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Abstract

Objective: This study aims to assess the suitability of Fitbit devices for real-time physical activity (PA) and sedentary behav-
iour (SB) monitoring in the context of just-in-time adaptive interventions (JITAIs) and event-based ecological momentary
assessment (EMA) studies.

Methods: Thirty-seven adults (18–65 years) and 32 older adults (65+) from Belgium and the Czech Republic wore four
devices simultaneously for 3 days: two Fitbit models on the wrist, an ActiGraph GT3X+ at the hip and an ActivPAL at the
thigh. Accuracy measures included mean (absolute) error and mean (absolute) percentage error. Concurrent validity was
assessed using Lin’s concordance correlation coefficient and Bland–Altman analyses. Fitbit’s sensitivity and specificity for
detecting stepping events across different thresholds and durations were calculated compared to ActiGraph, while ROC
curve analyses identified optimal Fitbit thresholds for detecting sedentary events according to ActivPAL.

Results: Fitbits demonstrated validity in measuring steps on a short time scale compared to ActiGraph. Except for stepping
above 120 steps/min in older adults, both Fitbit models detected stepping bouts in adults and older adults with sensitivities
and specificities exceeding 87% and 97%, respectively. Optimal cut-off values for identifying prolonged sitting bouts
achieved sensitivities and specificities greater than 93% and 89%, respectively.

Conclusions: This study provides practical insights into using Fitbit devices in JITAIs and event-based EMA studies among
adults and older adults. Fitbits’ reasonable accuracy in detecting short bouts of stepping and SB makes them suitable
for triggering JITAI prompts or EMA questionnaires following a PA or SB event of interest.
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Introduction

Physical inactivity and sedentary behaviour have unfavour-
able effects on mental and physical well-being.1–3

However, many people, especially older adults, are insuffi-
ciently active, making physical inactivity and sedentary
time the leading risk factors for noncommunicable diseases
and death worldwide.1,4 Health behaviour interventions
have been developed to promote physical activity (PA)
and reduce sedentary behaviour (SB), but they mostly
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achieve limited and short-term behaviour change.5–7 The
lack of long-term effectiveness might (partly) be explained
by the fact that current interventions assume determinants
of movement behaviours to be static (i.e. stable over
time) and neglect their fluctuations over time.8,9 However,
previous research indicated that PA and SB are dynamic
processes influenced by momentary and daily fluctuations
in determinants.10 For example, a recent study in older
adults showed that multiple individual-level determinants
(emotions, physical complaints, intention and self-efficacy)
of older adults could vary over time.11 Besides, individuals
are constantly exposed to social and physical environmental
factors, as well as events throughout the day, which might
influence a person’s behaviour. Hence, determinants of
movement behaviours can vary within individuals over
time (within and between days), which suggests the need
for a dynamic approach in interventions targeting PA
and SB.12

Just-in-time adaptive interventions (JITAIs) are inter-
vention designs that address the dynamic nature of the
determinants of movement behaviours (e.g. engagement
in PA and reduction of SB) by providing the right type
and amount of support at the right time.13,14 Specifically,
these interventions adapt in real time to an individual’s
changing internal (e.g. when an individual is most likely
to be receptive and needs it most) and external (e.g. social
and environmental context) states.15 Specifically, JITAIs
can respond effectively when individual-level determinants
(e.g. self-efficacy) are at optimal levels by identifying fluc-
tuations in these determinants before prompting the inter-
vention. In addition, prompting may also be contingent
on behaviour. For example, an encouraging prompt to
prolong a walk can be triggered on a participant’s smart-
phone when the participant is walking from work in the
afternoon, or a prompt suggesting a short bout of exercise
can be triggered after a prolonged episode of sitting and
watching TV. Despite JITAIs’ potential to promote a phys-
ically active lifestyle, their development is still in its early
stages.14

Developing effective JITAIs requires better insight into
the dynamic determinants of PA and SB. To capture the
time- and context-dependent variation of behavioural deter-
minants, researchers commonly use ecological momentary
assessment (EMA). EMA involves repeated sampling of
behaviours and experiences during people’s everyday
lives, thus maximising ecological validity and minimising
recall bias.16–18 Within an EMA study, individuals are
usually prompted at fixed or randomly allocated times
during the day (i.e. time-based EMA).19 By doing so,
many events of interest might be missed. For example,
the probability of prompting a questionnaire during a bout
of PA will be small, resulting in a lack of important infor-
mation about why someone is engaging in PA at a specific
time and context. Since increasing prompt frequency would
result in a higher user burden, event-based EMA is an

innovative data collection method to assess experiences,
feelings and contexts during or following a specific event
(e.g. a short bout of PA or prolonged episode of sitting).
Although event-based EMA is promising for identifying
the individual and environmental dynamic determinants
of PA and SB, its use in this field of research is still in its
infancy.

In both JITAIs and event-based EMA research, the con-
tinuous monitoring of participants’ behaviour is needed to
enable the detection of the events of interest (e.g. 5 min
of sustained walking or 30 min of prolonged sitting).
Although consumer-based activity trackers like Fitbit are
user-friendly devices with the potential to be used as a mon-
itoring tool to trigger both JITAI prompts and EMA ques-
tionnaires,20 it is still not known whether they can
accurately measure short bouts of PA and SB. The Fitbit
already appeared to be nonvalid for giving real-time moder-
ate to vigorous physical activity (MVPA) feedback on a
15-min level.21 However, for steps, Fitbit was identified
as a valid measurement tool on a 15-min level compared
to the ActiGraph GT3X+.21 Nevertheless, to provide real-
time feedback on minutes of (in)activity or to serve as a
wearable sensor for event-based EMA and JITAIs, it is
important to assess its validity in measuring stepping and
SB on even a smaller time scale (e.g. 1, 5 and 10 min).
This would enable researchers to assess individual and
environmental determinants immediately after a short
bout of walking and SB or to provide tailored support at
the right time and context using JITAIs.22

To provide a rigorous and transparent validation of
Fitbits for use in JITAIs and event-based EMA and to
enable researchers to make informed decisions on what
device to use in a particular study, it is recommended to
adopt a standardised validation framework.23 Keadle et al.
introduced a four-stage process framework designed to
facilitate the development and validation of measures of
physical behaviour.24 The framework progresses from
mechanical (phase 0) and calibration testing (phase 1),
through validation in a controlled semi-structured labora-
tory (phase 2) and naturalistic setting (phase 3), to imple-
menting the new device or method (phase 4).24 Fitbit
devices routinely undergo mechanical and calibration testing
to ensure that they meet the manufacturer’s quality standards
and that they are accurate and reliable for consumers.25

Furthermore, a body of literature has indicated that Fitbits’
accuracy in measuring steps in a controlled semi-structured
laboratory setting is acceptable.26 However, studies in a natur-
alistic setting (phase 3) validating Fitbits for detecting short
episodes of stepping and sitting are lacking.

Objectives

The objective of this study was to conduct a phase-3 valid-
ation of Fitbits24 and provide practical considerations on
using Fitbits for JITAIs and event-based EMA studies in
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adults (18–65 years) and older adults (65+). Specifically,
we aimed (1) to explore the concurrent validity of two
models of Fitbits with ActiGraph to ensure they can accur-
ately capture short bouts of stepping and (2) to examine the
sensitivity and specificity of Fitbits to detect short bouts of
stepping (1, 5, 10 and 20 min) and SB (1, 20, 30 and
60 min) using various steps-per-minute thresholds. For
stepping, this allows researchers to get an idea about the
accuracy of Fitbits to detect the episodes of walking of
various durations (1 to 20 min) and walking cadence (60
to 120 steps per minute) for the age group they are inter-
ested in. For SB, we calculated the optimal threshold (in
steps per minute) of Fitbits to capture an event of prolonged
sitting (1 to 60 min) measured with ActivPAL in adults and
older adults. In addition, we investigated the day-level con-
current validity and inter-device agreement between two
different Fitbit models to find out if these results can be gen-
eralised to other Fitbit models.

Methods
This observational study took place in Belgium and the
Czech Republic from May to December 2021. Over a
3-day period, participants simultaneously wore four differ-
ent devices: two models of Fitbit on the wrist, an ActiGraph
GT3X+ on the hip and an ActivPAL on the thigh.

Participant recruitment

A convenience sample of 37 adults (aged between 18 and
65 years) and 32 older adults (aged over 65 years) was
recruited from the researchers’ social network, including
friends, family and colleagues. Only participants who were
able to walk at least 100 m independently were included in
the study. There were no other eligibility criteria for partici-
pation in the study. The participants were recruited, and
data were collected in two different countries (Belgium
(Flanders, n= 40) and the Czech Republic (Prague, n=29)).
Participants received an informative letter outlining the
study’s objectives, design, purpose, data confidentiality
and their right to withdraw from the study at any time
without the need to provide a reason. All participants read
and signed the informed consent form before inclusion
in the study. The study protocol was approved by the
Ethics Committee of Ghent University (BC-09448) and
Charles University (No. 299/2021).

Measures

We investigated the concurrent validity of two wearables
(Fitbit Ionic and Fitbit Inspire 2) using two triaxial acceler-
ometers (ActiGraph GT3X+ and ActivPAL4) as a refer-
ence. The Fitbit Ionic and Inspire 2 (Fitbit Inc.,
San Francisco, CA) convert motion patterns to step
counts in 1-min epochs. The Inspire 2 is an activity
tracker, which is specifically designed to monitor health

and activity. The Ionic is a smartwatch, which, besides
tracking activity levels, also features other functions (e.g.
receiving calls or delivering notifications). To assess the accur-
acy of the Fitbits in measuring PA, the hip-worn ActiGraph
GT3X+ (ActiGraph, Pensicola, FL, USA) was used as a ref-
erence device. This accelerometer was found reliable and valid
for measuring steps in different settings.27,28 In addition, SB
was assessed using the thigh-worn ActivPAL4 (Pal
Technologies Ltd., Glasgow, UK) chosen for its superior
accuracy in detecting SB compared to the ActiGraph GT3X
+. Positioning the device on the thigh allows for a more accur-
ate detection of posture changes, including sitting, standing
and lying down. ActivPAL4 has proven to be a reliable and
valid accelerometer for assessing SB in free-living condi-
tions29–32 and in laboratory settings.33

Procedures

Prior to data collection, all participants were either invited
to the lab or visited at home to sign the informed consent,
hand over the four devices and administer a short question-
naire on socio-demographic variables, such as age, gender,
height, weight and nationality (see SupplementaryMaterials 1).
Participants were asked to wear the ActiGraph and ActivPAL
accelerometers and the two different Fitbit models (Ionic and
Inspire 2) concurrently for three consecutive days while main-
taining their normal behaviour. The Fitbit wearables were worn
simultaneously next to each other at the non-dominant wrist
in a randomly assigned order to eliminate the potential
effect of where the Fitbits were worn (e.g. Ionic proximal
and Inspire 2 distal or vice versa). The two Fitbit models
logged the users’ minute-by-minute step count and heart
rate. Since the data collection period only lasted 3 days,
no smartphone was required to synchronise them with the
Fitbit app as their internal memory can store up to 7 days
of data. ActivPAL was made waterproof and attached by
a hypoallergenic adhesive tape to the midpoint of the
right upper thigh. ActiGraph was fitted to the participants’
right hip and was the only device that was removed
during sleep time (to increase participants’ comfort), show-
ering or water activities (because it is not waterproof). Both
devices were placed at their respective positions in accord-
ance with the manufacturer’s instructions and previous
research. To ensure that the accelerometers’ and the
Fitbits’ internal clocks were synchronised at the exact
same time, all the measurement instruments were initialised
using the same laptop.34 Immediately after the testing
period, the devices were collected, and the Fitbits were syn-
chronised with the Fitbit application to prevent data loss.

Data processing

Step count (minute-by-minute) and heart rate data (second-
by-second) were extracted from the Fitbit accounts with an
application programming interface (API) using the OAuth
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2.0 Client Library and the Fitbitr package in R.35 Rolling
(moving) averages of steps were calculated for bouts of
various durations (5, 10 and 20 min).

ActiGraph data were initialised, downloaded and pro-
cessed using ActiLife version 6.13.4 software (ActiGraph, Fort
Walton Beach, Florida, USA). ActiGraph data were recorded
at a sampling frequency of 30 Hz and converted into 60-s
epochs without a low-frequency extension (LFE) filter.
Troiano’s (2007) algorithm was used to define non-wear time,
which was defined as a minimum of 60 min of 0 counts per
minute (cpm) with an allowance of 2 min of interruptions.36

Minute-by-minute step data were extracted from ActiLife and
rolling averages were calculated for 5, 10 and 20 min.

Events of sitting, standing, stepping, cycling, sleeping,
lying and seated traveling were classified using ActivPALs
proprietary software. Data were exported from ActivPAL
into the event format (e.g. format describing the sequence of
events with the corresponding time stamps of their start
and end) and converted into second-by-second data. Then,
second-by-second ActivPAL data were converted to 60-s
(minute) epoch data. Minutes consisting exclusively of 60
consecutive seconds of SB, such as sitting, travelling in a
seated position and lying (classified using ActivPAL propri-
etary software) were considered sedentary minutes. Minutes
in which SB was interrupted (if only for 1 s) were considered
non-sedentary minutes. Hence, zero tolerance for other
behaviours (e.g. cycling and stepping) was allowed for
sedentary minutes. Moreover, all sedentary bouts (20, 30
and 60 min) consisted only of these sedentary minutes.
Sleeping minutes were excluded from the analysis.

Only minutes that fulfilled all these criteria were included
in the analyses: (a) time of the day between 9:00 a.m. and
8:59 p.m.; (b) ActiGraph data flagged as “wear” when apply-
ing the Troiano algorithm36; and (c) both Fitbits recorded at
least one heart rate measurement as a marker that the
devices were actually worn. All other minutes were excluded
from the analysis to ensure that we only analysed minutes
when all four devices were worn concurrently.

Statistical analysis

Analyses were performed using R (version 4.2.0). First, we
calculated several commonly used measures of accur-
acy,26,37,38 including mean error (ME), mean absolute
error (MAE), mean percentage error (MPE) and mean abso-
lute percentage error (MAPE), for the recorded step count
between ActiGraph and each of the Fitbit devices on a
daily level. These measures provide quantitative insights
into the degree of agreement or discrepancy between the
step counts recorded by ActiGraph and those recorded by
the Fitbit devices. The percentage error was calculated as
a difference between the Fitbit data and the ActiGraph
data divided by the ActiGraph data. The percentage errors
and their absolute values were averaged to compute the
mean percentage error (MPE) and the mean absolute

percentage error (MAPE), respectively. The MPE value
assessed the degree of the overall overestimation or under-
estimation of the Fitbit against the ActiGraph, whereas the
MAPE value provided the most relevant and comparable
indicator of individual error because it accounted for both
overestimation and underestimation. Second, to assess the
concurrent validity of Fitbits to measure steps in short
bouts, we calculated the ME, MAE and Lin’s concordance
correlation coefficients (CCC) and constructed Bland–
Altman plots34,38,39 for 1, 5, 10 and 20 consecutive
minutes. In these analyses, we only included minutes
where the ActiGraph recorded≥ 60 steps (considered as
sustained stepping).40 For example, for 10 consecutive
minutes in which ActiGraph detected more than 60 steps,
we obtained five valid 5-min bouts (i.e. 0–5, 1–6, 2–7, 3–
8, 4–9 and 5–10). To assess the degree of agreement, the
following strength-of-agreement criteria were applied:
<0.90 poor, 0.90 to 0.95 moderate, 0.95 to 0.99 substantial,
and >0.99 almost perfect.39 Third, we examined the poten-
tial effect of the measurement day and site (i.e. Belgium and
the Czech Republic) on the minute-level difference using a
linear regression model. Fourth, to explore the accuracy of
Fitbits in detecting stepping events, we calculated sensitiv-
ity and specificity for different thresholds (60, 80, 100 and
120 steps/min) and various lengths (1, 5, 10 and 20 min) of
stepping events as detected by ActiGraph. In addition,
Cohen’s Kappa was calculated to evaluate the agreement
between Fitbits and ActiGraph in classifying individual
bouts. The following degree-of-agreement criteria were
applied: 0–0.20: slight agreement; 0.21–0.40: fair agree-
ment; 0.41–0.60: moderate agreement; 0.61–0.80: substan-
tial agreement; 0.81–0.99: near perfect agreement; and 1:
perfect agreement.41 Fifth, to define the optimal Fitbit
threshold in steps/min for detecting sedentary events as
identified by the ActivPAL, we performed receiver operat-
ing characteristic (ROC) curve analyses and calculated the
sensitivity and specificity of this threshold to detect seden-
tary events of various durations (1, 20, 30 and 60 min). The
optimal cut-off was identified using Youden’s J statistic42 as a
point on the ROC curve with maximum distance to the iden-
tity (diagonal) line. We calculated Cohen’s Kappa to evaluate
the agreement between Fitbits and ActivPAL in detecting indi-
vidual bouts. Finally, to evaluate the inter-device agreement
between the two Fitbit models (Ionic and Inspire 2) on a
daily level, we calculated the ME and MAPE. Moreover, to
assess the inter-device agreement for short bouts, we calcu-
lated the ME, MAE and CCC and constructed Bland–
Altman plots for 1, 5, 10 and 20 consecutive minutes.

Results

Participant characteristics

In total, 29 participants were recruited in the Czech
Republic and 40 in Belgium. All 69 participants wore the
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four devices for three consecutive days. Six participants
were excluded from the analysis due to technical issues
resulting in a complete lack of Fitbit-recorded heart rate
or steps or ActivPAL data. Thus, all analyses were per-
formed on the remaining 63 participants (33 adults and 30
older adults). Adult participants had a mean age of 31.76
± 17.77 years and a mean body mass index (BMI) of
22.81± 3.19 kg/m². Almost half of them were male
(41%). Older adult participants had a mean age of 76.93
± 8.40 years and a BMI of 24.85± 4.25 kg/m²). Only
25% of them were male.

Concurrent validity

Day level. Table 1 presents the mean daily steps recorded by
the Fitbit Inspire 2, Ionic and ActiGraph accelerometer. The
ActiGraph-recorded step count per day ranged between 992
and 25,060 in adults and between 295 and 26,400 in older
adults. Both Fitbit devices overestimated the number of
steps per day in both age groups compared to the
ActiGraph.

1-, 5, 10- and 20-min levels. In Table 2, the ME and the
MAE in step counts are shown for minutes with
ActiGraph-recorded steps≥ 60. The results are provided
separately for both Fitbit models, each age group and four
bout durations (1, 5, 10 and 20 min). The results show
that in adults, both Fitbit models overestimated the step
counts for the 1-, 5-, 10- and 20-min bouts. However, this
overestimation decreased with longer bout duration. The
opposite effect was found in older adults since an underesti-
mation of the Fitbits was found on the 5-, 10- and 20-min
levels. This effect increased with longer bout duration.

Bland–Altman plots were used to plot the differences in
step count between the ActiGraph and the Fitbit devices
(y-axis) against the mean step count of the two measuring
instruments (x-axis). Since the difference was calculated
as Fitbit minus ActiGraph, a positive value of the difference
indicates an overestimation by Fitbit, whereas a negative
value indicates an underestimation. Perfect agreement is
indicated by a mean difference of zero, suggesting that
there is no systematic bias between the two methods. The
range between the upper and lower limits of agreement
includes 95% of differences between the two devices and
reflects the accuracy of the Fitbits to measure steps.
Figures 1 (adults) and 2 (older adults) present the Bland–
Altman plots and the corresponding CCCs on the 1-, 5-,
10- and 20-min levels for each Fitbit device against the
ActiGraph. The sharp cut-off on the left side of 1-min
level plots is caused by the exclusion of steps below 60
per minute. In adults, these plots show an improvement in
accuracy with increasing cadence. In older adults, the
Bland–Altman plots show an underestimation of steps
with increasing walking pace. The correlations between
the ActiGraph and Fitbits are poor to almost perfect,

ranging from 0.80 to 0.99 in adults and 0.85 to 0.90 in
older adults.

Influence of time and site. Multiple linear regression ana-
lyses were used to test the potential effect of the day ofmeas-
urement and site of participant recruitment (Belgium vs. the
Czech Republic) on theminute-level difference in step count
between the Fitbit devices and ActiGraph. The day of meas-
urement significantly affected the minute-level difference
for Inspire 2 (β= 0.12, SE= 0.04, P< .004) and Ionic (β=
0.17, SE= 0.04,P < .001). Specifically, for each consecutive
day of measurement, the minute-level difference between
ActiGraph and Fitbit got greater by 0.12 steps for the
Inspire 2 and 0.17 steps for the Ionic. No significant effect
of the site (i.e. Belgium or the Czech Republic) was found
on the minute-level difference in steps for any of the Fitbit
devices (β=−0.05, SE= 0.07, P= .45 for the Inspire 2
and β=−0.002, SE 0.07, P= .98 for the Ionic).

Accuracy in detecting stepping and sedentary events

Stepping events. Tables 3 and 4 present an overview of
Fitbit’s accuracy in capturing short bouts of stepping for
several step-rate thresholds for both adults and older
adults. Specifically, we report sensitivities and specificities
of the Fitbits in detecting stepping events above different
cut-off values (60, 80, 100 and 120 steps/min) on a short
time scale (1, 5, 10 and 20 min). Sensitivities ranged
between 87% and 100% in adults and between 34% and
100% in older adults for several thresholds, indicating a
good sensitivity of Fitbits in detecting short bouts of stepping
in all cases, except for stepping above 120 steps/min in older
adults. Furthermore, specificities for each threshold and dur-
ation were greater than 97% in both adults and older adults.
For example, if researchers use the Fitbit Ionic to elicit an
EMA questionnaire for adults after a 5-min stepping event,
in which the participant takes at least on average≥ 60
steps/min, they can expect a sensitivity of 95.72% and a spe-
cificity of 98.26%. Similarly, interventionists who wish to
use Fitbit Inspire 2 to stimulate older adults to remain phys-
ically active after a 10-min bout of≥80 steps/min on average
can expect a sensitivity and a specificity of 98.01% and
99.09%, respectively. In other words, in approximately 98
out of 100 stepping bouts, the boutwill be captured correctly,
and two will be missed. Moreover, in approximately one out
of 100 non-stepping bouts, it will be falsely detected as a
stepping bout. In addition, except for stepping above 120
steps/min in older adults, Cohen’s Kappa’s ranged
between 0.79 and 0.91, indicating substantial to nearly
perfect agreement between Fitbits and ActiGraph.

Sedentary events. Additionally, we provide specific cut-off
values (in steps/min) that result in optimal sensitivities
and specificities of Fitbits to capture bouts of SB of differ-
ent lengths (20, 30 and 60 min) as identified by ActivPAL.
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The optimal cut-off values and their respective sensitivities
and specificities were obtained from ROC curves and
are presented in Table 5. Sensitivities ranged between
93% and 100% and specificities between 89% and 100%.
Only during 1-min epochs, Fitbits obtained low specificities

(61%–71%). In addition, the Cohen’s Kappa’s indicated
substantial to nearly perfect agreement between Fitbits
and ActivPAL in detecting sedentary events of interest
(20, 30 and 60 min) as they ranged between 0.77 and
0.94. Table 5 can be interpreted as follows: a sedentary
event of 30 min in older adults was best captured by a
cut-off value of smaller or equal to 2.08 average steps/
min, resulting in a sensitivity of 93.27% and a specificity
of 91.99% with Fitbit Inspire 2. This means that in approxi-
mately 93 out of 100 true sedentary bouts, the bout will be
captured correctly, and seven bouts will be missed.
Moreover, in eight out of 100 true non-sedentary bouts, a
bout will be falsely captured as a sedentary bout. The cor-
responding ROC curve can be found in Figure 3.

Inter-device agreement between the two Fitbits

Overall, Inspire 2 recorded more steps per day compared to
Ionic in adults (mean difference 415, SD 489) and in older
adults (mean difference 429, SD 540). Moreover, we
observed minimal differences in step counts between the
two Fitbit devices on a 1-, 5-, 10- and 20-min time scale,
ranging from 0.15 to 1 steps/min. In addition, the CCC
ranged from 0.96 to 0.99 in adults and from 0.95 to 0.99
in older adults, indicating a substantial agreement that
improved with longer epochs. The Bland–Altman plots
show the relationship between the Fitbit Inspire 2 and the
Fitbit Ionic for short bout durations (1, 5, 10 and 20 min)
in adults and older adults (Figures S1 and S2 in
Supplementary Materials 2). These plots show narrow
limits of agreement, indicating a good agreement between
Ionic and Inspire 2 for measuring steps.

Table 1. Mean steps per day measured concurrently by Fitbit Inspire 2, Ionic and ActiGraph for adults and older adults. The mean error (ME),
mean absolute error (MAE), mean percentage error (MPE) and mean absolute percentage error (MAPE) of Fitbits (with ActiGraph as a
reference device) in the mean steps are presented.

Accelerometer Mean (SD) MEa (SD) MAEb (SD) MPEc MAPEd

Adults

ActiGraph 7161 (4587)

Ionic 8553 (5413) 1392 (1688) 1471 (1619) 19.44 20.54

Inspire 2 8970 (5590) 1810 (1870) 1856 (1823) 25.27 25.92

Older adults

ActiGraph 6658 (5396)

Ionic 8116 (5484) 1458 (1926) 1707 (1704) 21.90 25.65

Inspire 2 8545 (5641) 1887 (1877) 1954(1806) 28.35 29.35

aME: mean error, bMAE: mean absolute error, cMPE: mean percentage error, dMAPE: mean absolute percentage error.

Table 2. Mean difference in steps per minute between Fitbit Inspire 2,
Ionic and ActiGraph.

Duration
(min)

Ionic vs ActiGraph Inspire 2 vs ActiGraph

MEa (MAEb) in steps MEa (MAEb) in steps

Adults

1 1.09 (8.90) 2.05 (9.06)

5 1.60 (3.76) 1.92 (3.80)

10 1.07 (2.20) 1.34 (2.32)

20 0.36 (1.28) 0.51 (1.32)

Older adults

1 0.19 (7.41) 0.69 (7.25)

5 −1.08 (5.52) −0.56 (5.17)

10 −1.88 (5.73) −1.33 (5.35)

20 −2.72 (6.51) −1.90 (5.80)

aME: mean error, bMAE: mean absolute error.
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Figure 1. Bland–Altman plots of Fitbit Ionic (on the left) and Inspire 2 (on the right) compared to ActiGraph for adults. The mean difference
is shown by the middle line. Positive values indicate an overestimation by Fitbit. The dotted lines represent the limits of agreement.
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Figure 2. Bland–Altman plots of Fitbit Ionic (on the left) and Inspire 2 (on the right) compared to ActiGraph for older adults. The mean
difference is shown by the middle line. Positive values indicate an overestimation by Fitbit. The dotted lines represent the limits of
agreement.
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Discussion
This study evaluated the concurrent validity, accuracy and the
inter-device agreement of two Fitbit models (i.e. Inspire 2 and
Ionic) for measuring short bouts of stepping and SB among
free-living adults and older adults. The hip-worn ActiGraph
GT3x+ was used as a reference measure to validate the

Fitbit devices for stepping events, and the ActivPAL4 was
used to evaluate Fitbit’s accuracy in detecting sedentary
events based on Fitbit-recorded step count. Moreover, the
study suggests employing steps per minute rather than specific
intensity levels (e.g. MVPA) considering Fitbit’s observed
limitations in measuring PA intensity.21

Table 3. Sensitivity and specificity of Fitbits for stepping events for adults (18–65) as identified by the ActiGraph.

Duration (min)

60 steps/min 80 steps/min 100 steps/min 120 steps/min

Ionic Inspire Ionic Inspire Ionic Inspire Ionic Inspire

1 Sensitivity (%) 93.40 94.60 96.40 97.03 94.56 94.75 87.81 86.85

Specificity (%) 97.43 97.11 98.50 98.30 99.19 99.04 99.77 99.74

Cohen’s Kappa
95% CIa

0.79 [0.79–
0.80]

0.78 [0.77–
0.79]

0.84 [0.83–
0.85]

0.83 [0.82–
0.84]

0.86 [0.85–
0.87]

0.85 [0.84–
0.86]

0.82 [0.79–
0.84]

0.80 [0.77–
0.83]

Occurrence (n) 3908 2892 2059 517

Participants (n) 33 33 33 21

5 Sensitivity (%) 95.72 96.52 98.79 99.19 97.61 98.15 96.30 96.97

Specificity (%) 98.26 97.95 99.02 98.82 99.47 99.39 99.84 99.83

Cohen’s Kappa
95% CI

0.82 [0.79–
0.84]

0.80 [0.77–
0.83]

0.82 [0.79–
0.84]

0.80 [0.77–
0.83]

0.82 [0.79–
0.84]

0.80 [0.77–
0.83]

0.82 [0.79–
0.84]

0.80 [0.77–
0.83]

Occurrence (n) 3248 2227 1296 297

Participants (n) 33 32 30 13

10 Sensitivity (%) 96.32 96.49 98.83 99.31 97.60 98.40 99.18 100

Specificity (%) 98.55 98.30 99.18 99.03 99.62 99.55 99.87 99.87

Cohen’s Kappa
95% CI

0.85 [0.84–
0.86]

0.84 [0.83–
0.84]

0.88 [0.87–
0.89]

0.86 [0.85–
0.88]

0.88 [0.86–
0.89]

0.86 [0.84–
0.88]

0.86 [0.83–
0.89]

0.87 [0.84–
0.90]

Occurrence (n) 2938 1885 875 245

Participants (n) 32 29 26 7

20 Sensitivity (%) 96.85 97.21 99.01 99.21 97.85 99.41 97.97 100

Specificity (%) 98.64 98.46 99.32 99.20 99.78 99.75 99.88 99.88

Cohen’s Kappa
95% CI

0.85 [0.84–
0.86]

0.84 [0.82–
0.85]

0.88 [0.86–
0.89]

0.86 [0.85–
0.87]

0.88 [0.86–
0.90]

0.88 [0.86–
0.90]

0.85 [0.81–
0.88]

0.86 [0.82–
0.89]

Occurrence (n) 2477 1421 512 197

Participants (n) 31 23 14 6

aCI= 95% confidence interval.
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Main findings

In general, our results showed that Fitbits can accurately
measure short bouts of stepping and SB in adults and older
adults (except for stepping above 120 steps/min). Thus,
Fitbits can be used as a wearable sensor to collect real-time
information about physical behaviour and identify episodes
of short walking or prolonged bouts of sitting. This informa-
tion can be used to trigger event-based EMA questionnaires
designed to gain more insight into the context in which
(older) adults find themselves during PA or SB. Moreover,
Fitbits can be used in JITAIs to trigger provision of support
at the “right time”, such as after a prolonged bout of SB
with the aim of increasing PA or decreasing SB.

Stepping. With the exception of stepping above 120 steps/
min in older adults, both Fitbit models detected stepping
bouts of various durations in both adults and older adults
with sensitivity greater than 87%, indicating that a high
number of bouts will correctly be detected. For event-based
EMA studies, it may be important to capture as many step-
ping bouts as possible since stepping bouts may be scarce
(especially in older adults). Thus, since we obtained sensi-
tivities greater than 87%, we can conclude that Fitbit is a
suitable device for detecting stepping for event-based
EMA or JITAI purposes. Obtaining even higher sensitiv-
ities for a physically inactive population might be benefi-
cial, but not essential, since the main goal remains to
promote PA during everyday life.

However, it should be noted that the sensitivities for the
highest threshold (i.e. 120 steps/min) in older adults (but
not adults) are poor, ranging from 34% to 52%. It can be con-
cluded that there is an underestimation of the Fitbit-recorded
step count in older adults with increasing walking pace,
which can also be seen in the Bland–Altman plots. A pos-
sible explanation for this observation is that walking bouts
at lower stepping rates often represent interrupted walking
or walking while doing something else, which is associated
with a greater proportion of hand movements to steps. As a
result, Fitbits overestimate the step count since these hand
movements are incorrectly recognised as steps by Fitbits,
but not ActiGraph.43 In contrast, during walking bouts at
higher stepping rates (typically representing continuous har-
monious walking without erroneous hand movements44),
Fitbits may miss some steps (which ActiGraph correctly
detects), hence their tendency to underestimate. This effect
is especially seen in older adults, who walk with less force.
Furthermore, the results indicate that underestimation in
older adults is more pronounced for longer durations (10
and 20 min). We can speculate that when people walk for
a longer duration, their walking is usually more harmonious,
with fewer erroneous hand movements than when they walk
for just 1 min. Consequently, during longer stepping bouts,
Fitbits tend to underestimate the step count in older adults
compared to ActiGraph. Moreover, the observed

discrepancies in the step count accuracy between adults
and older adults may be attributed to age-related differences
in gait mechanics and movement patterns. These age-related
differences in gait mechanics may impact the way steps are
detected by wearable devices like Fitbit. The device may
struggle to accurately capture each step taken by the older
adult due to variations in step length, swing speed and
rhythm, leading to potential inaccuracies in the step count
estimation.

Furthermore, specificities were all greater than 97% in
both adults and older adults. Obtaining high specificities
may be even more important than high sensitivities
because questionnaires/prompts triggered by falsely
detected episodes can be confusing for participants and
might induce disengagement. Considering the high specifi-
city rates we observed in this study, Fitbit can be used to
detect short stepping bouts for event-based EMA or
JITAI purposes. In addition, to account for misspecification
and prevent starting a questionnaire if the behaviour was
wrongly detected, one could first ask whether a short step-
ping bout was actually performed. To conclude, with the
one exception of the poor sensitivity to detect bouts
greater than 120 steps/min in older adults, Fitbits can be
used to trigger EMA questionnaires and JITAI prompts fol-
lowing a stepping bout (e.g. 5 min of sustained walking).

Sedentary behaviour. Since sedentary bouts are more
common than PA bouts, achieving high sensitivity may
not be so important. However, limiting wrongly detected
sedentary bouts (i.e. achieving high specificity) is important
since prolonged bouts of SB are very common, and prompt-
ing the participant with EMA questionnaires or JITAI
prompts unnecessarily may result in a higher burden,
more frustration and more drop-out.45,46 Considering that
all sensitivities and specificities were greater than 93%
and 89%, respectively, for events of interest (20 to 60
min), Fitbits may serve as a wearable sensor for event-based
EMA and JITAIs to detect bouts of SB. Since many guide-
lines advise to interrupt being sedentary after 30 min,47,48

interventions could be developed to provide supportive
prompts after 30 min of sitting, using Fitbit’s optimal
threshold.

Discrepancy between day level and short time scales

In line with previous research,21,49–55 our study found that
both Fitbits overestimated daily step count compared to
the ActiGraph with MAPE of approximately 23.23% in
adults and 27.50% in older adults. According to The
Towards Intelligent Health and Well-Being Network of
Physical Activity Assessment (INTERLIVE) guidelines, a
MAPE relative to a research criterion of ≤10–15% is
recommended to be a valid measure of step counts in the
general population.38 These discrepancies in step count
between Fitbits and ActiGraph on a day level may be
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attributed to different wear locations of the wearables:
devices worn on the wrist may falsely recognise hand
movements as steps.56 Moreover, Tudor Locke et al.
(2015) suggested that differences in mean steps/day may
arise from differences in instrument sensitivity thresholds.43

In contrast to overestimation on a daily level, both Fitbits
underestimated the step count on short time scales (5–

20 min) in older adults (but not in adults). It is a well-known
fact that older adults walk with less force and shuffle with
less arm movement; thus, their steps can easily be missed
by Fitbit. This phenomenon counteracts the extra steps
resulting from falsely recognised hand movements. On a
daily level, walking forms only a minor fraction of a day;
thus, the number of false steps accumulated throughout

Table 4. Sensitivity and specificity of Fitbits for stepping events for older adults (>65) as identified by the ActiGraph.

Duration (min)

60 steps/min 80 steps/min 100 steps/min 120 steps/min

Ionic Inspire Ionic Inspire Ionic Inspire Ionic Inspire

1 Sensitivity (%) 98.22 98.16 97.74 98.31 95.36 95.80 51.73 51.73

Specificity (%) 97.84 97.54 97.78 98.67 99.35 99.32 99.95 99.92

Cohen’s Kappa
[95% CI]a

0.83 [0.82–
0.84]

0.81 [0.80–
0.82]

0.87 [0.86–
0.88]

0.87 [0.86–
0.88]

0.89 [0.88–
0.90]

0.89 [0.88–
0.90]

0.66 [0.63–
0.69]

0.66 [0.63–
0.69]

Occurrence (n) 2928 2478 1855 866

Participants (n) 26 23 22 15

5 Sensitivity (%) 99.41 99.26 98.87 99.01 96.24 97.68 39.97 42.90

Specificity (%) 98.41 98.30 99.13 99.03 99.57 99.54 99.96 99.97

Cohen’s Kappa
[95% CI]

0.86 [0.85–
0.87]

0.85 [0.84–
0.86]

0.90 [0.89–
0.91]

0.89 [0.88–
0.90]

0.91 [0.89–
0.92]

0.90 [0.91–
0.92]

0.55 [0.52–
0.59]

0.59 [0.55–
0.63]

Occurrence (n) 2693 2115 1382 613

Participants (n) 24 20 17 8

10 Sensitivity (%) 99.41 99.57 98.34 98.01 94.65 96.88 36.84 35.83

Specificity (%) 98.61 98.48 99.20 99.09 99.65 99.60 99.97 99.98

Cohen’s Kappa
[95% CI]

0.87 [0.87–
0.88]

0.86 [0.87–
0.88]

0.89 [0.88–
0.90]

0.88 [0.87–
0.89]

0.90 [0.89–
0.91]

0.90 [0.89–
0.91]

0.53 [0.48–
0.57]

0.52 [0.47–
0.56]

Occurrence (n) 2544 1863 1121 494

Participants (n) 19 18 14 7

20 Sensitivity (%) 99.20 99.38 98.13 98.07 92.17 96.14 33.83 35.93

Specificity (%) 98.75 98.58 99.37 99.29 99.74 99.69 99.99 99.99

Cohen’s Kappa
[95% CI]

0.88 [0.87–
0.89]

0.87 [0.86–
0.88]

0.90 [0.89–
0.91]

0.89 [0.88–
0.90]

0.89 [0.88–
0.91]

0.90 [0.89–
0.92]

0.50 [0.44–
0.55]

0.52 [0.46–
0.58]

Occurrence (n) 2247 1552 856 334

Participants (n) 18 16 11 5

aCI= 95% confidence interval.
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the day commonly surpasses the number of missed steps
during walking events, leading to overestimation.
However, in our analysis of short time scales, we only
included minutes with ≥60 steps representing true
walking. Consequently, the participants did not accumulate
too many false steps, and the missed steps manifested as an
underestimation. While it seems like a plausible explan-
ation, the design of our study cannot prove it, and future
studies are needed to confirm this hypothesis. In any case,
the difference between Fitbits and ActiGraph never
exceeded three steps per minute, and the CCC between
ActiGraph and both Fitbit devices ranged between 0.80
and 0.99 in adults and 0.85 and 0.90 in older adults, indicat-
ing poor to almost perfect agreement, which is consistent
with previous research (on a 15-min epoch in adults).21

Agreement of two Fitbit models

Fitbit Inspire 2 and Ionic showed a good agreement on a
short time scale. However, the daily overestimation in
steps between Fitbit and ActiGraph was consistently
larger with Fitbit Inspire 2, indicating that Fitbit Inspire
2 is less accurate in measuring daily steps compared to
Fitbit Ionic. A previous study also reported a significant dif-
ference in the daily step count (MAPE of 12%) between two
generations of Fitbit devices (Fitbit FlexTM and Flex 2TM),
finding an agreement of 0.95.57 Despite these differences on
a daily level, the validity and accuracy in detecting short
bouts of stepping and SB on a short time scale were very
similar, indicating that both devices can be used equiva-
lently for event-based EMA or JITAIs. Given that Inspire
2 and Ionic well represent the wider Fitbit portfolio
(Inspire 2 is a lower-end tracker, while Ionic is a high-end
smartwatch) as well as older and newer product lines
(Ionic was launched in 2017, and the product line has
already been discontinued, while Inspire 2 was launched
in 2020, and its revamped version Inspire 3 was released
in late 2022), we can reasonably assume that the results
can be generalised to other Fitbit models. Moreover,
100% accuracy may not be needed since the main goal of
JITAIs and event-based EMA remains to increase PA or
to examine within- and between-subject variation of deter-
minants rather than performing diagnostic tests.

Fitbit’s potential for event-based EMA and JITAIs

Besides continuously sensing physical behaviour to auto-
matically elicit event-based EMA prompts, other techno-
logical aspects are critical in determining whether Fitbit
and similar commercial wearable sensors can be utilised
in EMA research or JITAIs. Successfully connecting
devices with EMA or JITAI platforms requires (1) real-time
transmission of sensor data to the platform and (2) an appli-
cation programming interface (API) provided by the device
manufacturer to allow EMA platforms real-time access to

sensor data. Since Fitbit can be considered a suitable
device for capturing short bouts of PA and SB, and Fitbit
synchronises the device data with the Fitbit server, where
it can be accessed through Fitbit API, Fitbit may be con-
nectable to existing EMA platforms. Researchers can use
commercially available platforms (e.g. Fitabase58) and
research platforms (e.g. Health-React59 and iCardia60) or
develop their own data collection interface connected to
the Fitbit server to gather large amounts of data using
Fitbit’s API.61 However, frequent syncing is of utmost
importance for adequately gathering real-time data and for
preventing data loss. Therefore, continuously enabling
Bluetooth and internet connection is required, which is
one of the most common issues in studies using Fitbit and
may negatively affect smartphone battery drain.62

Strengths and limitations

This study has several strengths. First, this is the first study
that explored the accuracy of Fitbits in detecting short bouts
of stepping and SB with practical implications for event-
based EMA studies and JITAIs. Validation of Fitbits on a
short time scale enables monitoring PA in real time and
therefore offers the possibility to serve as a wearable
sensor to trigger event-based EMA questionnaires or to
provide feedback at the right time and in the right
context. Second, our study comprised a wide range of PA
levels in our study sample of adults and older adults,
which suggests a good representation of the general popu-
lation. Third, data were collected in two different countries
(i.e. Belgium and the Czech Republic), further improving
the generalisability of the findings. Fourth, the inclusion
of two Fitbit models allowed us to examine the inter-device
agreement and their comparability in the accuracy of detect-
ing short bouts of stepping and SB. Fifth, all minutes with a
step rate below 60 were excluded to evaluate the validity of
Fitbits in measuring stepping events. When comparing the
Fitbit-recorded step count per minute with the ActivPAL
classification for stepping minutes, all ActivPAL-recorded
minutes that consisted entirely of stepping reached the
threshold of 60 steps/min with Fitbit. This is consistent
with previous research, showing that a walking pace
equal to or higher than 60 steps/min may be considered sus-
tained walking.40

This study also has some limitations. First, the hip-worn
ActiGraph GT3X+ was used as a concurrent measure.
Although this triaxial accelerometer is widely used in PA
research and has been validated for step counting in both
adults and older adults,63,64 the golden standard for measur-
ing steps remains direct observation.65 However, this
method is not feasible to use in free-living conditions.
Second, there is a rapid emergence of new wearables on
the market. This means that validating new wearables are
still required, and researchers have to remain critical
when using a new device. Nevertheless, the two different
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Fitbit models showed similar accuracies in detecting step-
ping and SB and had a good inter-device agreement on a
short time scale, indicating that these results can be general-
ised to other Fitbit models. Third, this paper implies the use
of steps/minute instead of specific intensity (e.g. MVPA) as
a threshold for prompting questionnaires for event-based

EMA or future JITAIs. We chose to avoid the PA intensity
because previous research showed a low accuracy of Fitbit
in measuring the PA intensity. On a 15-min level, Fitbit
overestimated MVPA by 20%, and on a daily level, an
underestimation of 30% to 153% was found.21,66,67 In add-
ition, no information is publicly available regarding Fitbit

Table 5. Accuracy in detecting sedentary events as identified by ActivPAL.

Adults Older adults

Duration (min) Ionic Inspire 2 Ionic Inspire 2

1 Sensitivity
(%)

93.94 93.26 95.54 94.82

Specificity
(%)

68.03 70.71 60.78 64.39

Cohen’s Kappa
95% CI

0.64 [0.63–0.64] 0.66 [0.65–0.66] 0.57 [0.56–0.58] 0.60 [0.59–0.60]

Cut-offa

(steps/min)
0.5 0.5 0.5 0.5

20 Sensitivity
(%)

97.03 94.31 92.90 94.15

Specificity
(%)

89.55 93.16 93.01 91.52

Cohen’s Kappa
95% CI

0.87 [0.87–0.88] 0.87 [0.87–0.88] 0.86 [0.85–0.87] 0.86 [0.85–0.86]

Cut-offa (steps/min) 2.58 1.73 1.08 1.98

30 Sensitivity
(%)

97.31 95.34 97.67 93.27

Specificity
(%)

90.56 93.23 89.03 91.99

Cohen’s Kappa
95% CI

0.89 [0.88–0.89] 0.89 [0.88–0.90] 0.85 [0.84–0.86] 0.85 [0.84–0.86]

Cut-offa (steps/min) 2.08 1.62 2.27 2.08

60 Sensitivity
(%)

96.85 98.35 100 92.96

Specificity
(%)

96.88 96.10 88.71 89.36

Cohen’s Kappa
95% CI

0.94 [0.92–0.95] 0.94 [0.93–0.96] 0.81 [0.79–0.83] 0.77 [0.75–0.79]

Cut-offa (steps/min) 1.07 1.54 2.11 2.6

aCut-off identified by receiver operating characteristic (ROC) curves.
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intensity cut-points, limiting the use of Fitbit-recorded
intensity as a prompting trigger. Furthermore, the lower
limits of MVPA have been consistently shown to be at
around 100 steps/min in adults,68–70 enabling the use of
cadence as a proxy for PA intensity. Fourth, wrist-worn
Fitbits are not able to differentiate between sitting and
standing; thus, their accuracy might be different for
people who stand frequently: quiet standing could poten-
tially be identified as sitting by Fitbit, reducing the specifi-
city. Fifth, the sampling frequency of the ActiGraph was set
to 30 Hz, while Fitbit devices typically record at a default
sampling frequency of 100 Hz. This may affect the compar-
ability of data between devices and should be considered
when interpreting the results. Finally, participants were
recruited through convenience sampling, which may limit
the generalisability of the findings to the wider population.

Conclusions
Fitbit wearables appear to be valid for measuring steps on a
short time scale (i.e. 1, 5, 10 and 20 min) compared to
ActiGraph. This paper provides practical considerations
for event-based EMA and JITAIs using Fitbit as a device
to assess PA and SB in adults and older adults. We
present an overview of the sensitivities and specificities
for several step-rate thresholds to capture short bouts of
stepping (1, 5, 10 and 20 min) and SB (1, 20, 30 and
60 min). Considering the sensitivity and specificity for a
particular research purpose (e.g. 5 min of sustained
walking or 30 min of sedentary time), Fitbits can be used
as a wearable sensor to give real-time support. In addition,
both Fitbit models showed a substantial agreement on short

time scales, indicating that these results may be generalised
to other Fitbit models. Since Fitbits are relatively cheap
devices, their use as a tool for triggering questionnaires or
prompts in real time can enhance further development of
event-based EMA methods and JITAIs for promoting PA
and limiting SB.
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