates our
notion that incorporating a small TDNN-based subnetwork
acting as a global feature extractor can attain similar or better
results compared to singular deep ResNet-based architectures
in a more efficient manner.

Compared to the fwSE-ResNet-87 model, ECAPA2 gains
a 18.3% EER improvement on our Vox1-M test set, relatively.
This supports the findings in [16] which states that speaker
verification models trained with a single speaker assumption
perform poor on overlapping speech. Likewise, ECAPA2 at-
tains a relative performance improvement of 12.2% on the
short utterance Vox1-S test set compared to the fwSe-ResNet-
87 system, reinforcing the notion that current state-of-the-art
speaker verification models are not optimally trained to han-
dle short utterances.

Method EER MinDCF

ECAPA2 0.34 0.029

A no global module 0.40 0.034
B small global module 0.38 0.032
C big global module 0.35 0.029

Table 2. Ablation study of ECAPA2 on the Vox1-O test set.

To determine the impact of the GFE module in the
ECAPA2 architecture, we perform an ablation analysis with
the results given in Table 2. In experiment A, we trained
the model without the global module, making it structurally
similar to a ResNet-based model with 60 layers. This results
in a degradation on the EER of 15% relative on the Vox1-O
test set and signifies that the global module can counter-
act the weaknesses of ResNet-based models presented in
Section 2. In experiment B, the global module is replaced
with one 1D-convolutional layer with a kernel size equal to

1. This minimal global module still improves upon a sin-
gular ResNet-based architecture but is outperformed by the
proposed architecture, showing that the global module can
benefit from additional complexity. However, incorporating
an additional Res2Conv1D block in the proposed ECAPA2
model did not improve results as tested in experiment C.

Configuration Vox1-O Vox1-M Vox1-S

baseline 0.34 17.42 7.92

no margin-mixup 0.35 24.04 7.96
no VLT 0.38 17.64 8.89
VLT (α = 0.1) 0.37 17.56 8.66
VLT (α = 0.9) 0.49 17.41 7.15

Table 3. Analysis of proposed training strategy.

The impact of the proposed training strategy is given in
Table 3. Training with margin-mixup improves results on
Vox1-M with 27.5% EER relative, while having no significant
impact on the non-overlapping test sets Vox1-O and Vox1-
S. The proposed short utterance sampling strategy improves
upon fine-tuning with only long utterances with 10.9% rela-
tive in Vox1-S. Additional experiments with a low and high
α cropping probability hyperparameter shows that the base-
line configuration of α = 0.4 gains the best results on Vox1-S
without impacting performance on the regular test sets.

7. CONCLUSION

In this paper, we introduced ECAPA2, a novel hybrid neural
network architecture for robust speaker embeddings. By ad-
dressing the limitations of existing speaker verification mod-
els, ECAPA2 attains state-of-the-art performance on the Vox-
Celeb1 test sets with significantly fewer parameters. Addi-
tionally, the proposed training strategy successfully improves
the resilience of the embeddings against overlapping speech
and short utterance lengths.
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