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Abstract—Machine learning algorithms and artificial intelli-
gence (AI) have driven a revolution in many scientific and
engineering fields. Now, they are slowly making their way into the
field of electronic design automation (EDA). Bayesian learning
(BL) has emerged as a promising approach to modeling and
optimization for systems when the data is scarce and computa-
tional resources are strictly limited. Using BL, it is possible to
build more accurate models by collecting data samples adaptively.
This paper presents an overview of popular machine learning
strategies that have been developed to automate different steps
of the electronic design process. Particular attention is paid to
Bayesian learning and how it is applied to the modeling and
optimization of analog devices. In addition, this paper analyses
some recent BL variants proposed to tackle specific machine
learning issues and solve application-specific tasks.

Index Terms—Electronic design automation (EDA), machine
learning (ML), Bayesian learning (BL), Gaussian processes (GP).

I. INTRODUCTION

Designing complex systems is a resource-intensive process
that crosses many disciplines and many levels of abstraction.
This is definitely the case for electronic design: an electronic
product has to undergo numerous design iterations before all
functional, manufacturing, and legal requirements are met.
Meeting these stringent requirements is only possible by
continuously increasing the technological complexity, which
is itself a source of ever-evolving challenges. For example,
the high integration of modern microwave systems has caused
critical issues in power and thermal management. Moreover,
the coexistence of numerous devices in modern user environ-
ments imposes electromagnetic compatibility (EMC), power
integrity, and signal integrity (SI) constraints early on in the
design process. Due to the design complexity, a high number
of design variables, specifications, and performance metrics
have to be considered at any stage of the design process.
Thus, for given technological capabilities, the optimal design
has to be identified within an extremely large and high-
dimensional space of possible designs [1]. Let us consider
a simple microwave filter (Fig.1). First, an initial to topology
can be selected and parametrized with respect to one or many
geometrical variables (L in this example) or material variables
such as substrate permittivity and metal conductivity (Fig.1a).
Next, it is interesting to find the variable values for which the
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design satisfies the specifications (Fig.1b), such as minimum
attenuation, bandwidth, central frequency, or losses.

This search problem is typically more demanding for analog
devices than for digital ones. The size and the topological
configuration of analog devices may require encodings in
larger design spaces, which are constituted by tens or hundreds
of design variables. In addition, the specifications of analog
devices are highly diverse, depending on the application.
This prevents the standardization of design variables and
requirements and it constitutes an additional obstacle to design
automation.

The typical analog design workflow follows a hierarchical
approach, as widely discussed in [4]: the full system is de-
composed into component blocks defined at different levels of
abstraction. The components are organized according to a cho-
sen topology that is expected to meet the system specifications.
The abstraction levels can be descended using a top-down
path: after forwarding the specifications to single components,
each one can be realized at a lower abstraction level. On
the other hand, a bottom-up path consists of creating a low-
level component layout and extracting an equivalent higher-
level representation. Next, it is possible to generate and verify
a topology that uses the equivalent high-level components.
Figure 2 illustrates the main design steps that constitute the
top-down and bottom-up path between the abstraction levels.
The full design workflow requires a sequence of top-down and
bottom-up steps until a layout of manufacturable components
is obtained that satisfies all the specifications. To date, no
known technique can dive into all the abstraction levels and
automate the full analog design workflow. Human expertise
appears still indispensable for this purpose. Nonetheless, the
research effort in the last years has been directed to the
automation of many steps of the workflow. In fact, even partial
automation strategies can significantly speed up the design by
reducing the number of design steps or by reducing the cost of
each step. For this purpose, several Machine Learning (ML)
techniques have been applied to EDA problems. Section II
introduces the main approaches followed by ML algorithms,
including an overview of recent ML techniques that have
been applied to different steps of the analog design flow,
such as data-efficient modeling and optimization techniques
based on Bayesian learning (BL). Then, Section III explains
the working principles of Bayesian learning by focusing on
its usage for analog device sizing. In addition, Section IV
discusses recent variants of BL, that have been proposed to
mitigate the main issues of BL and to solve more specific
modeling and optimization tasks. Finally, Section V suggests
promising research directions toward the development of more
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Fig. 1: Example of Bayesian optimization applied to a folded stub filter [2]. The objective is to find the values of the single variable L for which the |S21|
response presents a −3 dB stop-band centered at exactly 12 GHz. The central frequency is indicated as fc. At each BO iteration, a Gaussian process is built
to represent the objective function with respect to the design parameter L (Fig.4c, 4e, 4g). Second, the chosen acquisition function (here the upper confidence
bound [3]) selects the next L value to evaluate (Fig.4d, 4f, 4h). Next, a new |S21| response is simulated for the next L value and added to the initial data
samples. The optimization continues by updating the Gaussian process and selecting new samples until fc = 12 GHz (Fig.4b).

Fig. 2: Typical steps in the hierarchical analog design flow, between two
levels of abstraction, as described in [4].

powerful Machine learning and Bayesian learning techniques
for EDA.

II. MACHINE LEARNING FOR ELECTRONIC DESIGN
AUTOMATION

In the last decade, many impactful results in AI, such as
text-to-image generation [32], generative language modeling
[33], and self-taught gaming [34], have been achieved by
models with millions - or billions - of internal trainable
parameters. Such models can only be built using expensive
computing clusters and mass data collection. For the time
being, similar resources are hard to allocate for electronic
design automation (EDA). As a consequence, the research in
EDA has been mostly restricted to specific and often resource-
and data-demanding ML models.

There seem to be some scenarios in which the resource
limitation is more severe. The first is the design at low abstrac-
tion levels, which necessitates accurate and time-consuming

numerical simulations or measurements. The second is the au-
tomation of selection tasks, which requires the harvesting and
labeling of pre-existing design examples from the available
literature. Finally, data scarcity is to be expected in physical
experimentation, in which human intervention constitutes the
main speed bottleneck.

Data scarcity in all these scenarios is exacerbated by the
reticence of integrated circuit and semiconductor companies
and research institutions to disclose IC intellectual property
and adhere to more open data policies. 1 Furthermore, in
analog design, expensive electromagnetic (EM) simulations
are crucial for the characterization of second-order effects
that cannot be assessed with faster circuit simulations. Con-
sequently, a dual connection appears between the available
AI techniques and the need for simulation data. On the one
hand, the cost of running simulations restricts the applicability
of AI to the more data-efficient techniques, which limits the
generalization possibilities. On the other hand, there is a
relentless interest in developing data-efficient ML techniques
specifically designed to lower the overall cost of the simula-
tions required. In particular, the most promising automation
strategies have come from the field of machine learning. As a
branch of artificial intelligence, ML encompasses algorithms
and models that are able to solve tasks without explicit
programming. Rather, ML models can be trained to recognize
patterns and make predictions from a dataset of examples.
The training consists of refining the output of ML models
until they are able to perform the desired task on new, unseen
data. Depending on the interaction between the model and
the data collection process, three well-known ML paradigms
can be identified: supervised learning, unsupervised learning,
and reinforcement learning. The different ML paradigms can
be separately applied or combined into more elaborated ML
pipelines to automate single operational blocks or full paths
in the analog design workflow (Fig.2). This Section briefly

1Instead, open source code and data policies appear to be sustainable for
AI-focused software companies and software research institutions.
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(a) Topology selection via classifier[5], [6]. (b) Topology update via reinforcement learning [7].

(c) Specification translation via surrogate modeling
[8]-[20]. (d) Device sizing via active learning [21]-[26].

(e) Topology extraction via vector fitting [27], [28]. (f) Topology optimization via space mapping [29]-[31].

Fig. 3: Examples of tasks automated with machine learning in the analog design hierarchy. The automated steps and operations are depicted in red.
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overviews some common design tasks that can be automated
using recently developed ML techniques. Here, the common
ML approaches are associated with the steps defined in [4],
to better identify their role in the complete design workflow.
A summary of the described tasks and available techniques is
shown in Fig. 3. Depending on the application, ML techniques
can be used on different device parametrizations. For example,
the topology can be obtained as a combination of circuit blocks
[5], as a template parametric geometry [35], or as free-shape
mesh encoding [36].

A. Topology design

The topology selection is the first step that can be auto-
mated (Fig.3a). It can be framed as a supervised classification
problem and solved with ML models such as graph neural
networks [5] or recurrent neural networks [6]. Instead, other
ML techniques based on reinforcement learning (RL) have
been proposed to modify selected topologies iteratively. In
the RL approach, the ML model learns a mapping, called
policy, between the design topology and a set of actions. The
learned policy determines how to update the current topology
variables, until the design specifications are met (Fig.3b). For
example, the method in [7] can construct complex operational
amplifier topologies by assigning specific building blocks to
different actions.

B. Specification translation via surrogate modeling

The translation of specifications to lower abstraction levels
can also be automated using ML. In recent years, various
techniques have been developed to predict figures of merit for
a pre-selected topology with respect to lower-level variables
[37]. In other words, ML models can be trained as surrogate
models, and replace simulators to estimate the figures of merit
(FoM) for a given parametric design (Fig.3c). For example,
let us consider a microstrip antenna topology.

Surrogate modeling is usually tackled as a supervised learn-
ing regression task, in which the data labels come from costly
numerical simulations or measurements. The key advantage
of a surrogate model is that it can be agnostic to the device
physics and its validity can extend to a wide range of design
variables, from circuit schematic variables to geometrical lay-
out or substrate electrical features [21]. Particularly interesting
is modeling the figures of merit based on the frequency
response of an analog device, that needs to be simulated at the
EM level to characterize signal propagation, cross-talk, or EM
emissions. A popular technique for this task is Vector Fitting
(VF) [8]. In its base form, VF represents a device transfer
function in terms of a complex rational function defined by
parameters (poles and residues) over the frequency. Later on,
several capabilities have been added to VF techniques, such
as the parametric modeling over multiple design variables [11]
and the inclusion of signal propagation delays [10], [12].

In order to model figures of merit over many design
variables, a wide variety of black-box ML models have
been employed. Indeed, black-box models can represent more
general relationships among design variables that are unfea-
sible to obtain in an analytical form, based on theoretical

derivation. 2 Popular black-box models include support vector
machines (SVMs), Gaussian Processes (GPs), and artificial
neural networks (ANNs). Least-squares SVM (LS-SVM) have
been employed to build data-efficient surrogate models over
tens of design variables, in training times of seconds [13].
Instead, various ANN architectures have been developed as
high-dimensional surrogates, such as [35]. At the expense
of bigger datasets, ANNs are more versatile and they can
be trained on hundreds or thousands of design variables.
An intriguing advancement in ANN surrogates is integrating
physical knowledge to enhance accuracy. For example, in [17],
physical properties are enforced on ANNs, such as frequency
response’s causality and passivity. Moreover, ANNs can be
combined with VF to produce physics-informed models over
extended parameter spaces with improved data efficiency [35],
[18]. Instead, Gaussian process regression, also known as
Kriging, can be used to build stochastic surrogate models [19],
[20]: by representing figures of merit as stochastic processes,
Gaussian processes (GPs) offer a confidence estimation on
their predictions. This property makes GPs better suited to
optimization tasks and uncertainty quantification, while they
retain similar data efficiency to SVMs. However, the computa-
tional complexity of the GP limits its usage to a lower number
of design variables than ANNs. Table I summarizes the main
ML techniques that have been employed as surrogate models
for EDA.

C. Device sizing via active learning

The use of surrogate models allows us to solve device
sizing problems. Device sizing, sometimes simply referred
to as device optimization, consists of identifying the values
of design variables that allow the device to satisfy all the
specifications on some given figures of merit. A possible
approach to speed up the device sizing using ML is the
following. First, the figures of merit can be translated into
one of multiple user-defined objective functions, that assign a
score to any realization of design variables. Next, the search
for the right parameter values p∗ is framed as an optimization
problem:

p∗ = argmax
p

f(p) (1)

where p is a vector of design variables, and f is the objective
function for some chosen figures of merit. Note that if multiple
objectives are defined, the optimal solution is not unique but
constitutes a Pareto set of possible design solutions.

A viable solution to the optimization problem is given
by iterative techniques like evolutionary (or genetic) algo-
rithms [38], particle swarm optimization [39], and other meta-
heuristic search algorithms. However, they typically require
the collection of large datasets, even thousands of samples for
less than 10 design variables, while they do not allow easy
integration of prior knowledge. For faster optimization, it is
beneficial to use a predictive ML model M for the objective(s),
such that fM ∼ f(p). The predictive model can be tested to

2Even if possible to derive complicated analytical forms that are sufficiently
general, it may still be hard to develop a proper training method to fit the
data in a high-dimensional design parameter space.
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ML models Data efficiency Max. Input dimensions Trainable internal parameters Stochastic Physical properties
ANN [35] Low >100 yes no no
GP [3] High <20 no yes no
SVM [13] High <100 no no no
VF [8] High <5 yes no yes
ANN + VF [17] Low >100 yes no yes

TABLE I: Main ML models used as surrogate models for EDA. Here the properties of the most common formulations are reported. Different properties
result from the numerous versions and combinations of these models.

gain insight into the relationship among the design variables
and how they concur with the final result.3 Furthermore, the
predicted model is reusable and can be used to automate
subsequent sizing steps.

Assuming a sufficiently accurate ML model, the device
sizing can be immediately performed by querying the model
exhaustively, until suitable parameter values are found. Since
the surrogate model is typically fast to evaluate by construc-
tion, the querying can also be implemented as a random
sampling strategy, such as Monte Carlo. Alternatively, the
surrogate can also be trained as an inverse model to return
the parameter values that produce the objective or figure of
merit provided as input [40]. The exhaustive search only if
the amount of pre-collected data samples is sufficient to train
a surrogate model that is globally accurate, for any objective
function or figure of merit. Unfortunately, such an amount
is hard to estimate in advance. Therefore, it is preferable to
collect data by iteratively executing only the most informative
simulations that improve the accuracy of a model (Fig.3d).
This iterative data collection process is known as adaptive
sampling or sequential design of experiments (seqDoE), or
active learning [21], [41] when it involves a model querying
stage. More specifically, active learning is referred to as
Bayesian learning (BL) or Bayesian optimization (BO) when
it is applied to stochastic models built via Bayesian inference,
such as Gaussian processes. Unlike other ML models, Gaus-
sian processes are particularly suitable for active learning since
they provide a more consistent and statistically interpretable
variance estimation on their prediction. The use of Bayesian
learning in analog design is thoroughly discussed in III.

An alternative ML-based approach for the device sizing is
to use ANNs with reinforcement learning [42], [43]. Different
from active learning, the goal of RL is to train a model (usually
a neural network) to predict the optimal sequence of actions
that maximize a reward based on the design specifications.
Therefore, RL does not necessarily produce a data-efficient
surrogate model. Instead, it aims at a general solution for the
device sizing for a wide range of specification values, without
specifically minimizing the amount of data required.

D. Topology extraction

Further automation of the EDA design workflow can be
achieved for bottom-up design tasks. For example, vector
fitting has also become a popular method to extract a circuit-
level representation from simulated frequency- or transient-
responses [27], [28]. The circuit-level representation provided

3These problems are part of the interpretability and explainability study, in
both AI and machine learning.

Fig. 4: Simplified Bayesian learning scheme.

by VF can replace the ideal component used in the initial
topology (Fig.3e).

Subsequently, once the initial topology is selected, it can
be adjusted with space mapping (SM) techniques [29]. Space
mapping automatically adjusts the variables of a low-fidelity
representation using limited queries on a high-fidelity (expen-
sive) representation until all the specifications are satisfied.
In analog design, space mapping techniques allow one to
optimize a circuit level using limited, expensive EM simu-
lations (Fig.3f). In more recent developments, the mapping
between the low- and high-level representation is provided by
neural networks [30], [31], which guarantee high accuracy on
complicated designs and mappings.

III. BAYESIAN LEARNING FOR DEVICE SIZING

As mentioned in Section II-C, Bayesian learning (BL) has
become a common technique for the automated sizing of
analog devices. The key idea behind BL is to build a stochastic
model of the uncertainty about the target function - either
a figure of merit or an objective function defined on top of
that- and make decisions about which additional data points
to collect based on this model uncertainty. As discussed in
Section II-C, the purpose of automating the device sizing is
ultimately to reduce the need for expensive simulators, which
constitute the accurate data collector from an ML perspective.
In its base form, BL consists of several steps that follow the
simplified scheme shown in Fig 4:

1) Initial data samples: The first step is collecting a
small initial set of data samples, e.g. 10 samples per
design variable according to a Latin HyperCube (LHC)
sampling [44]. In analog design applications, this is
typically constituted by design parameter values (inputs)
and their corresponding objective function evaluation
(output(s)). This provides a starting point for building
a surrogate model that can match the underlying data
distribution.

2) Stochastic model: The stochastic ML model (often
based on Gaussian processes) creates a computationally
efficient representation of the data distribution. It is able
to provide an expected value for unobserved samples
and a variance, that indicates the estimated uncertainty.
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3) Stop condition: If verified, it halts the learning loop. It
is usually defined based as a threshold on an accuracy
metric, or on a fixed computational budget.

4) Acquisition function: It guides the selection of the
next data sample to be collected by balancing between
the exploration of designs with high uncertainty on the
objective and the exploitation of design space regions
with high predicted objective value, in order to effi-
ciently improve the ML model. The next data samples
are usually selected as the global maximum - or the local
maxima - of the acquisition function over the input data
space. Since the acquisition function is fast to evaluate
on the GP model, its maxima are usually identified using
a Monte Carlo sampling or a gradient-based optimizer
[45].

5) New sample(s) collection: The next data sample(s) se-
lected by the acquisition function is evaluated, by means
of costly simulations or measurements and added to
the initial dataset. The collection provides the objective
function values for the selected sample.

6) Model update: The ML model is re-trained iteratively
on the extended dataset, including the newly collected
samples.

If BL is successful, the model’s accuracy in identifying
the maximum objective value progressively improves. As an
alternative, it is possible to improve the global accuracy of
the model, rather than maximizing the objective, by choosing
an acquisition function that only selects the data samples of
higher model uncertainty, also known as maximum variance.
A simple example of Bayesian Optimization on a microstrip
filter [2] is illustrated in Fig. 1. The objective is to minimize
the distance between the filter’s central frequency (fc) and 12
GHz. It is possible to observe how the acquisition function
gradually adds samples that converge to the highest objective
while exploring the range of L values. Moreover, the uncer-
tainty of the model represented by the shaded areas (1 − σ
standard deviation interval) decreases at each iteration in the
whole domain.

A. Gaussian process models

In the past decade, the Gaussian process (GP) has been
successfully used as a surrogate model in Bayesian learning,
for analog design automation. The GP defines a prior Gaussian
distribution and updates it with observed data samples to
obtain a posterior probability distribution. Then, an expected
value and a variance can be extracted from the posterior, for
each observed or unobserved sample. Necessary to compute
the posterior is a user-defined kernel function, referred to
as kernel, that represents the correlation among any pair of
data samples. A detailed description of the functioning of
Gaussian processes can be found in [3]. Gaussian processes
have become a popular choice for BL, thanks to their several
advantages:

• Variable complexity and prior knowledge integration:
The kernel can encode assumptions on the stochastic
process underlying the data. Therefore, the user can
select or combine kernels to build a model of different

complexity. Moreover, the kernel can be chosen according
to prior knowledge about the function to be modeled, such
as linearity, stationarity, periodicity, and discontinuities.

• Few hyperparameters: GPs present only a few signif-
icant hyperparameters, like the kernel hyperparameters,
that can easily be optimized using maximum marginal
likelihood estimation [3]. This method does not require
a separate validation set for model selection or hyperpa-
rameter tuning.

• Uncertainty estimation: GPs provide a principled way
to estimate prediction uncertainty, that is represented by
the posterior variance.

• Data efficiency: GPs can provide meaningful predictions
even with a smaller amount of data points by leveraging
the prior and the kernel assumptions.

IV. VARIANTS OF BAYESIAN LEARNING

In analog design applications, there are still challenges that
limit the usage of GPs and Bayesian learning strategies. Thus,
several BL variants have been proposed to tackle the specific
issues.

A. Mitigation of the curse of dimensionality

One of the most common issues is the curse of dimension-
ality, which affects GPs and stochastic models more severely
than other ML models [46]: in high dimensions, where the
data become sparse, the kernel assigns low similarity among
data samples. Thus, a more substantial amount of data is
needed to recognize patterns and achieve sufficient modeling
accuracy. In surrogate modeling applications, the curse of
dimensionality becomes significant when more than 10 real-
valued design variables are considered, which may require 104

or more data samples to train an accurate Gaussian Process,
depending on the complexity of the modeled function. Several
approaches have been presented to mitigate this issue in
analog design applications. For example in [47], sensitivity
data and principal component analysis are used to restrict the
GP modeling to a progressively smaller area of interest in the
design space. Alternatively, the technique suggested in [26]
enables BL for up to 25 design variables, by decomposing
a high-dimensional GP in a sum of lower-dimensional GPs
according to a partition tree structure. A side effect of the curse
of dimensionality is that it may deteriorate the maximization
of the acquisition function, leading to a sub-optimal choice of
data samples in the BL loop. For this reason [24] presents a
modified acquisition function that is only maximized in a one-
dimensional subspace of design variables, leading to improved
optimization performance up to around 30 design variables.

B. Objective function definition in EDA

When performing tasks like device sizing using BL, it
is crucial to formulate the design specifications as suitable
objective functions. The performance of the optimization is
heavily affected by the objective definition. In fact, the objec-
tive should incorporate as many specifications as possible, to
identify the correct optimal design. However, this may produce
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complicated objectives that are more difficult to model. As an
alternative, a multi-objective formulation can be employed to
obtain a Pareto set of possible designs with contrasting ob-
jective values. For this purpose, different acquisition functions
for BL have been proposed to rapidly identify the Pareto set
[48], [49]. The objective definition is particularly challenging
when the device under test has to meet the specifications
over a whole range of operating conditions. For example,
this is the case in the optimization of frequency responses.
In order to improve the objective definition for frequency
response optimization, a particular formulation of BO has been
developed in [50].

C. Multi-fidelity optimization

Another challenge in BL is the integration of data samples
that are collected from information sources with different
fidelity, such as EM simulations with coarse and fine meshes.
This multi-fidelity setting requires a strategy to select the
information source for new sample evaluation, by balancing
the information gain and the computational cost. In EDA,
the multi-fidelity problem has been tackled using heuristic
approaches such as [51], [52]. More recently, for synthetic
problems, the multi-fidelity optimization has been framed as
one additional objective function [53] or using a modified
acquisition function for continuous fidelity levels [54].

D. Robustness

In addition, robust Bayesian optimization techniques have
been introduced to account for the uncertainty about the
design variables when their values are affected by stochastic
variabilities [23], [55]. In this case, the BL prioritizes design
solutions that are less sensitive to the stochastic variability
of the design variables, rather than searching for the absolute
optimal solution.

E. Feasibility region identification

In the context of device sizing, it is sometimes requested
that the chosen figures of merit fall within a certain range of
feasibility. In this case, it is not necessary to find a solution
that maximizes an objective function. Rather, BL can be used
to identify a subspace of design variables that correspond
to acceptable designs according to the feasibility ranges.
This task, known as feasibility region identification, can be
performed with an appropriate choice of acquisition function
for the BL algorithm [2].

The aforementioned techniques are only a few of the
available BL variants. Many more have been introduced in
different fields [56] and still need to be tested and eventually
adapted to electronic design applications.

V. CONCLUSION

Machine learning is a highly advantageous tool within the
realm of electrical design automation. In the last decades, the
continuous development of machine learning techniques has
contributed significantly to the automation of numerous tasks

within the analog design workflow. In particular, Bayesian
learning (BL) has emerged as a powerful set of data-efficient
techniques applicable to surrogate modeling and device sizing.
The main scope of BL is the minimization of the number of
simulations or experiments required in analog design.

Aside from the specific issues, several challenges remain
common to all Bayesian learning techniques. Data efficiency
is still a primary one due to the curse of dimensionality
(see Section IV). To date, applying Bayesian learning for
high-dimensional optimization tasks, like device sizing over
hundreds of design variables, is nearly unfeasible.

A possible research direction to alleviate the curse of dimen-
sionality in BL may be a deeper integration of pre-existing
physical knowledge in the ML models. For example, some
available modeling techniques combine a simple physics-based
model with a general-purpose machine-learning one (Section
II-B). Different solutions may come from other stochastic
models that are yet to be experimented for device sizing
or surrogate modeling, such as Bayesian neural networks
(BNNs) [57], variational auto-encoders (VAEs) [58], or neural
processes (NP) [59]. In the near future, it is easy to imagine
the usage of these models in a Bayesian learning framework
even if the actual implementation would not be trivial. In
the short term, Bayesian learning will likely remain a highly
accessible and cost-effective technique to solve electronic
design automation problems.
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