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A B S T R A C T 

If primordial black holes (PBHs) constitute the dark matter (DM), stars forming in dark-matter dominated environments with low 

velocity dispersions, such as ultra-faint dwarf galaxies, may capture a black hole at birth. The capture probability is non-negligible 
for PBHs of masses around 10 

20 g, and increases with stellar mass. Moreo v er, infected stars are turned into virtually invisible 
black holes on cosmologically short time-scales. Hence, the number of observed massive main-sequence stars in ultra-faint 
dwarfs should be suppressed if the DM was made of asteroid-mass PBHs. This would impact the measured mass distribution of 
stars, making it top-light (i.e. depleted in the high-mass range). Using simulated data that mimic the present-day observational 
power of telescopes, we show that already existing measurements of the mass function of stars in local ultra-f aint dw arfs could 

be used to constrain the fraction of DM composed of PBHs in the – currently unconstrained – mass range of 10 

19 –10 

21 g. 

Key words: methods: statistical – stars: luminosity function, mass function – galaxies: dwarf – galaxies: stellar content – dark 

matter. 
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 I N T RO D U C T I O N  

ince the disco v ery of gra vitational wa ves from black hole mergers
Abbott et al. 2019 , 2021 ), the hypothesis of primordial black holes
PBHs) has attracted a lot of attention in the scientific community.
hese hypothetical black holes, first proposed in the late 1960s

Zel’dovich & Novikov 1967 ; Hawking 1971 ), could have been
roduced in the early Universe and potentially explain part, or the
otality, of the dark matter (DM). Ho we v er, man y bounds hav e been
laced on the fraction f = �PBH / �DM 

of DM that can be made of
BHs, and currently only PBHs of masses between ∼10 17 g and
10 23 g can still make up the entirety of the DM (Carr et al. 2021 ).
he black holes in this range of masses are particularly difficult to
onstrain as they are massive enough to a v oid Hawking e v aporation,
ut still of microscopic size, and of masses below the numerous
ensing constraints that arise for heavier PBHs. 

One way to constrain PBHs in this mass range is to use their capture
y stars, which leads to the accretion of matter and conversion of
he infected stars into sub-solar mass black holes on cosmologically
hort time-scales. Observationally, this effect would manifest itself as
he disappearance of stars, since the resulting sub-solar mass black
oles are basically invisible. This process has been considered in
pplication to neutron stars and white dwarfs by Capela, Pshirkov &
in yako v ( 2013a , b , 2014 ) and to main-sequence stars by Esser &
in yako v ( 2023 ). The advantage of the latter as PBH detectors is that

he y themselv es are much easier to observ e. 
The probability of PBH capture by a star is generally very small. It
ay only reach values of order one in exceptional environments, such
 E-mail: nicolas.esser@ulb.be 
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s ultra-f aint dw arf galaxies (UFDs). These systems are expected
o be DM-rich, given that the concentration of DM-halos steadily
ncreases with decreasing mass down to the resolution limit of current
osmological simulations (Ishiyama et al. 2021 ) and that their early
uperno va e xplosions are not sufficiently numerous to flatten the
M-cusp to a core (Brook & Di Cintio 2015 ). They also have low
elocity dispersions which, combined with their high DM density,
rovides the most fa v ourable conditions for capture. Requiring that
o more than half of the stars in the most promising UFD, Triangulum
I, has been converted into black holes would limit the fraction of
BHs f to at most 40 per cent (Esser & Tin yako v 2023 ). 
Based on the present-day observations, it is not easy to reliably

onstrain the fraction of stars that have been converted into black
oles in a given dwarf galaxy o v er its history, as one would
ave to rely on modelling a UFD’s evolution, which incurs large
ncertainties. The purpose of the present paper is to demonstrate that
onstraining PBHs through star destruction is nevertheless feasible.
he key observation is that the PBH capture, and hence the star
estruction is significantly more efficient for more massive stars, and
herefore o v erall this process suppresses the stellar mass function at
arger masses. The stellar mass functions of many UFDs have been

easured. We show that the already existing and near-future data
ay be sufficient, in quantity and quality, to constrain the impact of
BHs and, consequently, their abundance. 
In this paper, we follow a proof-of-concept strategy and do not

se real data. Instead, we generate a mock stellar sample which is
imilar in size, mass distribution, and other properties to the samples
ollected for real dwarf galaxies. We will refer to this sample as the
mock data’. By construction, this sample is unaffected by PBHs.

e then use these mock data to estimate the constraining power of
he stellar mass function with respect to possible effects of PBHs. To
© The Author(s) 2024. 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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line-of-sight velocity dispersion σ los through σv = 

√ 
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his end, we take as a model a general parametrization of the stellar
ass function, either a broken power-law (BPL) or a log-normal 

LN) distribution, each depending on a number of free parameters, 
nd apply the effect of star destruction by PBHs. The fraction f of
BHs is treated as a free parameter of the model. We use a Bayesian
pproach to fit the model to the mock data, and to determine the
ikely values of the model parameters, and in particular of the PBH-
M fraction f . With this approach, we find that it is possible to

xclude the value f = 1 for the PBH-free mock data with reasonable 
onfidence. 

The rest of this paper is organized as follows. In Section 2 , we
ummarize the observational facts about dwarf galaxies rele v ant for
his work. In Section 3 , we calculate the probability of the PBH
apture by a star, as a function of the star mass. In Section 4 , we
iscuss the initial mass function (IMF) and construct a corresponding 
odel of the present-day mass function (PDMF) that includes the 

ffect of PBHs. In Section 5 we give the details of the mock data
ample, and perform a Bayesian fit of the model to the mock data. In
ection 6 we cross-check our results with the frequentist approach. 
e will finally conclude in Section 7 . 

 D M  A N D  STARS  IN  DWA R F  G A L A X I E S  

he UFDs are the most DM-dominated systems as inferred from 

he current observations (Simon 2019 ), which makes them ideal 
andidates for constraining the abundance of PBHs. It was shown 
hat the star formation in such systems was shut down at the time of
eionization, around 1 billion years after the big bang (Brown et al.
014 ). To a good approximation, the star population of such galaxies
an thus be considered as isochrone, i.e. all the stars in a given UFD
ere born at the same time ∼12.8 billion years ago. Over this time,

tars more massive than ∼0.8 M � would have evolved off the main
equence. Due to the faintness of their remnants, the impact of PBHs
n the population of stars abo v e this mass is complicated to measure,
nd we will concentrate on stars below this threshold in what 
ollows. 

Multiple photometric studies of low-mass stars in UFDs have been 
arried out in the last two decades. Using the stellar luminosities
easured in different colour bands, the colour–magnitude diagram 

f these galaxies was obtained in order to study their chemical 
nd dynamical properties (see e.g. Conn et al. 2018 ; Filion et al.
020 ; Baumgardt et al. 2022 ). While all of these works involved star
ounting in the observed galaxies (typically containing between a 
ew hundred and a few thousand individually resolved stars), a fit of
he mass distribution of stars in these galaxies was only performed in
eltzing et al. ( 2002 ), Geha et al. ( 2013 ), Gennaro et al. ( 2018a , b ),
nd Filion et al. ( 2022 ). Due to the limited sensitivity of telescopes,
t was impossible for a long time to detect individual stars with

asses below ∼ 0 . 5 M � in UFDs. However, recent observations 
ere able to resolve stars with masses as low as ∼ 0 . 2 M � in some
f these galaxies. Preliminary results from the James Webb Space 
elescope e ven sho wed a resolution that reached 0 . 09 M � in the
warf galaxy Draco II, located at a distance of ∼20 kpc (Weisz et al.
023 ). 
Other studies, as re vie wed by Simon ( 2019 ), put bounds on

ifferent properties of these galaxies, such as their metallicity and 
elocity dispersion, both of which turn out to be extremely low 

n these systems. The masses of many UFDs were also estimated. 
rom these measurements, one finds that the UFDs are completely 
ominated by DM, and obtains an estimate of the DM density. In the
ontext of this paper, two parameters are of major interest: the DM
ensity ρDM 

, and its 3D velocity dispersion, σ v , 1 which is assumed
o be the same as the stellar velocity dispersion. Their combination
DM 

/ σ3 
v controls the probability of the PBH capture by a star (see

ext section). When normalized to the reference values ρDM 

= 100 
eV/cm 

3 and σ v = 7 km s −1 it gives the ‘merit factor’ η introduced
n Esser & Tin yako v ( 2023 ), 

= 

ρDM 

100 GeV cm 

−3 

(
7 km s −1 

√ 

2 σv 

)3 

. (1) 

mong currently observed UFDs, the galaxy Triangulum II was 
ound to have the highest merit factor of η = 0.95, while another
our galaxies (Tucana III, Draco II, Segue I, Grus I) have merit
actors exceeding 0.35. For some UFDs in this list, only upper limits
n the velocity dispersion are available (and were used to compute
), indicating that their merit factors may be even larger than our
urrent estimates. Future impro v ements in the measurement of σ v 

n dwarf galaxies would thus strengthen the results of the following
ections. 

 STAR  DESTRUCTI ON  BY  P B H S  

ain sequence stars capture PBHs most efficiently at the time of their
ormation. As a star is formed from a protostellar gas cloud, it may
cquire a number of satellite PBHs that have orbits passing through
he newly formed star. These PBHs then lose energy to dynamical
riction every time they cross the star and, given enough time, finally
nd up captured inside the star. The only rele v ant orbits are the bound
nes that repeatedly pass through the star since the energy lost in a
ingle crossing is tiny. 

The capture is an uncorrelated random process, and therefore 
he number of PBHs captured by a given star follows a Poisson
istribution characterized by the mean captured PBH number, 
¯
 = M̄ cap /m , m being the mass of the PBH and M̄ cap the mean
BH mass captured by the star. If a star captures at least one PBH,

t will inevitably be destroyed; the probability of survival is thus
 S = exp ( −N̄ ) = exp ( −M̄ cap /m ). 
The mean captured mass M̄ cap depends on both the PBH mass 
 and the star mass M (all other rele v ant stellar parameters are
 v aluated as functions of M ), as well as on the local DM density
DM 

, the velocity dispersion σ v , and on the fraction of PBH f in the
otal amount of DM. In a wide mass range m = 10 19 –10 21 g, which
e will focus on in what follows, the dependence on most of these
arameters is trivial. The captured mass is obviously proportional to 
he PBH fraction f . It is also proportional to the combination ρDM 

/ σ3 
v 

hich is, up to normalization, the merit factor η ( 1 ). Indeed, only
he low-velocity tail of the PBH distribution is prone to capture, with
he upper limit being set by the parameters of the protostellar cloud.
he amount of DM in this region of the phase space is proportional

o ρDM 

/ σ3 
v . Finally, as has been shown by numerical simulations in

sser & Tin yako v ( 2023 ; cf. their fig. 1), in this mass range it is also
roportional to the PBH mass m . Therefore, one can write the mean
aptured number N̄ as 

¯
 = M̄ cap /m = f η ν( M) (2) 

here ν( M ) is the mean captured number M̄ cap /m calculated for the
eference values of the DM parameters η = 1 and f = 1. The function
( M ) only depends on the star mass M . The star survi v al probability
MNRAS 529, 32–40 (2024) 
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M

Figure 1. Mean captured PBH number ν for the reference values η = f = 

1 as a function of the stellar mass M . The statistical uncertainties of the 
simulations are too small to be visible on the plot. The blue line shows the fit 
with the function ( 4 ). 
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an thus be written as 

 S ( f , M) = exp [ −f η ν( M)] . (3) 

The function ν( M ) plays a key role in our analysis. We show
his function in Fig. 1 , computed numerically for 12.8 Gyr old stars
ith stellar masses in the range M ∈ [0 . 2 , 0 . 8] M � using the method
escribed in Esser & Tin yako v ( 2023 ). There, the mean mass M̄ cap 

f PBHs captured by a star at birth was computed. The time spent
y the PBH to sink towards the star and acquire a trajectory which
s enclosed in the star w as tak en into account in this calculation.
he possibility that the PBH could get pushed out of its trajectory
y other astrophysical objects in the vicinity of the star was also
onsidered. Finally, it w as check ed that, once the PBH is completely
rapped inside, it destroys the star in a finite time. Note that ν( M )
as computed for uniform DM and stellar distributions within the
warf galaxy. We ho we ver checked that the results remain similar in
ase of non-uniform profiles. Since ν( M ) is independent of the PBH
ass in the interval [10 19 , 10 21 ] g, these results apply not only to

he case where all PBHs have the same mass, but also to any non-
onochromatic population of black holes whose masses lie between

hese two values. 
For the sake of numerical efficiency, we fitted the results of the

omputations with an analytical function 

( M) = a ( M/ M �) b + c (4) 

ith the parameters a = 3.76, b = 0.685, and c = −0.883. This fit is
epresented by the blue line in Fig. 1 . 

 I M PAC T  O F  P B H S  O N  T H E  STELLAR  MASS  

U N C T I O N  

.1 Present-day mass function model 

ccording to the isochrone hypothesis, the stellar population of
FD galaxies is born during one initial star -formation b urst, and

s unchanged after that. Hence, in the absence of PBHs, and for
tars below ∼ 0 . 8 M � that did not turn into compact objects yet, the
resent-day observed mass distribution is the same as the initial mass
unction (IMF). 

The presence of PBHs changes this picture, as a fraction of the
tars in the galaxy are destroyed at or after the initial star-formation
urst. The effect of PBHs on the present-day stellar mass function
NRAS 529, 32–40 (2024) 
an therefore be easily calculated from the IMF and the probability
f PBH capture. 
The IMF, i.e. the mass distribution of stars at birth, has been one

f the leading topics of research in stellar astrophysics for several
ecades. While there exist some standard and universal fits to the IMF
Kroupa 2001 ; Chabrier 2003 ), there likewise exists ample evidence
or IMF variations in dwarf galaxies (Geha et al. 2013 ; Gennaro et al.
018a , b ). 
More generally, the IMF can be modelled with a broken power-law

BPL) distribution 

d N ( α1 , α2 , M) 

d M 

∝ 

{
M 

α1 for 0 . 2 M � ≤ M < 0 . 5 M �
kM 

α2 for M ≥ 0 . 5 M �, 
(5) 

ith the continuity constant k = (0 . 5 M �) ( α1 −α2 ) and α1, 2 the two
ower-la w e xponents. Here we hav e adopted M = 0 . 5 M � for the
reak mass between the two power laws, as it is the commonly
sed value, and current observations (cf. e.g. Gennaro et al. 2018b )
how little deviation from this number. Note that for α1 = −1.3 and
2 = −2.3, the Kroupa ( 2001 ) IMF is reco v ered. In case one solely
onsiders stars of masses abo v e 0 . 5 M �, the only rele v ant parameter
eft is α2 . We will call this particular case the single power-law (SPL)
istribution. 
Another model which is often used to describe the IMF is the

og-normal (LN) distribution, 

d N ( M c , σLN , M) 

d M 

∝ 

1 

M 

exp 

( 

−
(
log 10 ( M/M c ) 

)2 

2 σ2 
LN 

) 

, (6) 

here the two free parameters are the characteristic mass M c and the
idth σ LN of the distribution. The (single-star) Chabrier ( 2003 ) IMF

s reco v ered for M c = 0 . 08 M � and σ LN = 0.69. 
With the isochrone hypothesis in mind, one may write the

ormalized present-day mass function (PDMF) of the stars in a given
FD, including the destruction by PBHs, as follows: 

 PDMF ( f , θ, M) = C 

d N 

d M 

P S (7) 

ith C the normalization factor 

 

−1 ( f , θ ) = 

∫ M max 

M min 

d N 

d M 

P S d M (8) 

uch that the PDMF is normalized to 1. Here θ stands for the
arameters of the chosen IMF which are ( α1 , α2 ) for the BPL; ( M c ,
LN ) for the LN; and α2 for the SPL. The factor P S ( f , M ) is the

urvi v al probability of a star against its destruction by PBHs o v er
he last 12.8 billion years. Its presence in equation ( 7 ) quantifies the
mpact of PBHs on the stellar mass function. Note that without the
sochrone approximation, P S needs to be computed individually for
ach star, taking into account its age. To better visualize the impact
f PBHs on the mass function, in Fig. 2 we show, as an example, the
roupa IMF (BPL with α1 = −1.3 and α2 = −2.3) and the resulting
DMF after destruction by PBHs. More massive stars are destroyed
ith higher probability, which translates into a PDMF with a steeper

lope than the IMF. 

.2 Remark on binary systems 

he comparison of model mass functions with observations is in
eneral complicated by the presence of binary systems, which in
ost cases cannot be resolved. These unresolved systems appear

s a single bright object, and thus tend to make the observed mass
unction more top-heavy than what the real stellar mass distribution
s. In most observational mass function studies, these unresolved
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Figure 2. Kroupa IMF (upper line, blue) and associated PDMF (lower line, 
orange) after the destruction of a fraction of the stars by PBHs. A logarithmic 
scale is used on the vertical axis. The normalization of the IMF, and hence 
the scale on the vertical axis, is arbitrary. 
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Figure 3. Colour–magnitude diagram of the mock data. The absolute 
magnitudes (in the F606W and F814W filters described in the text) are 
displayed on the left vertical axis, while the stellar masses are shown on 
the right vertical axis. They are a function of the colours of the stars (i.e. the 
magnitude difference between the two bands), displayed on the horizontal 
axis. 
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ystems are taken into account through one extra parameter, the 
inary fraction. 
The PBH capture by stars in binary stellar systems has not yet

een considered in the literature. It involves three-body dynamics, 
hich may modify the capture rate. On the one hand, the presence
f a companion may deviate the trajectories that are passing through 
he star and prevent the capture. On the other hand, the trajectories
ot passing through the star may start doing so as a result of the
erturbation by the companion. The net effect of a companion star,
f any, is therefore unclear. 

One can take a conserv ati ve approach, assuming that all the
rajectories that are sufficiently perturbed are not captured, and 
alculate the fraction of the PBH trajectories that are not impacted by
he presence of companion stars. Using the database of trajectories 
rom the previous simulations of Esser & Tin yako v ( 2023 ), we can
etermine the probability distribution of the PBH apastrons in their 
rbits around the star. Assuming that the typical distance d between 
he partners in a binary is distributed as 1/ d for d ∈ [15, 10 5 ] au
De Rijcke & Dejonghe 2002 ) – which again is a conserv ati ve
ssumption for newly formed stars around which the PBHs orbit 
one can use the 3D analogue of equation (6) of Esser & Tin yako v

 2023 ) to find the fraction of PBH orbits that are captured even in the
resence of a companion. We found that this fraction varies between 
5 per cent and 65 per cent depending on the combination of stellar
asses and on the PBH mass, being generally larger for less massive
BHs. 
To give an example, in dwarf galaxies Coma Berenices and Bo ̈otes

, for the star mass range similar to what we are using, the binary
ractions were found to be ∼0.35 and ∼0.7, respectively (Gennaro 
t al. 2018b ; Filion et al. 2022 ), with ∼50 per cent uncertainties.
o, assume for simplicity that half of the stars are in binaries that
re not resolved and appear as single objects. Then of all observed
stars’, 2/3 are actual stars and capture the PBH with the rate set by
ig. 1 , while 1/3 are unresolved binary systems that capture the PBH
t a rate reduced by , say , 50 per cent on the basis of the previous
iscussion. Clearly, the resulting o v erall loss in the capture rate of

15 per cent is a correction that for the purposes of this paper can
e neglected. We will thus disregard the issue of binary stars in what
ollows. 
 BAYESI AN  ANALYSI S  O F  T H E  PDMF  M O D E L  

.1 Mock data 

o mimic the real data, we generate a mock sample of stars (referred
o as ‘mock data’ in what follows) with parameters that resemble the
bserved ones. We will later run it through the analysis as if it were
eal data. Since we aim at constraining PBHs, we do not include any
BH effects in this sample. 
Specifically, the mock isochrone stellar population is generated 

sing the MIST (Choi et al. 2016 ; Dotter 2016 ) isochrone models
nd the ArtPop PYTHON package (Greco & Danieli 2022 ). All the
tars in the sample have a metallicity [Fe/H] = −2.2 and an age of
2.8 billion years, which are values typical of UFDs (Simon 2019 ).
hey follow the Kroupa ( 2001 ) IMF, i.e. the distribution ( 5 ) with
1 = −1.3 and α2 = −2.3. 
Based on the re vie w of the existing measurements of individual

tars in local dwarf galaxies, cf. Section 2 , we choose the mock sam-
le to contain N = 1000 stars with masses between M min = 0 . 2 M �
nd M max = 0 . 79 M �. The number of stars in the mock sample is
f the same order as what has been measured in different UFDs.
he upper bound M max = 0 . 79 M � is the mass of the most massive
tars, within the MIST model, that are still on the main sequence in a
2.8 Gyr old galaxy. The lower bound of 0 . 2 M � corresponds to the
mallest stellar mass that can currently be resolved in dwarf galaxies.
ne may expect that recent and future telescopes, such as the James
ebb Space Telescope , will resolve stars of even lower masses in
FDs in the future (Weisz et al. 2023 ). 
The stellar population of the mock sample is represented on 

 colour–magnitude diagram, Fig. 3 . The absolute magnitude is 
isplayed on the left vertical axis, while the associated masses are
isplayed on the right. The F606W and F814W filters [from the
dvanced Camera for Surv e ys (ACS) on board of the Hubble Space

elescope ( HST )] are used to describe the luminosity and colour of
he stars. Note that for simplicity, the population is considered at
 distance of 10 pc, so that the apparent and absolute magnitudes
MNRAS 529, 32–40 (2024) 
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re the same. Reddening and extinction are neglected. These mock
ata are obviously idealized, and real observations would show a
ore scattered distribution around the isochrone curve. To assess the

mpact of noise on the data, we have also generated a – more realistic
scattered mass sample and performed the analysis described in
ppendix A . The results were very similar to those obtained with

he idealized data depicted in Fig. 3 . 

.2 Likelihood 

iven the current observational capabilities to resolve stars in UFDs
s encoded in the mock data, we want to e v aluate if the modifications
o the stellar mass function of these dwarf galaxies due to PBHs are
etectable. For this, we use a Bayesian approach. Given a sample of
 stars with individual masses M i , either observed or simulated, one
ay define a binless likelihood L that quantifies how well this set

ollows the distribution ( 7 ) by taking the product of f PDMF ( f , θ , M )
 v er all stars in the sample. Its logarithm 

log L ( f , θ |{ M i } ) = 

∑ N 

i= 1 log ( f PDMF ( f , θ, M i )) (9) 

= N log ( C( f , θ)) + 

∑ N 
i= 1 log 

(
d N( θ, M i ) 

d M 

)
+ 

∑ N 
i= 1 log ( P S ( f , M i ) ) , 

s a standard quantity used for parameter estimation in statistical
nalysis. 

As defined abo v e, the log-likelihood function depends on a number
f parameters: the fraction of PBHs in the total amount of the DM f
nd the parameters of the stellar IMF (( α1 , α2 ) for BPL; ( M c , σ LN ) for
N; α2 for SPL). Our primary interest is the estimation of the fraction
 . The other, IMF-dependent parameters are considered as nuisance
arameters. As for the merit factor, it was fixed for simplicity to
he highest measured value of η = 0.95. Note ho we ver that from
quation ( 3 ) η and f are completely degenerate parameters. Hence,
ne can easily rescale η to any value by adapting accordingly the
esult obtained for f . 

.3 Bayesian analysis 

e compare our mock data sample to three IMF models: BPL, LN,
nd SPL. In each of these models, we include the star destruction by
BHs, considering their fractional abundance f as a free parameter

o be determined from the fit together with other parameters of the
odel. The goal is to see how strongly the value of f is constrained

y the mock data which resembles the existing observations and, by
onstruction, has no PBH effects in it. 

To estimate the model parameters, including f , we use the
ikelihood L defined in ( 9 ). For the BPL and LN cases, the log-
ikelihood depends on three parameters: the fraction f and the two
MF parameters: α1 and α2 for the BPL distribution, and M c and σ LN 

or the LN one. For the SPL case, the likelihood depends only on f
nd α2 . In the latter case, the range of stellar masses is restricted to
 ≥ 0 . 5 M � in order to mimic the data in which stars below 0 . 5 M �

re not resolved. Keeping only the stars above this threshold reduces
he size of our mock data sample for the SPL case from N = 1000 to
 = 233 stars. 
Based on the existing measurements of the IMFs of ultra-faint

warfs galaxies with very low merit factors η, in which the destruc-
ion of stars by PBHs is expected to be negligible (Feltzing et al.
002 ; Geha et al. 2013 ; Gennaro et al. 2018a , b ; Filion et al. 2022 ),
e constrained the power-law exponents α1, 2 to values ∈ [ − 2.6,
0.8] and the LN parameters M c ∈ [0.08, 0.6] and σ LN ∈ [0.5, 0.7],

s there are very few measured parameters outside these bounds.
NRAS 529, 32–40 (2024) 
ote that these bounds are conserv ati v e re garding the presence of
nresolved binary systems, as they encompass some observations
hich fit the single-star mass function and others that fit the system
ass function. On the other hand, the fraction f is by definition in

he range [0,1]. Using uniform priors 
 ( f , θ ) for all the parameters
ithin their bounds, the posterior probability density function (pdf)

an be computed for every IMF model as 

df ( { M i }| f , θ ) = 


 ( f , θ ) L ( f , θ |{ M i } ) ∫ 
f ′ ,θ ′ 
 ( f ′ , θ ′ ) L ( f ′ , θ ′ |{ M i } ) , (10) 

here 
 is in this case a flat window function for each parameter
nd θ stands for all the parameters of the chosen IMF except f . 

One can see from equation ( 10 ) that the pdf is equal to the
ikelihood, to within a normalization factor. In order to a v oid
alculating this factor, which is computationally e xpensiv e for a
ample size of N = 1000 stars, we mapped the pdf numerically by
ejection sampling. The method is straightforward: a random point ( f j ,
j ) is generated within the prior boundaries with uniform probability.
 random uniform number x j ∈ [0, max ( L )] is also drawn. If L ( f j ,

j | { M i } ) > x j , the point is kept. It is discarded otherwise. The process
s repeated until n = 10 6 points are obtained. The distribution of these
oints in the parameter space then allows one to map the posterior
df. 
In the case where the values of the (nuisance) parameters θ are

nknown, one can marginalize the pdf distribution with respect to
hese parameters in order to get the pdf of f alone, pdf marg ( { M i }| f ) =
 

θ ′ pdf ( { M i }| f , θ ′ ) dθ ′ . This corresponds to drawing a histogram of
he distribution of the points f j previously obtained, regardless of the
alues of the other coordinates θ j of these points. For the BPL, LN,
nd SPL cases, respectively, these histograms are shown on the top
eft, top right, and bottom panels of Fig. 4 . 

Using one-sided confidence levels, one can read from these
istograms that for the BPL and LN initial mass functions, the
ractions f � 0.65 and f � 0.75 are respectively excluded with a
onfidence of 3 σ . The hypothesis of all DM being made of PBHs,
 = 1, can be firmly excluded in these two cases. Ho we ver, in the
PL case, f 
 1 is only barely 3 σ excluded. 
The first thing we w ould lik e to point out regarding these results is

hat the exclusion regions resulting from the BPL and LN cases are
imilar, even though the pdfs of these two distributions are different.
his is consistent with the fact that these mass functions are very
lose to one another. The exclusion resulting from the SPL case
s less stringent, expressing the fact that the latter analysis only
onsidered stars abo v e 0 . 5 M �, which represents ∼1/4 of the full
ample of 1000 stars. 

Secondly, we recall that the sensitivity depends on the chosen
riors for the nuisance parameters. More stringent constraints would
rise from narro wer windo w functions on θ . The chosen windows
sed to produce these results are benchmark values based on
bservational data, as we lack consistent theoretical models for the
ass function of stars in dwarf galaxies. Future impro v ements on the
odelling of these parameters would impact the sensitivity obtained

ere. 
Finally, we would like to emphasize once more that these results

re specific to the generated mock data set. Another data sample, real
r computer-generated, could give results that fluctuate from what
as been obtained here. We ho we ver analysed se veral other randomly
enerated mock data sets and found that, for N = 1000, f = 1 was
l w ays excluded at more than 3 σ in the BPL and LN cases, and at
ore than 2 σ in the SPL case. 
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Figur e 4. Mar ginalized pdf of the PBH fraction f for the broken power-law (top left panel), log-normal (top right panel) and single power-law (bottom panel) 
cases. The left (green) region corresponds to the values that are within one-sided 1 σ , the middle (blue) region corresponds to points between 1 σ and 2 σ and the 
right (orange) region corresponds to points between 2 σ and 3 σ . 
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 CONSISTENCY  C H E C K :  FREQUENTIST  

NALYSIS  

he goal of this section is to check the robustness of the results
btained with the Bayesian analysis by comparing them with results 
rom a frequentist approach. For simplicity, we will focus on the 
PL model (equation 5 ) for the IMF and fix α1 = −1.3 (as in the
roupa IMF) in what follows. Since PBHs destroy more high-mass 

han low-mass main-sequence stars, the range of stellar masses that 
s most impacted by PBHs is the one abo v e 0 . 5 M �, which is the
eason we are keeping α2 free. The full pdf distribution of the PDMF
hen only depends on f and α2 and can be represented easily on a
lot. 
First, using the Bayesian approach described in the previous 

ection, we mapped the corresponding pdf, cf. Fig. 5 . The maximum
f the pdf (MP) located at ( f = 0.132, α2 = −1.93) is indicated with a
urple dot. We then chose a specific point (call it CP, for ‘comparison
oint’), represented with a red square, which corresponds to the 
arameters ( f = 0.2, α2 = −2.3). The choice of this point is arbitrary.
o we ver, note that it is located on the boundary of the 2 σ -exclusion

egion of this pdf. 
Now, in the frequentist approach, we generate many (ideally, an 

nfinite number) trials of a specific model, with fixed values of the
arameters ( f , α2 ) corresponding to the comparison point, and check
ow often the MP of the real sample (in our case, the mock data) is
eco v ered giv en this model. In particular, choosing the BPL model
ith values of the parameters fixed to the ones of the comparison
oint, i.e. f = 0.2 and α2 = −2.3, we expect the maximum of the pdf
f the real sample to fall around the 2 σ boundary of the new maxima
istribution, in order for the Bayesian and frequentist approaches to 
e consistent with each other. 
To verify that this is the case, we generated 10 6 f ak e populations,

sing the ArtPop package with the hypotheses described in Section 
.1 and with specific values of the input parameters ( f = 0.2, α1 =
1.3, α2 = −2.3). We computed the maximum likelihood for each 

f these populations. The density distribution of these maxima in the
arameter space is shown on Fig. 6 . 
We see that, obviously, the point CP is now the maximum

ikelihood of this new distribution. More importantly, the point MP 

alls around the 2 σ border, as expected. The slight offset from this
oundary is due to the finite number of stars in the populations,
nd the finite number of f ak e populations that were generated in the
requentist case. 

We have repeated this whole e x ercise with other IMF models and
pecific parameter values, al w ays finding the consistency between 
ayesian and frequentist analyses. Hence, our results are robust and 

ndependent of the statistical approach employed. 
MNRAS 529, 32–40 (2024) 
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M

Figure 5. pdf for the BPL case with α1 = −1.3 fixed. The purple dot 
corresponds to the location of the MP of the real sample, while the red square 
is an arbitrary point used for comparison (CP). The innermost (green) region 
corresponds to the values that are within 1 σ , the intermediate (blue) region 
corresponds to points between 1 σ and 2 σ and the outermost (orange) region 
corresponds to points between 2 σ and 3 σ . 

Figure 6. Distribution of the maxima of the likelihoods for the BPL case 
with α1 = −1.3 fixed. The f ak e populations were generated with f = 0.2 and 
α2 = −2.3. The purple dot corresponds to the location of the MP of the real 
sample, while the red square is an arbitrary point used for comparison (CP). 
The innermost (green) region corresponds to the values that are within 1 σ , 
the intermediate (blue) region corresponds to points between 1 σ and 2 σ and 
the outermost (orange) region corresponds to points between 2 σ and 3 σ . 
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 C O N C L U S I O N  

he main conclusion from this work is that it is possible to constrain
BHs in the mass range 10 19 –10 21 g using already existing photo-
etric observations of UFDs. The constraints, perhaps marginal with

he existing data, could be impro v ed in the future with observations
NRAS 529, 32–40 (2024) 
rom higher resolution telescopes and a better understanding of the
ynamical properties of UFDs. 
In order to demonstrate this, we first computed, based on the results

f Esser & Tin yako v ( 2023 ), the probability of stars of different
asses being destroyed by PBHs in the last 12.8 Gyr. This probability

epends on the fraction of DM made of PBHs f , as well as the
ynamical properties of the DM in a given UFD. The key observation
s that this probability increases with the mass of the star. 

Using the isochrone hypothesis and the fact that the initial and
resent-day mass function of stars below ∼ 0 . 8 M � should be equal
n the absence of PBHs, we can use the existing observations of
ow merit factor UFDs in which the effect of PBHs is negligible
o parametrize the IMF. Assuming there is no strong dependence
f the IMF on the merit factor, we then modeled the impact of
BH destruction on the PDMF. Because of preferential destruction
f heavier stars, the resulting PDMF becomes more top-light, i.e.
s suppressed on the high-mass end. In this way, we computed
he model PDMFs corresponding to three different commonly used
arametrizations of the IMFs. Note that future impro v ements in the
nderstanding and measurement of the IMF of UFDs will enable one
o obtain finer PDMF models and further strengthen the results. 

We then generated a mock data set, using the ArtPop stellar
opulation generation package, which mimics current observations
f UFDs. This mock data set was not affected by PBHs. We
erformed a Bayesian analysis of this data set, given the PDMF
odel computed previously, in order to determine the best-fitting

alues of the PDMF model parameters, including f . We found that
he value f = 1 (all the DM is in the form of PBH) could be excluded
t more than 3 σ for the broken power-law and log-normal IMFs,
nd at more than 2 σ for the single power-law with a restrained mass
ange. Finally, we checked, by generating fake populations using
he ArtPop package, that the Bayesian results are consistent with a
requentist approach. 

In this paper we have improved on the results of Esser & Tin yako v
 2023 ) in two respects. First, we have identified a more robust
bserv able sensiti ve to the ef fect of PBH – the UFD stellar mass
unction – that is less prone to astrophysical uncertainties than
 mere fraction of destroyed stars. Secondly, we have developed
he Bayesian approach to quantify the statistical significance of the
onstraints on the PBH fraction. 

As a final remark, we note that basically the same approach can be
sed to disco v er PBHs rather than constrain their fraction. When
pplied to the real observations, one may in principle find that
he value f = 0 is not compatible with the data, which would be
n indication of the PBH existence and a moti v ation for dedicated
earches for these hypothetical objects. 
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PPENDIX  A :  SCATTERED  SAMPLE  ANALYSI S  

n reality, when trying to infer the mass function of an isochrone
tellar population, multiple sources of uncertainties have to be taken 
nto account. Apart from unresolved binaries, which we already 
entioned in the main text, the stars do not hav e e xactly the
ame age or metallicity. Hence, they do not follow exactly the
ame isochrone curve, which results in some extra scatter on the
olour–magnitude diagram. Furthermore, there is for each star an 

igure A1. Colour–magnitude diagram of the noisy mock data. The absolute
agnitudes (in the F606W and F814W filters described in the text) are

isplayed on the left vertical axis, while the stellar masses are shown on the
ight v ertical axis. The y are a function of the colours of the stars, displayed
n the horizontal axis. 

ssociated photometric uncertainty. For example, in Filion et al. 
 2022 ), the relative photometric error on the magnitude in the F606W
nd F814W bands is of the order of ∼ 0 . 2 per cent . To take these
ncertainties into account – the photometric one, but also the extra 
catter due to the non-exactitude of the isochrone hypothesis – we 
enerate a sample similar to the one used for the main study of
his paper, but with a Gaussian noise of 1 per cent on the F606W and
814W magnitudes of each star. The amplitude of the Gaussian noise

s chosen in such a way that the resulting colour–magnitude diagram
s similar to real diagrams obtained from observational studies (cf. 
eha et al. 2013 ; Gennaro et al. 2018a , b ; Filion et al. 2022 ). This

olour–magnitude diagram is shown on Fig. A1 . 
We performed the analysis described in Section 5.3 on this new

ample, and obtained the results depicted in Fig. A2 . One can see
hat the exclusion limits of the fraction f are very close to the original
nes. Hence, we conclude that adding scatter to the mock data sample
oes not change the constraining power of the method significantly. 
MNRAS 529, 32–40 (2024) 
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Figur e A2. Mar ginalized probability density function of the PBH fraction f for the BPL (top left panel), LN (top right panel) and SPL (bottom panel) cases 
with the scattered sample. The left (green) region corresponds to the values that are within one-sided 1 σ , the middle (blue) region corresponds to points between 
1 σ and 2 σ and the right (orange) region corresponds to points between 2 σ and 3 σ . 
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