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ABSTRACT Targeted drug delivery by magnetically steering micro- and nanoparticles for specified therapy
is gaining ground in the field of medical treatments. Yet fundamental challenges with regards to modeling
particle movement and reaching desired regions exist. In this work, we use data-driven modeling to predict
the velocities of a particle cluster from its positions and electromagnet currents in an in-vitro targeting
setup. This explicit velocity prediction using a neural network, not found in previous works on this topic,
is compared to a state-of-the-art physics-based model, and produced more accurate estimated particle cluster
trajectories. Furthermore, for the first time, the data-driven model is integrated in model-based optimization
methods designed to maximize the particle velocity in a predefined direction, or guide particles from an
initial to a final position under minimized energy dissipation taking into account future time steps without
requiring real-time feedback. Simulated and measured optimized particle trajectories strongly overlap in the
experimental setup. With these findings, magnetic drug targeting can be made more accurate and brought
closer to its clinical implementation.

INDEX TERMS Data-driven model, magnetic drug targeting, magnetic particle navigation, optimization.

I. INTRODUCTION
Magnetic micro- and nanoscale particles and robots are
increasingly being investigated for biomedical purposes such
as disease detection [1], [2] and targeted drug delivery [3],
[4], [5]. The latter, a field often referred to as magnetic drug
targeting (MDT), revolves around the direction of magnetic
entities carrying therapeutics towards diseased regions in the
human body [6]. Particles in the human body are subjected
to magnetic forces to navigate through vessel networks (e.g.
hepatic arteries [7]) or cross biological membranes (e.g. the
blood-brain barrier [8]). The guiding or steering of these
magnetic carriers is effectuated with external electromagnets
to circumvent the need for invasive surgery.
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An essential part of MDT is the prediction of the particle
or microrobot movement under magnetic field gradient and
bloodstream influences. Accurate models can be used in
decision-making algorithms for electromagnet currents to
guide particles towards desired locations or along predefined
trajectories for effective targeting [9], [10], [11], [12], [13].
In literature, one identifies different force components acting
upon particles and simulates the equation of motion [14],
[15], [16], [17], [18], [19], [20]. These are magnetic forces,
fluid forces, gravitational and buoyant force, contact forces,
etc. Furthermore, diffusion and advection forces have been
investigated to calculate the spatial concentration distribution
of particles in the vessels as a function of time [21], [22],
[23]. All models in those works are drawn from physical
first principles (e.g. the magnetic dipole force model [24])
and empirical formulas (e.g. for blood viscosity [23]).
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Models can also be developed from measurements. The
field of machine learning (ML) is dedicated to learning
behaviors and predicting values or patterns purely from
data [25], [26]. Advantage of the data-driven approach is
that uncertain parameter values, such as difficult to measure
magnetic particle properties, do not need to be known
to fit the model. In the context of modeling magnetic
targeting, ML has been applied [27], [28], [29], [30].
In [27], Yu et al. used random forests and artificial neural
networks (NN), two ML methods, to predict the magnetic
fields in a biomedical electromagnetic navigation system
with magnetic sensor arrays. The random forest and neural
network outperformed the usual physics-based approach with
a 40% and 87% reduction of the root mean squared error
when predicting the magnetic field magnitude, respectively.
Neural networks have also been employed to model the
linear velocity of a swimmingmagnetic miniature robot, from
recordings of the magnetic field, frequency, and a geometry-
related angle [28]. Yang et al. predicted the behavior of
swarms of particles [29]. From color camera images of
current particle distributions, orientations, and environments,
the particle swarm locations and orientations in the next
time step are identified by a neural network trained on a
dataset generated by a simulation engine. Lastly, in [30],
a neural network was trained to map a relationship between
coil currents and the aggregation center of microagents.
These current ML implementations in MDT do not provide
a clear answer to explicitly establishing a relation between
the velocities of magnetic particles and applied electromagnet
currents, which is useful for the prediction of trajectories and
integration in particle steering algorithms. Also, collecting
real-life instead of simulated data for training needs to
be addressed. We develop in this work a NN estimating
the velocity of a cluster of magnetic particles from a
dataset of electromagnet currents, positions and velocities
obtained on a self-made experimental setup. The particle
velocity as explicit model output allowed a comparison
with a state-of-the-art physics-based model in terms of
performance and was not found in the papers on this topic.
No characterization of the electromagnets and used particles
was needed for the NN. Moreover, we trained the model on
real-life measurements rather than a simulated environment.
The accuracy of both the data-driven and the physics-based
model is low on data outside the training domain. Expanding
the training data range clearly improved the performance
of the data-driven model, while having only a small effect
on the physics-inspired model. Lastly, from data collected
in-vitro, our model can predict the magnetic force acting on
particles, which is not strongly affected by their surrounding
medium. Once particles are introduced in-vivo, this magnetic
force model remains applicable for estimating particle
trajectories.

Optimization algorithms for particle navigation with
the data-driven model are investigated next. The control
of particle movement over time requires the actuation
of optimized electromagnet currents. Under the resulting

magnetic fields and gradients, the particles are able to follow
a certain path or reach a point against fluid forces in a
region of interest. Electromagnet activation schemes to get
particles in the desired branch of bifurcated vessels have been
reported to this end [31], [32], [33]. Furthermore, researchers
have applied algorithms drawn from control theory. For
example, Probst et al. created a 2D setup for magnetic
nanoparticle steering and a feedback control method to steer
particles along arbitrary trajectories [9]. Its controller design
was further elaborated upon by Komaee and Shapiro [10],
[11], [34]. In [12], [35], and [36], Khalil et al. showed
magnetic microparticles being guided in stationary and time-
varying fluid flows using proportional-derivative and optimal
control. Others have implemented minimization problems
to manipulate a spatial domain of multiple particles [13].
In earlier work, we have devised optimization strategies
to guide particles: on the one hand the magnetic particle
force along a predefined direction was maximized, and on
the other hand particles in dynamically optimized magnetic
fields were manipulated from an initial to a final position
in a time interval [37], [38]. All of these studies make
use of physics-based in-silico models, which represent
an idealized version of reality. Real-time tracking of the
particle locations is then necessary to successfully apply the
steering algorithms. This is a limitation in in-vivo targeting
problems, where obtaining accurate particle locations and
distributions is a complex procedure and ongoing topic of
research [39], [40]. The optimal control algorithms in [11]
and [13] were not verified experimentally. In the current
study, we have replaced the physical model with a data-driven
model in the optimization and experimentally validate the
performance on the targeting setup. Thanks to the predictive
approach, no real-time position feedback is required. The
data-drivenmodel provides satisfactory reliability and as such
a successful particle guiding is enabled without requiring
any prior knowledge on coil geometry and magnetic particle
properties, and potentially unknown parameters that occur
in-vivo.

Other studies have applied learning-based methods for the
trajectory control of (swarms of) microrobots [28], [29], [41].
In [41], a real-time servo controller is designed by training
a NN on multiple desired trajectories of a microswimmer.
Deep (reinforcement) learning was successfully implemented
in [28] for miniature robot control and in [29] for navigating
swarms of microrobots. These methods allow model-free
navigation of particles under unknown flow rates and obsta-
cles crossing their path, learned in simulated environments.
The neural network trained particle/robot behavior is in all
these cases immediately combined with the optimization goal
and real-time tracking to get the desired magnetic fields
and other inputs at each time step. We on the other hand
identified a separate model for the particle movement that
can be interpreted against physical models, and added a
predictive aspect with multiple future time steps to control
the movement of particles, also validating prior model-based
control algorithms.
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The structure of this paper is as follows. In Section II,
we discuss the targeting setup as built in our lab, the
experiments executed to obtain the data, the physics-based
and neural network model, and finally the particle targeting
optimization methods. Results of the neural net performance
are compared to the physical model, and the optimizations are
evaluated in Section III. The findings are further commented
on and discussed in Section IV, with a conclusion and outlook
of this work in Section V.

II. MATERIALS AND METHODS
A. SETUP AND EXPERIMENTS
In magnetic targeting, the aim is to navigate particles in
a certain direction or towards a certain point. The particle
trajectories result from the forces acting upon it, which are the
magnetic force from field gradients, fluid drag force, particle
interaction force, gravitational force, etc., and are predicted
using Newton’s second law of motion [18]. The magnetic
field gradient is generated by nearby electromagnets carrying
user-controlled currents, making it the only force component
that can be adjusted directly. We write, for a cluster of
aggregated particles,

mpẍ = Fm(x,u) +

∑
i

Fi (x, ẋ) (1)

where x, ẋ, ẍ are respectively the position, velocity, and
acceleration of the cluster center, mp is the cluster mass,
Fm the magnetic force which depends on the position and
nu controllable coil currents u ∈ Rnu×1, and Fi expresses
the remaining forces acting upon the particle cluster as a
function of particle size and type, medium viscosity, etc.
These relations can be modeled from physical principles to a
certain level of detail, posing a trade-off between calculation
time and accuracy. The most important physical models have
been discussed in [19] and [20].

In this work, we consider a single particle cluster and
restrict its movement to two dimensions. This is done
by developing a 2D magnetic targeting setup similar to
the ones found in [9], [36], and [42]. It allows particle
movement in 2D with four self-wound electromagnets
(200 turns, diameter 54 mm, wire thickness 1 mm, air core,
resistance 1.4 �) surrounding a petri dish (Corning Gosselin
90 mm × 14.2 mm) containing microparticles on the water
surface, as shown in Fig. 1. Each coil current is independently
actuated with a bipolar DC current source (Kepco BOP36-
12M) connected to a pc (Intel Core i7-8700 @ 3.20 GHz,
16 GB RAM) and dSPACE module for digital-to-analog
conversion. The particles are iron oxides within a size range
of 10-200 µ m. The position of the particles is recorded
with a camera (Jai GO-5000C-USB with Kowa LM25HC
lens, 2560 × 2048 px, 61.9 Hz) and the Python OpenCV
image processing package. First, the imaging is calibrated by
drawing the region of interest within the petri dish, making
the center of a yellow dot the origin of the xy frame, and
drawing a blue dot to define the x axis as the line between
the yellow and blue dot. The actual distance between both

the dots is exactly 3 cm, which provides a relation between
pixel values and actual position in centimeters. The colored
dot pixel positions are determined by masking the RGB
color values, grayscaling, and thresholding to obtain a black
blob against a white background. Then, we get the blob
contour and the pixel coordinates of the blob centroid with
the OpenCV functions findContours() and moments(). The
pixel coordinates are then transformed into xy coordinates
with respect to our frame of reference. The particle cluster xy
position is acquired in the same way, by taking the centroid
of the cluster’s contour as coordinates. Fetching the image
and computing the cluster coordinates on the connected lab
pc takes 0.03 s (sampling frequency of 33 Hz and 61.9 camera
frames per second). A view of all the setup parts is provided
in Fig. 2.

The restriction to 2D movement allows us to validate
our developed methods as a proof-of-concept with reduced
complexity. Many magnetic targeting solutions have been
approached in two dimensions [33], [43], [44]. A pos-
sible expansion to a setup in 3D requires at least two
additional electromagnets along the z axis and one more
camera for imaging a third position coordinate. Furthermore,
a reservoir would be needed with a liquid medium in
which particles are free to move. The same principles
as described for our 2D setup hold up, albeit with more
complex hardware and software due to the added z coordinate
and coil currents. The novel methods presented in this
research are applicable to any setup with controllable
electromagnets.

For our data gathering experiments, we iteratively generate
random coil currents between −4 and 4 A for 1.5 s
and register the time instant and position coordinates each
0.25 s in multiple experimental runs. Our camera and
pc’s coordinate sampling frequency of 33 Hz surpasses
the frequency of 4 Hz at which we collect data. The pc
and software dependent time delay between acquiring the
camera image and storing a position xy coordinate, which
should be verified in each specific system and setup for this
purpose, can be accounted for in the time series dataset.
Most processors, cameras, and controllers can operate at
high sampling rates and response times compared to the
relatively low particle velocities in MDT. The particle cluster
moves in one single shape as required for the continuity of
the data and models, and within a radius of 18 mm from
the center of the setup (the origin). This assumption holds
in many in-vivo environments, where clusters tend to keep
their shape as blood velocities are too low to break them
up and conditions within the region of interest are relatively
constant [45].
Particles close to one of the coils end up irrevocably

trapped at the petri dish edge because of the strong attraction
to the nearest coil. To avoid this, a condition was programmed
to activate only the farthest coils and attract the cluster
away from the domain edge back towards the center. The
domain of operation is dependent on the setup and the
application. A graphical representation of the experimental
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FIGURE 1. Photo of magnetic targeting setup (above) and camera image
of the petri dish filled with water and particles on the surface (below).
The yellow dot corresponds with the origin of the xy reference frame and
the blue dot is on the x axis at 3 cm from the origin. This is used for
automated camera image calibration.

FIGURE 2. View of the full setup and its componenents. A pc (1) is
connected to a dSPACE module (2). This converts digital signals to an
analog signal actuating the current sources (3) and consequentially the
electromagnet fields in the setup (4). Resulting magnetic gradients move
the magnetic particles present in the petri dish, with positions recorded
using a camera (5) connected to pc (1) for image processing. Spotlights
(6) maximize the contrast and make sure that results are independent of
ambient light (turned off in this photo for clarity).

data-gathering is shown in Fig. 3. The resulting dataset
consists of 2D positions x, four currents u (nu = 4), times t ,

and velocities v, computed through numerical differentiation
vk =

xk+1−xk
tk+1−tk

. A total number of 15981 observations
of time instants, electromagnet currents, and cluster posi-
tions was obtained over an experimental runtime of about
67 minutes. The physical validity of each observation was
checked.

In the next section, we aim to predict the cluster velocity
from its position and the applied electromagnet currents from
the measurements.

FIGURE 3. Schematic of the data-gathering experiments. Each 1.5 s, the
four currents are changed to new random values, while recording the
particle cluster position x each 0.25 s, corresponding to the blue circles.
When the particle reaches the edge of the predefined domain,
a programmed condition activates the coil on the opposite side to attract
the particle back towards the center.

B. PHYSICS-BASED AND NEURAL
NETWORK MODEL
A single particle or a small cluster of particles with 2D
planar movement is considered in this work. The external
forces acting upon the particle(s) are hence reduced to the
magnetic force fromfield gradients [24] and the drag forceFd
from the liquid medium [46]. Weight, buoyancy, interaction,
and contact forces are not present or cancel each other out
as the cluster moves horizontally. Thus, (1) is reduced to
mpẍ = Fm + Fd . According to Stokes’ theorem [46], the
drag force on a particle in a liquid medium can be modeled
as Fd = ζ (vf − v), where v = ẋ is the particle velocity,
vf the liquid velocity, and ζ = 6πηλf Rp depends on
the liquid viscosity η, the particle radius Rp, and geometry
correction factor λf , which equals 1 in the case of spherical
particles [19], [47]. It was noticed during our data gathering
experiments that the particle (cluster) quickly changes course
at the instant the magnetic fields are switched. For a spherical
Fe2O3 particle with radius Rp = 30 µ m, density ρ =

5.3·103 kg/m3 in water (η = 1mPa·s), the parameter ζ = 5.7·
10−7 kg/s is approximately 1000 times larger than particle
mass mp = ρ 4

3πR
3
p = 6 · 10−10 kg. The cluster acceleration

is computed using ak =
vk+1−vk
tk+1−tk

and multiplied by the mass
to compare the inertia term mpẍ to the drag force −ζ ẋ. The
magnitude of the drag force was on average 2500 times
the inertia term, and hence is negligible. The assumption of
zero inertia is often made within the context of magnetic
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targeting with nano- and microparticles [17], [21]. At higher
viscosities, e.g. 3 mPa·s for blood, the low impact of inertia
would be even more pronounced. The experiments could be
conducted in the same way with a medium more viscous
than water. The same methods as developed in this work
would apply.

From the above analysis, wemaywrite the particle velocity
as an unknown function of the 2D particle positions and four
electromagnet currents:

f : R2×1
× R4×1

−→ R2×1, (x,u) 7→ v = f (x,u)

f is identified on the one hand by a physics-inspired model
of which the parameters are fitted to the experimental data,
and on the other hand a purely data-driven regression using
methods from machine learning. Approximations of f will
be denoted as v̂, indicating that it is the estimated cluster
velocity. Establishing this explicit relation is useful to assess
and optimize a wide range of magnetic targeting problems,
and was not found in previous papers.

The physics-based approach requires a parametrized
expression for Fm next to the drag force Fd = −ζv. In any
externally applied magnetic field B = µ0H , a magnetic
dipole with moment m experiences a force Fm = (m · ∇)B
[24]. The particle cluster is approximated as a single dipole
which quickly aligns with the external field H and saturates
as a function of this field’s magnitude. We model this through
the hyperbolic tangent function with unknown parameters
k1 and k2 to obtainm = k1 tanh (k2∥H∥) H

∥H∥
orm = 0 when

no field is present [48]. k1 and k2 need to be determined.
These parameters and the relation between particle geom-
etry, magnetization, and applied magnetic field could be
characterized through precise magnetic measurements and
spectral analysis [49], but here this process is avoided by
our model identification approach, which is one of its great
advantages.

From the force equilibrium 0 ≈ Fm + Fd , the particle
velocity is either zero (H = 0) or

v̂(x,u) = µ0ζ
−1k1

(
tanh (k2∥H∥)

H
∥H∥

· ∇

)
H(x,u) (2)

The field H is generated by the setup’s electromagnets.
Its relation with position and current path was established
through Biot-Savart’s law [50]. This means that, within the
low frequency range, we may linearly superimpose the fields
from all setup coils and write H(x,u) =

∑nu
k=1 ukGk (x) =

G(x)u, where Gk , the k-th column of G, is dependent
on position and coil geometry. We obtain semi-analytical
expressions for Gk and its spatial derivative from [51],
treating each of the 200 coil turns as a single loop and
adding all field/gradient contributions. Rather than going
through measuring with a Gaussmeter and mapping the coil
field to the position, we parametrize (2) as the goal is
to identify the particle velocities. Furthermore, in the case
the medium viscosity is non-homogeneous in space, the
relation between viscosity and position ζ−1(x) should be

included by the user, possibly with extra parameters to be
identified.

A parametric matrix and vector are introduced

A =

[
a11 a12
a21 a22

]
b =

[
b1
b2

]
and we estimate the velocity in a data point (xi,ui) by

v̂i(A, k2, b) = A

·

(
tanh (k2∥G(xi)ui∥)

G(xi)ui
∥G(xi)ui∥

· ∇

)
G(xi)ui + b (3)

Now, the task at hand is to find the best {A, k2, b} such
that the predicted velocity v̂i is as close as possible to the
actual velocity vi. This can be done by finding the values that
minimize the sum of the squares of the difference between
both these velocities in each data point:

{A∗, k∗

2 , b∗
} = arg min

A,k2,b

∑
i

∥v̂i(A, k2, b) − vi∥2 (4)

Since the model is expressed nonlinearly in terms of parame-
ter k2, this is referred to as a nonlinear least-squares fitting
problem. Numerical methods to solve such optimization
problems can be found in [52]. We use theMATLABR2023b
built-in function lsqcurvefit(). {A∗, k∗

2 , b∗
} is incorporated

in (3) to obtain v̂(x,u). If our proposed physical model (2)
is accurate, A∗ would be a multiple of the identity matrix and
b∗ would be zero. We do expect some mixing of terms and
asymmetries, which result in non-zero off-diagonal elements
in A∗ and non-zero elements in b∗.

Alternatively, a machine learning regression is done on the
experimental data. This is a black-box approach in which
the parameters of a chosen general ML model, instead of
a specific physical model, are optimized for. Examples of
such models are random forests, support vector machines,
gradient boosted regression trees, neural networks, etc. [53].
In this work, we opted for a neural network because of
its straightforward implementation [54], [55]. Now, instead
of (2), we have

v̂(x,u) = N(x,u) (5)

where N represents the trained NN. To train it, we performed
a 5-fold cross-validation on the experimental observations,
leaving out 20% for testing, and splitting the remaining data
each time in 85% training and 15% validation sets. A range
of fully-connected hidden layers (1, 2, 3) and neurons (4
to 128 per layer), activation functions (ReLU, hyperbolic
tangent, and sigmoid), and numbers of epochs (max.
1000) was swept through for hyperparameter tuning. The
network weight and bias optimizations were executed with
the Levenberg-Marquardt algorithm in MATLAB. We also
compared between normalized and original input data. Lastly,
we trained networks without and with simulated artificial
noise added to the input and output over a range of 10 to
40 dB signal-to-noise ratios, because there is a possibility
of reducing overfitting [56]. The performance criterion was
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R2 = 1−
∑

i ∥vi − v̂i∥2/
∑

i ∥vi − v̄∥2 with v̄ the mean of the
observed velocities.

A comparison with random forests, embedded trees,
gradient booster machines (hyperparameter tuning with
respect to bag or LSBoost, minimum leaf size, number
of learners, learning rate), and support vector machines
(optimized for different kernel functions) was made after-
wards in the Regression Learner Toolbox in MATLAB
R2023b. The meaning of these models and hyperparameters
is not discussed here, but can be found in machine learning
handbooks [57].

The setup with coils, currents, particle positions, physics-
based model, and NN is visualized in Fig. 4. The NN’s
weights and biases amount to much more parameters than
the physics-based model and as such its training has a higher
computational cost. Because of the inherent nonlinearity of
NNs and their activation functions, we will be able to capture
unexpected dynamics of the particle movement as a function
of the currents without characterizing the electromagnets and
magnetic particles.

Predictive quality of the physics-identified model in (3)
and the neural network are compared. It is generally known
that purely data-driven models perform poorer outside the
training data domain. In other words, they hold up well
for interpolation but less so for extrapolation. Physics-based
models on the contrary do not suffer from this drawback so
long as the captured physical laws remain valid. We compare
the behavior for inter- and extrapolation. Firstly, we restrict
the position data to within a radius of 12 mm from the
domain center, identify the models based on these data, and
evaluate performance on unseen test trajectories inside and
outside this radius. Secondly, we expand the data seen by the
models to reach 18 mm and compare performance with the
first case.

C. OPTIMIZATION OF PARTICLE MOVEMENT
1) FORCE MAXIMIZATION ALONG DEFINED DIRECTION
In our previous paper, we investigated ways to optimize
the movement of particles through the bloodstream [38].
Challenges are being able to direct the particles optimally
towards the desired vessel branches and reducing particle
swarm scattering effects. We formulated and implemented
a constrained optimization of the magnetic force on a
particle along a predefined direction n with respect to
the electromagnet currents. In this work, we employ the
estimated velocity model v̂. The aim is to find the coil
currents u∗ that maximize the particle velocity magnitude
at a known position x0, enforced along a predefined target
direction through the equality constraint v(u)·n = ∥v(u)∥∥n∥.
This target direction is a set by a user based on the
desired particle movement. Furthermore, a boundary on
the velocity divergence was added. Divergence of a vector
field in a certain point is a measure for the extent to
which neighbouring vectors are pointed away from each
other. As such, the force vectors are more parallel and

FIGURE 4. Drawing of the lab setup as in Fig. 1 with part of the measured
trajectories for training or least-squares optimization (in blue). The four
currents u = (u1, u2, u3, u4) and particle xy coordinates x are fed to the
neural network N or the parametrized physical model (3) to predict the
particle velocity v̂.

spreading of the particles within the region is limited,
increasing their numbers in the desired directions. Put
together,

find u∗

= argmax
u

∥v̂(x0,u)∥

subject to v̂(x0,u) · n = ∥v̂(x0,u)∥∥n∥ target direction

|uk | ≤ umax, k = 1, . . . , 4 max. current

∇ · v̂(x0,u) ≤ dmax max. divergence (6)

where umax is the limit of the electromagnet current and
dmax the limit to the divergence. The optimization problem
is solved with MATLAB and validated on our experimental
setup for different target directions. From validation on this
or other lab setups, the method can be expanded to more
realistic targeting situations. It justifies the combination of
regression models with optimization to guide particles more
efficiently through the vascular network than non-optimized
alternatives.

2) PARTICLE TRAJECTORY DYNAMIC OPTIMIZATION
It has been researched how magnetic particles and particle
collections can be manipulated towards a target region within
a certain time interval using time-varying magnetic fields
and optimal control [12], [37], [58]. We have formulated
an optimization problem to guide particles from an initial
to a final position x0 and xf as defined by the user based
on the targeting requirements. The current depending on the
time t , u(t), is the target variable. During the time interval
[0, tf ], tf being the final time, the movement of the particle
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at location x(t) is governed by the modeled velocity as a
function of the location and currents, v̂(x(t),u(t)). A cost
function related to the problem can then be minimized.
In our case, we minimize the energy dissipated in the coils,
which is directly proportional to the sum of the squared
coil currents. The dynamic optimization is run - ‘dynamic’
referring to the time dependency of the optimized currents -
as follows,

find u∗(t)

= argmin
u(t)

∫ tf

0
u(t)Tu(t)dt

subject to

x(0) = x0 initial position

x(tf ) = xf target position

ẋ(t) = v̂(x(t),u(t)) t ∈ [0, tf ]

|uk (t)| ≤ umax, k = 1, . . . , 4 t ∈ [0, tf ] (7)

This problem can be solved with the method of Direct
Multiple Shooting (DMS) [59]. First, the current sig-
nals are split up in Ni piecewise constant pieces within
[0, tf ], u(t) = qi for t ∈ [ti, ti+1], i = 0, . . . ,Ni − 1. Then,
the following ordinary differential equation is solved on each
interval, with artificial initial value si,

ẋi(t) = v̂(xi(t), qi), t ∈ [ti, ti+1]

xi(ti) = si

Meanwhile, the integrals related to the cost function are
computed

li =

∫ ti+1

ti
qTi qi dt = qTi qi(ti+1 − ti)

and we impose continuity of the state by setting
si+1 = xi(ti+1) because the cluster movement is by nature
continuous in time. Now, we can reformulate the problem
as a constrained optimization, with s = [sT0 · · · sTNi ]

T and
q = [qT0 · · · qTNi−1]

T ,

find

min
s,q

Ni−1∑
i=0

li

subject to

s0 = x0 initial value

sNi = xf terminal value

si+1 = xi(ti+1) i = 0, . . . , Ni − 1continuity

|qi,k (t)| ≤ umax i = 0, . . . ,Ni − 1 max. current

k = 1, . . . , 4 (8)

which can be solved numerically using the constrained
nonlinear optimization method of sequential quadratic pro-
gramming [60]. The total number of target variables for
this optimization problem with nu = 4 current inputs and

nx = 2 position coordinates in Ni = 4 time steps is
(Ni + 1)nx + Ninu = 26.
We evaluate the performance of the algorithm on the

targeting setup. The advantage of this method is that it can
minimize a cost over a time interval and takes into account
multiple future time steps and not just a single step based
on real-time position measurements that may be hard to
come by in in-vivo situations. Moreover, the algorithm is
adjustable with different constraints and cost functions, e.g.
we could minimize the magnetic field norm ∥H(u)∥2, prevent
trajectories from passing through certain regions, attach a cost
to reaching the target, etc.

III. RESULTS
A. PHYSICS-BASED AND NN MODEL PERFORMANCE
The optimization (4) is executed on the dataset and the
optimal parameters {A∗, k∗

2 , b∗
} were found to be k∗

2 =

0.0754,

A∗
=

[
1.45 −0.0429

−0.0362 1.48

]
10−6, b∗

= −

[
1.93
0.251

]
10−5

A∗ shows similarity with the identity matrix and b∗ is orders
of magnitude smaller than the measured velocities (order
of mm/s vs. µ m/s), such that the proposed model (2) has
a bearing on reality. The training data R2 = 0.33 was
actually outperformed by the testing R2 = 0.36 but these
values are too low for reliable predictions. The number
of data included in the optimization had little effect on
the parameter outcome. On the data-driven side, the best
performing network N had 2 hidden ReLU layers with
32 neurons and batch normalization at the input layer.
Adding noise to input and output data for training did
not make the model generalize better. On average R2 was
around 0.92 on the training data and 0.90 on the test
data, indicating a good generalization. With the Regression
Learner toolbox we found that ensemble trees and support
vector machines were the best alternative ML models.
Hyperparameter optimization of ensemble trees with respect
to bag or LSBoost, minimum leaf size, number of learners,
and learning rate, yielded R2 = 0.86 (0.85 on test data)
and support vector machines with Gaussian kernel function
yielded R2 = 0.84 on training and test data. The performance
of the neural net and the physics-based model predicting the
particle velocity v̂ is validated by taking a test trajectory and
its current sequence u unseen by the model, applying the
same current for each step k from the initial position x0, and
executing

xk+1 = xk + (tk+1 − tk ) v̂(xk ,uk ), k = 0, . . . , 16. (9)

The 16 time steps correspond with a time span of 4 s,
allowing the error to propagate. It is unavoidable that the
predicted trajectories diverge from the actual ones over time.
Fig. 5 shows predicted unseen trajectories resulting from this
iteration scheme. On the left the training data were restricted
to 12 mm, on the right to 18 mm. The overlap between actual
and neural net trajectories is quite strong within the training

71634 VOLUME 12, 2024



R. V. Durme et al.: Optimized Magnetic Particle Navigation Based on Data-Driven Model

FIGURE 5. Sequences of measured particle trajectories (blue) with their neural net (red) and physics-based (yellow) predicted
trajectories over 4 s, the final position indicated by a star ‘∗’. Overall the neural net performs better than the physics-based model.
On the left, the trajectories outside the training domain are more likely to be wrong for both neural net and physics-based model,
whereas on the right, where the training domain is expanded, the neural net improved and outperforms the physics-based model most
of the time.

domain, whereas some of them are off when extrapolated
outside this domain. As expected, including more data makes
improvements, seen on the right. The physics-based model
however has very poor overlap on some of the trajectories
both inside and outside the training domain. This is implied
by the low R2 values. On a small number of trajectories,
the physics-based model is slightly better. Overall, the best
practice would be to use the purely data-driven method with
a representative data reach.

In the following, we apply the neural net to the optimiza-
tion problems explained in Section II-C while staying inside
the training domain. Optimization based on the physics-based
model would necessarily generate poorer results because of
its inferior predictive accuracy.

B. OPTIMIZATION RESULTS
1) VELOCITY MAXIMIZATION
We use MATLAB built-in gradient-based optimization to
solve (6) with

x0 = [0 mm; 0 mm], dmax = 10 s−1,

v̂(x0,u) = N(x0,u), umax = 4 A.

The divergence limit dmax was determined through trial-and-
error. We execute the optimization for the initial position
x0 three times for three different target directions n. The
particle cluster is subjected to the optimized electromagnet
currents near the origin and its positions are registered
over a duration of 2 s. The trajectories are depicted in
Fig. 6. Afterwards, we calculated and plotted the neural
net velocity vector for one position in each measured
trajectory and included the angle between the target direction
and the cluster velocity direction. It can be seen that the

particle cluster in different positions moves in the desired
direction.

2) DYNAMIC OPTIMIZATION TOWARDS TARGET POSITION
The dynamic optimization (7) is validated using DMS with
an in-house developed toolbox for MATLAB, for

x0 = [0 mm; 0 mm], xf = [5 mm; 5 mm],

v̂(x,u) = N(x,u), tf = 6 s, umax = 4 A.

The experimental results shown here are for discretization of
the time in four steps, meaning that the coil currents remain
constant in time intervals of 1.5 s. There is a trade-off between
increased computational time and improved optimality of the
result with increased number of considered time steps [59].
The relatively slow particle velocities (order of mm/s) do
not require rapid altering of the currents and magnetic fields,
and as such the rather low number of four time steps already
provided good experimental results.

We apply the obtained current signal u∗(t) to the setup
coils and demonstrate the path of the particle cluster with
camera snapshots in Fig. 7. The cluster successfully ends up
at the imposed target position at [5 mm; 5 mm]. For further
validation, we chose two additional target positions xf to be
reached: [−9 mm; −5 mm] with tf = 8 s, and [−2 mm;
−8 mm] with tf = 7 s. In Fig. 8, we repeated experiments
with the cluster starting in the origin subjected to the
optimized currents on the left. The trajectories in the center
column were measured in separate runs. In the right column,
we show the distance to the target position over time and the
mean and standard deviation of the three repeated measured
sequences.Most of themeasured paths lead towards the target
position along the optimized trajectory, with some deviations
due to the slight discrepancies in initial cluster positions and
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FIGURE 6. Numerical optimization of the particle velocity along three different target directions (black arrow), each computed for position
[0; 0]. Four actual starting positions of the particle cluster are near the origin in each experiment. Recorded trajectories over a time span of
2 s are shown in red. The blue arrows depict the velocity as predicted by the neural net in the arrows’ starting points. The positive angle
between the target direction and the velocity in each recorded position, shown graphically on the right, is denoted θ . Its mean values in
degrees provide a measure for the deviation of the actual trajectory from the target direction.

orientations between experiments. The difference in initial
magnetic force then causes the clusters to be on different
trajectories. This effect is the most pronounced in Fig. 8(c),
where coil 2 has almost the maximum current and thus a large
attractive force during the full interval, leading to the particle
cluster going too far. The general trend is however close to
the simulated path.

Movies of these experiments are supplementary material to
this article.

FIGURE 7. Snapshots of the particle cluster moving from the origin
towards the set target [5 mm; 5 mm] under the magnetic currents
obtained from dynamic optimization in 6 s. The trained neural network
was used in the optimizer to predict the future particle positions.

IV. DISCUSSION
Fig. 5 demonstrated that there is a strong overlap between
the measured and the NN-based trajectories, especially
considering the propagation error when applying iteration

scheme (9). The same level of accuracy was not achieved
with the physics-based model, from which we infer that the
proposed parametrized model in (3) does not sufficiently
capture the behavior due to setup and particle-related
uncertainties. The advantage of the black-box approach is that
we do not need to clear up these uncertainties in order to have
a good predictive quality.

Compared to the tuning time of the neural net, the
identification of the parameters in the physical model was
computationally faster (10 min. vs. a couple of hours for
in-depth hyperparameter tuning) due to its smaller number
of parameters than the number of NN weights and biases.
On our machine with MATLAB R2023b, evaluating the NN
in a single data point, i.e. generating the output velocity from
the 4 input currents and 2 position coordinates, took 10 ms
on average, whereas the physics-based model output was
computed in only 1 ms. It is noted that these response times
are heavily affected by the hardware and software and the
user-defined level of detail (number of neurons, depth of the
physics, etc.).

The model is trained on data from a lab setup with
stationary liquid. This can be extended with phantom vessels
and a pumping system for moving liquids to mimick the
vascular network. In the end, particles are to be employed
in the human body. We can use setup data to identify the
magnetic force on the cluster, which remains unaffected
by non-magnetic biological environments. According to the
force equilibrium in our setup, we may assume that the
velocity scales linearly with the magnetic force v(x,u) =

ζ−1Fm(x,u) = N(x,u). With an accurate estimate of
ζ = 6πηλf Rp, we obtain a model for the magnetic force
Fm(x,u) = ζ N(x,u) specific to the coil configuration and
particle size/type but not to its environment. This can then be
used in combination with flow models to predict and control
particle movement. Furthermore, the magnetic force sense
and direction does not depend on the cluster size, only the
magnitude does. We could thus multiply the magnetic force
model with an empirically determined factor for different
cluster sizes.
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FIGURE 8. Optimized currents corresponding with the coils in Fig. 4 for three different target positions xf and final times tf
on the left. Simulated trajectories from the DMS algorithm are included in the center in black, and measured cluster
trajectories from separately repeated experiments in blue. On the right, the distance to the target for each of these three
trajectories is shown, including the averaged value and standard deviation. The deviation from the target in experiment
(c) can be explained by a slight inconsistency in the velocity estimation when the current in coil 2 is at its maximum value
of 4 A.

Both the velocity maximization in a fixed point and the
dynamic optimization over a time period with DMS show
particle progression towards the set target in simulated and
real-life in-vitro experiments. The measured particle paths in
Fig. 6 move tangential to the modeled velocity arrows almost
in every point. In some points, slight differences between path
and modeled velocity can be noticed as a consequence of
imperfect predictions. It is as expected that the farther away
from the point in which the velocity was maximized, i.e.
the origin, the more the trajectory deviates from the target
direction. Overall, the particle movement is in the desired
direction (small θ ) at optimal velocity magnitude. In new
particle positions, the magnetic force could be maximized
with respect to updated target directions. The method is non-

precise, but can be a fast and useful tool when an influx
of particles is to be guided towards a desired vessel branch
as discussed in [38]. Maximizing the velocity in a specific
direction can be applied to specific parts of the vascular
network to increase the local presence of particles. The DMS
algorithm provides the required currents to guide particles
towards target locations without real-time position feedback,
as proven in Figs. 7-8. Even though no actual measurements
are incorporated in the control during the movement, there
is a significant overlap between simulated and measured
trajectories in the optimizations in Fig. 8, where deviations
were mostly due to differences in initial cluster position
and orientation. We again note that the neural net performs
well on unseen data, as the measured optimized positions
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and currents were not part of the training set. Using a data-
driven model instead of physics-based models as in [9], [10],
and [12] is thus advised.
The time-dependent predictive optimization of cluster

trajectories paves the way to more accurate steering
in biological environments when real-time feedback is
unavailable. Camera feedback is not possible if particles
are covered by human body parts. To tackle this, advanced
magnetic imaging techniques have been developed and
are an ongoing topic of research. Examples are magnetic
resonance and magnetic particle imaging [1], [61], of which
the combination with navigating particles has been
researched [7], [43], [62], [63], [64]. A MPI sequence
could be succeeded by an open-loop targeting sequence
with the currents computed by our methods, outperforming
the dynamic optimization methods described in [11],
[12], and [13]. Subsequent imaging can inform control
input updates at later time instants to further guide the
particles.

Other works have successfully applied NNs and deep
reinforcement learning methods to navigate magnetic micro-
robots or particle swarms along trajectories inside blood
vessels and past obstacles [28], [29], [41]. These proce-
dures rely on real-time camera images and do not take
into account multiple future time steps for their control
action.

In future work, several additions and extensions for in-
vitro validation are required before making the step towards
in-vivo targeting. We need to apply the regression models
to realistic settings in 2D and 3D, taking into account
flow rates and wall effects. Advanced learning algorithms
can be incorporated to transfer a prior model to more
realistic setups and conditions [65]. Finally, we should
make the control algorithm compatible with particle imag-
ing techniques to enhance the goal-reaching over longer
distances (for example through model-based predictive
control [66]).

V. CONCLUSION
Magnetic microparticles are steered from a distance by
magnetic field gradients from electromagnets in an in-
vitro targeting setup. We presented how the velocity of
a particle cluster can be predicted from its position and
electromagnet currents using a data-driven neural net-
work, and compared its performance to a physics-based
model. The actually measured particle trajectories showed
a strong overlap with the trajectories predicted by the
neural network, significantly more so than with the physical
model.

Model-based numerical optimization of the particle veloc-
ity and trajectories from initial to final position in a time
interval with minimized energy dissipation was executed.
The neural network served as model. Resulting simulated
velocities and particle trajectories demonstrated a strong
agreement with the actual recorded particle paths and velocity
in the targeting setup.

The use of data-driven methods combined with optimiza-
tion algorithms can advance magnetic particle-based targeted
therapy towards its clinical application. In subsequent
steps, the approach reported in this work is to be applied
to a variety of in-vitro and in-vivo setups and imaging
modalities.
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