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Abstract 

Grey matter (GM) changes are often observed in people with chronic spinal pain, including 

those with chronic whiplash-associated disorders (CWAD). These GM adaptations may be 

reversed with treatment, at least partially. Pain neuroscience education combined with 

exercise (PNE+Exercise) is an effective treatment, but its neural underlying mechanisms still 

remain unexplored in CWAD. Here, we performed both cross-sectional and longitudinal voxel-

based morphometry to i) identify potential GM alterations in people with CWAD (n=63) 

compared to age- and sex-matched pain-free controls (n=32) and ii) determine whether these 

GM alterations might be reversed following PNE+Exercise (compared to conventional 

physiotherapy). The cross-sectional whole-brain analysis revealed that individuals with CWAD 

had less GM volume in right and left dorsolateral prefrontal cortex (dlPFC) and left inferior 

temporal gyrus which was, in turn, associated with higher pain vigilance. Fifty individuals with 

CWAD and 29 pain-free controls were retained in the longitudinal analysis. GM in the right 

dlPFC increased after treatment in people with CWAD. Moreover, the longitudinal whole-brain 

analysis revealed that individuals with CWAD had decreases in GM volumes of the left and 

right central operculum and supramarginal after treatment. These changes were not specific 

to treatment modality and some were not observed in pain-free controls over time. Herewith, 

we provide the first evidence on how GM adaptations to CWAD respond to treatment.  

 

 

Keywords: Chronic whiplash-associated disorders, voxel-based morphometry, grey matter, 

Pain Neuroscience Education  
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1. Introduction 

Approximately half of the people who suffer a whiplash injury will develop chronic 

whiplash-associated disorders (CWAD).[44; 83] CWAD is a complex disorder, hallmarked by 

neck pain, often associated with pain-related distress (e.g., pain-related fear, hypervigilance, 

catastrophizing), and centrally mediated pain processing alterations.[19; 26] Chronic pain, 

more generally, is characterized by a functional and structural reorganization of the brain, 

which may partly reflect adaptations to persistent pain and its associated psychological and 

behavioral responses.[1; 27] Morphological alterations, predominantly lower grey matter 

(GM), have been consistently observed in cortical and subcortical areas implicated in sensory, 

interoceptive, cognitive and affective processing (e.g., prefrontal and cingulate cortex, 

amygdala, insula and hippocampus).[20; 32; 42] GM alterations seem to largely overlap 

among chronic pain disorders. While the attentional (i.e., frontoparietal, dorsal and ventral-

salient) and default mode networks seem to show similar GM changes regardless of the 

chronic pain-related disorder, changes in other networks, like the somatosensory, appear to 

distinctly vary across disorders.[10; 20; 91]  In CWAD specifically, lower GM in precentral and 

superior temporal gyri has been demonstrated.[29] 

Some evidence suggests that the GM alterations observed in people with chronic pain 

are associated with pain features such as intensity and duration as well as its associated 

psychological responses.[21; 22; 41; 59] Thus, it is proposed that a better understanding of 

mechanisms underlying GM alterations in chronic pain as well as their response to treatment 

is needed to provide targets for optimizing interventions for chronic pain.[69; 99] While studies 

have begun to unravel the functional network changes following psychologically-based 

interventions such as cognitive behavioral therapy[13; 84] or mindfulness-based stress 

reduction[79], research on GM changes following treatment is still scarce.[79; 81]  

Conventional physiotherapy (advice and exercise) is considered the preferred treatment after 

a whiplash injury in clinical guidelines,[14; 24] yet its short-term benefits are rather small.[87; 

106] Modern education-based interventions, where exercise is combined with pain 

neuroscience education (PNE+Exercise), have recently shown some promising results in 

people with chronic spinal pain when compared to conventional physiotherapy.[85] However, 

no such evidence is available in patients with CWAD and little is still known about its underlying 

therapeutic mechanisms.  

In the present study, we aim to examine the effects of PNE+Exercise on GM in patients 

with CWAD in comparison to conventional physiotherapy. We conducted a longitudinal MRI 

study with CWAD patients and pain-free controls. Both cross-sectional and longitudinal voxel-

based morphometry (VBM) analyses were applied to (1) identify potential baseline GM 

alterations in people with CWAD compared to controls, (2) determine whether these GM 

alterations might be reversed following treatment; and (3) examine whether there are any 
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other potential neuroplastic effects on GM following treatment. We hypothesized that GM 

alterations would be identified in attentional networks, similar to previous research,[10; 20; 91] 

and that those alterations would be partially reversed following treatment. In addition, given 

that GM alterations within the attentional networks have been found to relate to maladaptive 

pain cognitions and PNE+Exercise is superior to conventional physiotherapy targeting 

those,[62; 85]  we expect a greater magnitude of change in the PNE+Exercise group. 

 

2. Methods 

2.1 Study design and participants 

This is an MRI sub-study (registration number NCT04077619) of a randomized 

controlled trial (RCT)[23] conducted in Belgium, in which PNE+Exercise is being compared to 

physiotherapy in CWAD patients with moderate/severe pain-related disability (i.e., ≥15/50 in 

the Neck Disability Index [NDI][102]). Fifty-nine CWAD patients enrolled in the RCT took part 

in the MRI sub-study. Four additional CWAD participants who were not enrolled in the RCT 

were included in the baseline (cross-sectional) comparison. Furthermore, 32 age- and sex-

matched pain-free controls with no history of neck pain were specifically recruited for the sub-

study to serve as an additional comparator group. Further details on the eligibility criteria can 

be found in Table S1 of the supplementary materials. Information on the randomization 

process can be found in the published protocol of the large RCT.[23]  Baseline functional MRI 

data have been described already,[61] but the VBM analyses and the longitudinal aspect have 

not been reported yet.  

This sub-study was approved by the Ethical Committee at the Ghent University 

Hospital (reference number 2019/1144) and all procedures were performed in accordance 

with the Declaration of Helsinki. All participants provided written informed consent prior to 

participation. Data collection took place at Ghent Institute for Functional and Metabolic 

Imaging (GIfMI) from August 2019 to June 2021. Research methods and reporting were in 

accordance with current VBM reporting guidelines[71] and the CONSORT statement[78].  

 

2.2 Interventions 

Information on the specific content and rationale of the interventions can be found in 

the study protocol[23] and in Table S2 and S3. In brief, the PNE+Exercise intervention 

combined PNE with a time-contingent exercise program. It consisted of 3 initial PNE 

sessions[18] (i.e., 1 group session and 2 one-on-one sessions, 30 min each, 1 session per 

week) and 15 one-on-one time-contingent exercise[63] sessions (30 min each, 1 session per 

week). In short, PNE sessions aimed to improve patients’ knowledge of pain neurophysiology 

to reconceptualize maladaptive pain cognitions and affective responses (e.g., pain-related 

fear, hypervigilance and catastrophizing).[60; 64] The rationale is that by reducing the threat 
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value of pain and its associated responses, patients are able to shift away from pain control 

towards activity engagement in the time-contingent exercise program (i.e., “perform this 

exercise 12 repetitions, regardless of the pain”), breaking the fear avoidance cycle.[60; 64] In 

addition, stress management strategies were provided in parallel throughout the entire 

intervention.[88; 89] The control physiotherapy intervention combined advice with a symptom-

contingent exercise program. It consisted of 3 advice sessions (i.e., biomedically-focused neck 

school education [37]), followed by 15 pain-contingent exercise sessions (i.e., biomedical 

approach, “stop or adjust the exercise when it hurts”). Both interventions had a duration of 4 

months and were provided by physiotherapists.  

 

2.3 Assessments 

MRI data was collected at baseline before randomization (i.e., T0; within 2 weeks prior 

to the start of the intervention) and immediately post-intervention (i.e., T1; within 2 weeks after 

the end of the intervention). MRI data for pain-free controls was collected at the same 

timepoints with an equivalent in-between period (i.e., 4 months between T0 and T1).  

In addition, pain-related questionnaires were completed online at the same timepoints 

and included NDI (neck pain-related disability)[102], numeric pain rating scale (NPRS; 

average pain intensity in the previous week), the Pain Catastrophizing Scale (PCS; 

catastrophic thinking)[25], the Pain Anxiety Symptoms Scale (PASS-20; pain-related fear and 

anxiety)[74] and the Pain Vigilance and Awareness Questionnaire (PVAQ;  pain 

hypervigilance)[75]. Other questionnaires were administered, but are outside the scope of the 

current study. Assessment and data analysis were blinded to intervention allocation.  

 

2.3.1 MRI data acquisition 

MRI data were collected using a 3T MRI scanner (Siemens MAGNETOM Prisma) 

using a 64-channel head coil. Structural images were acquired using an MPRAGE T1-

weighted protocol with 1 mm isotropic resolution, TR = 2250 ms, TE = 4.18 ms, TI = 900 ms, 

flip angle = 9, FoV = 256 mm×256 mm, voxel size 1x1x1, GRAPPA acceleration factor 2.  

 

2.3.2 Voxel-based morphometry 

VBM[6] was implemented using the computational anatomy toolbox (CAT12)[35] 

standard pre-processing pipelines for cross-sectional (baseline sample) and longitudinal 

analysis (complete-case sample). In short, each participant’s T1-weighted image was 

corrected for bias-field inhomogeneities and later (i) segmented into GM, white matter, and 

cerebrospinal fluid (see Gaser et al. [35] for further details on CAT12’s tissue segmentation 

step). Then, individual GM segments were (ii) spatially normalized into standard MNI space 

using Geodesic Shooting[7] and further (iii) modulated by the Jacobian determinants from the 
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corresponding flow fields to restore the volumetric information lost during the high‐dimensional 

spatial registration. This modulation step involves multiplying each voxel by the relative 

change in volume, which allows for a comparison of absolute GM volume (GMV) corrected for 

individual brain size.[109] Finally, modulated images were (iv) spatially smoothed (6 mm full 

width at half maximum Gaussian kernel [FWHM]). For the pre-processing of the longitudinal 

data, each participant’s T1-weighted image from baseline and post-intervention was realigned 

using inverse-consistent rigid-body registrations and corrected for intra-subject bias-field 

inhomogeneities.[8; 70] The resulting images were then processed individually using the 

CAT12 longitudinal model, optimized for detecting small GMV changes over time.  

Quality inspection of the MRI images was performed in stages. Raw images were 

visually examined for motion and scanner artifacts prior to pre-processing. After pre-

processing, image quality ratings (IQR; a summary measure of noise, bias, and image 

resolution)[36] for each image were calculated and checked following CAT workflow.[35] 

Overall, the IQR scores were good (i.e., 80-90%) for all images after pre-processing (CWAD: 

83.5±1.75% at T0, 85.2±1.15% at T1 and pain-free controls: 84.4±0.91% at T0, 85.6±0.53% 

at T1). Last, sample homogeneity was checked at the group-level adjusting for age and total 

intracranial volume (TIV) to identify any potential outliers. This resulted in the exclusion of no 

participants.  

 

2.4 Sample size 

Sample size calculation of the MRI sub-study was performed using G*Power 3.1.9.2 

and based on GLM with repeated measures within-between interactions for different analyses 

of MRI and fMRI data. Using an alpha of .05, desired power of .80 and a drop-out rate at post-

intervention of 15%[85], a minimum sample size of 40 patients with CWAD randomized to 2 

treatment groups (1:1) was required to detect a moderate estimated effect size f of .25.  

 

2.5 Statistical analyses 

We performed (i) cross-sectional (aim 1) and (ii) longitudinal analyses following a 

complete-case analysis approach (aims 2 and 3). See further details on the statistical plan in 

relation to the hypotheses in Figure S1.  

 

2.5.1 Cross-sectional analysis 

To investigate potential regional GMV alterations in people with CWAD compared to 

pain-free controls at baseline, we estimated a t-test model in SPM12 adjusted for TIV[57] and 

age. All voxels with a GMV value of <0.2 were excluded to prevent possible edge effects.[72] 

Threshold-free cluster enhancement (TFCE) cluster-wise correction was performed (5000 

permutations, H = 2.0, E = 0.5; SPM toolbox TFCE version r256) with family-wise error 
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corrected p-value (pFWEc < 0.05).[86] TFCE correction is recommended for VBM analyses 

for being more sensitive to detect subtle differences in GM and more robust to non-stationary 

data.[52; 76]  

 

2.5.2 Longitudinal analysis 

Group-difference region of interest analyses (primary outcomes; aim 2): The 

regions (clusters) showing group-related GMV differences at baseline (i.e., CWAD vs pain-

free in the cross-sectional analyses) were considered the primary outcomes for the 

longitudinal analysis. Summarized parameter estimates (Beta coefficients) for GMV were 

extracted for each participant and time point from these group-difference regions of interest 

(ROIs) using marsbar[16]. 

First, Mixed ANOVA models with Intervention (PNE+Exercise, PT) and Timepoint (T0, 

T1) as fixed effects and subject as random effects were fitted in R (lmer[11] and car[33] 

packages) for each group-difference ROI. The following hypotheses were tested: Do effects 

over time on GMV differ between PNE+Exercise and Physiotherapy? (Hypothesis 1.A; 

Intervention by Time interaction). If not, is there an effect over time on GMV in people with 

CWAD across interventions? (H1.B; main effect of Time). Then, in case there was no 

Intervention by Time interaction, similar Mixed ANOVA models were fitted with CWAD (i.e., 

taking PNE+Exercise and Physiotherapy interventions together) and pain-free as Group levels 

to test whether effects over time on GMV differ between people with CWAD and pain-free 

controls (H2; Group by Time interaction). 

Whole-brain analysis (secondary outcomes; aim 3): We followed the same 

hypothesis testing procedure as for primary outcomes. A first model (model 1) was fitted using 

the Sandwich Estimator (SwE) toolbox[38] with Intervention (PNE+Exercise, PT) and 

Timepoint (T0, T1) as fixed effects to characterize the neuroplastic GMV changes in patients 

with CWAD after intervention in an undirected F-contrast (H 1.A; Group by Time interaction). 

If no clusters survived, a second undirected F-contrast was tested (H1.B; main effect of Time). 

Finally, in a similar manner as primary outcomes, both interventions were gathered into a 

second mixed ANOVA model (model 2) and compared with pain-free (i.e., CWAD and pain-

free as Group levels). An undirected F-contrast was tested in the second model (Group by 

Time interaction). We constructed our model with the “classic” SwE type, which estimates the 

covariance matrix for each subject and session separately, using small sample adjustment 

type C2. Non-parametric wild bootstrappingwith 5000 permutations was used.[39] TFCE 

cluster-wise correction with pFWEc < 0.05 was performed.  

Analyses in pain-free controls: Additionally, we performed post-hoc ROI analyses 

(summarized parameter estimates; mixed ANOVA in R) to further test whether the clusters 
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that were observed to change over time in CWAD (model 1) behave differently in pain-free 

controls.    

2.5.3 Additional analyses for interpretation purposes 

Neurosynth meta-analytic decoding: To further interpret the functional role of the 

structural regions differing in GMV between CWAD patients and controls, as well as the 

changes observed over time after treatment, meta-analytic decoding[108] was performed.[90; 

113] This meta-analytic strategy provides the power of large datasets to compute whole-brain 

distributions for psychological terms improving the functional characterization of the structural 

findings.[108] The unthresholded T- and F-maps obtained in the cross-sectional and 

longitudinal whole-brain analyses, respectively, were uploaded onto the Neurosynth database 

(neurosynth.org) and decoded. This returned psychological and neuroanatomic terms 

associated with the spatial pattern of each analysis.  

Baseline GMV associations with pain-related questionnaires: Post-hoc Spearman 

rank partial correlations were computed in the CWAD group between the beta coefficients of 

clusters showing significant group differences at baseline and pain-related questionnaires 

(i.e., NDI, PASS, PCS, PVAQ). Correlations were adjusted for the potential confounding 

effects of age, sex and pain duration and p-values were FDR-corrected for multiple testing 

across questionnaires. Potential confounders were selected based on background 

knowledge[2; 40; 101] 

Treatment effects on pain-related questionnaires: The effect of PNE+Exercise vs 

Physiotherapy on the pain-related questionnaires is examined in the larger trial.[23] Results 

for the MRI sub-sample though are reported for completeness. In order to provide a framework 

for the interpretation of results, we compute the proportion of CWAD patients who exceed the 

minimal (clinically) important change (MIC) (i.e., percentage of patients who improved). The 

MIC was defined as a decrease of ≥ 5 points in NDI from pre- to post-treatment.[31; 102]  

 

 

3. Results 

3.1.  Participants and descriptive data 

The sample included in the cross-sectional analysis consisted of 63 participants with 

CWAD (age 42.6±10.2 years, 45 women) and 32 pain-free participants (age 41.0±10.6 years, 

22 women), of which 50 CWAD (23 in the PNE+Exercise group and 27 in the physiotherapy 

group) and 29 pain-free participants respectively were retained in the complete-case analysis 

of the longitudinal phase. Participants’ descriptive data per group and randomized treatment 

arm can be found in Table 1 and the study’s flow diagram is illustrated in Figure 1.   
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Table 1. Participants’ descriptive data per group at baseline.  

 
Cross-sectional analysis 

(n=95) 
Longitudinal analysis 

(n=79) 

 
pain-free 

(n=32) 
CWAD 
(N=63) 

pain-free 
(n=29) 

Physiotherapy 
(N=27) 

PNE+Exercise 
(N=23) 

Sex      

 Female, # (%) 22 (68.8) 45 (71.4) 20 (74.1) 16 (69.6) 20 (69.0) 

 Male, # (%) 10 (31.3) 18 (28.6) 7 (25.9) 7 (30.4) 9 (31.0) 

Age (years) 41.0 (10.6) 42.60 (10.2) 43.1 (10.5) 43.1 (9.92) 40.4 (9.98) 

Duration pain  
(months) 

 40.2 [3.03, 297]  23.2 [3.03, 247] 64.4 [5.87, 297] 

Average pain previous 
week NPRS (0-10) † 

 5.50 [1.00, 8.00]  6.00 [1.00, 8.00] 6.00 [2.00, 8.00] 

Neck-related disability 
NDI (0-50) † 

 18.00 [11.0, 35.0]  19.0 [12.0, 35.0] 18.0 [14.0, 26.0] 

Pain catastrophizing  
PCS (0-52) † 

 24.00 [5.00, 49.0]  25.0 [9.00, 47.0] 29.0 [7.00, 49.0] 

Pain-related fear  
PASS-20 (0-100) † 

 36.00 [4.00, 94.0]  36.0 [4.00, 78.0] 39.0 [7.00, 94.0] 

Pain hypervigilance  
PVAQ (0-80) † 

 37.00 [15.0, 64.0]  37.0 [15.0, 61.0] 41.0 [23.0, 64.0] 

 
†Median and IQR is presented instead of mean and SD. 

 

 

Figure 1. CONSORT Flow diagram. 1 Other reasons: fracture, surgery, non-Dutch speaking, 
age, (severe) cardiovascular, respiratory, neurological, rheumatic disorder, head trauma, 
idiopathic neck pain2 Reasons for lost to follow-up: PNE+Exercise (n=7): shoulder 
injury/surgery (n=2), availability/working reasons (n=2), COVID (n=2), family reasons (n=1). 
PT (n=2): pregnancy (n=1), unknown/no response (n=1). Pain-free (n=3): moved to another 
country (n=1), unknown/no response (n=1), pregnancy (n=1). 
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3.2. Characterization of baseline GMV alterations in people with CWAD 

(cross-sectional analyses) 

Whole-brain analysis: Compared to pain-free controls, people with CWAD exhibited 

less GMV in 3 clusters (pain-free > CWAD): the right dorsolateral prefrontal cortex (dlPFC), 

left dlPFC and left inferior temporal gyrus (ITG) (Figure 2, Table S4 in the supplementary). 

No clusters were identified in the CWAD > pain-free comparison. Neurosynth meta-analytic 

decoding revealed that the unthresholded whole-brain t-map (pain-free > CWAD) was related 

to the functional terms “painful”, “reward”, “reactivity”, “fear” and “emotional value” (Figure 2, 

Table S4). Furthermore, pain hypervigilance (PVAQ) was found to negatively correlate with 

the beta weights of all 3 significant group-difference clusters (left dlPFC: rs = -.38, pFDR = 

.013; right dlPFC: rs = -.31, pFDR = .057 and left ITG: rs. = -.38, pFDR = .012). Higher levels 

of hypervigilance were associated with lower GMV in those 3 clusters in CWAD participants. 

 

 
Figure 2. Results from cross-sectional analysis for baseline group differences in GMV 
(pain-free vs CWAD). Whole-brain analysis, partial correlations with pain-related 
questionnaires and Neurosynth meta-analytic decoding of the unthresholded T-map.  
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3.3. Effects of PNE+Exercise and conventional physiotherapy in CWAD 

patients over time (longitudinal analyses)  

In this MRI sub-study, there was no time by intervention interaction was found for neck 

pain intensity (NPRS: F[1,48] = 0.16, p = 0.689) nor related disability (NDI: F[1,48] = 0.98, p 

= 0.326). However, a reduction in these outcomes was observed in both intervention groups 

(main effect for time; F[1, 48] =34.52, p < 0.001 and F[1, 48] =34.81, p < 0.001 for NPRS and 

NDI respectively) (Table 2). In terms of MIC, 54% of the people with CWAD showed a clinically 

relevant improvement in neck pain-related disability (52% for PNE+Exercise, and 56% for 

Physiotherapy). 

On the other hand, PNE+Exercise was superior to physiotherapy in reducing pain-

related fear and anxiety (PASS: F[1,48] = 6.34, p = 0.015) and pain hypervigilance (PVAQ: 

F[1,48] = 10.86, p<0.001). On average, CWAD patients in PNE+Exercise had a reduction of -

11.50 points in PASS (95%CI: -20.60, -2.31) and -9.49 points in PVAQ (95%CI: -14.80, -4.20) 

greater than patients in the physiotherapy group. By contrast, reductions in pain 

catastrophizing were comparable across both groups (No time by intervention interaction in 

PCS; F[1,48] = 2.14, p = 0.149 but significant main effect for time;  F[1, 48] = 68.44, p < 0.001). 

 
Table 2. Effects of PNE+Exercise compared to PT on pain-related outcomes 

 

Outcome 

PNE+Exercise 
(n=23) 

Physiotherapy 
(n=27) Intervention by Time 

change  
Mean ± SE Mean ± SE 

NDI (0-50) 

 Baseline 19.60 ± 0.99 19.59 ± 0.92  

 Post-intervention 14.04 ± 1.28 15.62 ± 1.17  

 Within-group change (95%CI) -5.56 (-7.95, -3.18) -3.96 (-6.17, -1.75) -1.60 (-4.85, 1.64) 

NPRS (0-10) 

 Baseline 5.48 ± 0.38 5.33 ± 0.35  

 Post-intervention 3.43 ± 0.36 3.55 ± 0.33  

 Within-group change (95%CI) -2.04 (-3.02, -1.07) -1.77 (-2.68, -0.87) -0.27 (-1.59, 1.06) 

PASS-20 (0-100) 

 Baseline 40.91 ± 4.01 37.07 ± 3.71  

 Post-intervention 21.04 ± 3.46 28.66 ± 3.22  

 Within-group change (95%CI) -19.87 (-27.59, -13.14) -8.40 (-14.60, -2.20) -11.50 (-20.60, -2.31) 

PCS (0-52) 

 Baseline 28.73 ± 2.37 25.96 ± 2.21  

 Post-intervention 15.56 ± 2.32 16.74 ± 2.15  

 Within-group change (95%CI) -13.17 (-17.16, -9.18) -9.22 (-12.94, -5.50) -3.95 (-9.38, 1.48) 

PVAQ (0-80) 

 Baseline 42.43 ± 2.29 37.51 ± 2.12  

 Post-intervention 33.35 ± 2.01 37.92 ± 1.87  

 Within-group change (95%CI) -9.09 (-12.97, -5.20) -0.41 (-3.22, 4.03) -9.49 (-14.80, -4.20) 

 
NDI, Neck Disability Index; NPRS, Numerical Pain Rating Scale; PASS, Pain Anxiety Symptoms Scale; PVAQ, Pain Vigilance 
and Awareness Questionnaire. 
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3.3.1. Do PNE+Exercise and/or conventional physiotherapy reverse GMV alterations in 

CWAD? 

Effects over time of PNE+Exercise vs Physiotherapy: To examine whether the two 

CWAD intervention groups differed in their GMV changes over time, interaction effects were 

inspected (Hypothesis 1.A). No significant Intervention by Time effect was observed in any of 

the regions showing baseline GMV alterations in CWAD vs controls (i.e., group-difference 

clusters/ROIs; left dlPFC: F[1,48]=0.16, p=0.689; right dlPFC: F[1,48]=0.51, p=0.478; left ITG: 

F[1,48]=1.94, p=0.170).  

As no interaction effect was observed, the main effect of Time was inspected. Across 

both interventions, CWAD participants showed increases in right dlPFC GMV over time 

(Hypothesis 1.B; main effect for time: F[1, 48]=5.49, p=0.023; see Figure 3A). No other main 

effects of time were observed in any of the other group-difference clusters. Table S5 

summarizes the results of the longitudinal ROI analysis, as well as within- and between-group 

changes. 

Effects over time in CWAD (PNE+Exercise & Physiotherapy) compared to pain-

free controls: As there were no differences in GMV changes over time across interventions, 

we examined whether GMV changes over time differed across patients with CWAD who 

underwent treatment and pain-free controls (Hypothesis 2). Only the right dlPFC 

demonstrated a Group (CWAD vs pain-free) by Time interaction effect (F[1,77] = 4.53, p = 

0.037) (Figure 3A). When compared to pain-free controls, patients with CWAD showed 

increases in GMV from pre- to post-intervention, while pain-free controls did not show any 

change in GMV over time. There was no other significant Group by Time interaction effect in 

any either left dlPFC (F[1,77]=0.78, p=0.780) or left ITG (F[1,77]=0.34, p=0.559) (Table S5).  

 

3.3.2. Are there any additional neuroplastic effects over time following PNE+Exercise 

and/or Physiotherapy in CWAD?  

Effects over time of PNE+Exercise vs Physiotherapy: To further examine whether 

the two interventions differed in their GMV changes over time, interaction effects were 

inspected in a whole-brain analysis as well (Hypothesis 1.A). No significant Intervention by 

Time interaction effect on GMV was found.  

However, the main effects of Time (Hypothesis 1.B) uncovered that across the 

interventions, people with CWAD showed a reduction in GMV from pre- to post-intervention in 

4 clusters located in left and right supramarginal gyrus and left and right central operculum 

(Figure 3B, Table S6). This indicated that GMV was reduced over time in these clusters 

irrespective of which intervention patients received. Neurosynth meta-analytic decoding 

revealed that the pre- vs post unthresholded F-map was related to sensory-related terms (e.g., 

“tactile”, “touch”), including “pain” (Figure 3B).  
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We investigated whether these changes were present for pain-free controls as well via 

a post-hoc region of interest analysis. This analysis showed that the changes in two of the four 

clusters were not observed in pain-free controls (Group by Time interaction in left 

supramarginal gyrus: F[1,77] = 6.67, p = 0.012 and (marginally) in right central operculum: 

F[1,77] = 3.78, p = 0.055) (Table S7).  

Effects over time in CWAD (PNE+Exercise & Physiotherapy) compared to pain-

free controls: As there were no differences in GMV changes over time across interventions, 

we further examined whether GMV changes over time differed across patients with CWAD 

who underwent treatment and pain-free controls (Hypothesis 2) using a whole-brain analysis 

as well. No significant clusters were observed for the Group by Time interaction effect.  

 

Figure 3. Results from longitudinal analysis. (A) Pre- post changes (T0, T1) in the group-
difference clusters; neuroplastic changes in areas showing baseline GMV alterations in the 
cross-sectional analysis (B) Pre- post changes at the whole-brain level; additional neuroplastic 
changes across the whole brain. Note 1 in hypothesis 1.B. post-hoc region of interest analyses 
in pain-free controls for completeness purposes.  
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4. Discussion 

Our findings indicate that people with CWAD present with GMV alterations at baseline 

that are, partially, reversed by intervention. Compared to pain-free controls, people with 

CWAD exhibited lower GMV in key regions implicated in the modulation of pain (e.g., bilateral 

dlPFC), which was associated with pain hypervigilance. After either PNE+Exercise or 

physiotherapy, the alterations in the right dlPFC were reversed to a certain degree, as people 

with CWAD in both treatment groups showed an increase in dlPFC GMV, which was not 

observed in pain-free controls. Finally, GMV decreases in areas traditionally related to 

nociception were additionally observed in CWAD patients after treatment, which were also not 

specific to the treatment modality. 

The current study showed that people with CWAD have lower GMV compared to pain-

free controls. These are largely located within the frontoparietal control network (i.e., dlPFC 

and ITG), which has a predominant role in attention to pain and its cognitive modulation.[30; 

48; 66] GM decreases in dlPFC and ITG have been consistently reported in other spinal pain 

disorders such as chronic low back pain[2; 3; 10; 34; 77; 82] and now, our findings extend this 

evidence to CWAD. The dlPFC is involved in the top-down regulation of attention to 

nociceptive stimuli.[54; 80; 93] This region is actively implicated in the processing of sustained 

pain,[49] potentially modulating pain-induced activity in the somatosensory cortex.[28; 47] The 

ITG, on the other hand, has been recently suggested to mediate cognitive and affective 

responses to painful stimuli.[94; 114]  

People with pain after trauma may have an excessive tendency to attend to pain which 

can lead to an increased pain experience.[17; 68; 98] Inter-individual differences in pain 

hypervigilance have been shown to explain the variability in neural responses to painful stimuli 

in prefrontal and temporal areas.[112] In the present study, GMV reductions in dlPFC and ITG 

were moderately correlated with pain hypervigilance (i.e., the greater the attention to pain, the 

lower the GMV). This relationship was also observed in a previous study in people with 

CWAD.[22] This seems to agree with the notion that, in people with chronic pain, top-down 

pain modulation exerted within these regions is associated with hypervigilance.[50] This idea 

is further supported by the terms derived from decoding the statistical map, illustrating that the 

patterns of GMV alterations in people with CWAD are associated with terms such as “painful”, 

“reactivity”, “reward” and “value”. Interestingly, the pattern was also associated with the term 

“post-traumatic stress disorder”, which is often comorbid with CWAD and mutually dependent 

on hypervigilance.[17; 68] Altogether, these findings seem to indicate that impaired top-down 

regulation could presumably relate to GMV loss.[45; 97]   

Overall, our findings indicate that GMV alterations are partially reversed following 

treatment, but that these changes are not specific to either PNE+Exercise or conventional 

physiotherapy. Modest increases in dlPFC GMV were observed in CWAD patients 
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immediately after treatment (main effect for time) that, by contrast, were not found in pain-free 

controls over the same period. This finding contradicts results from a previous PNE+Exercise 

trial[56] in people with chronic spinal pain, which reported no change in this region at post-

intervention. On the other hand, several cohort studies have consistently reported that pain 

remission, either spontaneous or after treatment, is accompanied by partial normalization of 

the dlPFC GM.[65; 73; 81; 82] Similar to our findings, a previous mindfulness RCT conducted 

by Seminowicz et al. [79] found no intervention by time effect on dlPFC GM. The authors 

theorized that changes in this region may be dependent on treatment responses, rather than 

specific to the intervention.[79] However, this hypothesis seems to be challenged by our 

results. In the present study, a low number of patients exceeded the MIC for pain-related 

disability (54%; although comparable to previous trials in CWAD[55; 58]) and, therefore, it is 

unclear if this effect can be explained by a positive treatment response. The dlPFC is 

implicated in the mechanisms underlying expectations and placebo analgesia.[9; 116] Yet, 

these processes are somewhat independent of the modulation of bottom-up nociceptive 

processing and not sufficient to explain effects on pain self-reported outcomes.[53; 115] Thus, 

the observed increase in dlPFC GMV could reflect, to some extent, positive expectations 

about the consequences of engaging in treatment rather than the direct expression of 

treatment effects on pain. This, however, remains speculative and needs to be explored in 

future research as our current study is not sufficiently powered for exploring factors that could 

have mediated the effect or for comparing responders vs. non-responders.   

In addition, the exploratory whole-brain analysis revealed other GMV changes in 

patients with CWAD after treatment that were also not specific to one type of treatment. 

Particularly, reductions in regions related to nociceptive processing (i.e., central operculum 

and supramarginal).[104; 107] This neuroplastic trend was further corroborated by the 

decoding of the pre- post-brain map, which pointed towards somatosensory-related terms in 

addition to “pain”. The nociceptive-related changes could potentially mirror changes in pain 

hypersensitivity, which is a common feature in people with CWAD.[92; 100] Importantly, 

exercise-induced hypoalgesia can be achieved even in the absence of substantial gains in 

pain intensity and related disability.[12; 43; 51; 96] The underlying (patho)physiological 

mechanisms behind the observed changes remain unclear. Growing evidence suggests that 

GMV increases/decreases are not solely dominated by neurogenesis, but also, gliogenesis 

(i.e., changes in the number of non-neural cells), dendritic, vascular and synaptic plasticity 

changes among others.[4; 45; 46; 67; 95; 111]. These local tissue and vascular adaptations 

are suggested to be driven by energy demands following neuronal responses and potentially 

induce long-term morphological changes.[92; 95] 

A major strength of the longitudinal VBM analysis compared to previous similar 

research[79; 81] is the inclusion of a pain-free (control) group with baseline and follow-up 
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measurements. This allowed us to, respectively, (i) determine whether or not GM adaptations 

to CWAD specific to our sample were reversed by treatment and (ii) investigate whether 

changes in GM in CWAD patients differ from those observed in pain-free people, and hence 

are not solely a result of time. Although the addition of an active evidence-based comparator 

treatment can be considered a strength as well, it can also explain the lack of an interaction 

effect, and we acknowledge that the inclusion of an inert control group could have provided 

more specific insights into the GMV changes related to either intervention.[5] Another 

consideration is that the results from the longitudinal analysis could have been potentially 

confounded by fluctuations in pain medication intake or depressive symptoms, among others, 

and should therefore be interpreted with caution.[15; 105; 110] In addition, Neurosynth 

decoding can be subject to biases in how terms are used in different studies (and research 

fields),[103] and was used merely to facilitate the interpretation of the results.  

Neuroimaging studies have shown GM alterations in people with chronic pain, and 

here we extend those findings to people with CWAD specifically. People with CWAD present 

with lower GMV compared to pain-free controls, mostly within areas related to pain 

modulation, including dlPFC and ITG. Among these areas, the right dlPFC GMV increased 

and hence showed reversal after treatment, yet it is difficult to determine the underlying 

mechanisms of this neuroplastic adaptation as it was not specific to the type of treatment. In 

addition, slight GMV reductions in nociceptive areas were observed in people with CWAD after 

treatment. Taken together, our findings provide further insights into structural brain alterations 

and their response to treatment in this population, pointing towards involvement of pain 

modulatory and sensorimotor neural circuitries that seem to adapt to chronic pain states, but 

also -at least partially- to its treatment. 
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