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Abstract 53 

Especially in higher eukaryotes, protein N-termini are subject to enzymatic modifications with the 54 

acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, 55 

the specificities and substrates of the responsible enzymes, the Nα-terminal acetyltransferases, have 56 

been mapped in several proteome studies. Aberrant levels and mutant versions of these enzymes 57 

were found associated with several human diseases, explaining a growing interest in protein Nα-58 

terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex, 59 

having thousands of possible substrates, researchers are now trying to decipher the functional 60 

outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional 61 

consequence of Nα-terminal protein acetylation being its effect on protein folding. Using selected 62 

examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, we here 63 

discuss the, sometimes contradictory, findings on the effects of Nα-terminal protein acetylation of 64 

protein (mis)folding and aggregation.    65 
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The Diverse Nα-Terminal Acetyltransferase (NAT) Family  66 

The acetylation of the nascent protein alpha-amino group is one of the most prevalent protein 67 

modifications as approximately 80% of all human proteins are Nα-terminally acetylated [1]. The 68 

enzymes responsible for this modification, the Nα-terminal acetyltransferases (NATs), catalyze the 69 

transfer of an acetyl moiety to the free α-amino group at the N-terminus of a newly synthesized 70 

protein, and consume acetyl coenzyme A (Ac-CoA) as a substrate. The NAT enzymes belong to the 71 

Gcn5-related N-acetyltransferase (GNAT) superfamily of enzymes which share the canonical GNAT-72 

fold and have a wide repertoire of substrates [2]. Typically, Nα-terminal acetylation occurs when 20-73 

50 residues of the nascent protein have emerged from the ribosome exit tunnel [3]. To date, the higher 74 

eukaryotic NAT family comprises eight members, NatA-H (Table 1).  75 

Table 1. The Nα-Acetylation Transferase (NAT) Machinery. 76 

NAT Structure Substrate specificity Localization 

NatA 

  
A-, S-, T-, V- and G- Ribosome associated 

NatB 

  
MD-, ME-, MN- and MQ- Ribosome associated 

NatC 

  
ML- ,MI-, MF-, MY- and MK- Ribosome associated 

NatD 

  

Histone H2A and H4 

(SGRGK…) 
Ribosome associated 

NatE 

  

MS-, MT-, MA-, MV, ML-, MI-, 

MF-, MY- and MK- 
Ribosome associated 

NatF 

  
ML-, MI-, MF-, MY- and MK- Ribosome associated 

NatG 

  
M-, A-, S- and T- Chloroplast lumen 

NatH 

  
Actin: DDD… and EEE… Cytosol 

 77 

 78 
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All of its members except for NatG are present in humans [4]; NatG was exclusively identified in plants 79 

[5]. The NAT enzyme complexes consist of a catalytic subunit which can be accompanied by one or 80 

more auxiliary subunits that can establish ribosomal anchoring and may influence the substrate 81 

specificity of the catalytic subunit [6]. As the nascent polypeptide emerges from the ribosome, the 82 

acetyl group can be either transferred to the α-amino group of the initiator methionine (iMet) or to 83 

the α-amino group of the now-first amino acid after removal of iMet by ribosomal-bound methionine 84 

aminopeptidases [7, 8]. While each NAT targets distinct N-terminal residues there is some overlap 85 

between the different complexes (Table 1, Figure 1). To date, no enzymes capable of in vivo Nα-86 

terminal deacetylation have been identified, suggesting that Nα-terminal acetylation is an irreversible 87 

process. This is in contrast to acetylation of the lysine ε-amino side-chain, which is a reversible process 88 

regulated by the opposing activities of lysine Nε-acetyl transferases (KATs) and lysine deacetylases 89 

(KDACs) [7]. 90 

 91 

Figure 1. Theoretical distribution of the substrates of the human Nα-Acetylation Transferase (NAT) 92 

Family. 93 

Approximately 80% of the human proteome undergoes Nα-terminal acetylation. NatA has affinity for 94 

small N-terminal residues following cleavage of the initiator methionine, covering approximately 40% 95 

of the human proteome. NatB targets methionine followed by an acidic residue. NatC, NatE and NatF 96 

exhibit overlapping substrate specificity, targeting predominantly hydrophobic residues and lysine 97 

following the initiator methionine. NatD and NatH are specialized NATs targeting respectively histones 98 

H2A and H4 and actin and are not depicted. Additionally, NatG, a plant-specific NAT, is excluded as 99 

well. 100 
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The involvement of Nα-terminal acetylation in the Pathogenesis of Several Diseases 101 

Defects in the Nα-terminal acetylation machinery have been linked to several disorders in humans. 102 

The discovery of the X-linked Ogden Syndrome, caused by the S37P missense mutation in the catalytic 103 

subunit NAA10 of NatA, was the first of several rare, developmental disorders collectively known as 104 

NAA10-related syndromes [9]. A total of 8 deceased infant boys from two families were found to carry 105 

this mutation [10]. Some common symptoms associated with the Ogden syndrome include severe 106 

intellectual disabilities, facial dysmorphism and aged appearance, failure to thrive, hypotonia and 107 

cardiac abnormalities which are often fatal [9]. NAA10-related disorders range in severity depending 108 

on the functional implication of the mutant and the gender of the patient, as males carry only one 109 

copy of the X-chromosome [11]. Later, it became clear that defects in other subunits of the NAT 110 

complexes of which the genes are not located on the X-chromosome, such as NAA15 (Chr 4), NAA20 111 

(Chr 20) and NAA30 (Chr 14), lead to similar phenotypes [12-16].  112 

Various components of the NAT machinery are implicated in several tumors, such as hepatocellular 113 

carcinoma, breast cancer, lung cancer, urinary bladder cancer, colorectal cancer and prostate cancer, 114 

where their overexpression is most often linked to poor prognosis due to their stabilizing effect on 115 

oncogenes [17, 18]. For instance, in gliomas exhibiting upregulated NAA10 expression, the activity of 116 

various oncogenic pathways crucial to tumor progression is increased, such as cell proliferation, 117 

angiogenesis, DNA repair and epithelial-mesenchymal transition [19]. On the other hand, in several 118 

studies NAA10 has demonstrated tumor-suppressive activity, correlating with a more favorable 119 

prognosis [20-23]. Overall, the involvement of the NAT complexes in cancer appears to be dictated by 120 

context-depended effects, complicating our understanding of their precise contribution to 121 

tumorigenesis and progression. 122 

Disturbance of the native protein conformation and protein aggregation are prominent features of 123 

several neurodegenerative disorders. These disorders are characterized by the aberrant accumulation 124 

of protein aggregates resulting in the progressive loss of nerve cells in the brain, leading to an 125 

increasing decline in cognitive and motor functions. Alzheimer’s disease is the most common form of 126 

dementia which is characterized by deposits of amyloid-beta (Aβ) plaques and Tau tangles in various 127 

regions of the brain. These aggregates disrupt the normal cellular function leading to memory loss and 128 

eventually wide-spread cell death [24]. In Parkinson’s disease, the aggregation of alpha-synuclein (αS) 129 

into inclusion bodies, so called Lewy bodies, cause the degeneration of dopaminergic neurons. This 130 

interferes with regular motor function giving rise to symptoms such as heavy tremors, rigidity and 131 

bradykinesia and can also cause cognitive impairment [25]. Lewy body dementia is also characterized 132 

by αS aggregates and shares features with both Alzheimer’s and Parkinson’s disease. Patients may 133 
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experience memory loss, hallucinations, fluctuations in alertness and attention, in addition to the loss 134 

of motor function similar to Parkinson’s disease [26]. Nα-terminal acetylation has a direct impact on 135 

the function of αS and the accumulation of its aggregates into Lewy bodies. Notably, Lewy bodies have 136 

also been observed in 32-57% of sporadic Alzheimer’s disease cases [27]. Additionally, there appears 137 

to be an intricate relationship between αS and Aβ aggregation [28]. Huntington’s disease is a 138 

hereditary neurodegenerative disorder caused by a single mutation in the HTT gene encoding the 139 

Huntingtin (Htt) protein and splice variants. N-terminal fragments of mutant Htt form aggregates  140 

most commonly in neurons of the basal ganglia, particularly medium spiny neurons of the striatum 141 

[29]. Similarly, Huntington’s disease patients display cognitive decline and neuropsychiatric symptoms 142 

as well as motor abnormalities as a result of the disturbed neuronal function. Interestingly, it has been 143 

demonstrated that Nα-terminal acetylation promotes rather than decreases the aggregation of N-144 

terminal fragments of Htt in Huntington’s disease [30, 31].  145 

 146 

The Multifaceted Roles of Nα-Terminal Acetylation 147 

Protein Nα-terminal acetylation has been linked to a diverse spectrum of protein functions linked to 148 

diverse physiological processes and disease pathogenesis. Despite its prevalence, the full extent of its 149 

functional consequences for the majority of the proteome remains largely elusive. This modification 150 

transforms the positively charged amino group into a neutral, more hydrophobic acetyl group which 151 

can influence protein biology in various ways. It may alter protein stability and half-life dynamics, as 152 

non-acetylated N-terminal residues are susceptible targets for E3 ligases, termed N-recognins. For 153 

instance, in S. cerevisiae, Ubr1 has been reported to target N-terminal methionine followed a large 154 

hydrophobic residue [32]. However, in the Ac/N-end rule pathway Nα-terminal acetylation itself may 155 

also serve as an Ac/N-degron, as evidenced by N-recognins like Doa10 and Not4 in S. cerevisiae, which 156 

recognize these N-degrons, thereby signaling protein degradation complementary to the Arg/N-end 157 

rule pathway [33-35]. It has been hypothesized that steric shielding of these N-degrons, e.g. by other 158 

members of a protein complex as has been reported for Hcn1 and Cog1 by respectively Cut9 and by 159 

Cog2 and Cog3, serves the cell as a strategy for dynamically regulating the half-life of these proteins 160 

[36].  161 

Nα-terminal acetylation was also reported to alter protein-protein interactions and complex 162 

formation, exemplified by a family of NEDD8 E3 ligases, the DCN-like family, which was reported to 163 

selectively interact with Nα-terminally acetylated N-termini of the E2 ligases UBC12 and UBE2F [37-164 

39]. Another function attributed to Nα-terminal acetylation is subcellular localization, as seen in S. 165 

cerevisiae with the Arf-like GTPase ArI3p, a member of the Raf superfamily, which is acetylated by the 166 
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NatC complex facilitating its localization to the Golgi apparatus via association with Sys1p, a Golgi 167 

membrane protein [40, 41]. In human physiology, the N-terminal tail of alpha-synuclein (αS), a critical 168 

factor contributing to pathogenesis in Parkinson’s disease (see below), undergoes Nα-terminal 169 

acetylation and is involved in synaptic vesicle membrane binding under the influence of copper [42]. 170 

The removal of the N-terminal positive charge by the introduced acetyl group may also regulate 171 

protein-metal interactions involving the N-terminus, as is the case for αS where it alters the copper 172 

binding kinetics [43].  173 

The impact of protein Nα-terminal acetylation also extends to protein folding and aggregation with 174 

notable ramifications for human pathology [44, 45]. Protein folding is a highly dynamic and complex 175 

process often involving chaperones that guide the (re)folding or unfolding processes. Important 176 

classes of chaperones amongst others include heat shock protein 60 (Hsp60) or chaperonins, heat 177 

shock protein 70 (Hsp70) and heat shock 90 (Hsp90). By Nα-terminally acetylating chaperones, NATs 178 

can indirectly influence protein folding. For instance, Nα-terminal acetylation of various Hsp10 179 

orthologues appears to stabilize an N-terminal helix and protect these proteins against proteolytic 180 

degradation [46]. Furthermore, Hsp70 undergoes K77 acetylation by monomeric NAA10 in stress-181 

induced conditions, stimulating refolding of denatured proteins. However, once a certain threshold of 182 

denatured proteins is reached, acetylation decreased and Hsp70 switches to inducing protein 183 

degradation [47]. Translational stalling and differential protein synthesis rates have been 184 

hypothesized to affect protein folding [48, 49]. Spontaneous folding of the nascent peptide chain can 185 

already start in the ribosome exit tunnel [50]. It is thus tempting to suggest that ribosomal binding 186 

proteins such as NATs can induce stalling and influence protein folding. Lastly, environmental factors 187 

such as temperature, pH, presence of ions and small molecules, protein concentration and molecular 188 

crowding may all impact native protein structures. Note that as NATs introduce a neutral acetyl group 189 

at the N-terminus, this may alter the electrodynamic interactions with the environment and with other 190 

secondary and tertiary elements of the protein itself. Many of our insights regarding protein folding 191 

and aggregation originate from proteins recombinantly produced in prokaryotic expression systems 192 

and hence lacking crucial modifications such as Nα-terminal acetylation. Therefore, such recombinant 193 

proteins may exhibit different stabilities, folding patterns and aggregation behaviors compared to 194 

their endogenous eukaryotic counterparts that exhibit in vivo acetylation.  195 

In this review, we discuss the influence of Nα-terminal acetylation on protein aggregation and 196 

structure for several, well-studied proteins in this respect.  197 

 198 

Nα-Terminal Acetylation and Other Factors Impacting Alpha-Synuclein Function and Conformation 199 
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Alpha-synuclein (αS) is an important regulator of multiple stages of the synaptic vesicle cycle, although 200 

its exact functions remain elusive [51]. This small protein, encoded by the SNCA gene, spans a length 201 

of 140 amino acids and has a molecular weight of 14.46 kDa [52]. The highest levels of αS are found 202 

in the cytosol of presynaptic terminals of neurons, with a fraction directly associated with synaptic 203 

vesicles. As mentioned above, αS is linked to several neurodegenerative disorders termed 204 

synucleinopathies. Under pathological conditions, αS monomers can aggregate, forming oligomeric 205 

intermediates that progress to amyloid fibril aggregates known as Lewy bodies [53]. These aggregates 206 

can further propagate via endocytosis to aggregate-free neurons in a prion-like manner [54]. 207 

Structurally, αS is composed of a positively charged N-terminal synaptic vesicle membrane binding 208 

region and a negatively charged C-terminal region (Figure 2.A). The N-terminal membrane binding 209 

region contains two zones of respectively four and three lysine-rich, 11-residue-long repeats 210 

containing the highly conserved KTKEGV motif, allowing the formation of two α-helical conformations 211 

[55]. Moreover, the non-amyloid-β component (NAC) domain, located within this region, acts as the 212 

nucleating factor for fibrillation as it enables cross-β sheet structures [56]. The first two residues of 213 

the N-terminus of αS are ‘MD-’, recognized as a high-affinity substrate for NatB [57]. Indeed, research 214 

has demonstrated consistent Nα-terminal acetylation of αS by NatB, effectively neutralizing the 215 

positive charge at the N-terminus [58]. 216 

As a monomer, native αS is intrinsically disordered, or more accurately, it remains natively unfolded 217 

while dynamically shifting between conformational states, both transiently and in response to various 218 

stimuli [42]. It was suggested that several of these states could potentially be more aggregation-prone 219 

[43]. Additionally, it is worth noting that non-membrane bound αS does not spontaneously aggregate. 220 

Instead, it is believed that its interaction with the lipid membranes of synaptic vesicles may initiate a 221 

seeding event that leads to its further aggregation [55]. In vitro studies using lipid vesicles, like 222 

unilamellar vesicles, show the formation of a partially α-helical structure at the N-terminal region of 223 

αS upon association with a membrane’s surface. Specifically, the initial 14 residues at the N-terminus 224 

appear to be of high importance for the avidity of the protein-membrane interaction [59]. The impact 225 

of Nα-terminal acetylation on the formation of the N-terminal α-helical structure remains a subject of 226 

debate. This modification elevates the binding affinity toward lipid membranes by increasing the 227 

helicity of the N-terminal region, thereby decreasing the entropic cost associated with the transition 228 

from random coil to the partial α-helical structure at the N-terminal region. This stabilization arises 229 

from both short-range interactions with the N-terminus and long-range interactions involving several 230 

of the lysine-rich regions important for lipid binding [60]. However, Nα-terminal acetylation by itself 231 

is not sufficient to induce the formation of this structure, so it appears to be an intrinsic property of 232 

αS in the membrane-bound state [61]. Several other factors influence the interplay between αS and 233 
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vesicular membranes, such as the membrane composition and curvature. The lysine-rich repeats in 234 

the N-terminal membrane binding region dictate a preference for anionic membranes enriched in 235 

acidic lipids [59]. The helicity of the N-terminus appears to be an important factor in the early stages 236 

of the αS-lipid interaction [61]. Bell, et al. [62] have demonstrated that Nα-terminal acetylation 237 

decreases the lipid-induced aggregation using in vitro Thioflavin T (ThT) fluorescence experiments. 238 

Moreover, they showed that the morphology of the αS fibrils is altered and characterized by a higher 239 

quantity of secondary structure elements. Specifically, Nα-terminally acetylated αS forms shorter and 240 

more curved fibrils, whereas non-acetylated αS forms longer and straighter fibrils. However, solid 241 

state nuclear magnetic resonance (ssNMR) spectroscopy experiments reveal no substantial 242 

differences in the conformational states between membrane-bound, Nα-terminally acetylated αS and 243 

non-acetylated αS [63]. Furthermore, Bell, et al. [62] demonstrated that after the primary, lipid-244 

induced seeding event, which initiates αS fibrillation, there is a higher amount of Nα-terminally 245 

acetylated αS oligomers formed during the secondary nucleation events compared to non-acetylated 246 

αS. Interestingly, several pathogenic mutations in the N-terminal domain of αS found in Parkinson’s 247 

disease are also known to affect the folding propensity and lipid-binding capabilities [64, 65]. For 248 

instance, the V15A and A30P mutations may disrupt the formation of the first alpha-helical loop, which 249 

lowers the binding affinity for the membrane [66]. 250 

In the last decade, the idea that free cytosolic αS occurs as intrinsically disordered monomers has been 251 

criticized [67-71]. Bartels, et al. [68] provided the first evidence that endogenous, Nα-terminally 252 

acetylated αS, isolated from diverse human cell lines and clinical samples like human erythrocytes, 253 

partially exists as a folded tetramer of 58 kDa which exhibits greatly reduced aggregation kinetics [67]. 254 

An imbalance of the tetramer-monomer equilibrium could then result in an increase of aggregation-255 

prone monomers and subsequently cause pathological αS aggregation [72]. These authors suggested 256 

that the tetrameric forms are lost during harsh cell lysis protocols or are simply not formed using 257 

recombinant, non-acetylated αS. Additionally, they noticed that Nα-terminally acetylated αS forms 258 

the α-helical structure at the N-terminal region even in the absence of lipid membranes. Similar 259 

findings indicating a tetrameric form using an Nα-terminally acetylated, recombinant αS construct or 260 

the full-length protein purified from E. coli have been reported [73-75]. However, several other studies 261 

contradicted these findings, as other groups were not able to replicate and prove the formation of αS 262 

tetramers in the same conditions, confirming the original hypothesis that cytosolic αS occurs primarily 263 

monomeric [60, 76-79]. 264 

Another factor impacting the aggregation of α-synuclein is copper homeostasis, or rather 265 

dyshomeostasis. Copper, a biologically active transition metal occurring in both monovalent Cu1+ and 266 

divalent Cu2+ oxidation states, serves as a vital cofactor for various crucial proteins involved in brain 267 
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development and metabolism [80]. Accumulation of not only copper but other bivalent metals like 268 

iron has been associated with increasing severity of Parkinson’s disease progression in the brains of 269 

patients and aging mice [81, 82]. Copper toxicity triggers oxidative stress by disturbing reactive oxygen 270 

species generation through the Fenton and Haber-Weiss reactions, and through interfering with the 271 

functioning of mitochondria. There are indications that α-synuclein can exacerbate this effect of 272 

copper on oxidative stress [83]. In vitro ThT fluorescence measurements suggest that Cu2+-α-synuclein 273 

interactions accelerate α-synuclein fibrillation rates by altering αS secondary and tertiary structures 274 

to an aggregation-prone state [84, 85]. Notably, α-synuclein-copper binding extends the partially α-275 

helical structure induced at the α-synuclein N-terminal region, affecting the aforementioned lipid 276 

membrane interactions [86]. Three binding sites have been discerned for non-acetylated α-synuclein: 277 

the high-affinity site 1, coordinated by the sulfur atoms of Met-1 and Met-5; the lower-affinity site 2, 278 

centered around the imidazole ring of His-50; and the low-affinity site 3, involving the sulfur atoms of 279 

Met-116 and Met-127 [87-89]. Moriarty, et al. [90] showed that Nα-terminal acetylation of α-280 

synuclein abolishes the high-affinity interaction between Cu2+ and site 1 in the N-terminal domain, 281 

reducing the aggregation kinetics compared to the non-acetylated holo-form. They demonstrated that 282 

copper now mainly bound to the His-50 and the Met-166/Met-127 sites. Furthermore, the acetylated 283 

α-synuclein His50Gln mutant has abolished copper binding and exhibits greatly reduced subsequent 284 

aggregation compared to the non-acetylated form under the same conditions [43]. This emphasizes 285 

the predominant role of the His-50 site over the N-terminal site in native, acetylated α-synuclein. 286 

Mason, et al. [43] hypothesized that Nα-terminal acetylation reduced the Cu2+-induced structural shift 287 

of native αS toward an aggregation-prone intermediate. However, Miotto, et al. [88] reported that 288 

Nα-terminally acetylated αS-Cu1+ complexes exhibited similar binding tendencies to the non-289 

acetylated complex. Nevertheless, they demonstrated a substantial increase in α-helical propensity 290 

within the first 10 residues of the acetylated complex. 291 

 292 

The Involvement of Nα-terminal acetylation in Huntington's Disease Pathogenesis 293 

Huntingtin (Htt), the central component in Huntington’s disease, is a large protein with a molecular 294 

weight of 347 kDa and which forms a superhelical, solenoid-like structure [92]. Although expressed 295 

throughout the body, its highest levels are found in the neurons of the central nervous system as well 296 

as in non-neuronal tissue such as muscle fibers, liver and testes [29, 93]. Htt can be found in the 297 

nucleus and in the cytoplasm where it is associated with mitochondria, the Golgi apparatus and the 298 

endoplasmic reticulum [93, 94]. Htt is predominantly comprised of HEAT repeats, a structural motif 299 

named after four HEAT repeat-containing proteins: Huntingtin (Htt), Eukaryotic Translation Elongation 300 
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Factor 3 (eEF3), Protein Phosphatase 2 regulatory A Subunit (PP2A), Mechanistic Target of Rapamycin 301 

(mTOR) (Figure 2.B) [95]. These repeats, approximately 38 amino acid in length, consist of helical 302 

hairpin repeat regions, which serve as scaffolds for various protein-proteins interactions [96]. These 303 

regions provide Htt structural fluidity to adapt its conformation to accommodate its partners. Given 304 

its extensive network of interaction partners, Htt is involved in many different biological processes, 305 

including vesicle trafficking, metabolism, transcription and protein turnover [29]. Of note, the number 306 

of reported interaction partners in Biogrid of Htt in H. sapiens is 331 (Biogrid database version 4.4, 307 

accessed on 2 January 2024, https://thebiogrid.org/109314/summary/homo-sapiens/htt.html) [97].  308 

The N-terminal domain of Htt differs from the rest of the protein. It consists of a region containing the 309 

nuclear export signal (NES), also referred to as the N17 domain, the polyglutamine (polyQ) repeat 310 

region and the proline-rich domain (polyP), the latter appearing to exhibit a stabilizing effect on the 311 

polyQ domain and thus inhibiting aggregation [98]. Huntington’s disease is caused by a single mutation 312 

leading to an expansion of poly CAG repeats in the HTT gene. This leads to increases of the polyQ tract 313 

length, which has been correlated with cell toxicity as it strongly impacts the biophysical and 314 

biochemical properties of Htt [99]. There appears to be an increase in proteolytic cleavage of the N-315 

terminal domain of mutant Htt in Huntington’s disease patients by caspases, calpains and other 316 

endoproteases [29]. It was hypothesized that specific polyQ-containing N-terminal Htt fragments may 317 

mediate neurodegeneration in Huntington’s disease as these fragments appear more susceptible to 318 

misfolding and aggregation [100, 101]. Further, the increase in polyQ repeat length correlates with 319 

the pathology of Huntington’s disease which only occurs in patients with a repeat length of over 35 320 

[98]. 321 

Post-translational modifications add additional layers of complexity to the regulation of Htt activity. 322 

So far, various modifications like lysine acetylation, palmitoylation, phosphorylation, SUMOylation, 323 

ubiquitination, and proteolytic cleavages were found to influence Htt function in Huntington’s disease 324 

[102]. Post-translational modifications of the N-terminal region notably impact the aggregation 325 

propensities of Htt. Despite the observation that Htt is Nα-terminally acetylated by NatA both in vitro 326 

and in vivo, the effect of Nα-terminal acetylation remains less understood, [30]. Using a bacterial 327 

system to produce Htt with an alpha-acetylated N-terminus or without, Gottlieb, et al. [30] were able 328 

to demonstrate that Nα-terminal acetylation promotes the aggregation of an N-terminal Htt fragment. 329 

Furthermore, circular dichroism (CD) spectroscopy data showed, despite a relatively small increase of 330 

α-helical content, no significant alterations of the random coil content. 331 

Huntingtin-interacting protein K (HYPK) interacts with Htt by binding to the N-terminal N17 domain 332 

and is able to diminish mutant Htt aggregates upon overexpression, attributed to its inherent 333 

https://thebiogrid.org/109314/summary/homo-sapiens/htt.html
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chaperone activity [103]. Arnesen, et al. [31] found HYPK as a stable interactor of NatA, establishing 334 

an additional connection between Huntington’s disease progression and Nα-terminal acetylation. 335 

Weyer, et al. [104] provided insights into the structural mechanisms by which HYPK regulates Nα-336 

terminal acetylation through interaction with the NatA complex. They found that the HYPK C-terminus 337 

closely binds to the NAA15 subunit of NatA, while its N-terminus obstructs the entrance to the active 338 

site of NAA10. In this manner, HYPK may be able to exhibit an inhibitory effect on NatA and, 339 

consequently, decrease the aggregation of Htt. Notably, HYPK expression was reportedly reduced in 340 

both cellular and animal models of Huntington’s disease [30, 105].  341 

 342 

The RNA-binding Protein FUS 343 

The RNA-binding protein fused in sarcoma (FUS)/translocated in sarcoma (TLS) shares several features 344 

with αS. It is an aggregation-prone protein, exhibiting prion-like properties. Canonical FUS has a length 345 

of 526 amino acids and a molecular weight of 53 kDa [52]. The residue following the iMet is Ala, making 346 

it a potential NatA substrate. FUS spans an intrinsically disordered transcriptional activation domain 347 

enriched in glutamine, glycine, serine and tyrosine (QGSY) residues termed the N-terminal low-348 

complexity (LC) domain, three disordered arginine-glycine-glycine repeat (RGG) domains, a RNA-349 

recognition motif (RRM), a zinc finger domain, a nuclear localization signal (NLS) and a nuclear export 350 

signal (NES) (Figure 2.C) [106]. Furthermore, two prion-like domains have been predicted ranging from 351 

residues 1-239 and 391-407 [107]. FUS is part of the FET (FUS/EWS/TAF15)/TET (TLS/EWS/TAF15) 352 

family sharing the characteristic RRM and the abolishment of the auto-repression of the 353 

transcriptional activation domain in oncogenic TET/FET-fusion proteins [108]. 354 

FUS was originally identified in myxoid liposarcoma where the FUS LC undergoes fusion with DDIT3, a 355 

member of the CCAAT/enhancer binding proteins (C/EBPs) family of transcription factors, as a result 356 

of the t(12;16)(q13;p11) translocation [109, 110]. The fusion protein likely drives sarcomagenesis 357 

similar to the EWS/FLI fusion protein in Ewing sarcoma. In addition, FUS has been associated with the 358 

formation of amyloid fibrils in various subtypes of neurodegenerative disorders, namely in 359 

amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD) and polyQ diseases 360 

such as Huntington’s disease [111, 112]. FUS is a moonlighting protein involved in processes ranging 361 

from translation and transcription to degradation, as well as DNA damage repair and various 362 

messenger- and microRNA processing pathways [111]. Notably, it is a component of the 363 

ribonucleoprotein (RNP) complexes, essential for regulating RNA metabolism. Moreover, FUS is 364 

heavily involved in RNA and stress granule dynamics, undergoing self-assembly via liquid-liquid phase 365 

separation (LLPS) mediated by its N-terminal LC domain [113, 114]. LLPS is the phenomenon in which 366 
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macromolecules coalesce to form liquid droplets within the surrounding solvent, creating distinct 367 

micro-environments. FUS can translocate between the cytosol and nucleus, and FUS mutations linked 368 

to both familial and sporadic cases of ALS often affect the C-terminal NLS, resulting in cytosolic FUS 369 

accumulation [115]. In this aggregation-promoting environment, the N-terminal LC domain appears 370 

to be of high importance for the toxic gain-of-function and aggregation of retained FUS in nuclear 371 

inclusions [112]. These inclusions initially closely resemble the abovementioned stress granules and 372 

are likely the result of aberrant phase separation resulting in an irreversible liquid-to-solid phase 373 

transition [116].  374 

The FUS LC domain contains several sites for post-translational modifications (PTMs) which appear to 375 

be important for mediating its function, especially phosphorylation [117, 118]. Bock, et al. [114] 376 

provide evidence for FUS Nα-terminal acetylation by NatA and explored the impact on the properties 377 

of the FUS LC domain. They reported no evident changes in the secondary structure comparing the 378 

acetylated and non-acetylated variants when applying NMR spectroscopy-based techniques and 379 

molecular simulation. However, it is worth noting that this analysis was performed with N-terminal 380 

fragments spanning the LC domain, which may not account for potential long-range interactions, such 381 

as observed in the stabilization of the helical structure at the N-terminus of αS. Several other regions 382 

beyond the LC domain have been reported to play an important role in the self-assembly of FUS so it 383 

is not unlikely that similar mechanisms as in αS affect the highly dynamic conformational states of the 384 

largely intrinsically disordered FUS [106]. Additionally, employing protocols that utilize gentle 385 

methods for the isolation of FUS, without potentially protein denaturing steps, might be required to 386 

better preserve any structural elements, as discussed above for αS. Although the secondary structure 387 

remains unaffected, Bock, et al. [114] demonstrated that Nα-terminally acetylated FUS LC exhibits an 388 

elevated tendency for phase separation. Furthermore, they observed slower and reduced aggregation 389 

for acetylated FUS LC. These authors speculated that similar findings are possible for the other 390 

members of the FET-family, which could provide more insights in the dynamics of the oncogenic N-391 

terminal fusion proteins observed for these proteins. 392 

 393 
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 394 

Figure 2. The Structure of Three Nα-Terminally-Acetylated, Aggregation-Prone Proteins Involved in 395 

the Pathogenesis of Various Neurodegenerative Disorders.  396 

(A) The structural domains of monomeric alpha-synuclein consisting of the positively charged N-397 

terminal domain involved in synaptic vesicle membrane docking; the aggregation-prone non-amyloid-398 

β component (NAC) region; the negatively charged C-terminal domain involved in metal ion and small 399 

molecule binding and Ca2+-mediated membrane binding. The N-terminal region comprises 7 lysine-400 

rich, 11-residue-long repeats containing the conserved KTKEGV motif which are involved in the 401 

formation of two alpha-helical structures during membrane binding. (B) Huntingtin (Htt) mainly 402 

comprises large HEAT-domains. The N-terminal domain of Htt, which is cleaved off at an increased 403 

rate in Huntington’s disease patients, comprises the N17 region containing a nuclear export signal, the 404 

PolyQ domain being an aggregation-prone region and the PolyP domain. (C) Fused in Sarcoma (FUS) 405 

contains the N-terminal low-complexity (LC) domain which is an intrinsically disordered transcriptional 406 

activation domain enriched in glutamine, glycine, serine and tyrosine (QGSY) residues. FUS further 407 

contains three disordered arginine-glycine-glycine repeat (RGG) domains, a RNA-recognition motif 408 

(RRM), a zinc finger domain (ZNF), a C-terminal nuclear localization signal (NLS) and a nuclear export 409 

signal (NES). Furthermore, two prion-like regions have been indicated ranging from residues 1-239 410 

and 391-407. 411 

 412 

Nα-Terminal Acetylation Affects Fish Parvalbumin Allergenicity  413 
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Parvalbumins are small, calcium-binding proteins (approximately 12 kDa) expressed in the cytosol of 414 

higher vertebrates muscles [52]. By maintaining Ca2+-homeostasis, parvalbumins are involved in the 415 

regulation of muscle relaxation, apart from their role in various other biological processes [119]. The 416 

first residue following the non-retained iMet, mostly alanine or serine, has been observed to be 417 

acetylated [120]. The folding and function of fish parvalbumin, a major allergen, appears to be 418 

especially affected by this Nα-terminal acetylation. Similar to α-synuclein, differences have been 419 

observed between the non-acetylated variants produced in prokaryotic expression systems and the 420 

native variants carrying the Nα-terminal acetyl group found in fish [120, 121]. Permyakov, et al. [122] 421 

used a combination of differential scanning calorimetry (DSC), CD spectroscopy and limited proteolysis 422 

to assess the thermostability and secondary structure of rat and pike parvalbumin species. The N-423 

terminal domain of pike parvalbumin displays a higher degree of disorder compared to rat 424 

parvalbumin which may contribute to its allergenicity. They demonstrated that Nα-terminal 425 

acetylation of fish parvalbumin shifts the thermal denaturation profile of the metal-bound protein 426 

state compared to acetylated rat parvalbumin where no such shift is observed. The authors attributed 427 

this effect to changes in protein folding, which were confirmed by the alterations in secondary 428 

structure observed in the CD data. Moreover, limited proteolysis of the parvalbumins showed that 429 

Nα-terminally acetylated fish parvalbumin had an increased resistance to proteolytic digestion by α-430 

chymotrypsin. As such, this increased resistance of native fish parvalbumin to digestion upon 431 

consumption could contribute to its allergenicity in humans. Furthermore, Permyakov, et al. [122] 432 

demonstrated that the Nα-terminal acetylation status affects the association and dissociation of Ca²⁺ 433 

and Mg²⁺ to parvalbumin and, in turn, could affect its function in muscle relaxation. Lastly, the authors 434 

showed that Nα-terminal acetylation of fish parvalbumin increases the structural stability of the 435 

protein and, in turn, can prevent oligomerization and aggregation of the protein. 436 

 437 

Strengthening the Scaffold: Nα-Terminal Acetylation's Influence on an Actin-Associated Protein 438 

Family and Cytoskeletal Stability  439 

Tropomyosins, forming a diverse family of actin regulatory proteins with numerous isoforms as a 440 

result of alternative splicing, play crucial roles in various cellular functions [52]. Among these, striated 441 

muscle α-tropomyosins are pivotal not only for muscle contraction in striated muscles, but also for 442 

cytoskeletal dynamics in non-muscle cells. Their intricate structure, consisting of a highly dynamic and 443 

complex two-chained, parallel coiled coil, facilitates polymerization into filaments and enables them 444 

to warp along the major grove of actin filaments anchored by troponins. In a relaxed state 445 

tropomyosins cover the binding sites on the actin filament, preventing myosin from attaching and 446 
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initiating muscle contraction [123]. Due to their dynamic structure, tropomyosins are able to respond 447 

promptly to impulses such as myosin binding and fluctuations in Ca²⁺-concentration [124]. It has been 448 

demonstrated that several tropomyosins are Nα-terminally acetylated and based on the N-terminal 449 

residues (often MD- and MA-), it is a likely occurrence for various other isoforms [125, 126]. The 450 

necessity of Nα-terminal acetylation of striated muscle α-tropomyosin for its structure and proper 451 

actin binding has been documented since the 1980s. It has been demonstrated that non-acetylated 452 

tropomyosins display an up to a 100-fold lower affinity for actin and have reduced capabilities to form 453 

filaments upon troponin binding [127-129]. This effect may stem from a local stabilization of the 454 

coiled-coil structure in the first 30 amino acids at the N-terminus, which potentially enhances 455 

interactions with the C-terminus of the adjacent tropomyosins in the filament [130, 131]. Additionally, 456 

Nα-terminal acetylation could influence the interactions between tropomyosins and the different 457 

myosin classes depending on their cellular location. More specifically, Nα-terminal acetylation of the 458 

sole tropomyosin Cdc8 of S. pombe by NatB has been demonstrated by Coulton, et al. [132] to 459 

promote the controlled binding of multiple myosin II heavy chains, thereby enhancing their 460 

coordinated function, along actin strands of the contractile ring formed during mitosis, towards the 461 

end of the telophase. Furthermore, it preserves the integrity of the actin filaments which appear to 462 

be defined by a wavy appearance and an increased fragility in the conditions with unacetylated Cdc8. 463 

 464 

Emerging Techniques for Probing Protein Structural Differences  465 

In the different sections above, several technologies have been described to evaluate protein 466 

structures and changes therein caused by Nα-terminal acetylation. With most of these, purified 467 

(recombinant) proteins have been analyzed, and by nature of the technologies used, such analyses 468 

took place outside of the endogenous cellular environment of the studied proteins.  469 

To some extent, protein thermostability could be considered as a proxy for protein structures. In 2014, 470 

Savitski and colleagues introduced a proteome-wide technology for studying protein thermostability; 471 

thermal proteome profiling over a temperature range (TPP-TR) [133]. This technology both works on 472 

cell lysates and in living cells, the latter thus providing an opportunity to assess protein structural 473 

changes in a native environment. Whilst proven a powerful approach, when studying for instance the 474 

effect of reduced levels or even the absence of Nα-terminal acetylation in cellular models (e.g., [134]), 475 

careful interpretation of thermostability data is warranted as changes in thermostability might be 476 

caused by effects other than protein structural changes such as differences in protein interaction 477 

partners or subcellular localization caused by non-physiological Nα-terminal acetylation. One of the 478 

advantages of the limited proteolysis technology, LiP-MS, introduced by the Picotti lab over TPP-TR is 479 
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that it allows to define structural changes to regions of about 10 amino acids in length in a protein’s 480 

structure, and this by mapping so-called conformotypic peptides to these regions [135]. However, thus 481 

far LiP-MS has been used on cell or tissue lysates in which proteins are taken out of their endogenous 482 

environment. Hence, it is clear that there are opportunities to develop novel technologies that 483 

evaluate protein structural changes directly in their native environment.   484 
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