
Article https://doi.org/10.1038/s41467-024-48675-6

Prediction of Klebsiella phage-host
specificity at the strain level

Dimitri Boeckaerts 1,2, Michiel Stock 2, Celia Ferriol-González 3,
Jesús Oteo-Iglesias4,5, Rafael Sanjuán 3, Pilar Domingo-Calap 3,
Bernard De Baets 2 & Yves Briers 1

Phages are increasingly considered promising alternatives to target drug-
resistant bacterial pathogens. However, their often-narrow host range can
make it challenging to find matching phages against bacteria of interest.
Current computational tools do not accurately predict interactions at the
strain level in away that is relevant andproperly evaluated for practical use.We
present PhageHostLearn, a machine learning system that predicts strain-level
interactions between receptor-binding proteins and bacterial receptors for
Klebsiella phage-bacteria pairs. We evaluate this system both in silico and in
the laboratory, in the clinically relevant setting of finding matching phages
against bacterial strains. PhageHostLearn reaches a cross-validated ROC AUC
of up to 81.8% in silico andmaintains this performance in laboratory validation.
Our approach provides a framework for developing and evaluating phage-host
prediction methods that are useful in practice, which we believe to be a
meaningful contribution to the machine-learning-guided development of
phage therapeutics and diagnostics.

Phages, bacterial viruses, are among Earth’s most abundant viruses1.
They typically have a limited host range at the strain level2,3, although
broad host range phages infecting multiple species have also been
described4,5. For this reason, phages and the proteins they encodehave
the potential to become precise therapeutics and diagnostics that can
target (multidrug-resistant) bacteria6. However, finding matching
phages against specific hosts of interest can be challenging in ecolo-
gical and therapeutic settings7,8.

In recent years, novel computational tools that predict interac-
tions between phages and their potential hosts have tried to overcome
this bottleneck8,9. Most of these tools are based on measuring the
similarity between a query phage genome and potential host genomes
or exploiting the similarity between the query phage genome and
other phage genomes (e.g., codon usage) with known hosts10. Two
such approaches are iPHoP andCHERRY. iPHoP is a two-stagemachine

learning framework developed by Roux et al.10. It integrates multiple
existing methods to make host predictions at the genus level for a
broad range of phages, with the goal of maximizing correct host pre-
dictions for metagenome-assembled viruses. This framework attains a
low false discovery rate (< 10%). CHERRY uses a graph-based deep
learningmodel that predicts hosts at the species level by incorporating
multiple types of interaction information (e.g., genome sequence
similarity, CRISPR signals, and others) in a multimodal graph11. Inter-
estingly, CHERRY can predict new interactions starting from a virus
query as well as from a prokaryote query. As Roux et al.10 argue, pre-
dictions at the genus or species level are essential within the context of
viral ecology. In clinical applications, however, knowing a phage’s
specificity at the strain level is typically desired12–14, which remains a
bottleneck for developing phage therapeutics and diagnostics. Prac-
tically, this could be overcome by developing models that predict
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phage-host interactions and make these actionable. For example,
prediction scores can be used to prioritize which phage-host combi-
nations should be tested in the laboratory, reducing labor-intensive
work to a minimal set of predicted top candidates to be validated.
Correspondingly, the overall tool should also be evaluated in amanner
that is representative of practical use.

Protein language models are increasingly popular frameworks
for machine learning applications at the protein level15–17. These are
state-of-the-art deep learning models that are trained on large
amounts of protein sequence data in a self-supervised manner.
Specifically, the models learn to predict the occurrence of amino
acids in the context of other amino acids. By training at an enormous
scale, these models effectively learn the underlying distribution of
naturally occurring proteins. A trained protein language model can
be used to generate accurate numerical representations for proteins
or be further tweaked for specific problems using a much smaller
dataset, a process called fine-tuning15. As a result, these large models
remove the need for explicit feature engineering and allow for an
end-to-end approach.

We have previously proposed a general, biology-informed multi-
layer machine learning approach to elucidate phage-host interactions
at the strain level bymakingpredictions at each stageof the replication
cycle18. In that approach, thefirst layer represents the initial interaction
between the phage receptor-binding proteins (RBPs) and the bacterial
surface receptors. Typically, RBPs constitute the primary determinant
of host specificity19. The study by Sørensen et al.2 aligns well with this
first layer. The authors computationally analyzed tail spike protein
diversity in 99 Ackermannviridae phages to determine phage host
specificity at the level of the interacting O-antigen receptors, effec-
tively at the strain level. However, this approach is not geared towards
applications in a clinical context, nor is it built into a tool that other
researchers can easily use.

In the present study, we develop and validate a new machine
learning approach called PhageHostLearn, which predicts the initial
interactions between RBPs and bacterial receptors for Klebsiella
phage-bacteria pairs at the strain level (Fig. 1a). PhageHostLearn is
developed as the first layer in the proposed multilayer machine
learning approach. Klebsiella pneumoniae is among the most promi-
nent multidrug-resistant pathogens worldwide20. The unique public
availability of interaction data for Klebsiella phage-host interactions
enables the development of prediction methods at the strain level, a
remaining bottleneck for most other bacterial species21. Klebsiella
bacteria produce capsule polysaccharides (CPS), also termed K-anti-
gens, which comprise sugar molecules that are present in repeats and
form a protective layer on the bacterial surface22. For most Klebsiella
phage-host interactions, the initial interaction consists of phage RBPs
recognizing the CPS and is typically the most important determinant
of host specificity3,23. Therefore, PhageHostLearn processes phage and
bacterial genomes into phage RBPs and bacterial K-locus proteins,
respectively. We use the ESM-2 protein language model to encode
protein sequences asnumerical vector representations,which are used
as input for an Extreme Gradient Boosting (XGBoost) model, a widely
used and broadly applicable method24. PhageHostLearn allows pre-
dicting interactions in both directions (i.e., from phage to bacterium
and vice versa), which is a typical example of pairwise learning25. Fur-
thermore, our approach outputs a ranking of potential phage candi-
dates for in vitro validation of a given bacterium. We thoroughly
evaluate this approach both in silico and in vitro, in the clinically
relevant setting of finding matching phages against a new bacterial
strain (Fig. 1b, c). We show that PhageHostLearn reaches a cross-
validated ROC AUC up to 81.8% in silico and can hold on to this per-
formance in the laboratory. Our approach ismade publicly available as
a tool that can be further improved over time. We believe this to be a
meaningful first step in the machine-learning-guided development of
phage therapeutics and diagnostics.

Results
Sequence data collection and processing
Phage genome sequence data, bacterial genome sequence data and
their in vitro verified phage-bacteria interactions were collected from
the Institute for Integrative Systems Biology (I2SysBio) in Valencia,
Spain as described by Beamud et al.3 and Ferriol-González et al.26. In
total, a diverse set of 105 phage genome sequences and 200 bacterial
genome sequences were collected. Spot tests were performed to test
for phage-bacteria interactions. Out of 10,006 spot tests performed in
total, 333 are confirmed interactions (3.33%). Interactions are con-
sideredpositive if a spot is visible using a 1:10 phagedilution, reflecting
an initial interaction between phage RBPs and host receptors (but not
necessarily a productive replication).

Phage genome sequences were processed in three consecutive
steps (Fig. 1a): (1) PHANOTATEwasused to identify genes in eachof the
phage genomes (McNair et al.,27); (2) phageRBPsweredetected among
the translated protein sequences of the identified genes, following our
method outlined in Boeckaerts et al.28; and (3) detected phage RBPs
shorter than 200 amino acids and longer than 1500 amino acids were
discarded, according to the range in length in which we expect RBPs29.
In total, 9727 genes were detected with PHANOTATE, and subse-
quently, 274 phage RBPs were detected among those identified genes.
We detected at least one RBP in each phage genome, and up to eight
RBPs in a single phage genome (Supplementary Fig. S1).

Bacterial genome sequences were processed with Kaptive30,31 to
identify the capsule synthesis locus (K-locus) in each of the bacterial
genomes (Fig. 1a). On average, each K-locus consisted of 19 proteins
that constitute the K-antigen (the number of proteins was between 10
and 25). A total of 89 different KL-types were identified using Kaptive
(out of a current estimate of 134 KL-types30), representing a significant
diversity in Klebsiella strains. The KL13 type was most often repre-
sented, while 45 different KL-types were only represented once (Sup-
plementary Fig. S2).

Multi-instance feature representations
We transformed phage RBPs and bacterial K-locus proteins into com-
bined numerical vector representations (so-called joint features), to
serve as input to the machine learning model (Fig. 1a). These repre-
sentations are so-called multi-instance representations32, combining
one or multiple RBPs per phage and multiple K-locus proteins per
bacterium.

We used the pre-trained ESM-2 protein language model
(t33_650M_UR50D configuration) to transform each of the RBPs and
K-locus proteins into a unique numerical vector33. The vectors corre-
sponding to the RBPs of the same phage or the K-locus proteins of the
same bacteriumwere averaged intomulti-instance representations for
each phage or bacterium. Finally, for each known interaction in the
dataset, the multi-instance representations of each phage and each
bacterium were concatenated into a final combined numerical vector
that represents a known phage-host pair.

A classification model that predicts interactions
We trained a binary XGBoost classifier to output prediction scores
reflecting how likely a phage-host pair will interact based on the
combined ESM-2 numerical vector representations described above
(Fig. 1a). The maximum depth of each tree, the learning rate, and the
number of estimators were tuned using stratified five-fold cross-vali-
dation (Table 1). The optimal maximum depth was 7, the optimal
learning rate was 0.3 and the optimal number of estimators was 250.

In silico evaluation of the model
Wehave evaluated ourmodel both in silico and in the laboratory in the
practical setting of finding which phages in the collection are themost
active against a given bacterial strain. A predictive model is useful if it
can effectively suggest themost appropriate phages to test, in thatway
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minimizingmanual analysis and laborious experimentalwork.We have
simulated this representative setting in silico by iteratively holding out
a single or group of the bacterial genome(s)with its phage interactions

at a time from the training set. Pairwise identity scoresbetweenK-locus
nucleotide sequences were used to construct groups at set thresholds
ranging from 75% to 100%. In each iteration, the held-out interactions
were predicted by the model and their prediction scores were used to
construct rankings of the predicted phages. The hit ratio, defined as
the probability of finding at least one matching phage, was computed
across the top-k ranked phages by comparing the ranked predictions
to the ground truth labels to quantify how well our model finds
matching phages. This process was repeated for values of k ranging
from 1 to the total number of phages, was repeated for each of the
grouped bacterial genomes in the dataset, and finally averaged across
all the iterations over the grouped bacterial genomes (Fig. 2a). This
mean hit ratio @ k provides a meaningful visualization of the average

Fig. 1 | PhageHostLearn overview and validation procedures. a. Overview of the
PhageHostLearn machine learning system. PhageHostLearn processes phage and
bacterial genomes into phage RBPs and bacterial K-locus proteins, respectively.
Phage RBPs belonging to the same phage and bacterial K-locus proteins belonging
to the same bacterium are combined into separate multi-instance representations
using ESM-2. These multi-instance representations are concatenated into com-
bined representations of the phage-host pairs. Finally, these representations are
given as input into an XGBoost model to make predictions and output a ranking of

top candidate phages to test against a given bacterium. b. In silico validation of the
PhageHostLearn system using a leave-one-group-out cross-validation (LOGOCV)
scheme thatmeasures theROCAUCandmeanhit ratio@ k as evaluationmetrics. c.
In vitro validation of the PhageHostLearn system using 28 high-risk K. pneumoniae
clinical isolates in Spain. The PhageHostLearn systempredicts a top-five ranking for
each of the clinical isolates. For each ranking, the top five phage candidates are
validated in the laboratory using phage spot tests.

Table 1 | Hyperparameters and their tested values in the
PhageHostLearn model

Hyperparameters Tested values

Maximum depth 3, 5, 7, 9

Learning rate 0.2, 0.3, 0.4

Number of estimators 250, 500, 750

The optimal values of the hyperparameters for the model are indicated in bold.
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probability of finding at least one hit in the top-k candidates suggested
by the model. For example, with our model, we expect to find at least
one hit in the top-10 in around 65% to 84% of the cases on average. The
model’s performance decreases as it makes predictions for bacterial

strains that are increasingly dissimilar from those seen in training
(blue-green curves) and stabilizes at thresholds around 90% identity, a
typical threshold fordefining uniqueKL-types31. Given amajority of KL-
type specific phage-host interactions in our dataset, we presume that

Fig. 2 | In silico validation results of PhageHostLearn. a. Mean hit ratio@ k of the
trained XGBoost model in a LOGOCV at decreasing thresholds for K-locus identity
(blue-green curves) and of an informedmicrobiologist approach (red). At the 100%
threshold for grouping, identical K-locus sequences are grouped together, either in
the training set or test set.b. ROCcurvewithAUCof the trainedXGBoostmodel in a
LOGOCV at decreasing thresholds for K-locus identity. c Histogram of the mean

top-10hit ratioagainst the numberofKL-types forwhich thathit ratiowasachieved.
There is a contrast between KL-types that are perfectly predicted (hit ratio is 100%)
andnot at all predicted (hit ratio is 0%).d–fHistogramsof the number of confirmed
interactions per bacterial strain related to the KL-types with amean top-10 hit ratio
of respectively 0%, 50–80%, and 100%.
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PhageHostLearn learns some robust patterns that are KL-type inde-
pendent, but currently overfits on KL-type specific patterns (which can
be observed by the decrease in performance from 100 to 90% iden-
tity). We have also simulated an informed microbiologist approach by
manually selecting froma subset of phages that are known to infect the
same KL-type as the bacterial strain at hand (red curve). PhageHos-
tLearn can reach a performance comparable to that of an informed
microbiologist at the highest threshold for grouping, however, given
the decrease in performance for only slightly lower thresholds, seems
to rely on very similar K-locus sequences to reach that level of per-
formance. In addition, we visualize the receiver operating character-
istic (ROC) curves (Fig. 2b) and measure their area-under-the-curve
(AUC) as a general performance metric of our model. The ROC AUC
can be interpreted as the probability that the model will score a ran-
domly chosen interacting phage-host pair higher than a randomly
chosen phage-host pair that does not interact. Ourmodel reaches ROC
AUC values between 65.7% and 81.8%. Expectedly, the mean hit ratio
differs across different KL-types, and there is a strong contrast
between the top-10mean hit ratio for the best and worst predicted KL-
types (Fig. 2c). Therefore, we constructed histogramsof the number of
confirmed interactions per bacterial strain belonging to the best and
worst predicted KL-types and the group in between. We observed that
the performance across KL-types can be related to the number of
confirmed interactions in those KL-types (Fig. 2d–f), highlighting the
need for an extensive training dataset with sufficient confirmed
interactions for each KL-type for optimal performance.

In vitro validation of the model with spot tests
A total of 28 carbapenem-resistantK. pneumoniae clinical isolates were
collected and sequenced in collaboration with the National Micro-
biology Center (CNM) in Madrid, Spain. These K. pneumoniae clinical
isolates comprised high-risk clones that are currently circulating in
Spain and included a total of eight different KL-types (KL17, KL24,
KL27, KL64, KL102, KL107, KL112, and KL151). Each of these KL-types
was alsopresent (at least once) in the training data. For eachof theseK.
pneumoniae clinical isolates, PhageHostLearn was used to predict
interactions and construct a ranking for the collection (I2SysBio) of 59
phages isolated on Klebsiella spp. reference strains and for which the
full genomewas available26. As these phageswere isolated onKlebsiella
spp. reference strains, they were not tested on all the KL-types present
in the test set of clinical isolates. Moreover, none of the phages were
tested before on these specific clinical isolates. The top-five ranked

phages for each K. pneumoniae clinical isolate were validated in the
laboratoryusing spot tests at 1:10 and 1:103 phagedilutions induplicate
or triplicate (for discrepant results). Spot tests were used for con-
sistency across model training and in vitro validation and because we
focused on the initial interaction between phage RBPs and host
receptors (not necessarily reflecting a productive replication). In an
additional effort, all 17 unique phages that were identified across the
different top-five lists, were tested against all the 28 clinical isolates to
examine potential false negatives. Finally, DefenseFinder was used to
find phage defense systems in the isolates’ genomes34.

One or more interactions were confirmed with spot tests for 16
out of the 28 bacterial isolates. Out of these 16 isolates, one or more
interactions could be confirmed at both dilutions for 12 of the isolates
(Supplementary Datasets 1–3). Said differently, across all the interac-
tions we tested, 33 could be confirmed at a 1:10 phage dilution and 16
of those could also be confirmed at a 1:103 phage dilution. These dif-
ferences between the two dilutions may indicate the presence of one
or more active phage defense systems (due to the occurrence of lysis
without successful replication at a 1:10 phage dilution). In total, we
have found 43 unique phage defense systems using DefenseFinder
(Supplementary Datasets 5). PhageHostLearn could correctly predict
hits in the top-five phage candidates for 15 of these isolates, corre-
sponding to a top-five hit ratio of 93.8% (Fig. 3a). Comparing the dif-
ferent KL-types, PhageHostLearn only missed 7 hits in total, for strains
of KL17, KL24 and KL27 (Supplementary Datasets 4). Overall, the
PhageHostLearn system retains its in silico performance, reaching a
ROCAUCof 79.3% in this in vitrovalidation, compared toup to81.8% in
silico (Fig. 3b).

Overall, the top candidates predicted by the XGBoost model are
often phages that have a broader host range, such as K65PH164,
K30λ2.2, K2064PH2, and K7PH164C4 (Supplementary Datasets 1).
Thesephages appear across the truepositives, false positives, and false
negatives (Table 2). Considering that these phages are not K-locus
specific, this result was to be expected based on our focus onRBPs and
K-locus proteins. Interestingly, the model often suggests a strategy
that a microbiologist would think also think of: testing all the broad
host range phages by default. The model also correctly suggests KL-
type specific phages (e.g., K54λ1.1.1 and K17α62) for five out of the six
clinical strains for which KL-type specific phages could be confirmed
experimentally (Supplementary Datasets 1). One KL-type specific
phage (K17α61) was wrongly predicted as a false positive in combina-
tion with some bacterial strains but was a false negative prediction in

Fig. 3 | Comparison of in silico and in vitro validation results of PhageHostLearn. a. Mean hit ratio@ k comparing the in silico validation and the in vitro validation of
the XGBoost model. b. ROC curve with AUC comparing the in silico validation and the in vitro validation of the XGBoost model.
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combination with other bacterial strains. These wrong predictions are
more challenging to explain from a biological perspective and could
equally be explained because of a lack of sufficiently similar data from
which the models can learn.

Moreover, themodel correctly suggested 78.8% (= 26 / [26 + 7]) of
all the confirmed interactions in the top-five. However, these seven
false negatives can be an underestimation, as we have not compre-
hensively tested all 59 phages against the 28 clinical isolates. In addi-
tion, the model also suggested 114 interactions that turned out to be
negative. This is intrinsic to using a ranking approach because top
suggestions are tested regardless of the prediction scores that are
assigned by the model, thus could also comprise phages that do not
adsorb to the host strain. Concretely, when all interactions for a given
bacterium received low scores, the five with the highest scores were
still tested.

Discussion
In this work, we developed PhageHostLearn, a machine learning sys-
tem that overcomes three current bottlenecks for phage-host inter-
action prediction in the context of phage therapeutics anddiagnostics.
First, the system predicts phage-host interactions at the strain level.
Second, it outputs prediction scores that can be used to recommend
top candidates, resulting in a more effective laboratory validation.
Third, we evaluated this system in the practical setting it will be used
for, i.e., predicting matching phages for new bacteria.

We specifically trained and evaluated our system to make pre-
dictions for Klebsiella phage-host pairs in an actionable format. The
unique data availability for Klebsiella allowed us to construct a
machine learning system capable of making predictions at the strain
level. Moreover, we have deliberately chosen to focus on phage RBPs
and bacterial K-locus proteins, as these proteins are involved in the
first step of the phage infection cycle and known to be a very deter-
mining factor of phage-host specificity formany Klebsiella phages3,23,35.
We hypothesize that the same approach could be extended to predict
phage-host interactions with similar biological characteristics at the
level of phage RBPs and host receptors. For example, Escherichia coli,
Salmonella enterica and Acinetobacter baumannii all have character-
istic O-antigens that many phages bind to through their RBPs36,37.
However, host-specific diversity (e.g., over 180 different E. coli

O-antigen serotypes compared to around 130 different Klebsiella K-
types) might be an additional challenge and might require larger
amounts of data38. In contrast, our approachmight be less relevant for
phages where specificity is less determined at the strain level (e.g.,
Staphylococcus phages)39. PhageHostLearn can also be extended to
include other typical phage receptors, such as outer membrane pro-
teins, flagella, and others, given that they can be annotated in the
genome.

A combined,multi-instance feature representationwas computed
using the ESM-2 protein language model (Fig. 1a). This way of com-
puting features is inspired by how state-of-the-art deep learning
architectures process natural language into numerical representa-
tions. The advantage of this type of approach is that it bypasses the
need for explicit feature engineering, such as computing codon usage
or k-mer frequencies, which is seen in many earlier approaches. These
methods result in combined multi-instance representations that
represent the phage-host pairs together. The XGBoost model, on top
of these combined multi-instance representations, outputs prediction
scores that can be used to propose top phage-host candidates to test.
We show that our machine learning system suggests top candidates
better compared to a typical microbiologist approach. However, we
hypothesize that there may be better ways of aggregating individual
ESM-2 protein representations into multi-instance representations
compared to our simple approach of computing a column-wise mean.

PhageHostLearn produces prediction scores that can be used to
rank top phage candidates for a given bacterium, a practical output
format that is directly actionable and can guide effectively in vitro
validations (Fig. 4). At the same time, a ranking removes the need to set
an arbitrary cutoff on the prediction score abovewhichpredictions are
interpreted as interacting phage-host pairs. The ranking is closely
linked to the way we evaluate our model in silico and in vitro: by
instructing themodel to predict interactions of given phages against a
new bacterium and evaluating to what extent the model is useful in
assigning higher prediction scores to matching phages (effectively
resulting in a ranking that is useful in practice).While both the in silico
and in vitro evaluations provide evidence of the model’s accuracy and
robustness, a larger and more diverse set of clinical isolates for the
in vitro evaluation is expected to further increase the robustness of the
evaluation. The current in vitro hit ratio @ k was higher than the in

Table 2 | Concordance of the predictions by our model with laboratory confirmations by means of a confusion table

Case Model prediction In vitro result Count Prevalent phages

True positive Top-five Interaction 26 K65PH164, K30λ2.2, K2064PH2, K7PH164C4

False positive Top-five No interaction 114 K65PH164, K2064PH2, K29PH164C1, K17α61

False negative Outside of top-five Interaction 7 K2064PH2, K7PH164C4, K17α61, K30λ2.2

True negative Outside of top-five No interaction Not considered –

Counts of true positives, false positives, and false negativeswith themost prevalent phages in each category across all the top-five laboratory-confirmed interactions (140 in total), supplemented by
the interactions tested in all 17 unique phages across the different top-five lists for counting the false negatives. The true positives were the predictions in the top-five recommendations that were
confirmed in the in vitro validation. The false positiveswere the predictions in the top-five recommendations that couldnot be confirmed in the in vitro validation. Finally, the false negativeswere the
interactions that could be confirmed in the lab across the 17 tested phages that were not predicted in the top-five recommendations.

Fig. 4 | PhageHostLearn can guide effective laboratory validation of clinical bacterial isolates that are sequenced. The system produces prediction scores that are
used to construct a ranking of phage candidates, which is an actionable format from which laboratory validation can be focused on the top-k ranked phages.
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silico hit ratio @ k, but we would expect the in vitro curve to move
down towards the in silico curve as the number of isolates to test on
increases. In addition,wenotice that such a ranking can include (many)
false positives, an inherent trait of a ranking approach, given that we
expect few interacting phage-host pairs overall for Klebsiella phage-
host pairs. Only 3.33% of the interactions in the training data could be
confirmed, which translated to finding one hit among every 30 phages.
In a practical setting, we argue that avoiding false negatives is, up to a
certain extent, more important than avoiding false positives. Two
strategies can be further explored to balance false positives and false
negatives: (1) setting an additional (albeit low) threshold on the pre-
diction score; however, this could still make balancing false positives
and false negatives difficult given the natural skew towards negative
interactions in Klebsiella phage-host pairs; or (2) considering a flexible
top-k ranking that would depend on the KL-type. For KL-types for
which the model is very accurate, a smaller top-k can be considered
(resulting in fewer false positives), while for KL-types that are more
difficult to predict accurately, a larger top-k can be tested in the
laboratory.

Importantly, we have not explicitly evaluated PhageHostLearn at
the level of individual RBPs and their ability to bind to a specific K-
antigen, as RBP-level validated interactions are unavailable. While
some phages in the dataset consist of only a single RBP, and we would
expect themodel to learn these direct relationships between RBPs and
their interacting K-antigen, most phages consist of two or more RBPs.
For this reason, we do not know how accurate the model is in pre-
dicting KL-type specificity at the level of individual RBPs, nor can we
assess how useful the model would be in assisting RBP engineering
efforts to adjust the host range. These application settings can be
further explored to broaden the model’s usefulness.

More generally, PhageHostLearn represents a specific approach
to predicting phage-host interactions at the level of the initial recog-
nition of bacterial receptors by phage RBPs. Several other approaches
exist for predictions at the species, genus, or higher levels, which are
useful within different contexts8,9. For Klebsiella phage-host interac-
tions, we argue that focusing on RBPs and their interacting K-antigens
is appropriate and useful. However, phage-host pairs that do not
interactwith theK-antigenwill currently bemissed.Moreover, we have
identified several phage defense systems in the clinical isolates, and
the spot test results further suggest the importance of such defense
systems. Due to the abundance of defense systems, we could not find
clear correlations between defense systems and observed or absent
phage-host interactions. Meanwhile, the presence of these systems
underscores the relevance of also including such systems as informa-
tion in machine learning models, for which we have proposed a multi-
layer machine learning approach earlier18. PhageHostLearn is devel-
oped to serve as the first layer in that approach. Alternatively, high-
capacity deep learningmodelsmight provide anotherwayofmodeling
the infection process in its entirety, providing that sufficient amounts
of data are available to train these complex models.

In summary, this work represents a first-of-its-kind approach that
demonstrates the feasibility of predicting phage-host interactions at
the strain level, given a comprehensive dataset of interacting phage-
host pairs and their genomes.Moreover, the PhageHostLearn system is
actionable and is evaluated in apractical setting. In thatway,webelieve
PhageHostLearn meaningfully contributes to ongoing efforts in the
machine-learning-guided development of phage therapeutics and
diagnostics.

Methods
Sequence data collection and processing
Phage genome sequence data, bacterial genome sequence data and
their in vitro verified interactions were collected from the Institute for
Integrative Systems Biology (I2SysBio) in Valencia, Spain, as described
by Beamud et al.3. This included collecting 138 clinical Klebsiella strains

from the Valencia region, spanning 59 different KL-types. These data
were supplemented by an additional collection of phage-host inter-
action data for phages isolated onKlebsiella spp. reference strains that
were sequenced with Illumina sequencing26. For both data sets, spot
tests were carried out before in triplicate to verify Klebsiella phage-
host interactions at a tenfold phage dilution, reflecting an initial
interaction between phage RBPs and host receptors (but not neces-
sarily a productive replication). In addition to the spot tests, Beamud
et al.3 further confirmed phage-host interactions with positive spot
tests using a planktonic killing assay, measuring bacterial growth
inhibition at OD600nm for at least 16 h.

Phage genome sequences were processed in three consecutive
steps. In the first step, PHANOTATE was used to identify the genes in
each phage genome27. Genes were identified without the use of
tRNAscan-SE40. The second step involved translating the phage genes
into proteins and detecting phage RBPs among them, for which we
followed the method outlined in Boeckaerts et al.28. Briefly, this
detection involves (1) computingHMMbit scores for eachof the phage
proteins against a manually curated set of RBP-related HMMs, (2)
computing ProtBert-BFD embeddings for each of the proteins and (3)
using both the bit scores and embeddings together as numerical
representations in an XGBoost classifier that discriminates phage RBPs
from other phage proteins. The code for this method was made pub-
licly available. Finally, the third step in processing phage genomes
involved discarding detected phage RBPs shorter than 200 amino
acids and longer than 1500 amino acids, which is the range in length in
which we expect RBPs, based on Latka et al. (2019) 29.

The bacterial genome sequences were processedwith Kaptive30,31.
More specifically, Kaptive was used to identify the capsule synthesis
locus (K-locus) in each of the bacterial genomes using BLASTN against
published K-locus reference sequences. The coding genes in each
detected K-locus were translated into protein sequences and stored
for further transformation into numerical features. When Kaptive
detectedmissing genes, the corresponding reference gene of the best-
matching KL-type was used for further processing. All the code for
these analyses and processed data are made available through GitHub
(https://github.com/dimiboeckaerts/PhageHostLearn) and Zenodo
(code: https://doi.org/10.5281/zenodo.11074747; data: https://doi.org/
10.5281/zenodo.11061100).

Multi-instance feature representations
Phage RBPs and bacterial K-locus proteins were transformed into
combined numerical vector representations (so-called features),
representing both the phage and the bacterium together. We com-
puted multi-instance representations using the pre-trained ESM-2
protein language model (t33_650M_UR50D configuration) that takes a
single protein sequence as input and outputs a 1280-dimensional real
vector that represents the protein33. Using ESM-2, each of the RBPs and
K-locus proteins was transformed into a unique numerical vector.
Next, the vectors of the RBPs corresponding to the same phage were
averaged into a multi-instance representation for each phage. In the
same way, the vectors of the K-locus proteins corresponding to the
same bacterium were averaged into a multi-instance representation
for that bacterium. Finally, these two multi-instance representations
were concatenated into a combined 2560-dimensional vector repre-
senting a phage-host pair. These combined multi-instance feature
representations then served as input for our machine learning model
to learn interactions between knownphage-host pairs and predict new
interactions.

A classification model that predicts interactions
The ESM-2-based feature representationwas used as an input to train a
binary XGBoost classifier. XGBoost is a nonlinear machine learning
method that sequentially fits decision trees to improve the overall
performance of the ensemble model. It is widely used for its broad
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applicability and performance on unstructured data24. Three hyper-
parameters were tuned using stratified five-fold cross-validation: the
maximum depth of each tree (which influences the complexity of the
model), the learning rate (which controls the optimization process),
and the number of estimators (which refers to the number of boosting
rounds that are done).

In silico evaluation of the model
We have simulated the practical setting of finding candidate phages to
test against a host of interest in silico by using our model to construct
rankings of the predicted phages based on their prediction score.
Then, we computed twometrics to evaluate ourmodel performance in
this setting: the mean hit ratio @ k and the ROC AUC. The mean hit
ratio @ k, defined as the probability of finding at least one matching
phage in the top k, provides a meaningful visualization of the average
probability of finding at least one hit in the top-k candidates suggested
by themodel. More specifically, we have iteratively held out a single or
group of bacterial genome(s) and its interactions at a time from the
training set. After training, the model predicted the held-out interac-
tions (consisting of different phages for one ormore bacterial strains),
and the prediction scores were used to construct rankings. We used
these rankings to compute the hit ratio by comparing the top-k ranked
predictions to their ground truth label. This process was repeated for
values of k ranging from 1 to the total number of phages, resulting in a
value for hit ratio for each of the values of k. Finally, this process was
repeated for each of the groups of bacterial genomes in the dataset,
iteratively taking out one group at a time, training themodel on all the
remaining data, and computing the hit ratio @ k for the constructed
rankings. All these values for hit ratio were then averaged across the
number of bacterial genomes to produce a final mean hit ratio @ k,
reflecting the average probabilities of finding hits in the top k candi-
dates suggested by the model. Practically, we accomplished this eva-
luation by implementing a leave-one-group-out cross-validation
scheme (LOGOCV) in which each group represents one or more bac-
terial genomes and its associated interactions thatwere iteratively held
out one by one for testing. Pairwise identity scores between K-locus
nucleotide sequences were used to construct groups at set thresholds
ranging from 75% to 100% (with identical sequences being grouped in
either training set or test set at 100%). We have also simulated an
‘informedmicrobiologist’ approach, inwhich phages that are known to
infect the same KL-type were prioritized to construct the ranking. If
such phages were found for a given bacterium at hand, the order of
suggested phages was further prioritized based on the number of
other KL-types they additionally infect, i.e., prioritizing narrow host
range phages, as they typically exhibit a higher fitness41. Conversely, if
no phages were found that infect the same KL-type, the broadest host
range phages were prioritized.

In addition, we computed and visualized the ROC curve and
computed its area-under-the-curve (AUC) in the same LOGOCV, with-
out constructing a ranking. The ROC AUC can be interpreted as the
probability that the model will score a randomly chosen interacting
phage-host pair higher than a randomly chosen phage-host pair that
does not interact.

In vitro validation of the model with spot tests
A total of 28 currently circulating and carbapenem-resistant Klebsiella
pneumoniae clinical isolates were collected and sequenced with Illu-
mina in collaboration with the National Microbiology Center (CNM) in
Madrid, Spain. Bacteria were isolated in several Spanish hospitals from
samples of urine, blood, abscess, wound, ulcer, and rectal exudates.
The bacterial genomes were sequenced with Illumina sequencing.
Afterwards, the bacterial genome sequences were processed with
Kaptive as before. Each of these genomes was used as an input into
PhageHostLearn topredict interactions and construct a ranking for the
collection (I2SysBio) of 59 phages isolated on Klebsiella spp. reference

strains and for which the full genome was available. The top-five
ranked phages for eachK. pneumoniae clinical isolatewere validated in
the laboratory using spot tests in semi-solidifiedmedia at 1:10 and 1:103

phage dilutions (in liquid broth) in duplicate or triplicate (for dis-
crepant results). First, bacterial cultures were inoculated from glycerol
stocks and grown overnight at 37 °C in liquid broth. Phage stocks were
aliquots of an amplification in liquid broth and stored at −80°. Spots
were done by adding drops of 1μl at 1:10 or 1:103 phage dilution to
bacterial lawns of 200μL of each of the 28K. pneumoniae isolates and
3.5mL of 0.3% LB top agar in Petri plates. To assure the quality of the
phage stocks, each phage was also tested on its isolation strain at 1:10
and 1:103 phage dilutions as positive controls. Plates were incubated
for 24 h at 37 °C.

A spot was considered positive at a certain dilution if either clear
plaques were observed or cases in which it was not possible to dis-
tinguish clear plaques were observed (potentially indicating lysis from
without but a positive RBP-receptor interaction), both for phages
tested against the clinical isolates and the positive controls. The
absence of spots was considered a negative result. At least two repli-
cates of the experiment were performed, and a third replicate was
performed if discrepancies were observed. In those cases, the final
result was negative if spots for at least two replicates were absent and
positively scored if at least spots for two replicates were confirmed at a
certain dilution. Laboratory confirmations were used to visualize both
the hit ratio @ k and ROC AUC in the same way as before. Finally,
DefenseFinder was used to find phage defense systems in the isolates’
genomes34.

Thebiologicalmaterials used in the in vitro validationof this study
are available from the Institute for Integrative Systems Biology
(I2SysBio, contact: pilar.domingo@uv.es) and the Spanish Micro-
biology Center (CNM, contact: jesus.oteo@isciii.es) under a data use
agreement upon request.

Inclusion and ethics statement
This research is a collaboration between Belgian and Spanish
researchers related to five different research groups. The research is
especially relevant in both countries, focusing on Klebsiella pneumo-
niae, a highly relevant pathogen in clinical settings. Klebsiella is by
extension also globally relevant including in low- and middle-income
countries. The research made use of currently circulating and
carbapenem-resistant Klebsiella pneumoniae clinical isolates, working
together with the National Microbiology Center (CNM) in Madrid,
Spain. Responsibilities for this research were agreed amongst colla-
borators aheadof the research.Where possible, local relevant research
was taken into account in citations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used and generated in this study have been deposited in
Zenodo under accession code 11061100. These data include (1) the raw
sequence data collected in FASTA format from Beamud et al.3. and
from Ferriol-González et al.26; (2) the processed data that were used in
the analyses and to train and evaluate themachine learningmodel and
(3) the phage-host interaction data in a.csv format.

Code availability
Weprovide full availability of our code throughGitHub (https://github.
com/dimiboeckaerts/PhageHostLearn) and Zenodo (https://doi.org/
10.5281/zenodo.11074747). Sequence data were processed using
PHANOTATE v1.5.0 (https://github.com/deprekate/PHANOTATE),
PhageRBPdetection v2.1.3 (https://github.com/dimiboeckaerts/
PhageRBPdetection) and Kaptive v2.0.0 (https://github.com/
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klebgenomics/Kaptive). Feature representations of processed
sequences were computed using ESM-2 v1.0.3 (https://github.com/
facebookresearch/esm). The machine learning model used XGBoost
v1.5.0 (https://github.com/dmlc/xgboost) and we evaluated themodel
using cross-validation andmetrics implemented in Scikit-learn v0.24.2
(https://scikit-learn.org/stable/). Furthermore, our code pipeline uses
python v3.9.7, biopython v1.79, joblib v1.1.0, json v4.2.1, matplotlib
v3.4.3, numpy v1.20.3, pandas v1.3.4, pickle 0.7.5 and seaborn v0.11.2.
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