
Computer Networks 245 (2024) 110371

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Impact of power consumption in containerized clouds: A comprehensive
analysis of open-source power measurement tools
Carlo Centofanti a,∗, José Santos b, Venkateswarlu Gudepu c, Koteswararao Kondepu c

a Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, via Vetoio, L’Aquila, 67100, Italy
b Ghent University - imec, IDLab, Department of Information Technology, Technologiepark - Zwijnaarde 126, Gent, 9052, Belgium
c Indian Institute of Technology Dharwad, CSE Department, Dharwad, India

A R T I C L E I N F O

Keywords:
Energy efficiency
Power consumption
Sustainability
Containers
Cloud computing
Service orchestration
Kubernetes

A B S T R A C T

Recently, container-based solutions have become de facto compute units of modern cloud-native applications.
However, the exponential growth in data traffic and the power consumption of these technologies to handle
high data traffic alarm the strong need for energy evaluation approaches in containerized clouds. Furthermore,
the proliferation of highly distributed edge clouds raises additional concerns regarding the power consumption
of future cloud architectures. This article presents a detailed overview of methods and techniques for
monitoring power consumption within popular cloud platforms. The study offers an in-depth evaluation of
these approaches, demonstrating variations in measured power consumption based on the chosen technique.
A well-known container orchestration platform named Kubernetes (K8s) has been applied in our extensive
measurements. This work argues that energy-efficient container clouds will play a vital role in building
a more sustainable and eco-friendly digital infrastructure by optimizing power consumption and reducing
carbon footprint, paving the way for a greener future. The paper also discusses open challenges and future
research directions on energy sustainability, leading to the conclusion, offering lessons learned and prospects
on potential solutions to foster sustainable practices within the container ecosystem.
1. Introduction

In the recent landscape of cloud computing, the emergence and
popularity of containers has significantly revolutionized application
development and deployment [1]. Containers provide a flexible and
portable manner to package (due to lightweight), distribute, and man-
age software, enabling seamless integration and scalability. Nonethe-
less, this evolution meant a significant increase in power consumption
within Data Centers (DCs), currently representing 2% of the world’s
energy consumption, and recent forecasts expect it to grow even further
to at least 8% by 2030 [2]. The power consumed in cloud computing
is fast outpacing the global energy production due to several factors:
explosion in data collection, computational-intensive Artificial Intelli-
gence (AI)-based workloads, and the flattening of Moore’s law [3]. The
ecological ramifications and long-term sustainability of this heightened
energy demand within cloud infrastructures have emerged as pressing
concerns, urging a reevaluation of current cloud strategies to power
consumption in the digital age.

In addition, with the rapid development of the Internet of Things
(IoT) [4], the number of connected smart devices is growing exponen-
tially, resulting in enormous amounts of data, which caused problems

∗ Corresponding author.
E-mail address: carlo.centofanti1@univaq.it (C. Centofanti).

1 Google Cloud: https://cloud.google.com/container-engine/

regarding bandwidth and latency in traditional cloud deployments.
Distributed cloud paradigms such as Fog Computing [5] and Edge
Computing [6] emerged as potential solutions, but power consump-
tion related concerns also emerged in these highly distributed cloud
environments. These smart devices are significantly dispersed in the
network area, demanding substantial power to process and transmit
data locally. Also, the need for continuous connectivity and low latency
communications further intensifies power usage, posing a hurdle in
achieving a sustainable and energy-efficient edge computing ecosystem.
Researchers and Industries need to focus on reducing the environmen-
tal footprints of increasingly large DCs and distributed edge clouds
addressing the complete cloud continuum [7].

The numerous advantages of cloud computing environments, in-
cluding cost effectiveness, on-demand scalability, and ease of manage-
ment, encourage service providers to adopt them and offer solutions
via cloud models. In turn it facilitates platform providers to increase
the underlying capacity of their DCs to accommodate the increasing
demand of new customers. In addition to the traditional cloud ser-
vices such as Infrastructure as a Service (IaaS), Platform as a Service
vailable online 27 March 2024
389-1286/© 2024 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2024.110371
Received 31 October 2023; Received in revised form 8 March 2024; Accepted 25 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

arch 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:carlo.centofanti1@univaq.it
https://cloud.google.com/container-engine/
https://doi.org/10.1016/j.comnet.2024.110371
https://doi.org/10.1016/j.comnet.2024.110371
http://creativecommons.org/licenses/by/4.0/


Computer Networks 245 (2024) 110371C. Centofanti et al.

L
M
t
t
a

m
t
e
T

p
g
a
u
e
c
l
f
S

2

i
l
i
d
w

t
T
o
(
T
M
r
d
f
c
b
a

m
s
m
p
o
A
p
e
m
t
a
t
c
c
i
o

b
u
a

(PaaS), and Software as a Service (SaaS), the leading cloud providers
like Google.1 and Amazon Web Services (AWS) have introduced the
novel concept of Containers as a Service (CaaS) This cloud model is
reshaping the cloud computing landscape thanks to its lightweight
architecture, simplified configuration and management, and notably
reduced startup times. CaaS represents a fundamental shift in how
applications are designed, built, and deployed. With the container-
ization of applications and their dependencies, developers now focus
on creating modular, self-contained components, commonly known as
microservices. These microservices can run consistently across various
environments, eliminating the age-old ‘‘It works on my machine’’ prob-
lem and simplifying the development process. CaaS platforms provide
streamlined workflows for building, testing, and deploying contain-
ers, enabling faster development cycles and seamless integration with
Continuous Integration/Continuous Deployment (CI/CD) pipelines.

As CaaS continues to gain prominence as a cloud service model,
the efficient management of energy resources within DCs becomes
increasingly crucial. As a part of power management, monitoring power
consumption contributes to cost control and resource optimization and
aligns with environmental sustainability goals. It enables organizations
to track and reduce carbon emissions, adhere to regulatory require-
ments, and implement practices that promote energy efficiency. Ad-
ditionally, power monitoring provides insights into capacity planning,
performance optimization, and early detection of issues, facilitating
both operational excellence and the achievement of long-term sustain-
ability objectives in the dynamic landscape of cloud-native computing.
Several container orchestration platforms have been designed in the last
few years, including K8s,2 Docker swarm,3 CRI-O,4 Apache Mesos,5 Mi-
crosoft Azure,6 Portainer.7 and Rancher8 From these, K8s has emerged
as the reference platform for the orchestration of containers, allowing
automatic management features for containers [8].

Numerous works are focusing on power consumption optimization
using a wide range of methodologies, including traditional optimization
models and heuristic algorithms [9–16], hardware and software-based
solutions [17–19], Genetic Algorithms (GAs) [20,21], and Machine
Learning (ML)-based algorithms [22,23]. However, it is worth noting
that comprehensive investigations into various open-source tools for
power measurements are relatively scarce in the current state-of-the-
art. This article presents insights into various open source software
tools: (i) Stress-Terminal UI (s-tui); (ii) Kubernetes-based Efficient Power
evel Exporter (Kepler); and (iii) Scaphandre alongside the Meross
SS310 [24] hardware equipment. By offering precise power consump-

ion measurements for each cluster node and respective containers,
hese tools empower cloud providers to strategically deploy their
pplications, ultimately leading to more energy-efficient operations.

This work aims to present valuable insights focused on recent
ethodologies for monitoring power consumption in container clouds

hat could lead to further research efforts, seeking to mitigate the
nvironmental impact of cloud computing in a sustainable digital era.
he main contributions of the paper are threefold:

• Towards an energy-efficient cloud infrastructure: Section 3
details the proposed K8s-based architecture for a more energy-
efficient container cloud infrastructure. Several monitoring tools
are applied to provide precise power measurements, helping to
achieve more energy-efficient management.

2 https://kubernetes.io/
3 https://docs.docker.com/engine/swarm/
4 https://cri-o.io/
5 https://mesos.apache.org/
6 https://azure.microsoft.com/en-in
7 https://www.portainer.io/
8

2

https://www.rancher.com/
• Comprehensive evaluation of power measurement tools: The
evaluation consisted of various methodologies, employing both
hardware and software-based approaches, to determine the dif-
ferences in monitoring power consumption. Results reveal diverse
measurements obtained through these methodologies (Section 5).

• Open Challenges and promising Research Directions: This
paper details open challenges and proposes future research direc-
tions on optimizing power consumption in containerized clouds
(Section 6). Also, Section 7.2 presents lessons and future prospects
focused on novel trends in the cloud computing field. Carbon-
neutral container clouds would contribute significantly to more
environmentally conscious and sustainable future.

The remainder of the paper is organized as follows: Section 2
resents the current state-of-the-art focused on energy-efficient strate-
ies for cloud environments. Section 3 details the most promising
pproaches for accurate power consumption monitoring in the pop-
lar K8s platform. Then, Section 4 presents the testbed applied to
valuate the power measurement strategies. Section 6 focuses on open
hallenges and future directions, while Section 7 presents the lessons
earned and discusses the prospects of energy-efficient container clouds
ocused on emerging trends. Concluding remarks are presented in
ection 8.

. Related work

Optimizing power consumption while ensuring high performance
s crucial with the increasing demand for CaaS services. The current
iterature on power measurement and efficiency in cloud computing
nvolves diverse platforms, methodologies, and tools, each presenting
istinct insights and limitations, aiming to improve resource utilization
hile minimizing power consumption (Table 1).
Theoretical formulations and heuristic methods are mostly used

o solve resource allocation focused on power consumption [9–16].
hese include linear formulations for workload consolidation and the-
retical frameworks using metrics such as Carbon Usage Effectiveness
CUE), and Water Usage Effectiveness (WUE) [10] to assess efficiency.
hese studies focus mainly on Integer Linear Programming (ILP) and
ixed Integer Linear Programming (MILP) models to find the optimal

esource allocation based on a particular goal. However, a significant
rawback of these modeling approaches is their inability to attain a
easible solution within a reasonable timeframe. Note that these models
an serve as an optimal benchmark for heuristic-based algorithms
y offering an optimal reference point for energy-efficient resource
llocation strategies.
Hardware and software-based approaches enable precise power

easurement and monitoring at different levels of the technology
tack [17–19]. At the hardware level, sophisticated power measure-
ent tools and instrumentation provide granular insights into the
ower usage of individual components, allowing for a detailed analysis
f energy patterns and consumption across diverse hardware elements.
t the software level, innovative algorithms and tools facilitate power
rofiling and monitoring, including detailed measurements of the
nergy footprint of applications, and processes. Moreover, DC-wide
onitoring systems such as Dynamo [15] represent a concerted effort

o comprehensively monitor and manage power consumption across
n entire DC. These systems leverage advanced analytics and real-
ime data processing to optimize resource allocation and reduce overall
arbon emissions, aligning with the global initiative for sustainable
omputing infrastructures. However, these approaches also exhibit lim-
tations, from potential sub-optimal solutions to focus on specific levels
f power measurement or a lack of real-time monitoring capabilities.
Genetic Algorithms (GAs) are optimization techniques inspired

y the process of natural selection and evolutionary biology, widely
sed for solving optimization and search problems, including resource
llocation challenges [20,21]. These algorithms improve the solution

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://cri-o.io/
https://mesos.apache.org/
https://azure.microsoft.com/en-in
https://www.portainer.io/
https://www.rancher.com/


Computer Networks 245 (2024) 110371C. Centofanti et al.

N
M
L
E

Table 1
State-of-the-art of the energy efficiency in cloud computing models.

Work Plat. Meth. Eval. Methodology Limitations

Piraghaj et al. [9] C T S Optimizes container placement for
minimal server usage.

Dynamic workloads in DCs may lead to
sub-optimal solutions.

Van De Voort et al. [10] DC T S Introduces theoretical calculations for CUE
and WUE evaluation in DC power
consumption, assessing carbon emissions
and water usage.

Concentrates on specific component-level
power measurements.

Vijouyeh et al. [11] C T & H S Introduces a theoretical formulation for
application deployment in Fog computing,
considering user delay requirements and
traffic processing constraints.

Evaluation consisted of generic application
scenarios.

Santos et al. [12] C T S Proposes a MILP formulation addressing
the service allocation problem in Fog
Computing that considers multiple
objectives.

Focus mainly on reducing deployment
costs as energy savings. The MILP model
scales badly.

Zorello et al. [13] VMs &
DC

T & H S MILP formulation that minimizes the
DU/CU placement power consumption.

The power consumption assumes only
theoretical models.

Piontek et al. [14] C H K8s CO2-aware workload scheduling algorithm
implemented in K8s to shift non-critical
jobs in time and reduce carbon emissions.

Lacks real-time energy measurements and
monitoring capabilities.

Wu et al. [15] DC H D Monitors the complete power hierarchy in
a DC and makes coordinated control
decisions to ensure safe and efficient
utilization of provisioned power.

Provides power consumption data only at
the infrastructure level.

Okhovvat et al. [16] WSAN H S Assign tasks to WSAN nodes following a
joint optimization considering energy and
execution time.

The emphasis is on optimizing process
execution time in WSAN nodes while not
prioritizing battery saving.

Bellin et al. [17] VMs &
C & BM

HW M Measuring 5G Core Network (5G CN)
power consumption using hardware
equipment to scale computational
resources for different 5G CN Virtual
Network Functions (VNFs).

Concerns include connectivity, privacy,
security, and compatibility related to the
use of Wi-Fi-based Meross MSS3105

Lando et al. [18] C SW 5G RAN Evaluated various open-source 5G CNs
such as free5GC, open5GS, and
OpenAirInteraface (OAI) for their power
consumption during user registration and
authentication.

Does not account for power consumption
by the 5G CN during the user service
period.

Schmitt et al. [19] C SW K Introduces a monitoring and modeling
approach to estimate power consumption
for cloud applications.

Focuses exclusively on application-layer
power measurement, potentially
overlooking lower-level power
consumption.

Saxena and Singh [20] VMs GA S Introduces a GA for server consolidation,
optimizing resource usage and minimizing
power consumption within a DC.

GAs can yield sub-optimal solutions within
the search space. Power measurement is
limited to the infrastructure.

Ilbeigi et al. [21] OF GA &
ML

S Proposes a GA method to optimize the
power consumption of buildings. Results
show that the number of occupants has
the greatest influence on power
consumption.

The main validation of the approach was
based on simulation results.

Ma and Ding [22] VMs &
DC

ML S Introduces an Reinforcement
Learning (RL)-based approach for power
consumption evaluation in cloud
computing.

It relies entirely on simulation results.

Shapi et al. [23] DC ML C The authors propose a predictive ML-based
model for energy consumption in cloud.

The proposed algorithm is quite
time-consuming.

Platform (Plat.): VMs = Virtual Machines, C = Containers, BM = Bare Metal, DC = Data Center infrastructure, OF = Office Building, WSAN = Wireless Sensor and Actuator
etwork.
ethod (Meth.): T = Theoretical assumptions, H = Heuristic algorithm, GA = Genetic Algorithm, HW = Hardware-based equipment, SW = Software-based tool, ML = Machine

earning.
valuation (Eval.): C = Cloud-based testbed, S = Simulations, M = Meross MSS3105, 5GRAN = my5GRAN Tester, D = Dynamo, K8s = Kubernetes, K = Kieker9.
r
m
c
t

in each generation iteratively, converging towards an optimal or near-
optimal solution for the problem at hand. These can efficiently
explore large search spaces while accommodating multiple objectives.
However, this comes at a high computational cost since evaluat-
ing each individual in a population can be time-consuming, making

9 http://kieker-monitoring.net/
3

d

GAs impractical for real-time applications or situations requiring fast
responses.

ML-based solutions [22,23] have gained considerable traction,
epresenting a pivotal approach to optimize energy efficiency. These
ethods aim to build a model for resource estimation under a spe-

ific workload. One of the standout features of these algorithms is
heir inherent robustness in handling fluctuating and unpredictable

emands, often encountered in modern computing environments. These

http://kieker-monitoring.net/


Computer Networks 245 (2024) 110371C. Centofanti et al.

a
n
l
i
m
c
a

m
t
p
p
e
i
f
o
c
i
e
b
e
f
O
a

3

s
b
a
a

3

m

Fig. 1. High-level view of the Energy-efficient K8s-based infrastructure.
c
a
l
t
t
t
t
i
p
V
t
r
w
h
a
v
s
K
m
p
a
a
s
h
e

l
a
s
p
i
s
a
p
c

lgorithms can adjust their model parameters in real-time whenever a
otable event occurs, ensuring high degrees of adaptability (i.e., online
earning). In contrast, offline training may demand substantial manual
ntervention to fine-tune the model and achieve optimal accuracy. The
ain drawback of ML-based approaches is the high execution time to

onverge to a stable model and thus causes allocation and management
ssignments to perform poorly during the learning period.
In summary, this work aims to evaluate various power measure-

ent tools and hardware-based equipments, which are imperative
o advance research in energy-efficient cloud computing. This work
rovides valuable insights to researchers and practitioners aiming to
rovide detailed analysis of power measurement tools and enable more
ffective strategies for improving energy efficiency in DCs and cloud
nfrastructures. The comprehensive understanding of available tools
acilitates resource allocation, benchmarking efforts, and the devel-
pment of advanced energy-efficient computing solutions. As cloud
omputing evolves, the need for sustainable practices becomes increas-
ngly prominent. Optimizing power consumption aligns with current
nvironmental goals aiming to reduce energy costs and enhance scala-
ility of cloud services. Addressing the challenges and limitations in
xisting energy-efficient models and tools is pivotal for realizing a
uture where cloud services are both high-performing and eco-friendly.
ur study provides a crucial foundation for enhancing the sustainability
nd performance of modern CaaS based services.

. Towards energy sustainability in container clouds

This section presents the proposed architecture towards energy
ustainability in cloud computing focused on containerization. The K8s-
ased infrastructure and the importance of monitoring are discussed,
longside the detailed description of several monitoring tools available
s open-source.

.1. Kubernetes (K8s)-based infrastructure - architecture overview

The advent of novel architectural paradigms enables the deploy-
4

ent of different applications on computational resources from the s
loud up to the edge, providing several benefits such as low latency
nd mobility support. An application has been decomposed into sets of
oosely coupled services that can be developed, deployed, and main-
ained independently. Each service is typically responsible for a single
ask and communicates with the other services through lightweight pro-
ocols. Containers are currently the most promising alternative to the
raditional monolithic application paradigm, where almost everything
s centralized and code-heavy. Due to their low resource usage and high
ortability, containers are also the main alternative to conventional
irtual Machines (VMs). With their massive adoption, several orches-

ration solutions for containerized applications have been designed in
ecent years by IT companies and researchers, K8s being the most
idely used today. K8s is highly customizable and provides numerous
ooks for extending its behavior by implementing new functionalities,
s demonstrated in recent research [25]. Fig. 1 presents a high-level
iew of the proposed energy-efficient cloud computing infrastructure,
howing its main architectural concepts based on the K8s platform.
8s follows the master-worker model, where at least one master node
anages containers across multiple worker nodes. Kubernetes already
rovides several components (e.g., API server, Kubelet, Controller Man-
ger) to handle the complete life cycle workflow of containerized
pplications. Containers in K8s are deployed via a pod, which is the
mallest deployable workload unit in K8s. Each pod is capable of
osting one or more containers running within the same execution
nvironment [8].

Fig. 1 also shows our monitoring architecture depicting the physical
ayer, the monitoring layer, and the application layer. The proposed
rchitectural solution employs different monitoring tools designed
pecifically for power consumption measurement in response to the
ressing issues of high power consumption in cloud platforms. The aim
s to analyze the current state of the art for precise and real-time mea-
urements from the K8s-based infrastructure, thereby providing cloud
dministrators with the necessary insights to implement sustainable
ractices in the orchestration and management of energy sustainable
lusters. Here, power measurement tools are required in order to mea-

ure energy consumption. These measurement tools will play a major



Computer Networks 245 (2024) 110371C. Centofanti et al.
role in enabling observability and optimization of power consumption
across numerous cloud environments. These tools will allow measuring
the power consumption of different cluster nodes as well as distinct
applications deployed through pod instances. This granular level of
information is instrumental in enabling making informed decisions
about service placement, and scaling operations within the cloud in-
frastructure based on the current power consumption. By providing
comprehensive power consumption data, these tools can empower
cloud administrators to explore new research directions for energy ef-
ficiency. This valuable information will be key for implementing novel
energy-efficient scheduling and auto-scaling practices. These practices
will not only enhance the overall performance and resource allocation
within the cloud but also significantly can help saving operational costs.
By leveraging these insights, cloud administrators can proactively steer
their cloud deployments towards more energy-efficient and eco-friendly
management. The problem we address in this work is an analysis of
the current open-source power measurement tools to determine their
maturity level and the reliability of these tools in effectively measuring
the energy consumption of cloud systems.

3.2. Server power consumption modeling

Power consumption modeling involves creating mathematical or
computational models to estimate and analyze the power consumption
of servers in different scenarios. These models are essential to optimize
power consumption in DCs and ensuring sustainable computing prac-
tices. Literature often considers multiple factors to develop accurate
models, such as hardware components, cooling systems, and workload
patterns [26,27]. By simulating different conditions, experts can iden-
tify energy-efficient configurations and strategies, leading to reduced
environmental impact and cost savings. The main components affecting
power consumption of a server are the following:

• CPU significantly contributes to power consumption. More pow-
erful CPUs typically consume additional power, especially when
operating at higher clock speeds.

• Memory (RAM) modules consume power, especially during
read/write operations. Larger memory configurations or high-
performance RAM modules can increase power usage.

• Storage (e.g., hard drives) consumes varying amounts of power.
Solid State Drives (SSDs) are generally more energy-efficient than
traditional hard drives.

• Other Components such as motherboard, fans, network interface
cards, and other peripherals contribute to the overall power
consumption of the server.

The models can cover physical machines and VMs and be clas-
sified according to the applied calculation formula. CPU typically is
the largest contributor to power consumption, followed by peripheral
slots [28]. The most used formula is to add the power contributions
of all components Eq. (1) and each component has its own power
consumption model. For example, the power consumption of the CPU
is a function of voltage, frequency, and utilization, while the power
consumption of the memory is a function of its size, frequency, and
usage. In addition, in DCs, servers can be idle since these are not always
active. Then, the power consumption formula can be divided into two
parts: baseline and active power. Baseline power corresponds to the
power consumption when the machine is idle, including the power
consumption of the fans, CPU, memory, I/O and other motherboard
components in their idle state, often considered as a fixed value.
Active power corresponds to the power consumption under certain
workloads, depending on how the machine utilizes CPU, memory and
I/O components.

𝑃 = 𝑃 + 𝑃 + 𝑃 +⋯ + 𝑃 + 𝑃 (1)
5

𝑡𝑜𝑡𝑎𝑙 𝐶𝑃𝑈 𝑅𝐴𝑀 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐹𝑎𝑛𝑠 𝑀𝑜𝑡ℎ𝑒𝑟𝑏𝑜𝑎𝑟𝑑
3.3. CPU power consumption metrics

Accurately estimating and managing CPU power consumption
stands as a significant challenge, primarily due to the ambiguity sur-
rounding the power usage data provided by most CPU manufacturers.
Despite obstacles, an important metric named Thermal Design Power
(TDP) offers insights into the power consumption behaviors of CPUs
under specific conditions. TDP is traditionally comprehended as the
maximum amount of heat generated by a CPU that the cooling system
in a computer is required to dissipate under any workload. While
not a direct measurement of power consumption, TDP approximates
the average of the maximum power a CPU is expected to consume
when operating at base frequency under high computational loads
for a reasonable amount of time [25]. TDP, indicative of the worst-
case scenario for a specific CPU workload capacity, serves as a pivotal
reference point for understanding the potential energy footprint of DC
and cloud environments. Measuring the average power consumption of
a CPU over an extended period is typically approximated to the TDP
value. However, it is crucial to note that TDP alone cannot provide
a comprehensive view of a CPUs power consumption dynamics. The
instantaneous CPU power usage can significantly vary depending on the
workload, operating frequency, and its specific architecture. As such,
relying solely on TDP values may lead to oversimplified assumptions
about the energy efficiency of cloud infrastructures, given that it is
uncommon for all CPUs to operate at 100%.

The Running Average Power Limit (RAPL) interface emerges as a
critical tool in the estimation and management of CPU power consump-
tion. Introduced with Intel’s Sandy Bridge architecture, RAPL provides
a sophisticated means for software platforms to monitor, control, and
receive notifications regarding the power consumption of the System on
a Chip (SoC). RAPL facilitates this by categorizing the platform into dis-
tinct domains, including the entire CPU package, the Dynamic Random
Access Memory (DRAM) controller, individual CPU cores (Power Plane
0), and the graphics uncore (Power Plane 1), among others. This fine-
grained control and monitoring capability allows for a more detailed
understanding of energy consumption across different components of
the CPU and attached peripherals such as DRAM and on-chip Graphics
Processing Unit (GPU). Over the years, Intel has augmented RAPL
with additional features to broaden its applicability across various
computing environments, enhancing its utility in power management.
By leveraging RAPL, developers and system administrators can gain
unprecedented insights into the power dynamics of CPUs, enabling
more accurate predictions of energy consumption and efficiency. Unlike
TDP, which offers a generalized view of power consumption under
specific conditions, RAPL provides the means to track and manage
power usage in real-time across multiple dimensions, presenting a
comprehensive framework for understanding and mitigating the energy
footprint of modern computing systems.

3.4. The importance of monitoring

Monitoring in cloud computing is vital for optimizing performance,
ensuring security and compliance, managing deployment costs, and
maintaining a seamless user experience. It helps cloud providers fulfill
service level agreements while enhancing overall system performance
and reliability. Prometheus is an advanced open-source monitoring
system designed for collecting, storing, and querying time-series data
and metrics widely used in industrial settings [29]. It employs a pull-
based approach, periodically scraping metrics from endpoints exposed
by applications, services, or infrastructure components. These metrics
are then stored in Prometheus’s time-series database. Also, it provides
a powerful query language, PromQL, for real-time data analysis and the
creation of custom alerts. It is highly adaptable and commonly used for
monitoring cloud-native environments, enabling organizations to gain
insights into the health and performance of their infrastructure.



Computer Networks 245 (2024) 110371C. Centofanti et al.

w
c
a

a
i
a
m
c
d
C
c
c
o

a
s
p
f
e
d

3

c
c
p
s
f
p
K
w
c
p
i
i
v
p
t
e
i
m

Grafana [30], on the other hand, complements Prometheus by
serving as a versatile visualization and dashboarding platform. It is
designed to create interactive and customizable dashboards that dis-
play monitoring data in a user-friendly manner. It supports various
data sources, including Prometheus, InfluxDB, Elasticsearch, and more,
making it agnostic to the underlying monitoring system. With Grafana,
users can build dynamic dashboards, set up alerting rules, and share
insights across the organization. This tool improves the observability of
complex systems and aids in identifying trends, anomalies, and issues
through rich visualizations.

In addition, Service Monitors simplify the integration of Prometheus
ith K8s-native applications by defining how Prometheus should dis-

over and scrape metrics from Pods, Services, and other resources in
K8s cluster. Service Monitors streamline the configuration process by

specifying which targets to monitor, the frequency of scraping, and la-
bel mappings for efficient data querying. These resources are especially
valuable in dynamic environments where pods are frequently cre-
ated and terminated, as these automate the discovery and monitoring
of these transient components, ensuring comprehensive observability
within K8s clusters.

3.5. Power measurement tools

This section presents an overview of methods to measure en-
ergy consumption while detailing existing software and hardware-
based power measurement tools such as Scaphandre10 and Kubernetes
Efficient Power Level Exporter (Kepler) [31].

3.5.1. Overview
Power monitor [32] is one of the most accurate strategy to measure

energy consumption. Typically, these hardware tools connect to the
power source of the device and measure the actual power leveraged at
any instant of time. Despite being extremely precise, power monitors
are also extremely difficult to set up. Often, these require custom
changes to the devices being monitored. Energy profilers [33] are
another method that typically does not require special hardware or
power sensors. These have an estimation model of the power cost
of the different hardware components. Based on which components
are active during execution, the profiler estimates a particular energy
cost. Scaphandre and Kepler use Intel RAPL [34,35], which is mainly
used by almost all energy profilers for Intel devices. Intel RAPL is a
hardware feature that allows to monitor energy consumption across
different domains of the CPU chip, attached DRAM and on-chip GPU.
This feature has been introduced in Intel Sandy Bridge architecture
and has evolved in later versions of Intel processing architecture. With
RAPL, it is possible to programmatically obtain real-time data on the
power consumption of the CPU package and its components, as well as
the DRAM memory that the CPU is managing. Intel RAPL integrated
within modern CPUs, employs energy counters to measure the joules
consumed by the processor and its associated memory subsystems. The
granularity of these measurements, represented in energy units, allows
for high-resolution monitoring over a broad range of values. Impor-
tantly, the conversion rate of these energy units to microjoules can
vary between different generations of CPUs, highlighting the need to
take it into account when comparing power consumption across various
hardware platforms. Intel RAPL provides two main functionalities: (i)
measure energy consumption at a fine granularity and a high sampling
rate, and (ii) limiting (or capping) the average power consumption of
different components inside the processor, limiting also the processors
thermal output. Kepler uses the energy consumption measurement
capability. Intel RAPL technology provides a more nuanced approach
to monitor energy consumption than relying solely on TDP values.

10 https://hubblo-org.github.io/scaphandre-documentation/index.html
6

3.5.2. Stress terminal UI (s-tui)
s-tui11 is an open-source software utility designed for stress-testing

nd monitoring system performance in a terminal or command-line
nterface (CLI) environment. This tool allows users to simulate and
ssess the system’s behavior under heavy loads and stress conditions,
aking it valuable for testing and optimizing hardware and software

onfigurations. S-tui typically provides a user-friendly interface that
isplays real-time information about system resource usage, including
PU utilization, temperature, and other relevant metrics. Users can
onfigure stress tests to evaluate how their systems respond to high
omputational workloads, helping to identify potential bottlenecks,
verheating issues, or system instability.

S-tui extracts power consumption along with some other parameters
s follows: (i) Power: monitors the power consumption of the host
ystem (in Watts); (ii) Util: tracks the utilization of each core and also
rovides an average of all the cores; (iii) Frequency : reports the CPU
requency (i.e., the number of cycles a CPU performs per second.) of
ach core; and (iv) Temp: monitors the CPU temperature specific to
ifferent aspects.

.5.3. Kubernetes efficient power level exporter (Kepler)
Kepler [31] is an open-source project started by Red Hat with early

ontributions from IBM Research and Intel. The aim is to collect power
onsumption metrics across multiple platforms to better understand
ower consumption in container cloud infrastructures. Kepler utilizes
oftware counters and power sources such as RAPL, Advanced Con-
iguration and Power Interface (ACPI) and NVIDIA GPU to measure
ower consumption based on hardware resources within a K8s cluster.
epler is an extended Berkeley Packet Filter (eBPF)-based approach,
hich allows to attribute power consumption to specific processes,

ontainers and even K8s pods. This granular visibility enables efficient
ower management and optimization. Kepler also converts power usage
nto energy estimates based on custom ML trained models that help
n resource planning and scheduling tasks. By accessing Kepler metrics
ia Prometheus, cloud administrators gain valuable insights into the
ower consumption of individual pods and the carbon footprint of
heir cloud infrastructure. This visibility empowers them to identify
nergy-intensive workloads, optimize resource allocation and make
nformed decisions regarding workload placement. Kepler can retrieve
eaningful power consumption metrics from K8s clusters as follows:

• kepler_container_core_joules_total: the total power consumption on
CPU cores of the container. Typically, if the system has access to
RAPL metrics, this metric corresponds to the power consumed by
all CPU cores in the socket.

• kepler_container_cpu_cycles_total: the total CPU cycles used by
the container using hardware counters, which are particularly
desirable due to its granularity and precision.

• kepler_container_cpu_instructions_total: the total CPU instructions
used by the container using hardware counters.

• kepler_node_core_joules_total: the total power consumption of a
node by aggregating all containers running on the node and
operating system.

3.5.4. Scaphandre
Scaphandre, a power monitoring tool, employs a combination of

hardware-based power sensors and system-level data to measure power
consumption on computing systems. These power sensors, such as
Intel’s RAPL technology, track energy counters associated with key
hardware components like CPUs and GPUs to measure the power
consumption. Simultaneously, Scaphandre monitors resource utiliza-
tion metrics such as CPU and memory usage to correlate resource
activity with power consumption. At the process level, Scaphandre

11 https://github.com/amanusk/s-tui

https://hubblo-org.github.io/scaphandre-documentation/index.html
https://github.com/amanusk/s-tui


Computer Networks 245 (2024) 110371C. Centofanti et al.

c
a
o

o
l
t
c

c
c
c
u
w
p
b
u
o
o
o
t
g
c
c
o
S
i
e
v
c
p

3

t
a
p
w
m
t
W
t
M
r
P
t

v
a
e
i
w
m
e

c
a
b
b
a
c
m

tracks individual process activity, analyzing small time intervals known
as jiffies. It calculates the power consumption of the entire system by
ombining data from power sensors, resource utilization, process-level
ctivity, and jiffies, providing information on the power consumption
f individual processes.

Furthermore, Scaphandre offers exporters to facilitate the export
f power-related data, making it compatible with monitoring systems
ike Prometheus for comprehensive power analysis and environmen-
al impact assessment. Scaphandre can retrieve meaningful power
onsumption metrics from VMs/containers as follows:

• scaph_host_power_microwatts: Aggregates measurements from vari-
ous sources, including RAPL domains, to provide an estimate of
host power consumption.

• scaph_process_power_consumption_microwatts: It collects the power
consumption of a specific process on the system, indicated by
labels such as exe, cmdline, instance, and pid.

• scaph_host_energy_microjoulesl: Provides power consumption data
for the entire host in microjoules.

• scaph_host_cpu_frequency : Provides the global frequency of all the
CPUs in MegaHertz (MHz).

Scaphandre stands out as a pioneering solution capable of dis-
erning the power usage attributable to individual processes within a
omputing environment. Its operational model involves navigating a
omplex array of factors for precise measurements, with a foundational
nderstanding essential for optimal utilization, especially in scenarios
ith multiple processors or VMs. At the core of its methodology is the
rinciple of timesharing, where processes are allocated CPU time in
rief intervals known as jiffies. This nuanced understanding of resource
tilization across processes is crucial for measuring power consumption
n a per-process basis. Power sensors, such as Intel’s RAPL technol-
gy, monitor energy consumption in real-time, correlating jiffies with
verall power usage to calculate the power consumption attributable
o individual processes. The PowercapRAPL sensor operates syner-
istically with the powercap Linux kernel module, recording energy
onsumption metrics for real-time monitoring and extensive data pro-
essing through its exporters. Acknowledging the evolving landscape
f computing workloads, especially those with heavy GPU utilization,
caphandre is poised for further enhancements. Future iterations aim to
ntegrate more granular tracking mechanisms for GPU and hard drive
nergy consumption, bridging monitoring gaps and providing a holistic
iew of a host’s power profile. Understanding its operational model is
rucial for leveraging its full potential, ensuring accurate and insightful
ower analysis in diverse computing environments.

.5.5. Meross MSS310
One of the options available for measuring power consumption is

o use the Meross MSS310 smart plug.12 These devices from Meross
re smart plugs that enable users to obtain metrics on the current
ower consumption via the internet. The device itself is straightfor-
ard, consisting of a male-to-female power socket, a button, and a
icrocontroller equipped with a wireless antenna that can connect

o a basic Wireless Local Area Network (WLAN) with internet access.
hen the device is properly configured and set up, it transmits data to

he Meross Message Queuing Telemetry Transport (MQTT) server. The
QTT topic is accessible through the meross_iot 13 Python library and

equires an email and password for authentication. A straightforward
ython script enables us to gather data from the devices and automate
he process.

Meross MSS310 device can measure: (i) Power : the current active
power; (ii) Voltage: the current voltage; and (iii) Current : the current

12 https://www.meross.com/en-gc/smart-plug/smart-plug-google-home/6
13 https://pypi.org/project/meross-iot/
7

intensity of the electrical current. While the Meross MSS310 smart
plug provides an accessible means for monitoring power consumption
metrics, it is pertinent to note the inherent constraints associated with
its commercial nature. Specifically, the technical specifications and
the underlying methodologies employed by the device for power mea-
surement are not publicly disclosed by the manufacturer. This lack of
detailed technical information may pose challenges for researchers and
practitioners seeking a deep understanding of the measurement preci-
sion and the algorithmic processes involved. However, it is essential to
recognize that the Meross MSS310 is designed as a measurement tool,
not merely an estimator. This distinction emphasizes its capability to
provide actual measurements of power, voltage, and current intensity,
rather than inferred estimates. The device achieves this through its
integrated sensors and electronic components, which directly quantify
the electrical parameters flowing through it. Consequently, despite
the absence of explicit technical documentation, the Meross MSS310’s
utility as a reliable tool for real-time power consumption monitoring
remains indisputable.

3.6. Performance analysis with stress-ng

Stress-ng is an important tool for generating controlled loads across
arious components of the system. Its wide range of stressors makes it
n ideal candidate for mimicking real-world workloads. However, to
nhance the flexibility, portability, and ease of deployment across var-
ous test environments, we aim to containerize the stress-ng tool. Thus,
e can ensure a uniform testing environment across different platforms,
itigating the variability introduced by external dependencies and

nvironment-specific configurations.
The containerized stress-ng 14 is designed to retain the same level of

onfigurability as its bare-metal counterpart. This enables researchers
nd developers to replicate actual workload scenarios with precision,
ut also provides a modular framework where stress parameters can
e adjusted dynamically. By deploying stress-ng in a container and
llocating all available CPU resources within a K8s cluster, the tool
an precisely mirror the entire spectrum of workload intensities. This
ethod allows for the simulation of CPU usage from 0% (idle) to 100%

(peak load) with a singular container instance. In practical deploy-
ments, while it may be unusual for a single container to monopolize
such a vast expanse of resources. However, the scenario where multiple
containers cumulatively consume a significant amount of CPU resources
is a usual thing. Hence, the simulation conducted with a single stress-ng
container, consuming an equivalent amount of CPU resources, provides
a valid approximation of a real-time scenario where multiple contain-
ers are operating under varying loads. Furthermore, the efficacy of
stress-ng in simulating CPU workloads extends seamlessly to multi-core
systems, thanks to K8s flexible resource allocation policies. Within a
K8s environment, a container, including those running stress-ng, is not
inherently restricted in its CPU resource consumption. This means that,
unless explicitly limited through K8s resource management features,
the container has the potential to utilize all CPU resources available on
the node where it is deployed. This capability is particularly significant
in the context of multi-core systems, where stress-ng can be leveraged
to generate stress loads that span across all cores, effectively mimicking
scenarios where the system is subjected to varied degrees of utilization
from idle to peak load.

4. Experimental evaluation setup

Fig. 2 (based on Fig. 1) shows our designed experimental evaluation
reference architecture setup. Here, an application layer is responsible for
(i) automating the experiment procedure; (ii) collecting, aggregating,
and storing data; and (iii) visualizing the power consumption. Whereas,
a physical layer includes the physical facilities required to run the
software. This section describes the deployed evaluation setup.

14 https://anonymous.4open.science/r/stress-ng-ubuntu-4E06/README.MD

https://www.meross.com/en-gc/smart-plug/smart-plug-google-home/6
https://pypi.org/project/meross-iot/
https://anonymous.4open.science/r/stress-ng-ubuntu-4E06/README.MD


Computer Networks 245 (2024) 110371C. Centofanti et al.
Fig. 2. Experimental evaluation reference architecture setup.
Fig. 3. Overview of each K8s-based infrastructures used in the evaluation.
4.1. Physical layer

The physical layer represents where the computation and storage
workloads takes place. Fig. 3 illustrates the considered K8s-based in-
frastructures. A set of K8s clusters compose the infrastructure to which
we run the experimentation. Each K8s cluster is composed of a master
node and two worker nodes. A three-node deployment is selected
for all clusters to ensure reliable and highly available computing re-
sources, since three represents the minimum node count required for
a high-reliability cluster deployment. This choice does not affect our
measurements, and a cluster with a greater number of nodes can be
easily selected without invalidating the experimental process.

We deployed three distinct clusters across various architectures
to validate the results through different scenarios. The first cluster
(Fig. 3(a)) is deployed in the imec Virtual Wall (vWall) infrastruc-
ture [36] at IDLab, Belgium. The second and third clusters, namely the
eCluster and the piCluster, are implemented within the MEC Lab infras-
tructure at the University of L’Aquila, Italy, as depicted in Fig. 3(b) and
Fig. 3(c), respectively.

Table 2 details the hardware configurations of each cluster and
Table 3 lists the applied software versions, including monitoring and
performance assessment tools.
8

Table 2
The Hardware Configuration of each cluster.

Virtual Wall (vWall) Cluster

Node CPU Memory

Master Intel(R) Xeon(R) CPU
E5-2650 v2 @ 2.60 GHz 48 GBWorker 1

Worker 2

eCluster

Node CPU Memory

e1 Intel(R) Core(TM)
i9-9900K
CPU @ 3.60 GHz

64 GBe2
e3

piCluster

Node CPU Memory

pione Broadcom BCM2711
ARM v8 @ 1.8 GHz 4 GBpitwo

pithree



Computer Networks 245 (2024) 110371C. Centofanti et al.

c
H
a
p
a
P
d
s
v

4

m
O
(
p
a
p
g
t
c
o

u
a
a

c
a
m
a
i
t
c
F
b
i
e
t
j
e
a
t
C
p
T
i
m
b
C
c
o
s
A
p
b
p
o
p
w
e
u
f
t
t

i
a
l
s
t
s
i

l
p
a

Table 3
Software used in the different K8s clusters.

Software in common across all clusters

Software Version

Container Runtime containerd://1.6.12
Kube-prometheus v0.68.0
s-tui 1.0.0-beta3
Kepler 0.5.5
Scaphandre 0.1.1
Stress-ng 0.13.12
Python3 3.8.20

Virtual Wall (vWall) Cluster

Software Version

Kubeadm & Kubectl v1.26.1
Operating System Ubuntu 20.04.2 LTS
Linux Kernel 5.4.0-33-generic

eCluster

Software Version

Microk8s v1.27.5
Operating System Ubuntu 20.04.6 LTS
Linux Kernel 5.15.0-86-generic

piCluster

Software Version

Microk8s v1.27.5
Operating System Debian 11
Linux Kernel 6.1.21-v8+

4.2. Application layer

The application layer is responsible for running and controlling the
experiment, collecting all the data into a centralized data store, and
visualizing the collected data. The workload is based on our stress-
ng container implementation presented in Section 3.6. The Experiment
control app is responsible to run the experiment. It manages the current
workload, generating the required pods and deploying them to the
appropriate node within theCluster. The Software-based and Hardware-
based power measurements tools report to the Prometheus datastore all
ollected metrics during the experiment. It is worth noting that the
ardware-based Power Measurement Tools are composed by an hardware
nd an application part. The hardware part is the bare metal socket
lugged to the energy socket while the Python application is the agent
ble to collect and forward metrics to the Data store. Software-based
ower Measurement Tools only require to run their agents that forwards
ata into the Data store, as they estimate power measurement by
oftware, as discussed in Section 3. This setup enable real time data
isualization through the Grafana web-based Graphical User interface.

.3. Mapping energy monitoring tools to hardware platforms

As illustrated in Table 4, the selection of an appropriate energy
onitoring tool is contingent upon the underlying hardware platforms.
ur comprehensive analysis presents the compatibility of various tools
i.e., Scaphandre, Kepler, S-tui, and Meross) with prominent hardware
latforms such as Intel, AMD, and ARM. Notably, Scaphandre, Kepler,
nd S-tui exhibit universal applicability across recent Intel and AMD
latforms (support enabled from 2012 by the RAPL technology). A
reen checkmark (✓) means no restrictions on tool usage. Conversely,
hese tools are not suited for ARM-based systems, as indicated by a red
ross (✕), suggesting their inability to provide accurate measurements
r function effectively within such hardware platforms.

The Meross tool, however, is a hardware-based tool and presents a
nique case; its application is feasible across all examined platforms,
lbeit with a conditional requirement for physical access to the system,
s highlighted by a yellow checkmark (✓). This concern is generally

more relevant in the context of cloud service providers and may not
9

a

be as significant in on-demand DC operations. Given these insights,
this study proposes a deliberate approach to choosing adequate energy
monitoring components that focuses on matching the requirements
of these tools with the particular characteristics of the hardware
platform being monitored. This alignment is crucial for achieving
accurate energy consumption measurements and facilitating effective
energy-aware strategies within containerized cloud environments.

4.4. Experimental run

To evaluate the power measurement tools, it is essential to execute a
workload on the cluster that emulates real-world behavior. We manage
the workload deploying our stress-ng pod for different CPU loads, as
illustrated in Fig. 4 as a job in kubernetes. The first thing is to run the
s-tui software. Next, if the Meross smart plug is available in the current
luster, the Python agent (which runs on an external hardware to avoid
dding computation to the system under-test) to forward data from
eross to the data center needs to be run. At this point, only monitoring

gents are running on the system and the power consumption of them
s negligible compared to our available computational resources. Then,
he experiment automation begins by deploying the first job in the
luster representing the first step of the experiments, accordingly to
ig. 4. After a job completes, there is a deliberate waiting interval
efore deploying the next job to begin the subsequent step. This interval
s strategically implemented to allow the system to cool down and to
nsure a clear separation between experiments, thereby minimizing
hermal interference and potential carry-over effects from previous
obs. This cooling-off period is crucial for maintaining the integrity of
ach experiment by ensuring that the starting conditions are consistent
nd not influenced by the residual heat or system state from preceding
asks Once all jobs are completed, the results can be consolidated into a
SV file, marking the end of the experiment. In each step, the stress-ng
od generates a given CPU load over a period of 300 s (i.e., 5 min).
he load percentage is determined based on the total available CPU

n the node. Thus, 50% of 4 CPUs means loading 4 CPUs to half their
aximum capacity for the duration of the job and stress-ng ensures this

ehavior. For instance, if a workload is configured to utilize 30% of the
PU resources over a given time, stress-ng uses exactly 30% of the CPU’s
apabilities. Should other concurrent processes or pods be operating
n the system during the same time, the CPU usage recorded by the
ystem reflects the cumulative resource utilization by all active entities.
s future work, it is important to highlight that when evaluating the
ower consumption of containerized applications, stress-ng would not
e needed since measurements are collected based on these running
ods on the K8s cluster. Though, to quantify the power consumption
f the different evaluated clusters, we opted for developing a stress-ng
od to understand the power consumption behavior in a K8s cluster
hen different CPU resources are attributed. This ensures that our
xperimental setup accurately simulates real-time conditions, allowing
s to measure the power consumption and CPU utilization with high
idelity. Each step is followed by a waiting interval of 30 s to cool down
he system and let us better separate each job from the previous one in
he collected values.

During our experiments, the collection interval of Prometheus is
ncreased (i.e., every 1 s) since the sampling rate may affect the
ccuracy of the reported values. As default, Prometheus collects at a
ower sampling rate (i.e., typically every 10–15 s), which may miss
hort spikes or fluctuations in power consumption, leading to underes-
imation or overestimation of overall power usage. Note that a higher
ampling rate is considered to reduce the impact of these fluctuations
n our measurements.

The experiment starts with a 5% CPU load, with the count growing
inearly with each step, reaching 100% in the final step. During this
rocess, the power consumption is measured by using different tools
t every step for subsequent analysis (i.e., s-tui, Kepler, scaphandre,

nd Meross smart plug). To enhance data visualization, we extracted



Computer Networks 245 (2024) 110371C. Centofanti et al.
Table 4
Mapping of energy monitoring tools to hardware platforms.

Energy Monitoring Tool
Hardware Platform Scaphandre Kepler S-tui Meross
Intel ✓ ✓ ✓ ✓(if physical access is possible)
AMD ✓ ✓ ✓ ✓(if physical access is possible)
ARM ✕ ✕ ✕ ✓(if physical access is possible)
Fig. 4. Diagram showing a single experimental run: CPU load incrementally increases from 5% to a maximum of 100%. Each step lasts 300 s (5 min), followed by a 30-second
waiting interval.
Table 5
The Resource consumption of all methods in the vWall testbed.

Tool CPU (in m) Memory (in Mi)

Kepler 125.49 ± 3.26 4.35 ± 0.50
Scaphandre 66.96 ± 12.88 1.21 ± 0.45
s-tui 51.30 ± 23.60 22.41 ± 3.51

CSV files from Prometheus, and subsequently plotted the values offline
using Matplotlib. ServiceMonitors for Scaphandre and Kepler agents and
the Python agent for Meross need to be running within the K8s-based
clusters during the whole experiment to collect data (Fig. 5). It should
be noted that due to limited server accessibility, the Meross smart plug
is not installed on the vWall cluster. Furthermore, both Kepler and
Scaphandre are incompatible with the ARM architecture, preventing us
from collecting data on the pi cluster. The s-tui runs on ARM but is not
able to estimate power consumption.

5. Results

Resource Consumption is measured using different power measure-
ment tools at the vWall infrastructure.

Table 5 shows the measured CPU and memory while performing
the experiment. Note that the impact of the considered tools on re-
source consumption is also observed and Kepler uses more CPU than
both Scaphandre and s-tui, whereas s-tui consumes significantly more
memory than the other two tools.

vWall: Fig. 6(a) compares the obtained power consumption mea-
surements at the vWall testbed with three distinct power measuring
tools: Scaphandre, Kepler, and S-tui. vWall testbed is accessed via the
stress-ng pod developed for our experiments. The Meross device is
not installed due to limited physical access to the machines. There
are notable differences in the power consumption values reported by
the three tools at identical CPU loads. The considered tools exhibit
an increase in power consumption with the increase of CPU load as
expected. However, Kepler provides low power consumption values
compared to both Scaphandre and S-tui due to the inherent behavior
10

of their implementation. Kepler’s measurements show a near-linear
correlation with CPU load, starting from approximately 13 watts at 0%,
and concluding around 150 watts at 100%.

eCluster: Fig. 6(b) depicts the relationship between both the power
consumption and the total CPU load for four different power mea-
surement tools: Scaphandre, Kepler, S-tui, and Meross. As stated, Kepler
consistently underestimates the power consumption across all the CPU
loads when compared to the other tools. The discrepancy widens as the
CPU load increases, suggesting that its approximation method becomes
less accurate under heavier loads. Results collected from Scaphandre are
very close to the one given by Kepler and the gap between the two tools
remains relatively stable at low and high CPU loads. S-tui starts by a
higher point on the graph at lower CPU loads but tends to increase as
the load increases. Meross data are very close to the S-tui ones from
5% to 40% CPU load. After 40% of CPU load, the Meross data diverges
from S-tui and tends to a constant maximum value of 150 W.

Fig. 7(a) compares the power consumption over time between a
single node labeled as e2 — from the eCluster as shown in Fig. 3(b) —
and the entire eCluster, measured from Meross devices. Both the single
node e2 and the whole eCluster exhibits fluctuating power consumption
over the given period, suggesting multiple periods of high and low
activity or usage. These values are directly tied to the actual workload
being executed on the e2node, according to Section 4. The power
consumption of the cluster consistently remains higher than e2 as ex-
pected. The peaks and lows in the consumption curves align at several
points, meaning the two other nodes of the cluster (i.e., e1, and e2)
are only running core K8s components, so resulting in constant power
consumption. The stress-ng workload consumption is slightly higher
than the noise coming from the normal oscillation of the baseline power
consumption of the other two nodes. The baseline power consumption
values for both e2 and eCluster can be observed at the end of the
experiment upon the termination of the stress-ng pod.

piCluster: Fig. 7(b) compares the power consumption over time
between a single node, labeled as pitwo, and the entire PiCluster. In
the piCluster we are not able to install and collect data from Kepler
and Scaphandre due to hardware limitations and software compatibility
issues. Both the pitwo node and the PiCluster exhibits fluctuating power
consumption over time. It is worth highlighting that in the piCluster,

the absolute power consumption values are an order of magnitude



Computer Networks 245 (2024) 110371C. Centofanti et al.

i
e
t
c

Fig. 5. The block diagram of our experimental run.

lower than those in the eCluster. This disparity can be attributed to the
superior energy efficiency of the Raspberry Pi compared to workstation-
grade computers involved in eCluster and vWall Cluster. The general
trend in the data aligns with that observed for the eCluster, where the
cluster’s power consumption generally mirrors the power increase in
pitwo. A key distinction, however, is that in this context, the power
fluctuations originating from the pione and pithree nodes significantly
mpact the measurement and cannot be overlooked. This noise is
vident at the end of the graph, where no workload is pushed into
he cluster, and we observe noise that is slightly higher in percentage
ompared to that of the eCluster.
In summary, all the tools applied in the evaluation showed power

consumption measurements. All these tools show significant discrep-
ancies for the three K8s-based clusters due to the nature of the tools
developed. Scaphandre and Kepler use relatively complex algorithms
to estimate the power consumption based on different factors such as
the system activity, and CPU utilization. Kepler includes a ML-based
11

model to estimate the power consumption of different workloads. The
Fig. 6. Overview of the energy consumption for both K8s-based infrastructures.

discrepancies obtained in our experiments can be related to the differ-
ent algorithms employed by these tools to measure power consumption.
Discrepancies among the use of different methods for power consump-
tion estimation reported in previous works [37], in which the impact
of using container orchestration platforms such as K8s has not been
evaluated. TDP can serve as a metric for estimating power consumption
in electronic devices, including processors. However, its reliability can
be compromised due to various factors, leading to inaccuracies in
power consumption estimations. Factors such as variations in workload
intensity, ambient temperature, and manufacturing discrepancies can
all contribute to deviations between estimated TDP and actual power
consumption. Thus, there is a pressing need for further investigation
to evaluate the robustness of these monitoring tools in diverse envi-
ronmental conditions. Our experiments indicate that Scaphandre and
Kepler exhibit promising performance characteristics and may serve as
suitable candidates for accurate power consumption monitoring in var-
ious settings, especially in Bare metal servers. Though, these tools are
not yet optimized to operate on the ARM architecture. However, contin-
ued research is essential to validate and refine these findings, ensuring
reliable power consumption estimation across different environments
and use cases.

6. Open challenges & future directions

This section discusses the challenges of cloud sustainability is
not yet fully addressed by literature and highlights future directions.



Computer Networks 245 (2024) 110371C. Centofanti et al.

m
s
p
a
c
d
t
p
o
e
t
e

m
a
i
w
s
a
w
a
o

Fig. 7. Comparison of power consumption over time between a single node (e2) and
the entire Cluster (eCluster).

Containers have revolutionized application development and deploy-
ment, offering high flexibility and enhancements in scheduling and
scaling features. However, this transition is accompanied by multiple
challenges related to power consumption and sustainability, making
it essential to address these issues to ensure the sustainability and
cost-effectiveness of container-based cloud infrastructures.

Power-aware resource allocation for emerging use cases based on
application stringent requirements such as extremely low latency, and
high bandwidth presents a substantial avenue for reducing power
consumption. Existing works [38–40] propose theoretical formulations
and heuristics to allocate VNF resources based on power consump-
tion. However, future studies should address intelligent algorithms for
dynamic resource allocation to minimize idle resources and enhance
overall energy efficiency. In addition, optimizing service placement and
traffic routing in cloud infrastructures will help cloud providers reduce
their deployment costs while providing sufficient levels of Quality of
Service (QoS) to their users.

Integration of Machine Learning (ML) features in container manage-
ent features can lead to autonomous functionalities as a potential

olution for inappropriate human interventions. Leveraging ML and
redictive analytics holds promise in anticipating workload patterns
nd modifying the number of deployed containers according to the
urrent service demand. Future research efforts should concentrate on
eveloping accurate predictive scaling algorithms capable of adjusting
o dynamic workload patterns. Recently, RL has shown tremendous
otential in resource allocation and auto-scaling tasks [41,42] based
n its performance and scalability. Combining ML trends can lead to
nergy-efficient automated networks with minimum human interven-
ion, providing self-configuration and self-repairing features focused on
12

nergy sustainability.
Energy-efficient hardware and carbon-neutral processing will be a
ajor research topic in the next few years [43]. Existing works mainly

ddress power consumption reduction in the cloud infrastructure and
ts network links [44]. The integration of renewable energy (e.g., solar,
ind) sources into data centers could significantly reduce power con-

umption [45]. Future research should focus on developing intelligent
lgorithms that maximize the utilization of renewable energy sources
hen available and seamlessly transition to conventional power sources
s needed. In addition, hardware manufacturers should focus on devel-
ping specialized processors and hardware components (e.g., efficient

memory systems and storage solutions) optimized for containerized
environments. Efficient cooling mechanisms that maximize energy sav-
ings is also a potential research direction that could lead to overall
reduction of power consumption in DCs [46].

Efficient Carbon Footprint Measurement of containerized applica-
tions is crucial [46–50]. Research collaborations between industry,
academia, and non-profit stakeholders are essential to drive knowledge
sharing and collective efforts to address sustainability challenges in
container clouds and lead to standardized methodologies and industry-
wide best practices. An example, is the recent Cloud Native Computing
Foundation (CNCF) Technical Advisory Group (TAG) Environmental
Sustainability initiative15 advocating for sustainable practices in cloud
native technologies. Sharing data and research project outcomes can
accelerate the progress in this field by developing and disseminat-
ing guidelines for optimizing power consumption and sustainability,
promoting consistent implementation across diverse organizations.
Open-source communities could play a major role in coming years to
achieve a standardized way of measuring power consumption in future
cloud infrastructures.

In summary, this section emphasizes the critical need for extensive
research in the cloud domain related to energy sustainability to push for
innovations that address power consumption and sustainability chal-
lenges in container clouds. Ongoing research studies, interdisciplinary
collaborations, and the pursuit of standardized best practices are
essential elements in the journey towards more sustainable and energy-
efficient container-based cloud infrastructures. All these research areas
will contribute for a greener cloud future.

7. Lessons learned and prospects

This section reflects on several lessons derived from our literature
review and findings. In addition, future prospects are detailed, includ-
ing the need for open collaboration between academia and Industry and
substantial efforts in standardization.

7.1. Lessons learned

Optimizing Power Consumption in cloud-based environments is vital
for cloud computing sustainability. Efficient power management can
directly affect operational costs, overall performance of applications
and the reliability of cloud services. Energy costs represent a sig-
nificant portion of the operational expenses of DCs. Energy-efficient
practices such as dynamic resource allocation and advanced cooling
systems will directly translate to cost savings. Currently, DCs are no-
table contributors to carbon emissions and environmental pollution
due to their massive power demands, often relying on non-renewable
energy sources. By adopting renewable sources, cloud providers could
significantly decrease their carbon footprint, aligning with global sus-
tainability goals. Finding a balance between performance and energy
efficiency is a delicate yet critical task, since this trade-off can sig-
nificantly impact the environmental footprint and scalability of DCs.
Power-aware management strategies will enable cloud providers to

15 https://tag-env-sustainability.cncf.io/

https://tag-env-sustainability.cncf.io/


Computer Networks 245 (2024) 110371C. Centofanti et al.

a
c
a
p
e
v
e
a
p
i
a
a
c
f
I
t
o

e
a
l
E
p
a
a
r
p
n
s
p

7

d
p
t
r
e
m
u
a
i
s
a
o
e

s
w
J
t
W

adapt quickly to sudden demands, ensuring seamless and responsive
user experiences.

Leveraging Precise Monitoring is crucial for understanding, analyzing,
nd optimizing power usage in the dynamic and rapidly evolving
loud environment. While various measurement tools are available, this
rticle highlights that the measured power consumption can vary de-
ending on the chosen technique. Thus, accurate monitoring becomes
ssential to provide real-time, granular data on power usage across
arious components and processes within the cloud infrastructure. This
nhanced data is invaluable for identifying inefficiencies and anomalies
t different levels (e.g., server and rack). Sudden spikes or unusual
ower consumption can lead to performance issues, so detecting these
ssues is vital to maintaining efficient power consumption. In addition,
ccurate monitoring will be crucial for optimizing resource allocation
nd load balancing, minimizing energy wastage. Proactive strategies
an be applied to ensure the cloud infrastructure can effectively meet
uture demands while reducing unnecessary resource consumption.
n conclusion, advanced monitoring tools will allow cloud providers
o make informed decisions to increase energy efficiency, reduce
perational costs, and minimize environmental impact.
Collaboration and Standardization are key to really achieve energy

fficiency goals in the coming years. Researchers, industry profession-
ls, and policymakers can share knowledge, best practices, and insights,
eading to comprehensive strategies for sustainable cloud computing.
stablishing a standardized manner for measuring and benchmarking
ower consumption in cloud environments will lead to consistent
ssessment and continuous improvement across the cloud computing
rea. Engaging collaborations between academia and industry will push
esearch and innovation forward by facilitating the development of
ractical solutions that are both technologically advanced and eco-
omically viable. By leveraging collective expertise and advocating for
tandardized practices, the cloud computing community can accelerate
rogress towards a greener and more sustainable future.

.2. Future prospects

The development of sophisticated Power-Aware Algorithms that can
ynamically adapt resource allocation in near real-time based on
ower availability and workload demands will be extremely important
owards a more sustainable cloud infrastructure. These novel algo-
ithms should address multiple factors (e.g., diverse traffic patterns,
nergy cost of different sources) to find a balance between opti-
izing power consumption while maintaining high performance and
ser experience. This balance will lead to significant energy savings
nd improved resource utilization while avoiding power wastage dur-
ng idle or low-demand periods. Recently, ML-based algorithms have
hown their benefits compared to more traditional approaches, being
ble to optimize energy consumption dynamically. Future research
n power-aware algorithms is fundamental to a more sustainable and
nergy-efficient cloud computing landscape.
Integration of Renewable Energy Sources holds immense promise for

transforming the landscape of cloud computing. The integration of
renewable energy into DCs and cloud infrastructures is a crucial step
towards reducing the carbon footprint. For example, solar energy is
one of the most accessible renewable sources. Cloud providers could
significantly reduce their reliance on fossil fuels by harnessing solar
power through photovoltaic cells installed on DC rooftops. Wind tur-
bines could also generate substantial amounts of electricity if placed in
regions with consistent wind patterns. Their integration into DCs could
provide a reliable and clean power source, contributing to a greener
operational profile. Hydropower Solutions could also offer a consistent
energy source if DCs are in regions with access to rivers or streams.
Nonetheless, robust energy storage solutions are needed to accomplish
an efficient integration of renewable energy sources. Novel energy
storage solutions (e.g., improved large-scale batteries, new hydrogen
13

storage options) are needed to ensure a consistent and reliable power
supply, improving the resilience of cloud computing. By leveraging
renewable energy sources, cloud providers can transition towards a
more sustainable and environmentally responsible operational model,
fostering a greener digital future.

Optimized Containerization offers a promising avenue for improving
energy efficiency in cloud deployments. Containers revolutionized ap-
plication deployment in modern cloud platforms, but further enhance-
ments focused on energy efficiency are needed. Studying lightweight,
energy-efficient container packaging and runtimes will be crucial in
achieving sustainable cloud computing. These runtimes could prioritize
energy conservation while maintaining application performance, con-
tributing to sustainable container operations. The efficient utilization
of containers reduces resource wastage and contributes significantly
to energy savings. In addition, container workloads to match the
power profile of the underlying hardware are essential. Power-aware
operations can be achieved by investigating hardware-specific power
usage patterns and adapting container configurations accordingly. Fur-
ther research on container recycling strategies could also help reduce
the overhead of creating and destroying containers, minimize the as-
sociated power consumption, and contribute to a more sustainable
container ecosystem.

8. Conclusions

Containers have revolutionized how applications are deployed and
managed today, but challenges in power consumption and sustain-
ability in cloud computing persist. This paper outlines key challenges
and proposes future directions, stressing the importance of academic
and industry collaboration to measure power consumption efficiently.
Accurate monitoring and estimation of power consumption are vital
for efficient energy-aware management in future cloud infrastructures.
Energy-aware algorithms and the addition of renewable energy sources
can significantly contribute to reducing carbon footprints of current
DCs. We emphasize that standardizing best practices to measuring the
power is essential for fostering a sustainable container ecosystem. Our
results show that current power measurement technologies provide dif-
ferent results. Modifications to the underlying hardware can influence
the behavior of power measurement curves. However, we understood
that many existing tools are not yet optimized to operate on the ARM
architecture. Moreover, we observed that the different methodologies
and algorithm estimations of the considered tools — software-based
estimation, sensor readings in power socket — may impact the results,
as demonstrated in power consumption for the different K8s clusters.
The obtained results demonstrate that further research and gaps in
energy measurement tools implementation to be addressed for precise
measurement of power consumption in future cloud and edge infras-
tructures. As future work, energy-aware scheduling methods will be
designed and developed for the K8s platform based on the collected
metrics with these monitoring tools. The aim is to improve scheduling
decisions in K8s by ensuring pods are not placed in overloaded nodes,
currently consuming an excessive amount of power. Also, efficient
(de)scheduling policies will be studied to terminate pods in overloaded
nodes, ensuring a more sustainable and energy efficient placement in
container-based computing environments.

CRediT authorship contribution statement

Carlo Centofanti: Conceptualization, Data curation, Formal analy-
is, Funding acquisition, Investigation, Methodology, Resources, Soft-
are, Validation, Writing – original draft, Writing – review & editing.
osé Santos: Conceptualization, Data curation, Formal analysis, Inves-
igation, Methodology, Resources, Software, Validation, Visualization,

riting – original draft, Writing – review & editing. Venkateswarlu
Gudepu: Conceptualization, Data curation, Formal analysis, Investi-
gation, Methodology, Software, Validation, Writing – original draft,
Writing – review & editing. Koteswararao Kondepu: Methodology,
Project administration, Supervision, Validation, Writing – original

draft, Writing – review & editing.



Computer Networks 245 (2024) 110371C. Centofanti et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Results added to the repository we shared in our work.

Acknowledgments

José Santos is funded by the Research Foundation Flanders (FWO),
grant number 1299323N. This work has been partially funded by the
European Union - NextGenerationEU under the Italian Ministry of
University and Research (MUR) National Innovation Ecosystem grant
ECS00000041 - VITALITY - CUP E13C22001060006. This work has
been partially supported by the European Commission through SNS
Joint Undertaken under grant agreement No. 101096120(SEASON) and
H2020-MSCA-RISE OPTIMIST project (GA: 872866). This work partly
received funding from the DST SERB Startup Research Grant (SRG-
2021-001522), the SGNF project (‘‘Reliability Evaluation of Virtualised
5G’’).

References

[1] F. Douglis, J. Nieh, Microservices and containers, IEEE Internet Comput. 23 (6)
(2019) 5–6.

[2] N. Jones, et al., How to stop data centres from gobbling up the world’s electricity,
Nature 561 (7722) (2018) 163–166.

[3] J. Shalf, The future of computing beyond Moore’s Law, Phil. Trans. R. Soc. A
378 (2166) (2020) 20190061.

[4] F. Dahlqvist, M. Patel, A. Rajko, J. Shulman, Growing Opportunities in the
Internet of Things, McKinsey & Company, 2019, pp. 1–6.

[5] J. Santos, T. Wauters, B. Volckaert, F. De Turck, Fog computing: Enabling
the management and orchestration of smart city applications in 5G networks,
Entropy 20 (1) (2017) 4.

[6] K. Cao, Y. Liu, G. Meng, Q. Sun, An overview on edge computing research, IEEE
Access 8 (2020) 85714–85728.

[7] J. Santos, T. Wauters, B. Volckaert, F. De Turck, Towards low-latency service
delivery in a continuum of virtual resources: State-of-the-art and research
directions, IEEE Commun. Surv. Tutor. 23 (4) (2021) 2557–2589.

[8] B. Burns, J. Beda, K. Hightower, L. Evenson, Kubernetes: Up and Running,
‘‘O’Reilly Media, Inc.’’, 2022.

[9] S.F. Piraghaj, A.V. Dastjerdi, R.N. Calheiros, R. Buyya, A framework and
algorithm for energy efficient container consolidation in cloud data centers, in:
IEEE International Conference on Data Science and Data Intensive Systems, IEEE,
2015, pp. 368–375.

[10] T. Van De Voort, V. Zavrel, I.T. GALDIZ, J. Hensen, Analysis of performance
metrics for data center efficiency, REHVA J. (February) (2017).

[11] L.N. Vijouyeh, M. Sabaei, J. Santos, T. Wauters, B. Volckaert, F. De Turck,
Efficient application deployment in fog-enabled infrastructures, in: 16th Inter-
national Conference on Network and Service Management, CNSM, IEEE, 2020,
pp. 1–9.

[12] J. Santos, T. Wauters, B. Volckaert, F. De Turck, Towards end-to-end resource
provisioning in fog computing over low power wide area networks, J. Netw.
Comput. Appl. 175 (2021) 102915.

[13] L.M.M. Zorello, M. Sodano, S. Troia, G. Maier, Power-efficient baseband-function
placement in latency-constrained 5G metro access, IEEE Trans. Green Commun.
Netw. 6 (3) (2022) 1683–1696.

[14] T. Piontek, K. Haghshenas, M. Aiello, Carbon emission-aware job scheduling for
Kubernetes deployments, J. Supercomput. (2023) 1–21.

[15] Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar, B. Li, J. Meza, Y.J.
Song, Dynamo: Facebook’s data center-wide power management system, ACM
SIGARCH Comput. Archit. News 44 (3) (2016) 469–480.

[16] M. Okhovvat, M.T. Kheirabadi, M.R. Okhovvat, A. Nodehi, Joint time and energy-
optimal approach to allocate task to actors in wireless sensor actor networks,
Comput. Netw. (2023) 110018.

[17] A. Bellin, M. Centenaro, F. Granelli, A preliminary study on the power consump-
tion of virtualized edge 5G core networks, in: IEEE 9th International Conference
on Network Softwarization, NetSoft, IEEE, 2023, pp. 420–425.

[18] G. Lando, L.A.F. Schierholt, M.P. Milesi, J.A. Wickboldt, Evaluating the perfor-
mance of open source software implementations of the 5G network core, in:
IEEE/IFIP Network Operations and Management Symposium, IEEE, 2023, pp.
1–7.
14
[19] N. Schmitt, L. Iffländer, A. Bauer, S. Kounev, Online power consumption
estimation for functions in cloud applications, in: IEEE International Conference
on Autonomic Computing, ICAC, IEEE, 2019, pp. 63–72.

[20] D. Saxena, A.K. Singh, Energy Aware Resource Efficient-(EARE) server consoli-
dation framework for cloud datacenter, in: G.S. Hura, A.K. Singh, L. Siong Hoe
(Eds.), Advances in Communication and Computational Technology, Springer
Nature Singapore, Singapore, 2021, pp. 1455–1464.

[21] M. Ilbeigi, M. Ghomeishi, A. Dehghanbanadaki, Prediction and optimization of
energy consumption in an office building using artificial neural network and a
genetic algorithm, Sustainable Cities Soc. 61 (2020) 102325.

[22] H. Ma, A. Ding, Method for evaluation on energy consumption of cloud
computing data center based on deep reinforcement learning, Electr. Power Syst.
Res. 208 (2022) 107899.

[23] M.K.M. Shapi, N.A. Ramli, L.J. Awalin, Energy consumption prediction by using
machine learning for smart building: Case study in Malaysia, Develop. Built
Environ. 5 (2021) 100037.

[24] R. Fedrizzi, A. Bellin, C.E. Costa, F. Granelli, Building the digital twin of a MEC
node: a data driven approach, in: IEEE 9th International Conference on Network
Softwarization, NetSoft, 2023, pp. 444–449.

[25] C. Centofanti, W. Tiberti, A. Marotta, F. Graziosi, D. Cassioli, Latency-aware
Kubernetes scheduling for microservices orchestration at the edge, in: IEEE 9th
International Conference on Network Softwarization, NetSoft, IEEE, 2023, pp.
426–431.

[26] B. Martinez, M. Monton, I. Vilajosana, J.D. Prades, The power of models:
Modeling power consumption for IoT devices, IEEE Sens. J. 15 (10) (2015)
5777–5789.

[27] C. Jin, X. Bai, C. Yang, W. Mao, X. Xu, A review of power consumption models
of servers in data centers, Appl. Energy 265 (2020) 114806.

[28] T.L. Vasques, P. Moura, A. de Almeida, A review on energy efficiency and de-
mand response with focus on small and medium data centers, Energy Efficiency
12 (2019) 1399–1428.

[29] J. Dogani, R. Namvar, F. Khunjush, Auto-scaling techniques in container-based
cloud and edge/fog computing: Taxonomy and survey, Comput. Commun.
(2023).

[30] M. Chakraborty, A.P. Kundan, Grafana, in: Monitoring Cloud-Native Applications:
Lead Agile Operations Confidently using Open Source Software, Springer, 2021,
pp. 187–240.

[31] M. Amaral, H. Chen, T. Chiba, R. Nakazawa, S. Choochotkaew, E.K. Lee, T.
Eilam, Kepler: A framework to calculate the energy consumption of containerized
applications, in: IEEE 16th International Conference on Cloud Computing,
CLOUD, IEEE, 2023, pp. 69–71.

[32] D. Zoni, A. Galimberti, W. Fornaciari, A survey on run-time power monitors at
the edge, ACM Comput. Surv. (2023).

[33] E. Jagroep, J.M.E. van der Werf, S. Jansen, M. Ferreira, J. Visser, Profiling
energy profilers, in: Proceedings of the 30th Annual ACM Symposium on Applied
Computing, 2015, pp. 2198–2203.

[34] S. Benedict, Energy-aware performance analysis methodologies for HPC
architectures—An exploratory study, J. Netw. Comput. Appl. 35 (6) (2012)
1709–1719.

[35] M. Hähnel, B. Döbel, M. Völp, H. Härtig, Measuring energy consumption for short
code paths using RAPL, ACM SIGMETRICS Perform. Eval. Rev. 40 (3) (2012)
13–17.

[36] Virtual Wall, The Virtual Wall emulation environment, 2023, [Online]. Avail-
able: https://doc.ilabt.imec.be/ilabt/virtualwall/index.html. (Accessed on 28
May 2023).

[37] M. Jay, V. Ostapenco, L. Lefèvre, D. Trystram, A.-C. Orgerie, B. Fichel, An
experimental comparison of software-based power meters: Focus on CPU and
GPU, in: CCGrid 2023-23rd IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing, IEEE, 2023, pp. 1–13.

[38] K. Hejja, X. Hesselbach, Offline and online power aware resource allocation
algorithms with migration and delay constraints, Comput. Netw. 158 (2019)
17–34.

[39] A. Kaur, S. Kumar, D. Gupta, Y. Hamid, M. Hamdi, A. Ksibi, H. Elmannai, S.
Saini, Algorithmic approach to virtual machine migration in cloud computing
with updated SESA algorithm, Sensors 23 (13) (2023) 6117.

[40] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing, Future Gener.
Comput. Syst. 28 (5) (2012) 755–768.

[41] G. Tesauro, N.K. Jong, R. Das, M.N. Bennani, A hybrid reinforcement learning
approach to autonomic resource allocation, in: IEEE International Conference on
Autonomic Computing, IEEE, 2006, pp. 65–73.

[42] J. Santos, T. Wauters, B. Volckaert, F. De Turck, gym-hpa: Efficient auto-
scaling via reinforcement learning for complex microservice-based applications
in Kubernetes, in: IEEE/IFIP Network Operations and Management Symposium,
IEEE, 2023, pp. 1–9.

[43] S.S. Gill, H. Wu, P. Patros, C. Ottaviani, P. Arora, V.C. Pujol, D. Haunschild,
A.K. Parlikad, O. Cetinkaya, H. Lutfiyya, et al., Modern computing: Vision and
challenges, Telematics Inform. Rep. (2024) 100116.

http://refhub.elsevier.com/S1389-1286(24)00203-2/sb1
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb1
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb1
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb2
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb2
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb2
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb3
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb3
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb3
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb4
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb4
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb4
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb5
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb5
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb5
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb5
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb5
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb6
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb6
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb6
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb7
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb7
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb7
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb7
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb7
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb8
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb8
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb8
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb9
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb10
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb10
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb10
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb11
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb11
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb11
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb11
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb11
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb11
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb11
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb12
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb12
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb12
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb12
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb12
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb13
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb13
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb13
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb13
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb13
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb14
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb14
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb14
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb15
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb15
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb15
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb15
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb15
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb16
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb16
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb16
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb16
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb16
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb17
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb17
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb17
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb17
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb17
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb18
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb18
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb18
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb18
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb18
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb18
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb18
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb19
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb19
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb19
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb19
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb19
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb20
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb21
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb22
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb23
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb23
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb23
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb23
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb23
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb24
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb24
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb24
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb24
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb24
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb25
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb25
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb25
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb25
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb25
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb25
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb25
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb26
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb26
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb26
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb26
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb26
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb27
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb27
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb27
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb28
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb28
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb28
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb28
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb28
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb29
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb29
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb29
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb29
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb29
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb30
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb30
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb30
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb30
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb30
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb31
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb31
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb31
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb31
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb31
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb31
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb31
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb32
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb32
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb32
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb33
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb33
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb33
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb33
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb33
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb34
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb34
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb34
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb34
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb34
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb35
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb35
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb35
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb35
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb35
https://doc.ilabt.imec.be/ilabt/virtualwall/index.html
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb37
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb38
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb38
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb38
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb38
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb38
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb39
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb39
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb39
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb39
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb39
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb40
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb41
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb41
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb41
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb41
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb41
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb42
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb43
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb43
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb43
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb43
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb43


Computer Networks 245 (2024) 110371C. Centofanti et al.
[44] V. Gudepu, B. Chirumamilla, R.R. Tella, A. Bhattacharyya, S. Agarwal, L.
Malakalapalli, C. Centofanti, J. Santos, K. Kondepu, EARNEST: Experimental
analysis of RAN energy with open-source software tools, in: 16th International
Conference on COMmunication Systems & NETworkS, COMSNETS, 2024, pp.
1148–1153.

[45] C. Flanagan, How Data Centers Are Driving The Renewable Energy Transition,
Forbes, 2023.

[46] A.-M. Jorge, B.C. Luis del, S. Manuel, B. Juan Carlos, H. Matthew, S.
Cristina Olivera, Green Data Centers: Opportunities for Decarbonization -
Exploiting Sustainable Power-Supply Opportunities, ARTHUR D. LITTLE, 2023.

[47] T. Anderson, A. Belay, M. Chowdhury, A. Cidon, I. Zhang, Treehouse: A case for
carbon-aware datacenter software, ACM SIGENERGY Energy Inform. Rev. 3 (3)
(2023) 64–70.

[48] B. Acun, B. Lee, F. Kazhamiaka, K. Maeng, U. Gupta, M. Chakkaravarthy, D.
Brooks, C.-J. Wu, Carbon explorer: A holistic framework for designing carbon
aware datacenters, in: Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, vol.
2, 2023, pp. 118–132.

[49] K. McMillan, Carbon Accounting for Sustainable Computing in Cloud Provisioned
Data Centers (Ph.D. thesis), Massachusetts Institute of Technology, 2023.

[50] H. Zhu, D. Zhang, H.H. Goh, S. Wang, T. Ahmad, D. Mao, T. Liu, H. Zhao, T.
Wu, Future data center energy-conservation and emission-reduction technologies
in the context of smart and low-carbon city construction, Sustainable Cities Soc.
89 (2023) 104322.

Dr. Carlo Centofanti received his Ph.D. in Information and
Communication Technology from the Department of Infor-
mation Engineering, Computer Science, and Mathematics at
the University of L’Aquila, Italy. He earned his M.Sc. degree
in Computer Science Engineering and his Bachelor’s degree
in ICT Engineering from the same university. His research
areas include Edge Computing, Software Defined Network-
ing, and Network Slicing. He has actively contributed to
ECSEL-RIA AfarCloud Project (GA: 783221), and is actively
contributing to MSCA-RISE OPTIMIST Project (GA: 872866),
and SNS-SEASON Project (GA: 101096120).
15
José Santos obtained his M.Sc. degree in Electrical and
Computers Engineering in July 2015 from the University
of Porto, Portugal. Recently, he completed his doctoral
studies at Ghent University in April 2022. He is currently a
Postdoctoral Researcher in the Internet Technology and Data
Science Lab (IDLab) Research Group at Ghent University -
imec, Belgium. His research interests include Cloud Comput-
ing, the Internet of Things (IoT), Container Scheduling and
Auto-scaling, Service Function Chaining, and Reinforcement
Learning. His work has been published in more than 20
scientific publications. He received the Ph.D. Excellence
award 2022 from imec (Belgium) and the Best Dissertation
Award at NOMS 2023 (Miami, USA).

Venkateswarlu Gudepu (Graduate Student Member, IEEE)
received his B.Tech degree in computer science from Rajiv
Gandhi University of Knowledge Technologies - Nuzvid
(RGUKT-Nuzvid) , India in 2017, and the M.Tech in Artifi-
cial Intelligence (AI) from National Institute of Technology
(NIT - Uttarakhand), India. He is currently pursuing the
Ph.D. in computer science and engineering with the Indian
Institute of Technology - Dharwad (IIT Dharwad), India. His
area of research interest includes 5G and Beyond technol-
ogy, AI/ML for Networks, O-RAN standards implementation,
and Energy sustainability for B5G Networks.

Koteswararao Kondepu (Senior Member, IEEE) received
the Ph.D. degree in computer science and engineering from
the Institute for Advanced Studies Lucca (IMT), Italy, in
July 2012. He is currently an Assistant Professor with the
Indian Institute of Technology Dharwad, Dharwad, India.
His research interests include 5G, optical networks design,
energy-efficient schemes in communication networks, and
sparse sensor networks.

http://refhub.elsevier.com/S1389-1286(24)00203-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb44
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb45
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb45
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb45
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb46
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb46
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb46
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb46
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb46
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb47
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb47
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb47
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb47
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb47
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb48
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb49
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb49
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb49
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb50
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb50
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb50
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb50
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb50
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb50
http://refhub.elsevier.com/S1389-1286(24)00203-2/sb50

	Impact of power consumption in containerized clouds: A comprehensive analysis of open-source power measurement tools
	Introduction
	Related Work
	Towards Energy Sustainability in Container Clouds
	Kubernetes (K8s)-based Infrastructure - Architecture Overview
	Server Power Consumption Modeling
	CPU Power consumption metrics 
	The Importance of Monitoring
	Power Measurement tools
	Overview 
	Stress Terminal UI (s-tui)
	Kubernetes Efficient Power Level Exporter (Kepler)
	Scaphandre
	Meross MSS310

	Performance analysis with stress-ng

	Experimental Evaluation Setup
	Physical layer
	Application layer
	Mapping Energy Monitoring Tools to Hardware Platforms
	Experimental run

	Results
	Open Challenges & Future Directions
	Lessons Learned and Prospects
	Lessons Learned
	Future Prospects

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


