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Abstract— Robotic affordances, providing information about
what actions can be taken in a given situation, can aid robotic
manipulation. However, learning about affordances requires
expensive large annotated datasets of interactions or demon-
strations. In this work, we argue that well-directed interactions
with the environment can mitigate this problem and propose
an information-based measure to augment the agent’s objective
and accelerate the affordance discovery process. We provide a
theoretical justification of our approach and we empirically
validate the approach both in simulation and real-world tasks.
Our method, which we dub IDA, enables the efficient discov-
ery of visual affordances for several action primitives, such
as grasping, stacking objects, or opening drawers, strongly
improving data efficiency in simulation, and it allows us to
learn grasping affordances in a small number of interactions,
on a real-world setup with a UFACTORY xArm 6 robot arm.
Project website: mazpie.github.io/ida

I. INTRODUCTION

Given the success of learning-based approaches across
various domains [1], [2], [3], [4], applying learning-based
approaches to robotics represents a sensible and appealing
idea, in order to develop more general and robust approaches.

*Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
†Work done during an internship at Qualcomm AI Research.
‡Work completed while employed at Qualcomm AI Research.

However, despite recent progress [5], [6], learning gener-
alizable robotic systems remains challenging. In particular,
robotic manipulation policies can be learned via imitation
[7] or reinforcement learning [8], but these struggle to work
outside of their training conditions.

In order to produce more generalizable manipulation
policies, the robot’s perception should provide meaningful
representations about how to interact with the environment.
Affordances, defined as the properties that determine how
things in the environment can be used [9], provide strong
cues on how to operate things in the environment. More
specifically, visual affordance models generate a visual rep-
resentation of the environment that maps observed points to a
set of possible actions that can be executed at that point [10].
However, how to efficiently learn visual affordance models
remains a challenge.

Learning visual affordances can be seen as a supervised
learning problem, where the agent needs to predict whether a
point in the scene is actionable or not, given a certain action
primitive. However, if we tackle the problem the classical
way, learning an affordance model from a given dataset,
training a general and robust model requires large chunks
of annotated experiences that are expensive to collect via
human interaction or teleoperation [11], [12]. Alternatively,

Fig. 1: Information-driven affordance discovery. The model processes inputs from the environment (2D point cloud) using
a single encoder, concatenates action parameters and decodes visual affordance maps with multiple decoders (ensemble).
Averaging the outputs of these networks, we can extract reliable affordance maps, thanks to the ensemble diversity. Computing
the information radius, we can obtain information gain maps about affordances in the scene, to drive considerate explorative
interactions. Images represent actual model outputs from IDA in the ManiSkill2 Open Drawer environment.

ar
X

iv
:2

40
5.

03
86

5v
1 

 [
cs

.R
O

] 
 6

 M
ay

 2
02

4

https://mazpie.github.io/ida


synthetic data can be used to rapidly obtain large datasets
to train on [10], [13], with the risk that the model may
not behave as expected in more realistic or complex set-
tings. In this work, we aim to overcome these limitations,
by tackling the affordance discovery problem as an active
learning problem. Actively learning what the agent can do
in the environment, by continuously interacting with the
environment and learning from the new data, should enable
faster and more effective learning of affordances, compared
to passive data collection from humans or the use of synthetic
data [14].

We propose IDA, an {I}nformation-{D}riven method for
visual {A}ffordance discovery, that is able to learn what’s
feasible in the environment in a small number of interactions,
by casting the problem of affordance learning as a contextual
bandit problem and exploring actions that are both rich in
information and likely to succeed.

Contributions. Our contributions can be summarized as:
• we propose an information-driven measure to augment

the agent’s objective for visual affordance discovery in
interactive settings, and we provide motivation for our
approach based on information theory;

• we validate IDA in simulation, where the agent quickly
learns to grasp, stack objects, and open drawers,
strongly outperforming previous methods trained on
large synthetic datasets [13]. In this setting, we also
show the importance of well-grounded exploration to
sensibly improve performance as the number of inter-
actions increases over time;

• we demonstrate the applicability of IDA in a real robotic
setup, with a UFACTORY xArm 6, where our agent
learns to grasp objects in a small number of interactions,
without any prior information.

II. RELATED WORK

Visual robotic manipulation. Learning to perform ma-
nipulation from high-dimensional visual inputs is challeng-
ing. Previous work has successfully applied deep learning
vision models for robotics, using supervised learning [15],
reinforcement learning [16], [17], or world models [8]. Fully
convolutional models, similar to those applied for segmenta-
tion [18], have shown good performance in learning visual
tasks such as pushing, grasping [19], [20] and rearranging
objects [21]. U-Net-like models [22] have been shown to
allow efficient reinforcement learning from pixels [23]. The
success of fully convolutional models for manipulation could
be attributed to the improved capacity of these models to
process positional information [24], which is crucial for
manipulation tasks.

Affordance learning. Previous work on affordances gen-
erally focuses on two aspects of the problem: learning the
perception modules, that allow detecting affordances in the
scene [10], [25], and learning the action modules [26], [27],
which allow translating affordance abstractions into actions.
One of the closest works to ours is Where2Act [10], which
proposes a perception model and learning-from-interaction
framework that combines random and adaptive sampling.

The method uses a large number of interactions, simulated
through a “flying” gripper, to learn visual pushing and pulling
affordances. To bootstrap learning of the affordance module,
random sampling is used until obtaining 10k successful
interactions, a procedure that requires sampling hundreds of
thousands of trajectories. In contrast, IDA achieves greater
data efficiency, by actively sampling interactions rich in
information.

Exploratory grasping. Grasping remains a challenging
problem in robotics [28] due to the high level of complexity
required in the interaction between the agent and the objects.
Moreover, the large space of potential grasping configura-
tions makes the problem hard to explore. Successful results
have been obtained leveraging large synthetic datasets [29],
[30], [13], but they still struggle to generalize [31]. In order
to develop more data-efficient approaches, the problem of
exploratory grasping [32], i.e. active learning of grasping
policies, has been recently studied, leveraging pre-trained
models as prior [33] or analytical solutions [34] to ease
the learning process. Some works also employed a bandit
formulation to tackle the problem [35], [32], [36]. In our
work, we present the idea of actively learning multiple kinds
of affordances, including grasping, and present a reliable
solution to efficiently learn such affordances by interacting
with the environment, without any prior data or knowledge.

III. INFORMATION-DRIVEN AFFORDANCE DISCOVERY

Setting. In contextual bandits problems, at each iteration,
the agent observes a context x ∈ X and selects an action
a ∈ A to perform, which is rewarded by the environment.
In this work, we propose to tackle the affordance discovery
problem as a contextual bandit problem. The context is the
current state of the environment, which is observed by the
agent through a camera. For each kind of affordance, e.g.,
stacking, grasping, opening, actions are represented by pa-
rameterizable primitives [37]. For a certain primitive, actions
are represented as a = [p, q], where p is the position where
the primitive is applied and q is the orientation to apply the
primitive. Rewards represent the affordance success, and so
the possible values are {0, 1}.

Information gain. Let Θ be the space of parameters
for an affordance model of the environment, then p(θ)
represents the probability density function of a certain set of
parameters to be the best fit for the affordance function. In
order to improve our knowledge about what could the best
affordance model, we adopt the information gain criterion
for exploration, i.e. we want to try actions that maximize
the reduction in the entropy with respect to Θ achieved by
learning the outcome of the affordance transition (x, a, b),
with outcome b ∈ {0 = fail, 1 = success}. The information
gained with one transition can be written as:

I(b, x, a) = DKL[p(Θ|b, x, a)∥p(Θ)], (1)

that is the Kullback-Leibler divergence between the posterior
about the model’s parameters given the transition and the
prior about the same parameters.



We are interested in measuring the expected amount of
information to be gained from performing action a in state
x. Observing that p(b, x, a|x, a) = p(b|x, a), we can rewrite
the above as:

I(x, a) = Ep(b|x,a)[I(b, x, a)]. (2)

In Appendix, we show that this equals the Jensen-Shannon
Divergence (JSD) between the distributions p(b|x, a, θ) for
all θ:

I(x, a) = JSD(p(b|x, a, θ)|θ ∼ Θ) = (3)
= H(Eθ∼Θ[p(b|x, a, θ)])− Eθ∼Θ[H(p(b|x, a, θ))],

The JSD, also known as information radius [38], represents
the total divergence to the average in a space of distributions.
It can also be interpreted as the amount of information that
is carried by evidence about the model [39]. In our context,
the JSD captures the amount of information that a context-
action pair (x, a) carries about which model parameterization
θ fits the data best. Thus, we can use it as a measure of the
utility of the pair in order to improve the affordance model.
Crucially, as we also discuss in Section IV, computing the
JSD only requires sampling multiple sets of parameters, and
thus requires no additional data from the environment or
updates of the model.

Affordance discovery. During the interaction and training
stage, we aim to tackle the affordance discovery problem
by sampling actions that are informative to learn a better
affordance model but also likely to be successful. For the
former, we can rely on the JSD presented in Equation 3
to measure the information we expect to gain with a new
interaction. For the latter, we should consider the probability
p(b|x, a) of an affordance to be successful.

As our setting is analogous to a contextual bandit problem,
we can combine our information-driven measure with the
expected “reward” from the environment, by adopting an
upper confidence bound (UCB) strategy [40], [41]. This
implies that the agent samples actions according to an
overestimate of the expected reward:

argmax
a

[r̂(x, a) + cexpl · I(x, a)] (4)

where the coefficient cexpl ≥ 0 controls the tradeoff between
exploration and exploitation. This means that practically the
agent, being in context x, should sample actions that satisfy:

argmax
a

[p(b|x, a) + cexpl · JSD(p(b|x, a, θ)|θ ∼ Θ)] (5)

that, given that the JSD is non-negative, complies with the
upper confidence bound condition of the agent’s criterion
being greater or equal than r̂(x, a).

IV. IMPLEMENTATION

Model. In order to obtain visual affordance maps of the
environment, we adopt an auto-encoder architecture based on
a fully convolutional U-Net model [22]. The input x to the
model is a 2D point cloud representation of the scene, which
is obtained by projecting the depth information from the
camera into the world frame, using the camera parameters.

The input goes through the encoder obtaining a latent vector,
to which we concatenate the action orientation parameters
vector q. After going through the decoder, where the skip-
connections of the U-Net are applied, we obtain a map of
the same size as the input, which we pass through a sigmoid
layer to obtain outputs in [0, 1]. At each point, the output
represents the parameter of a Bernoulli distribution that gives
the probability of successfully applying the affordance prim-
itive with the corresponding pixel position p and orientation
q. For computing information gain estimates for affordance
discovery, we instantiate a lightweight ensemble, where the
ensemble shares the encoder but multiple decoders. We found
that sharing the encoder overall simplifies training (higher
accuracy) while still allowing us to compute the information
gain estimates with reduced computation overhead [42].

We refer to θ as the set of parameters of one member of the
ensemble, which represents our discrete space of parameters
Θ. Each member of the ensemble is trained by minimizing a
binary cross-entropy loss, where the targets are the success
labels of the actions.

L(θ) =
∑
n

− log p(b = success|xn, an, θ) · bn (6)

− log p(b = fail|xn, an, θ) · (1− bn)

Following previous work [43], [44], we do not employ boot-
strapping, as it can degrade the single model’s performance.

Information-driven sampling. In our model, a set of
model parameters θ can be obtained by uniformly sampling
models from the set of ensemble parameters Θ, so that the
information radius can be rewritten as:

I(x, a) = JSD(p(b|x, a, θ)|θ ∼ Θ) = (7)

= H

(
1

N

N∑
i=1

p(b|x, a, θi)

)
− 1

N

N∑
i=1

H(p(b|x, a, θj)).

Crucially, the entropy computation is done per pixel, with
minimal computation burden.

In order to foster exploration further, we opt for sampling
the expected reward r̂(x, a) using a randomly sampled model
from the ensemble. This technique, which can be interpreted
as a form of Thompson sampling [45] with ensembles [46],
[47], can particularly impact the initial phase of learning,
when the differently initialized models tend to focus on
different areas of the scene.

Robust evaluation. After the training stage, for evalu-
ation, we can use the information gain as a measure of
the amount of missing information with respect to a certain
interaction. This measure can be used to select more robust
actions, following a strategy of “pessimism” [48], [49].

The information I(x, a), as described in Equation 3, can
be subtracted from the expected rewards, obtaining a more
conservative estimate of the action’s value:

argmax
a

[r̂(x, a)− ceval · I(x, a)] (8)

where the coefficient ceval ≥ 0 controls how conservative the
actions should be. Conversely with respect to Equation 4,
this equation satisfies a lower confidence bound with respect



Fig. 2: ManiSkill2 performance. Affordance suc-
cess aggregated across ManiSkill2 tasks and runs.

IDA (ours) JSD (ours) Greedy Where2Act Random C-GraspNet
Grasp Cube 0.99±0.01 0.96±0.02 0.97±0.04 0.95±0.01 0.81±0.04 0.99
Grasp YCB 0.91±0.02 0.85±0.03 0.82±0.03 0.66±0.05 0.50±0.05 0.43

Grasp EGAD 0.86±0.02 0.83±0.03 0.76±0.11 0.70±0.04 0.57±0.08 0.52
Stack Cube 0.99±0.01 0.99±0.01 0.99±0.01 0.88±0.03 0.96±0.04 -

Open Drawer 0.98±0.05 1.00±0.00 0.73±0.14 0.86±0.06 0.75±0.09 -

TABLE I: Performance per task. Dissecting performance per task on
the ManiSkill2 tasks (mean ± standard deviation over 5+ seeds).

to the expected reward, which entails pessimism in the face
of lack of information [50]. During the evaluation process, in
order to sample our most robust expected reward predictions,
we use the mean of the affordance probability maps, obtained
by averaging the probability outputs of all models in the
ensemble, i.e. r̂(x, a) = 1

N

∑N
i=1 p(b|x, a, θi).

V. EXPERIMENTS

With our empirical evaluation, we aim to answer the
following questions: i) what are the effects of adopting
IDA for the affordance discovery problem in terms of data
efficiency and final performance, ii) what is the impact of
employing the JSD term for sampling informative actions.
We perform experiments both in simulated and real-world
settings. We also perform some ablations on the components
of IDA.

A. Simulation experiments

To test our approach in an interactive simulation setting,
we adopt environments from the ManiSkill2 benchmark [51].
The scene is recorded by an external RGBD camera that
points at the scene, showing the robot and workspace in
front of it. During training the agent alternates between
environment interactions, where it tests the action primitive
in an interaction, and updates the affordance model after each
interaction. An interaction roughly requires 100 simulation
steps. Every n interactions, where n ∈ { 50, 250, 500, 2500,
10000 }, we evaluate the agent’s performance.

We consider the following set of primitives and corre-
sponding affordances:

• Grasping: success is achieved if the object can be lifted
without falling out of the gripper.

• Stacking: success is achieved if the object stably re-
mains on the other object after the gripper releases the
held object and withdraws.

• Opening: success is achieved if a part of the object is
pulled and that classifies as an opening part, e.g., the
drawer in a cabinet.

For all primitives, we adopt a discrete set of orientations with
6-DoF for grasping (429 angles) and 3-DoF for stacking and
opening (8 angles). Actions are executed by performing (lin-
ear) motion planning. Further details are given in Appendix.

Results. We present evaluation results, in terms of affor-
dance success rate, for IDA and the following baselines:

• JSD (ours): this method only samples actions accord-
ing to information gain during training, and uses the
ensemble predictions for evaluation. It represents an

ablation of IDA, using no UCB and no robustness
during evaluation and showcases the performance of the
information gain objective;

• Where2Act: this baseline mimics the Where2Act sam-
pling strategy [10], while employing our U-net based ar-
chitecture. The agent randomly samples actions during
the first 5000 training steps, while during the latter 5000
training steps, it samples from the softmax probability
distribution over all possible actions, essentially doing
a form of Boltzmann exploration [52]. Note that in our
experiments we use a mounted robot arm, as opposed
to the flying gripper adopted in the original work.

• Greedy: this method uses a U-Net and selects the
highest probability affordance actions, both for training
and evaluation;

• Random: the agent randomly samples affordance actions
during training and selects the highest probability affor-
dance action for evaluation, like Greedy.

For the grasping tasks, we also compare to Contact-GraspNet
[13], a grasping approach that has been trained on 17.7
million simulated grasps across 8872 meshes, for which we
use the original open-source pre-trained models and code.

In Figure 2, we present bootstrapped statistics and confi-
dence intervals for the mean and the median performance
after 10k steps aggregated across all tasks and runs (5+
seeds per method and task), using 50k repetitions (see [53]).
We observe that IDA reaches the highest mean, with high
confidence, and the highest median, followed by JSD (ours).
Both our methods largely outperform all the other baselines.

In Table I, we present the mean and standard deviation
statistics per task. We observe that on the most difficult
tasks, Grasp EGAD (large number of variations) and Open
Drawer (harder exploration), IDA and JSD have the largest
advantage, corroborating the idea that information-driven
affordance discovery leads to higher final performance.
Compared with Contact-GraspNet in the grasping tasks, we
also observe that all interactive learning methods, except
for Random, eventually outperform pre-training on large
synthetic datasets.

Finally, in Figure 3, we compare performance over time
aggregated across all tasks and runs, using bootstrapped
statistics and confidence intervals with respect to the mean
[53]. We observe that while JSD’s final performance is
close to IDA’s one, the Greedy approach performs better
in the early stages of learning. This shows that the reward
term, which we incorporate in IDA using a UCB, can be
useful when sampling actions. We speculate the reason for



Fig. 3: Performance over time. The affordance success
rate in the evaluation stage increases over the number of
interactions, averaged over all tasks (5+ seeds per task).

this being that during the first stages of learning, it allows
the agent to learn and consolidate knowledge about easy
affordances, before moving to more complex ones.

Reward-free ablation. The objective of IDA is made of
two components: a reward-driven term and an information-
driven term. What happens when we ignore the reward-
driven term? In that case, the other approaches (including
Where2Act) rely on random sampling, while IDA relies on
the JSD strategy. We more detailedly compare these two
strategies over time on the three ManiSkill grasping tasks
(Cube, YCB and EGAD), along with a Random + Ensemble
strategy, which aims to reduce the gap between the two
methods, by learning an ensemble model for evaluation.
In Figure 4, we observe that although the performance of
Random increases, during the later stages, when employing
an ensemble for evaluation, the JSD sampling strategy largely
remains the most effective one.

Interestingly, JSD’s performance is lower at the first eval-
uation (after only 50 interactions). This is probably due to

Fig. 4: Reward-free ablation. Comparing reward-free affor-
dance discovery methods over time. (5+ seeds).

Fig. 5: Real-world results and setup. IDA learns to grasp
objects faster than other approaches, achieving up to 90%
grasping success, on a UFACTORY xArm 6 platform.

the fact that random samples possess greater diversity at the
beginning of training when the JSD information estimates,
and thus action sampling, are not yet well-directed. As
we show in Table II, the use of rewards and of ensemble
sampling in IDA both help in mitigating the issue.

IDA IDA
(no ens. sampl.) JSD

0.45 0.39 0.25

TABLE II: Grasping success (avg) after 50 interactions.

B. Real-world experiments

To confirm that our simulation results hold in the real
world, we deployed and tested our method on a grasping task
using a UFACTORY xArm 6 with UFACTORY gripper.

We studied the grasping primitive using a set of four
toy objects of varying size. The objects were presented
repeatedly in order during both training and evaluation and
manually placed at random locations and orientations in the
workspace of the robot arm before each grasp attempt.

Differently from the simulation setup, the grasping angle
was restricted to vertical grasps with eight discrete rotations
(3 DoF) and a wrist-mounted RGBD camera is used to obtain
the inputs. This also shows our method works indipendently
of the viewpoint. The affordance model is always trained
from random initialization (no prior knowledge) and eval-
uated at 25, 50, 100, 250 episodes. Evaluation is done for
20 iterations, i.e., each of the four objects is presented five
times per evaluation round. The entire experiment, including
training and evaluation, takes around 90 minutes.

Results. In Figure 5 we compare IDA with two baselines:
the Where2Act and the Random action sampling strategies.
We observe the real-world results for grasping closely match



Fig. 6: Real-world affordance and information maps.
Affordance and information maps, showing for each pixel
the highest value across all possible gripper orientations.

the simulation results, as our agent efficiently learns to grasp
the objects. The final performance obtained is 90% grasping
success, which is considerably higher than the baselines.
Nonetheless, we experienced lower performance than Ran-
dom and Where2Act (also using random sampling during the
initial steps) after only 25 interactions. This result reflects
what we found in the reward-free ablation experiments, and
how to further mitigate this early-learning effect will be the
object of future studies.

Visualizations. To provide additional insights into how
IDA learns visual affordances and estimates information gain
over time, in Figure 6, we show how the affordance and
information maps from our method evolve over time while
learning to grasp (a bowling pin) on the real robot arm.
We observe that the affordance probabilities are uniformly
distributed at the beginning of the training (t = 29). Later,
the information maps recommend exploring grasping point
towards the edge of the object (t = 37, t = 139), leading
the agent to eventually learn that areas close to the edges are
easier to grasp (t = 242) as they have a less slippery surface.

VI. CONCLUSION

We presented IDA, a method that fosters the discovery of
affordances for robotics manipulation. IDA showcases strong
performances across several tasks in ManiSkill2 and the
ability to quickly learn to grasp objects in the real world. We
empirically showed the importance of well-directed action
sampling, to achieve higher affordance success and we
analyzed several components of our method. One limitation
of the approach tested is that it relies on motion planning
for precise affordance execution. While this facilitates ex-
ploration, especially in the early stages of learning, as the
actions executed by the agent are more stable and reliable, the
issue should be addressed in future work, aiming to provide
more adaptive policies, e.g. using reinforcement learning.
We also aim to extend our work towards the development
of an end-to-end system able to solve longer horizon tasks,
potentially instantiating a hierarchical controller on top of the
possible affordance actions [54] or employing large language
models to decide which affordances should be executed
towards the solution of tasks [5], [55].

APPENDIX

A. Information radius derivation

As per Equation 2, we are interested in measuring the
expected information given by a certain state-action:

I(x, a) =
∑
b

p(b|x, a)DKL[p(Θ|b, x, a)∥p(Θ)],

where we can use the KL definition to obtain:

I(x, a) =
∑
b

p(b|x, a)
∑
θ

p(θ|b, x, a) log p(θ|b, x, a)
p(θ)

.

Using the Bayes rule (p(θ|b, x, a) = p(b|x,a,θ)p(θ|x,a)
p(b|x,a) ) and

the observation p(θ|x, a) = p(θ) (as an incomplete transition
provides no information about the affordance model) we get:

I(x, a) =
∑
b

∑
θ

p(b|x, a, θ)p(θ) log p(b|x, a, θ)
p(b|x, a)

.

By splitting the logarithm and applying the law of total
probability we derive:

I(x, a) =
∑
θ

p(θ)
∑
b

p(b|x, a, θ)log p(b|x, a, θ)

−
∑
b

∑
θ

p(θ)p(b|x, a, θ)log(
∑
θ

p(θ)p(b|x, a, θ)),

that given entropy H(Y ) = −
∑

y p(y)log p(y) becomes:

I(x, a) = −Ep(θ)[H(p(b|x, a, θ))] +H(Ep(θ)[p(b|x, a, θ)])

that is the JSD we present in Equation 3.

B. Training details

Model. The ensemble model is a U-Net-like model made
of a shared encoder and multiple decoders. The encoder has
a convolutional block with 8 filters, kernel size 3 and stride
1, followed by two blocks with 16 filters, kernel size 5 and
stride 2. The decoder follows the same structure reversed, but
replacing stride with bilinear upsampling layers and applying
skip connections. The inputs’ resolution for the model is
128x128. The number of networks in the ensemble is 5. The
model is updated 5 times after each interaction, using ADAM
with a learning rate of 3·10−4. The batch size used is 256.
To start filling the replay buffer with experience, 10 random
actions are sampled at the beginning of training.

Action sampling. To avoid sampling invalid points we
filter out some regions of the environment from the output
of the model, including points that are behind and above
the robot’s base and points that are on the surface of the
workspace or below. Before summing the information gain
values with the predicted affordance success reward, we
normalize the information gain maps to have values in [0,1].
As default values, we use cexpl = 0.3 and ceval = 0.1.

C. Evaluation details

• Grasp Cube: 100 randomized positions.
• Grasp EGAD: 1 interaction for each of the 1600 objects.
• Grasp YCB: 5 interactions for each of the 74 objects.
• Stack Cube: 100 randomized interactions
• Open Drawer: 5 interactions for each cabinet (6 models)
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