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Abstract 
In this review, we provide a comprehensive overview of the different computational tools that have been published for the deconvolution 
of bulk DNA methylation (DNAm) data. Here, deconvolution refers to the estimation of cell-type proportions that constitute a mixed 
sample. The paper reviews and compares 25 deconvolution methods (supervised, unsupervised or hybrid) developed between 2012 and 
2023 and compares the strengths and limitations of each approach. Moreover, in this study, we describe the impact of the platform 
used for the generation of methylation data (including microarrays and sequencing), the applied data pre-processing steps and the 
used reference dataset on the deconvolution performance. Next to reference-based methods, we also examine methods that require 
only partial reference datasets or require no reference set at all. In this review, we provide guidelines for the use of specific methods 
dependent on the DNA methylation data type and data availability. 
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INTRODUCTION 
DNA methylation (DNAm) involves modifying DNA epigenetically 
by covalently adding a methyl group to the 5′ position of the 
pyrimidine ring of cytosine residues within CpG dinucleotides. 
This modification is commonly found in CpG islands, situated pre-
dominantly in and around promoter regions, and the frequency 
or proximity of these modifications can impact the transcrip-
tional process. Methylation of these promotor regions affects the 
interaction of the transcriptional machinery with the DNA and 
generally results in transcriptional silencing of genes [1]. Due to 
its regulatory function, DNAm plays a key role in normal cell 
development and differentiation [2, 3]. Distinct cell types can be 
recognized by their unique DNAm pattern [4–6], reflecting the 
cell-type-specific transcriptional programme influenced by this 
epigenetic layer. 

Modifications in these DNAm patterns may lead to many dis-
eases, including cancer [4, 7]. These patterns can serve as diag-
nostic markers for various diseases, demonstrated by several 
studies [8–10], where DNAm was used to identify disease-specific 
epigenetic signatures, called epi-signatures. Classification of brain 
tumours based on bulk DNAm profiling is another successful 
clinical application of this concept. Certainly, modern diagnos-
tics can accurately identify specific types of brain tumours by 
leveraging their unique DNAm profile [11]. However, these diag-
nostic approaches primarily utilize bulk DNAm profiling methods 

that, while clinically useful in capturing the dominant signal 
predominantly emanating from the overgrown cell type, can-
not investigate complex samples at a cellular resolution [12, 
13]. Several works show that distinguishing methylation profiles 
of cell types (e.g. to estimate tumour percentages or study the 
immune context) in mixed cell populations is challenging. Indeed, 
to properly identify the cell-type composition of a sample single-
cell methylation profiling tools are required, but these are cur-
rently very costly, therefore difficult to scale, and often generate 
noisy and sparse data [14]. For this reason, several computational 
approaches have been developed during the past years to infer 
the abundance of different cell types in heterogeneous samples. 
This task is known as computational deconvolution of DNAm 
data from mixed samples. The first computational deconvolution 
methods were developed for RNA expression data (reviewed in 
Avila-Cobos et al. [15]). In 2012, the first deconvolution algorithm 
for DNA-methylation data was published [16], after which several 
other methods were reported and all these are reviewed in this 
manuscript. 

In this review, we explain the deconvolution problem, define 
the criteria for the deconvolution methods that will be discussed 
here, describe the features that affect the performance, give a 
detailed description and evaluation of each method, propose a 
classification of the methods according to their reference dataset 
dependence and summarize some guidelines for the selection of 
a method dependent on the research question to be answered.
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The deconvolution problem 
Computational deconvolution infers relative cell-type proportions 
present in a mixed sample, such as tissue or blood. In mathemat-
ical terms, this problem can be formulated as the following linear 
equation of matrices: 

T = (CP) + ε 
⎡ 

⎢⎢⎢⎢⎢ 
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... 

. . . 
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Where T is the methylation matrix (g × n) containing methyla-
tion data of g regions in n mixed samples; C is a matrix (g×m) that 
comprises the methylation data of the m different cell entities for 
g regions (also called the reference dataset); P is a matrix(m × n) 
containing the proportions of m cell entities in n mixed sample; 
and ε is a non-negative vector of size n representing the signal’s 
noise in T. When applying reference-based methods, both T and 
C are known variables and the cell proportions in P must be 
estimated. In reference-free methods, only T is known, which 
makes it more complex to solve. 

Selection of methods in this review 
In the past years, a few dedicated reviews/benchmarking studies 
on computational deconvolution of DNA-methylation data were 
published: Teschendorff [17] (10 methods), Titus [18] (10 methods), 
Scherer [19] (14 methods), Jeong [20] (8 methods), Song [21] (6  
methods) and Sharma [22] (11 methods). Combined, these studies 
summarize a total of 28 tools, methods or method variations for 
deconvolution of DNAm data. However, it is important to note 
that 13 out of these 28 methods do not estimate cell-type abun-
dance. Instead, they focus on tasks such as correcting cell-type 
composition heterogeneity by eliminating confounding factors or 
noise, identifying significant methylation sites (SVA [23], ISVA [24], 
RUV-2 [25], EWASher [26], ReFACTor [27], ICA [28], TCA [29]) or are 
limited to feature selection as a preliminary step before actual 
deconvolution (MethylCIBERSORT [30], CONFINE [31], csmFInd-
er/coMethy [32], TOAST [33] and ClubCPG [34]). Additionally, one 
of the methods was specifically designed for gene expression data 
and not applicable to DNA methylation analysis (CDSeq [35]), 
bringing to a total of 14 tools that fall outside our definition of 
DNA methylation deconvolution. 

Through an extensive literature review, we identified 11 addi-
tional methods that allow deconvolution of DNAm data, and we 
evaluated them together with the 14 previously reviewed methods 
(# Figure 1 #). In addition, we shortly discuss four methods that, 
according to our definition, are not strict deconvolution methods 
but they allow us to identify the main contributing cell type in 
a mixture, being designated as classification tools instead. All 
methods reviewed or indicated in this manuscript are summa-
rized in Supplementary File 1. 

Parameters affecting deconvolution performance 
Apart from the method/algorithm selection, several parame-
ters might influence the deconvolution results’ accuracy and 
performance. 

Some assumptions made in the algorithms might influence 
the performance, for example, the number of entities present, the 

linearity of relationships between methylation and these entities 
and the assurance that the sum of the cellular fractions equals 1. 
Different models may exhibit varied performance across different 
biological conditions, depending on the input data chosen or 
the user-defined tool parameters, and, therefore, their selection 
significantly influences the results. 

Although the effect, as far as we could ascertain, has not 
yet been thoroughly studied, we summarize here some impor-
tant parameters that need to be considered for the experimental 
design of a DNAm deconvolution study. 

1) Platform and technology utilized for DNAm data gener-
ation: The choice of technology, whether array-based or 
sequencing-based, introduces inherent variations in DNAm 
measurements. Array technologies may exhibit platform-
specific biases and limitations, such as probe design 
constraints that capture methylation events only in specific 
genomic regions [36]. In contrast, most sequencing-based 
methods provide a more comprehensive view of DNAm 
patterns but may also entail their own set of biases and 
limitations, including differences in read depth and coverage 
across the genome. These platform-specific differences 
underscore the importance of considering the nuances and 
potential biases introduced by the chosen technology when 
analysing and interpreting DNAm data. 

2) Data quality and pre-processing steps: Factors such as 
noise, missing data, batch effects or technical artifacts 
can significantly impact data quality. In this regard, data 
pre-processing, which includes normalization, mapping, 
filtering and feature selection, becomes essential to mitigate 
these issues. However, it’s important to note that different 
data preprocessing methods will result in varying data 
transformations, thereby influencing the accuracy of the 
final results. [36, 37]. 

3) Reference profile quality and completeness: Also, the quality 
and purity of the used reference dataset (matrix C in equa-
tion) will affect the accuracy of the results [20]. The com-
pleteness of the reference dataset is another critical factor in 
deconvolution analyses. Typically, having a comprehensive 
reference dataset including all cell types contributing to the 
mixed sample will improve the deconvolution outcomes of 
these samples. Thus, the completeness of this dataset is 
crucial to ensure accurate capturing of the complex cellular 
composition in mixed samples 

4) Sample size and resolution: The implementation in large 
sample cohorts generally provides more robust and accurate 
deconvolution results, increasing the statistical power of 
the analysis. There is also the case where partial-reference 
tools were designed to fit multiple samples simultaneously 
since the model will learn the custom unknowns from the 
previous samples [38]. The accuracy of DNA methylation 
data in deconvolution analyses can also be linked to its 
resolution, determined by the quantity of individual reads 
and the number of CpG sites measured. A higher resolu-
tion, marked by an increased number of reads and CpG 
sites, can in some cases significantly enhance the precision 
of deconvolution results. This is attributed to the detailed 
and comprehensive depiction of DNA methylation patterns, 
enabling a more nuanced evaluation of cell-type proportions 
in mixed samples. Conversely, lower-resolution data may 
lack the necessary granularity to discern subtle methylation 
differences, potentially leading to less accurate estimations 
of cell-type contributions. Optimizing methylation data res-
olution by maximizing reads and CpG sites has the potential 
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Figure 1. UpSet plot displaying the number of tools/methods covered in the different reviews/benchmarking studies. This review involves 11 methods 
that have not been reviewed before. The first described method (the Houseman’s reference-based approach [13]) is included in all the reviews. 

to improve the accuracy and reliability of deconvolution 
analyses, depending on the methods applied [ 39]. 

5) Similarity of the contributing cell types: When certain cell 
types have a more alike methylation profile, such as in 
the case of certain tumour subtypes, deconvolution might 
become more challenging for these cell types [40]. 

6) Cell-type composition: Extreme or unbalanced cell-type 
compositions within a sample might pose challenges for 
deconvolution algorithms, especially when certain cell types 
are scarce or overly abundant [41]. 

7) Inter-individual variability: Methylation patterns within 
DNA are susceptible to influences stemming from individual 
differences, encompassing factors such as age, sex, smoking 
status, overall health and dietary habits, among others. 
Given the diverse array of elements that can impact 
methylation, it becomes crucial to consider the selection 
of reference datasets that are well-matched in terms of age, 
sex and other pertinent characteristics when conducting 
deconvolution on a specific set of mixed samples. By 
ensuring that the reference dataset aligns closely with the 
demographic and physiological attributes of the samples 
under investigation, the deconvolution process becomes 
more adept at accurately capturing the underlying cellular 
composition. This attention to demographic and biological 
matching enhances the applicability and reliability of decon-
volution outcomes, accounting for potential confounding 
factors and refining the precision of cell-type proportion 
estimations in complex sample mixtures [42–45]. 

Preparing input data for deconvolution 
In this paragraph, we discuss what platforms can be selected 
to generate data. We also describe the pre-processing steps and 
the different data formats that can be used as input for the 
deconvolution pipelines. 

DNAm platforms 
Before the introduction of sequencing-based DNAm profiling 
methods, methylation arrays were mostly used in studies 
including EWAS (epigenome-wide association studies) [13]. 
In array-based approaches, probes are used to capture DNA 
fragments to detect the methylation status of specific CpG 
sites or regions across the genome [46], providing an intensity 
for both methylated and unmethylated CpG sites covered by 
the probes. Different microarray platforms, each with their 
specific probe sets, are available [47], including Infinium’s 
HumanMethylation450 BeadChip and MethylationEPIC BeadChip 
from Illumina [12]. These technologies are still widely used 
to date due to their high reproducibility, ease of analysis and 
considerable sensitivity and specificity at a lower cost [36, 48]. 
Despite their ability to detect significant methylation changes, 
these technologies exhibit a lower resolution due to the limited 
number of probes compared to the, even genome-wide, resolution 
achieved by most sequencing-based methods. 

Over the past few years, a multitude of sequencing-based 
technologies have emerged [13], each employing unique experi-
mental approaches to discriminate or capture methylated versus 
unmethylated CpGs: (oxidative) bisulphite conversion (whole 
genome bisulphite sequencing: WGBS), enzyme-conversion 
(enzymatic methylation sequencing: EM-Seq), methylation-
specific restriction (Methyl-Seq/MRE-Seq) and affinity enrich-
ment (antibody-based approaches) and capture-based methods 
[13, 49] (like MethylCap-seq). Upon bisulphite or enzymatic 
conversion of unmethylated CpGs, sequencing of the converted 
genome can be performed genome-wide such as in WGBS 
or whole genome EM-seq. However, these methods are costly 
and therefore approaches exist to capture specific regions 
using hybridization-based methods [50] or to enrich for CpG-
rich regions using MspI digestion (in methods like reduced 
representation bisulphite sequencing, RRBS) [51].
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Another recently developed enzyme-based approach is the six-
letter sequencing that allows sequencing of genetic and epige-
netic bases (5mC and 5hmC) of DNA samples in a single workflow 
[52]. 

Also recently, nanopore sequencing entered the field. This 
method relies on a difference in the electric current flow when a 
specific genetic/epigenetic base passes the nanopore. As such the 
pores can detect several epigenetic base modifications including 
DNA-methylation [53]. 

A breakdown of the general advantages and disadvantages of 
the most adopted DNA methylation profiling methods is provided 
in Supplementary File 2. 

In a deconvolution study the reference dataset and the test 
dataset are ideally generated on the same methylation profil-
ing platform. However, deconvolution is also possible in mixed-
platform experiments such as in the study of Moss et al. [54] 
where data from Infinium 450K and EPIC array platforms are 
combined or in the study of Van Paemel et al. [4] where  a com-
bination of cfRRBS, WGBS, Infinium and EPIC array data was 
utilized. 

Data pre-processing 
The different pre-processing steps used to analyse the raw methy-
lation array or sequencing data also impacts the deconvolu-
tion performance. In the case of methylation arrays, fluorescent 
intensity measurements are converted to relative abundances of 
methylated and unmethylated cytosines [37, 55] in several steps: 
quality control, data filtering (e.g. elimination of non-autosomal 
chromosomes and low signal probes), normalization, mapping 
or matching of probes to genomic coordinates (using annota-
tion packages) [56, 57]. Another pre-processing step that can be 
conducted prior to the deconvolution is an optional probe-wise 
differentially methylated regions (DMRs) analysis. 

Pre-processing of sequencing data (e.g. bisulphite sequenc-
ing data) involves adaptor trimming, quality control, alignment 
to a reference genome, methylation calling and individual CpG 
or CpG cluster filtering [4, 58, 59]. CpG filtering might imply 
removal of CpGs linked to non-autosomal chromosomes (e.g. the 
X and Y chromosomes) and of known sex-associated CpGs on 
the autosomal chromosomes [60, 61], to minimize sex-related 
biases, or removal of CpGs located on known single-nucleotide 
polymorphism (SNP) positions [62] to reduce the effects of genetic 
variability between the samples. 

Instead of using the whole methylation profile for deconvo-
lution, most tools benefit from the selection of the most rele-
vant and cell type–specific markers (tissue informative markers 
(TIMs) [38]). This process helps to differentiate between simi-
lar cell types and reduces the computational intensity of the 
deconvolution [20, 21]. These markers can be identified using 
differential methylation analysis (either at a probe location, CpG 
or CpG cluster level) using tools such as DMRfinder [63], DSS 
[64] or MethylCIBERSORT [30], to name a few. Other approaches 
to identify tissue-specific methylation markers are the selection 
of the most variable regions (such as the specific hyper- and/or 
hypomethylated regions) [54, 65], the use of (moderated) t-tests 
[3, 60, 66–68] or F statistics (ANOVA) [16]. 

Input data types for deconvolution 
Most deconvolution tools/methods described in this review use 
beta values as input data. DNAm beta values are continuous vari-
ables between 0 and 1, representing the percentage of methylation 
or methylated cytosines measured in a certain region (arrays) or 
at a certain CpG site (sequencing), respectively. 

Some weighted deconvolution methods, such as CelFiE [38] 
and ARIC [69], require the absolute count of methylated and 
unmethylated reads for each CpG as input data, since these 
methods attribute more weight to highly covered CpGs in the 
sequencing data. 

The PRISM [65] tool requires mapped data as input in the form 
of BAM files. 

More recently, some methylation deconvolution algorithms 
have started using alpha values instead of beta values [70–72]. 
These values can only be obtained from methylation sequencing 
data and correspond to a read-based measure of methylation 
instead of CpG-based. Alpha values are the number of methylated 
CpG sites divided by the total number of CpG sites on a read 
and thus range from 0 to 1. Similarly, the authors of UXM 
[65] developed a fragment-level deconvolution algorithm which 
stores the read-level methylation information (included in the 
.bam files) into a specific DNAm file format (.pat file). Each 
fragment (read) is annotated as U (mostly unmethylated), M 
(mostly methylated) or X (mixed) depending on the number of 
CpGs methylated or unmethylated. The deconvolution is then 
performed based on the proportion of U fragments. 

The input data types for different deconvolution methods are 
summarized in Table 1. 

Deconvolution tools 
Deconvolution tools and algorithms are typically classified as 
supervised (reference-based) or unsupervised (reference-free) 
methods depending on their need for reference methylation 
profiles of the contributing cell types. Some of the more 
recent methods can be classified as hybrid: these methods use 
incomplete reference sets that do not encompass all the expected 
cell types within the mixture, or blend aspects of unsupervised 
approaches, preserving a certain level of adaptability, while also 
integrating prior knowledge, such as differentially methylated 
regions/positions for the diverse entities or cell types anticipated 
within mixed samples (Figure 2). 

Supervised or reference-based methods 
Reference-based techniques are widely used for DNAm deconvo-
lution. These approaches utilize a collection of methylation pro-
files from a range of healthy or diseased cells or tissue entities that 
contribute to the mixture. The reference set is used to estimate the 
composition of the mixed samples, providing information about 
the proportions of distinct cell types. 

Different methodological approaches exist to accurately esti-
mate the fractions of the different cell types represented in the 
reference set. Based on the mathematical computational method 
behind the approach, we can distinguish: 

1) The original Houseman’s approach [16] is a linear Con-
strained Projection-based (CP) algorithm and the first 
deconvolution method developed for methylation data. This 
technique estimates proportions by minimizing differences 
between observed mixed-sample methylation data and the 
reference matrix’s projection onto the cell-type proportion 
matrix while maintaining specific constraints. The CP 
method relies thus on characterized DNAm profiles from 
distinct cell types. Through optimization, it solves the 
equations that aligns methylation data from a mixed 
sample with these reference profiles, by ensuring that 
the resulting cell-type proportions are non-negative and 
possibly summing to 100% (dependent on the used equality 
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Table 1: Types of data used as input for the deconvolution analysis. In the reviewed tools, 5 types of input data were distinguished, 
described, and associated with their respective users. 

Input data type Tools 

Absolute count of methylated (M) and unmethylated (U) cytosines CelFiE, ARIC 
Mapped data (BAM files) PRISM 
Alpha values CelFEER, cfSort 
Read-level methylation information (PAT files) UXM 
Beta values All the other tools included in the review 

Figure 2. Deconvolution tools can be subdivided into four categories: Supervised or Reference-based, Unsupervised or Reference-free, Hybrid and Mixed. 
For the last three categories, the a priori defined number of cell types will determine the total number of entities presented in the results. Mixed methods, 
depending on the settings, have the capability to perform deconvolution under various conditions [unsupervised or (semi-)supervised] (Created with 
BioRender.com). 

constraint). As such, the proportions of the samples are 
predicted. 

2) Least Square (LS) Regression models seek to establish an 
optimal linear relationship between predictors (in this case, 
the methylation profiles of the reference) and a response 
variable (here the profiles of the mixed samples) by mini-
mizing the squared differences between the observed and 
predicted values. Solving this alignment computes coeffi-
cients indicating the contributions of individual cell types 
to the mixed profile. Consequently, LS Regression facilitates 
inferring cell-type proportions from complex mixtures based 
on methylation patterns, depending on the quality of ref-
erence profiles and the assumption of linear associations 
between methylation levels and cell-type proportions. Meth-
ods such as MethAtlas [54], UXM [65] and MethylResolver [60] 
are based on these models. The first two methods employ 
Non-Negative Least Square (NNLS) Regression, and the third 

method makes use of Least Trimmed Squares (LTS) Regres-
sion. 

3) Robust Partial Correlation-based (RPC) models are used in 
one of the algorithms implemented in the EpiDISH package 
[68] (RPC—Least Squares) and in the EPISCORE method [73] 
(weighted RPC), where the latest uses a combination of 
scRNA-seq and DNAm data as input for the deconvolution. 
These RPC models are, as the name mentions, robust 
techniques that assess correlations between variables 
(methylation data) while considering other factors (external 
influences, conditions or characteristics affecting the 
observed correlations, such as subject sex and age) in the 
model and addressing potential outliers or non-standard 
data behaviour. RPC methods, unlike traditional partial 
correlation approaches, prioritize accuracy, particularly in 
the presence of noisy or contaminated datasets. Using robust 
statistical measures, RPC methods enhance the reliability 
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of assessing relationships between variables, especially 
in scenarios involving non-standard data behaviours or 
outliers that could distort correlation analyses. Applied 
to DNAm data for deconvolution, RPC methods estimate 
cell-type proportions within mixed samples by leveraging 
partial correlation analysis between methylation patterns at 
different CpG sites while accounting for outliers and noise. 

4) Support Vector Regression (SVR) models, when applied to 
DNA methylation data for deconvolution purposes, are 
machine learning algorithms that aim to predict cell-
type proportions within mixed samples based on DNA 
methylation patterns. SVR operates by finding an optimal 
hyperplane that best represents the relationship between 
the methylation data and cell-type proportions. This 
method uses support vectors to define the hyperplane, 
which maximizes the margin between different data points 
while minimizing prediction errors. SVR models learn from 
the methylation data, mapping it to the known cell-type 
proportions in the training dataset, and then predict the 
proportions of cell types in new or unseen samples. By 
leveraging SVR in DNA methylation analysis, these models 
attempt to accurately estimate cell-type contributions 
within mixed samples, offering predictive capabilities 
that aid in deconvolution and understanding cellular 
compositions in complex biological systems. CIBERSORT [74] 
(ν-SVR), CIBERSORTx [75] (SVR with elastic net) and ARIC [69] 
(weighted υ-SVR) are examples. 

5) Deep neural network (DNN) models, like in cfSort [71], are 
sophisticated machine learning algorithms characterized by 
multi-layered neural network architectures that learn com-
plex representations from data. Comprising interconnected 
nodes arranged in input (methylation profiles), hidden and 
output layers (proportions) with weighted connections, 
DNNs adjust these weights via backpropagation during 
training (with sets of pure samples of known origin) to 
minimize prediction errors. Their depth enables automatic 
extraction of hierarchical data features, allowing them to 
handle complex patterns and large datasets effectively. 
Applied to DNAm data for deconvolution, DNNs use their 
multi-layered structure to extract intricate features from 
methylation patterns. Training involves adjusting connec-
tion weights based on methylation data and enhancing 
comprehension of cellular composition in mixed samples. 
Through comparisons with known reference values, DNNs 
optimize predicting cell-type proportions. Their capability 
to learn complex patterns from methylation data makes 
them valuable for deciphering cellular compositions and 
estimating cell-type proportions in intricate biological 
samples. 

Hierarchical methods use the algorithms described above in a 
hierarchical way by performing the deconvolution in different lay-
ers. By iteratively estimating the proportions of each component 
in the mixture, hierarchical deconvolution methods can effec-
tively disentangle complex data into its constituent parts. Two 
such methods that apply the Houseman’s CP/QP deconvolution 
algorithm in different layers are ‘Hierarchical Tumor Immune 
Microenvironment Deconvolution’ (HiTIMED) [76] and ‘Hierarchi-
cal Brain Extended Deconvolution’ (HiBED) [77]. In HiTIMED, a six-
layers approach (and respective reference sets/libraries) is used 
to deconvolve and explore the tumour microenvironment of 20 
types of carcinomas: in the first layer, a distinction between the 
tumour fraction from other cell types is made; in the second layer, 

tumour, angiogenic and immune components are separated; and 
in the third to sixth layers, specific libraries are used to distinguish 
between different angiogenic and immune cell subtypes. In the 
case of HiBED, two layers are applied to distinguish between 
different brain cells: in the first layer, the proportions for neuronal, 
glial and endothelial and stromal cells are estimated; the second 
layer does the same for GABA, GLU, astrocytes, oligodendrocytes, 
microglia, endothelial cells and stromal cells. 

The performance of reference-based methods in estimating 
cell-type proportions largely depends on the quality, purity and 
comprehensiveness of the reference dataset. Specifically, decon-
volution studies on RNA-sequencing data [15] indicate that these 
methods perform optimally when the reference set is complete, 
encompassing all cell types or tissues present in the mixed sam-
ple, which is not always feasible. If no reference data or reference 
data from only part of the cell types are available, unsupervised 
or semi-supervised methods will offer the favoured deconvolution 
solution for the problem. 

Unsupervised or reference-free methods 
In cases where no reference data are available on the constituting 
cell types of a mixed sample or when the constituting cell types 
are not known, reference-free methods can be applied. These 
techniques provide an alternative approach that allows for more 
unbiased and flexible estimation of cell or entity proportions and 
profiles in the context of DNAm deconvolution without relying 
on pre-existing reference data. They facilitate the exploration 
of data without preconceived notions, allowing for a broader 
examination of cellular diversity and the potential revelation of 
previously undiscovered patterns or relationships within the data. 
However, a major downside of unsupervised deconvolution tools 
is that most tools are more computationally intensive, complex 
and potentially ambiguous as they heavily rely on assumptions. 
These assumptions encompass various restricting factors such as 
the mixture samples being composed of a specific number of cell 
types, the methylation profiles of these samples representing a 
weighted average of the methylation profiles linked to the under-
lying cell types and the presence of unobserved or latent variables 
(methylation profiles) in the process. Some of these tools, such 
as MethylPurify [78], are only designed towards tumour purity 
deconvolution and therefore assume that the tissue constitutes 
of two major components, being healthy and tumour cells. 

The lack of a reference set results in unlabelled proportions 
after deconvolution that might be challenging to interpret. 

1) Most of the unsupervised methods use Non-Negative 
Matrix Factorization (NMF) approaches (RefFreeEWAS [79], 
RefFreeCellMix [80], EDec [81] and MeDeCom [62]). This is 
an approach that can decompose a given matrix (the DNAm 
profile of m samples) into two non-negative matrices, one 
representing the features (the estimated methylation profile 
of n references) and the other representing the coefficients 
(the proportions for each of the m samples of each entity 
n). By finding the best combination of these matrices, 
NMF can approximate the original data matrix and extract 
meaningful features. The first reference-free tool developed 
that was presented by the Houseman’s group in 2014 [79] 
also falls under this category. The R package referred to 
as RefFreeEWAS, where RefFreeCellMix is also featured, 
was developed specifically for conducting epigenome-wide 
association studies (EWASs). This approach also shares 
similarities with the technique known as (independent) 
surrogate variable analysis (SVA and ISVA, respectively) and 
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considers the peripheral blood mononuclear cell (PBMC) 
samples as whole blood with granulocytes removed (views 
the composition of whole blood as the sum of the monocytes 
fraction plus the fraction of the lymphocytes). 

2) Other approaches employ Expectation–Maximization (EM) 
algorithms (MethylPurify and PRISM [78, 82]); these are iter-
ative algorithms used to estimate parameters in statistical 
models with hidden or unobserved variables (methylation 
profiles of reference entities). These algorithms alternate 
between two essential steps: the expectation step, which 
computes the expected values of the reference profiles given 
the observed data (methylation profiles of mixed samples) 
and current parameter estimates, and the maximization 
step, which updates the parameter estimates based on the 
computed expected values. Through an iterative process 
of these two steps, the EM algorithms gradually refine 
the parameter estimates until convergence is achieved, 
either when the log-likelihood plateaus or when stability is 
achieved in the estimated parameters; this convergence can 
also be reached when a convergence threshold or maximum 
number of iterations set by the user is satisfied, resulting on 
outputted estimated proportions. 

3) Additionally, a few methods also use the Hidden Markov 
Model (HMM), like DXM [83], which is a statistical model 
utilized to analyse data in a sequential manner, where each 
data point corresponds to an underlying hidden state, and 
can accurately deconvolve up to three entities. The model 
iteratively determines the number of entities, starting with a 
major one and carefully adding more to avoid overfitting. It 
calculates the optimal prevalence of subpopulations based 
on observed fractional methylation values, minimizing 
differences between expected and observed methylation 
distributions. The Viterbi algorithm within a modified HMM 
is then used to ascertain the most probable methylation 
profiles given the known subpopulation count and expected 
prevalence. The DXM’s HMM assesses the likelihood of 
individual methylation profiles contributing to observed 
bisulphite sequencing data. It further expands this assess-
ment to examine the impact of profile combinations on the 
data, treating the collective methylation sequences of CpGs 
across all profiles as a sequential arrangement of hidden 
states. In this framework, transition probabilities signify the 
probability of a cell type possessing a particular underlying 
methylation sequence for its CpGs, taking into consideration 
the influence of CpG site proximity on shared methylation 
states. 

Hybrid methods 
Hybrid deconvolution methods refer to approaches that combine 
both unsupervised techniques and statistical methods, prior 
knowledge or supervised techniques to perform deconvolution 
tasks. These methods aim to leverage the strengths of both 
approaches to improve the accuracy, robustness and versatility of 
the deconvolution process, as well as decrease the computational 
power required for such analysis. 

Such methods are referred to as semi-supervised or partially-
reference-based deconvolution and include CelFiE [38], EMeth 
[67], PRMeth [84] and CelFEER [72]. In these approaches, a small 
set of labelled reference data is used, leveraging the information 
it provides in conjunction with unsupervised algorithms, such as 
EM (for CelFiE, EMeth and CelFEER) or iteratively optimized NMF 
(for PRMeth). The labelled data provide some supervision of the 

deconvolution process, helping to refine the results and reducing 
the complexity of the interpretation compared to pure reference-
free methods. Other than using a partial reference dataset, the use 
of known DMRs/DMPs identified by comparing different cell enti-
ties or other prior knowledge for data filtering and pre-processing 
in combination with unsupervised methods, such as in MeDeCom 
[62], can also be considered a hybrid approach. 

A last group of hybrid methods combine reference-based and 
reference-free algorithms, each trained with different techniques 
or assumptions. The outputs of the individual models are then 
combined to generate the result; this approach is also called 
ensemble learning. This approach benefits from utilizing both 
unsupervised and supervised models to capture various aspects 
of the data and improve overall performance. One such example is 
PRMeth: a package that includes not only a novel partial reference 
method but also an implementation of both reference-based and 
reference-free Houseman’s approaches, CP/QP and NMF, respec-
tively. In the first step, the reference-free method (NMF) is used 
to determine proportions for a known number of entities and 
afterwards, a Recursive-partitioning Mixture Model (RPMM) [85] is  
used iteratively in combination with the reference-based method 
(CP/QP). Another is BayesCCE [86], which applies a Bayesian prior 
to improve the NMF results. 

Mixed methods 
While most of the deconvolution methods fall into one of the 
categories mentioned above, certain tools fit into all those groups. 
These methods, depending on the settings, possess the capability 
to perform deconvolution under various conditions [unsupervised 
or (partially) supervised]. One tool where such a method is applied 
is Tsisal [87]. 

Tsisal utilizes the simplex identification via split augmented 
Lagrangian (SISAL) algorithm [88], which is primarily designed for 
unmixing/deconvolution of images. One key step, like for many 
other tools, is the selection of a list of informative CpG sites, which 
can be acquired by the usage of TOAST [33], a feature selection 
method that is integrated in the R package together with Tsisal. 
The general geometric approach for determining the corners of 
a shape encounters optimization challenges arising from specific 
restrictions or limitations. SISAL stands out from typical methods 
by using more flexible constraints instead of strict positivity rules. 
This change makes SISAL better at handling errors in data and 
speeds up its work. The tool first finds important points in a shape 
and then uses these points to figure out how many different cell 
types are present. It also helps identify if some parts of the data 
are connected to specific cell types. These crucial points then 
act as labels for different cell types, which helps us study them 
further. 

This tool is capable of deconvolving a given sample into its 
constituent entities not only by using exclusively the methylation 
profile of that sample (unsupervised deconvolution) but also by 
offering the flexibility of specifying the number of entities and the 
reference set as optional parameters, allowing fully or partially 
supervised deconvolution. 

Tools that identify the main contributing cell type 
Tools including BED [89], CancerLocator [90], CancerDetector [91] 
and the Random Forest model from Capper et al. [11] are  not  
deconvolution tools in the strict sense. These methods identify 
the main contributing/the most abundant cell type in a mixture 
and the total tumour burden in the mixed sample but do not 
deconvolve all the contributing cell types in a mixture.
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BED is a Bayesian inference–based method developed to esti-
mate fractions of non-healthy cells, e.g. the fraction of cancer cells 
in a tumour biopsy. This semi-free reference method requires the 
input of only normal tissue data as reference and provides the 
tumour purity as the output. 

Both CancerLocator and its successor, CancerDetector, are 
reference-based classifiers that make use of a maximum-
likelihood estimation (MLE) algorithm to predict the tumour type 
and fraction in a sample; this is based on a reference set composed 
of several tumoral samples combined with healthy samples. 

Random Forest models are based on decision trees, that make 
use of an extensive reference set (train set) to determine the entity 
present in the mixture samples. If proportions are also indicated 
for each of the samples contained in the reference set, the model 
can also estimate the fraction of the predicted entities for the 
samples under study. The previously mentioned brain tumour 
classifier [11] uses this strategy. 

These tools have in common the fact that they do not esti-
mate/infer the complete constitution of the mixed sample but 
only report on the most abundant cell entity present in the 
mixed sample or can distinguish between distinct groups, such 
as healthy and diseased or multiple brain tumour types. In the 
remainder of the review, we will focus on deconvolution tools that 
adhere to the strict definition of deconvolution. 

Selection of the approach 
As detailed above, there are several deconvolution tools for DNAm 
data available nowadays, making it challenging to identify the 
most appropriate approach for a certain research question. The 
selection of the tool can be made based on the following parame-
ters (summarized in Table 2): 

• Data availability: Is a good-quality dataset available to build 
a reference set? Does the reference set contain data on all 
possible cell types contributing to the mixed sample? Based 
on this information, a supervised, unsupervised or hybrid 
method should be selected. 

• Prior knowledge: In case no reference dataset is available and 
therefore reference-based deconvolution is impossible, other 
prior knowledge on the contributing cell types in the mixed 
sample might be available. Access to information regarding 
the number of entities or cell-type/entity-specific features 
such as the DMRs/DMPs allow the usage of hybrid methods 
instead of fully unsupervised methods, increasing the robust-
ness of the results. 

• Data platform: What type of data (e.g. array or sequencing-
based data) is available? Certain tools were not developed and 
cannot (easily) be adapted to array data, such as is the case for 
CelFiE [38], UXM [65], CelFEER [72] and cfSort [71], that were 
developed for sequencing-based methylation datasets. 

• Available computational power: Unsupervised and hybrid 
tools demand significant computational resources, includ-
ing substantial RAM and processing time, to conduct the 
computational deconvolution of cell-type or entity fractions. 
However, certain supervised tools that apply iterative proce-
dures also require a large amount of computing power, like 
hierarchical methods. 

• Expertise in parameterization: Many tools depend on correct 
parametrization (such as threshold selection for beta value 
significance or selection of algorithm-specific parameters) to 
produce qualitative results, but there is the potential risk 
of overfitting the method to the available data. The risk 
of overfitting arises when the parameters are fine-tuned or 

adjusted to such an extent that the method becomes overly 
specialized or tailored to the specific dataset. For example, 
CelFiE [38] is a tool for which many parameters need to be set. 

• Result interpretation: Unsupervised methods, although very 
flexible, produce unlabelled results that are more complex 
to interpret. The interpretation requires known methylation 
markers for the different cell entities that can be used to 
annotate the different fractions. Tools like FactorViz (an inter-
active R/Shiny-based tool) [78] facilitate this annotation pro-
cess by providing interactive visualizations of the results 
obtained with MeDeCom. This visualization tool allows for 
investigations into how covariates, like age, sex and tumour 
stage, affect estimated proportions and Latent Methylation 
Components (LMCs), associations with technical or pheno-
typic traits, connections with marker gene expression, sur-
vival analysis and functional annotation via Gene Ontology 
(GO) and Locus Overlap Analysis (LOLA) enrichment analysis. 
Additionally, users can compare the LMC matrix with refer-
ence cell-type profiles for further insights. 

• Robustness, sensitivity and performance evaluation: The 
selection of deconvolution tools involves the evaluation of 
its performance. Some tools rely on parameters, but not all 
significantly impact deconvolution outcomes. Robust tools 
demonstrate consistent and accurate performance across 
diverse settings, effectively handling unexpected or noisy 
data and parameter value changes without considerable 
performance degradation. Certain tools can be especially 
beneficial in scenarios like low tumour burden in oncological 
samples, exhibiting higher sensitivity. These tools respond 
more keenly to input variations, particularly in detecting 
subtle changes, leading to varied outcomes based on these 
alterations. Due to this, the research question necessitates 
careful consideration during tool selection. Moreover, existing 
benchmarking studies, usually conducted by tool authors, 
often exhibit favourable conditions for the presented tools in 
terms of data selection, pre-processing and parameterization, 
highlighting the critical need for independent and unbiased 
assessments of tool performance. 

DISCUSSION 
The DNAm deconvolution challenge centres on determining 
the relative proportions of diverse cell types or subpopulations 
present in a composite sample by analysing the DNAm profiles. 
When DNAm data are generated on a mixed sample, it captures 
a composite signal from numerous contributing cell types. 
Deconvolution hinges upon the diversity of DNAm profiles 
among discrete cell types. Its objective is to unravel complex 
mixtures, discerning the unique contributions of each cell type. 
This process facilitates a finer understanding of DNAm dynamics 
within particular cellular contexts. This concept finds practical 
use in various domains, such as oncology, immunology and 
developmental biology. 

In recent times, notable progress has been made in the field of 
DNAm deconvolution, leading to the creation of diverse tools 
and methodologies. In this review, we give a comprehensive 
overview of 25 computational deconvolution methods that have 
been described between 2012 and 2023, as well as some data-
mining steps that can influence the deconvolution results. Indeed, 
data quality and data pre-processing are fundamental in the 
analysis process of methylation array or sequencing data and 
therefore can significantly influence the deconvolution results. 
Differential methylation analysis for the selection of tissue
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Table 2: Summary of the parameters to consider when selecting a tool/method. This table works as a guiding point for the selection of 
the method since the tools benchmarking of the referred parameters and tools fall beyond the scope of this work. 

Reference-based Reference-free Hybrid 

Reference data required Yes, all potential entities should 
be represented in the reference 
dataset 

No Partially, reference data of some 
entities may be missing 

Prior knowledge and 
feature selection 

Not required but advised to 
increase accuracy 

Not required but will reduce 
computational run time 

Not required but advised to 
increase accuracy and facilitate 
predictions of unknown entities 

Data platform Works on both array and  
sequencing data, however UXM 
and cfSort only start from 
sequencing data 

Works on both array and 
sequencing data, but PRISM 
requires BAM files and feature 
selection is advised for 
sequencing data to reduce 
complexity and run time 

Works on both array and 
sequencing data, however CelFiE 
and CelFEER only work on raw 
sequencing data 

Available computational 
power 

Low RAM requirements, but some 
iteration dependent methods 
require more computational time 
and power 

High RAM requirements and long 
run times 

Medium to high RAM 
requirements 

Parameterization expertise Dependent on the algorithm, requires benchmarking 
Result interpretation Easy interpretation since the 

entities and corresponding 
proportions are clearly indicated 

Difficult interpretation since 
estimated fraction are not 
associated with entities 

Easy interpretation for the known 
fractions and difficult for the 
unknown entities (higher number 
of unknowns will increase the 
difficulty of interpretation) 

Performance (sensitivity 
and robustness) 

Dependent on the algorithm, requires benchmarking 

informative markers is a regularly applied data-mining step that 
may positively influence the deconvolution results. 

Most deconvolution tools available to date are classified as 
supervised or reference-based methods and use a variety of 
underlying models including CP, RPC, DNN, LS regressions and 
SVR methods, the latter two being the most common approaches. 
A pivotal element in these deconvolution methods is the quality 
of the reference dataset, which encompasses methylation profiles 
of the different cell types that compose the mixed sample 
under study. Such profiles serve as a foundation for accurately 
deciphering the composition of mixed samples. The quality, purity 
and completeness of the reference set play a role in obtaining 
reliable and precise deconvolution results, and although data 
from multiple platforms can be combined in the reference set, 
batch correction is essential for the performance of the tools. 

On the other hand, unsupervised or reference-free deconvolu-
tion methods offer a more unbiased and flexible estimation of 
cell proportions. These methods prove particularly valuable when 
reference data are unavailable. Unsupervised methods employ 
algorithms such as NMF, EM and HMM to extract meaningful 
features and patterns from methylation profiles to deconvolve 
the cell proportions. However, unsupervised methods tend to be 
computationally intensive, complex and rely on certain assump-
tions. Furthermore, the interpretation of the resulting unlabelled 
proportions is much more challenging. 

To improve the precision and resilience of deconvolution, 
hybrid approaches have emerged, integrating elements of both 
unsupervised and supervised techniques. These methods strive 
to harness the advantages of both approaches, yielding outcomes 
that are more accurate and adaptable. Semi-supervised or 
partially based deconvolution methods utilize a small amount 
of labelled data in conjunction with unsupervised techniques, 
while hybrid methods combine multiple deconvolution models 

trained with different techniques or assumptions. By integrating 
unsupervised and supervised techniques, these hybrid methods 
yield more precise and reliable deconvolution results while 
reducing computational requirements. 

The evaluation of the performance of deconvolution methods 
requires ground-truth proportion data of mixed samples. The 
usage of artificial (in silico or in vitro) mixtures of known propor-
tions is one of the forms of benchmarking studies to validate 
the results obtained by the evaluated methods. Metrics such as 
correlation coefficients (Pearson, Spearman, Lin’s concordance, 
. . .  ) [38, 54, 60, 67–69, 73–76, 86, 87], root mean square error (RMSE) 
[60, 62, 67, 69, 79], adjusted R-squared [16, 38, 60, 68, 75, 76, 
86], accuracy [73, 83] and  P-value [16, 38, 54, 73–75, 78, 84] can  
be employed to gauge the accuracy and goodness of fit of the 
deconvolved proportions. 

In the domain of RNA-expression data deconvolution, tools 
have emerged that utilized single-cell RNA sequencing (scRNA-
seq) data instead of bulk RNA-Seq data as a reference. In contrast 
to bulk sequencing, single-cell analysis explores the cellular diver-
sity and variations between individual cells, resulting in more 
comprehensive reference sets for deconvolution. Given the rapid 
technological evolutions during the past few years, we are hopeful 
that single-cell DNAm profiling will become more feasible soon. 
Indeed, current technologies developed for single-cell DNAm pro-
filing mostly yield noisy and sparse data. Recently, as an alter-
native, EPISCORE [73] and scDeconv [92] have emerged as two 
methods that utilize scRNA-seq data to uncover the composition 
from bulk DNAm data, known as trans-omics deconvolution. 

In conclusion, during the past years, significant advancements 
have been achieved in the field of DNAm deconvolution, pro-
viding a wide range of tools and methodologies to generate a 
better view of the composition of a complex mixed sample. The 
integration of diverse data types, the advancement of single-cell
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analysis techniques and the development of hybrid approaches 
hold further potential for advancing the accuracy and resolution 
of deconvolution of bulk DNAm profiles of complex samples. 

Key Points 
• Computational deconvolution of DNAm data from 

mixed samples estimates the contributing cell-type pro-
portions. 

• DNA-methylation deconvolution tools can be classified 
into supervised, unsupervised and hybrid methods, all 
having their own strengths and limitations. 

• The choice of deconvolution methods depends on fac-
tors such as the availability, quality and completeness 
of reference data; the type of methylation data available 
and the platform used to obtain it; the sample size and 
resolution; and the desired level of accuracy and the 
experimental question to be answered. 

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxford 
journals.org/. 
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