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Abstract

Motivated by the signatures of nonlinear electrostatic waves observed by the Magnetospheric Multiscale spacecraft
mission in reconnection jet regions of Earth's magnetotail, we have explored the dynamical features of ion-acoustic
shock waves in the magnetotail. In this investigation, we have examined the dynamics and characteristics of ion-
acoustic subsonic shock waves in non-Maxwellian space plasma comprising of two counterstreaming ion beams
with suprathermal electrons, assumed to follow a kappa (κ) distribution. A reductive perturbation technique has
been adopted to establish an evolution equation for small amplitude electrostatic shock structures. Importantly,
subsonic waves only exist when the beam velocity exceeds a certain threshold, beyond which supersonic and
subsonic waves may coexist. The combined effects of the beam velocity and the non-Maxwellian electron statistics
have been analyzed to examine the characteristics of subsonic shock waves. Both symmetric and asymmetric (in
relative beam density) models have been considered, leading to distinct possibilities in the evolution of subsonic
shock waves. The findings of the investigation will help unfold the relatively unexplored dynamical characteristics
of subsonic shock waves that may form and propagate in the magnetosphere.

Unified Astronomy Thesaurus concepts: Plasma physics (2089); Space plasmas (1544)

1. Introduction

Nonlinear electrostatic waves have been routinely detected
in Earth’s magnetosphere by various spacecraft missions,
including Viking (Boström et al. 1988), Geotail (Matsumoto
et al. 1994), FAST (Ergun et al. 1998), and Cluster (Pickett
et al. 2004) among others. Analogous localized electrostatic
structures (electrostatic solitary waves, ESWs) have been
observed by planetary missions like Cassini and MAVEN in
the magnetospheres of Saturn (Pickett et al. 2015) and Mars
(Andersson et al. 2015; Kakad et al. 2022), respectively. From
a modeling perspective, the fundamental analytical tools for
studying these waves were initially developed by Sagdeev
(1966) and Washimi & Taniuti (1966). In recent years,
numerous theoretical and experimental investigations have
concentrated on solitary waves (SWs) occurring in different
plasma contexts; see e.g., the studies by Baboolal et al. (1990),
Berthomier et al. (1998), Hellberg & Verheest (2008), Verheest
& Hellberg (2009), Lakhina et al. (2011), Mahmood & Ur-
Rehman (2013), and Ur-Rehman et al. (2014). Subsequently,
simulation studies have explored SWs within multicomponent
plasmas (Kakad et al. 2016; Singh et al. 2020, 2021, 2022).

The investigation of shock waves in collisionless plasmas
has garnered significant attention over recent decades, both
from experimental (Nakamura et al. 1999; Heinrich et al. 2009)
and theoretical (Washimi & Taniuti 1966; Malfliet & Here-
man 1996; Kourakis et al. 2012a, 2012b; Sultana et al. 2012)
perspectives. The increasing level of detail provided by both
laboratory measurements and space-based observations under-
scores the necessity for continuous refinement of the

underlying theoretical framework. Many theoretical investiga-
tions in the literature have relied on either the Burgers equation
or the hybrid Korteweg–de Vries–Burgers (KdVB) equation,
which elegantly captures the intricate interplay between
nonlinearity, dispersion, and dissipation effects in the genera-
tion and evolution of shock structures. Nonetheless, the diverse
range of plasma environments where shock waves may arise
has posed challenges in developing a unified theoretical
description for these inherently nonlinear phenomena.
The presence of both fast and slow ion-acoustic (IA) modes

has been confirmed in multi-ion (warm ion) plasma models
utilizing linear wave theory, subsequently leading to intriguing
nonlinear investigations of plasmas permeated by two opposing
ion-beam flows (Lakhina et al. 2020; Verheest & Hell-
berg 2021). These studies, employing a multi-plasma-fluid
framework, have revealed that beam-permeated plasmas may
sustain not just the “traditional” supersonic electrostatic solitary
wave structures, but also a subsonic IA nonlinear mode. This
subsonic mode propagates at a velocity lower than the speed of
sound but above a specific threshold (for the Mach number
value), say Mmin (Lakhina et al. 2020; Verheest & Hell-
berg 2021). A noteworthy development is the observation that
the amplitude of SWs demonstrates an intriguing growth trend
as the Mach number decreases toward the critical value of
Mmin, below which the existence of SWs becomes unfeasible.
A recent study by Lakhina et al. (2021) proceeded further by
investigating the generation mechanism of these waves in the
context of reconnection jets. This investigation considered the
influence of beam thermal effects, an aspect not covered in a
prior study by Liu et al. (2019). That study assumed the
presence of ion beams coexisting with Maxwellian electrons
within the background plasma.
Lakhina et al. (2020, 2021) employed a plasma-fluid model

that featured two counterstreaming ion beams and Maxwellian
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electrons. They were pioneers in demonstrating the possibility
of SWs existing at Mach numbers below a critical threshold,
provided that specific criteria were satisfied. In a subsequent
study, Verheest & Hellberg (2021) re-examined this same
model, omitting thermal ion effects and shedding light on the
pivotal role played by the velocity of the ion beams, rather than
thermal factors, in the formation of subsonic SWs. Their
meticulous investigation conclusively verified that these slow-
mode SWs indeed propagate at subsonic speeds in the
laboratory frame, both in symmetric and asymmetric beam-
plasma models.

Various satellite missions have provided compelling evi-
dence for the prevalence of energetic particles in a variety of
space and astrophysical settings. In these scenarios, the electron
velocity distribution exhibits a distinctive long-tailed pattern at
high energies, giving rise to a significant suprathermal
component. This distribution diverges from the conventional
“textbook” model of a thermal Maxwell–Boltzmann distribu-
tion, as discussed by Livadiotis (2017, 2018). Suprathermal
particles have been documented in various locations, including
Earth’s magnetosphere (Feldman et al. 1975) and the auroral
region (Mendis & Rosenberg 1994; Lazar et al. 2008), as well
as in Mercury’s magnetosphere, i.e., detected by MESSEN-
GER mission data (Ho et al. 2011). The kappa distribution was
initially introduced by Vasyliunas (1968) as a heuristic model
to interpret data from OGO 1 and OGO 3 spacecraft within
Earth’s magnetosphere. Subsequently, kappa-type (non-Max-
wellian) distribution functions have been applied to character-
ize suprathermal particle populations in the solar wind
(Armstrong et al. 1983) and in planetary magnetospheres,
e.g., Earth’s, Saturn’s, and Jupiter’s (Leubner 1982; Singh et al.
2021, 2022, 2023; Varghese et al. 2023).

Magnetic reconnection is a mechanism through which
magnetic energy is converted into plasma kinetic energy,
accompanied by changes in the magnetic field configuration
(Yamada et al. 2010; Fu et al. 2017). In Earth’s magnetotail,
this process occurs when two oppositely directed plasmas
become interconnected with magnetic field lines, leading to the
ejection of these reconnected plasmas at high velocities from
the reconnection site. This phenomenon is commonly referred
to as a reconnection jet (Cao et al. 2013). It is now well-
established that reconnection jets play a pivotal role in
energizing plasmas in space and astrophysical contexts,
including phenomena like solar flares, pulsar winds, and active
galactic nuclei (Kirk & Skjaeraasen 2003; Chen et al. 2019; Liu
et al. 2019; Lakhina et al. 2021). Within Earth’s magnetotail,
reconnection jets can give rise to various types of plasma waves
and instabilities, in addition to ESWs. Liu et al. (2019)
presented the first observational evidence, using data from the
Magnetospheric Multiscale (MMS) spacecraft, that elucidated
the development of ESWs associated with cold ion beams
within reconnection jets in Earth’s magnetotail.

The magnetotail region is extensively permeated by counter-
streaming ion beams, exhibiting relative velocities of up to
2000 km s−1, in conjunction with hot electrons. These ion
beams, as highlighted in the study by Liu et al. (2019), can
serve as a source of free energy, contributing to the generation
of ESWs. Over the past decade, slow IA electron SWs have
been documented within the plasma sheet boundary layer
(Norgren et al. 2015) and at reconnection sites (Graham et al.
2015). More recently, Lakhina et al. (2021) investigated the
formation of both fast and slow ESWs within reconnection jets,

taking into account the presence of two ion beams, thermal
effects, and Maxwellian electrons, as mentioned above.
The research presented in this paper was initiated in response

to the aforementioned factors and marked an inaugural
(unprecedented, to the best of our knowledge) investigation
of subsonic shock waves within the reconnection jet region(s)
of Earth’s magnetotail (plasma). Such subsonic shocks were
previously detected by various satellite observations (Zhou
et al. 2018; Gingell et al. 2019), but the underlying theoretical
setting has so far remained unexplored in the existing scientific
literature. Motivated by these considerations, our study at hand
focuses on the presence of two counterstreaming (cold) ion
populations surrounded by suprathermal electrons. To identify
and characterize the plasma regime(s) where subsonic shock
waves may exist, our approach in this article relies on a
nonlinear reductive perturbation technique, specifically the
KdVB equation, as our main analytical tool.
To the best of our knowledge, this investigation represents a

novel endeavor as it concentrates on a realistic scenario within
space plasmas to predict subsonic shock-like structure
occurrence. Specifically, we explore the collision of two
counterstreaming plasmas in the presence of nonthermal
(kappa-distributed) electrons, a prevalent condition widely
observed in Earth’s magnetosphere. This phenomenon may
also have relevance in planetary magnetospheres (e.g., the
Martian one) influenced by interactions with the solar wind,
which serves as a continuous source of streaming ions and
energized electrons. Previous research primarily centered on
supersonic SWs, with subsonic wave solutions typically ruled
out in a quiescent plasma without a beam (Dubinov 2009).

2. A Double Beam Plasma Model

We have considered a plasma consisting of non-Maxwellian
electrons (mass me, charge −e) and double ion-beam fluids
(mass m1=m2=mi, charge q1= q2=+e. (We have consid-
ered a charge state Zi=+1 as we are dealing with proton
beams, i.e., hydrogen nuclei.)
The fluid model equations describe the plasma state in terms

of the two proton fluid densities (nj) and the fluid speeds
(uj)—where j= 1 or 2, respectively, for each of the two proton
fluids—consist of the continuity equation(s):
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where f̃ is the electrostatic potential and ò0 is the permittivity of
vacuum.
The electron density entering Poisson’s equation can be

obtained by integrating the kappa velocity distribution
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(Hellberg et al. 2009) as
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At equilibrium, the charge neutrality condition is

n n n n , 5e,0 0 1,0 2,0= = + ( )

where nj for ( j= 1 or 2) denote(s) the unperturbed number
density of the ions, respectively.

For the sake of analytical convenience, we shall adopt the
following normalization: n n nj j 0= ˜ , n n ne e 0= ˜ , u u Cj j 0= ˜ /
(where k T mC B e i0

1 2= ( )/ / is the IA/sound speed in (single) ion-
electron plasma), e k TB ef f= ˜ ( ), x x D e,l= ˜ (where D e,l =

k T e nB e0
2

0
1 2( ( )) is a characteristic length inspired by the

expression for the Debye length in electron-ion (e-i) plasma), and
t tp i,w= ˜ (where e n mp i i,

2
0 0

1 2w = [ ( )] adopts the expres-
sion for the ion plasma frequency in e-i plasma). Furthermore,
the ion viscosity is rescaled as j j De p i

2
,h h l w= ˜ ( ), while the

drifting speed of the two ion fluids (i.e., the beams) is also
normalized as u u Cj j,0 ,0 0= ˜ / .

Applying the above normalization scheme, Equations (1)–(4)
take the form
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Note that charge neutrality at equilibrium imposes the condition:
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n

n1
1,0

0
d = and

n
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d = reflect the relative density ratio

(with respect to the total ion density n0) of the ion beams.

3. Linear Analysis

Before examining the nonlinear analysis of IA waves, we
will study the linear stability briefly. By linearizing
Equations (6)–(9) and assuming harmonic oscillations of
angular frequency ω and wavenumber k, we obtain the linear
dispersion relation
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This is a fourth-order polynomial equation, which gives two
fast and two slow modes. In the limiting case, without
streaming velocities, i.e., u1,0= u2,0= 0, the above relation

becomes
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where c1 was defined above. Note that the quantity c1 is related
to both the (kappa-dependent) charge screening length λDebye
and sound speed Cs in suprathermal e-i plasmas, both of which
scale as c, C 1sDebye 1l ~ / , as discussed by Kourakis et al.
(2012a) and independently (for the Debye length) by Bryant
(1996) and Livadiotis & McComas (2014). (As expected, c1
tends to unity in the Maxwellian limit as κ→∞ ).
Equation (10) has four roots, thus prescribing two fast IA

modes (in addition to two slow modes), which in fact propagate
in opposite directions, i.e., one propagates toward the right and
the other one toward the left.
Inspired by the analysis in Lakhina et al. (2020) and

Verheest & Hellberg (2021), we may now proceed by
assuming a symmetric bi-ion plasma, i.e., δ1= δ2= δ= 1/2,
with u1,0=− u0, and u2,0= u0. Substituting into the above
dispersion relation, we are led to
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The subscripts F and S denote the fast and slow IA modes
corresponding to the± sign, respectively. A short algebraic
calculation reveals that there is a threshold value in the beam
velocity above which subsonic IA waves exist, while the
interval below is an unstable region. This was discussed in
recent work by Singh et al. (2023; see Figures 1–3 therein).

4. Nonlinear Analysis

The standard reductive perturbative technique, as originally
introduced by Washimi & Taniuti (1966) can be employed at
this stage. The method relies on introducing (independent)
stretching coordinates as
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where ò= 1 is a small (real) parameter reflecting the strength
of nonlinearity. Here, λ is the phase speed of the solution
(wave, shock form), whose value is left to be determined later,
eventually imposed by algebraic considerations. The dependent
variables nj, uj, and f can be expanded as a power of ò:
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We have considered a weakly damped medium, assuming an
infinitesimal (value of the) kinematic viscosity, as

, 16j j
1 2

0h h» ( )

where ηj0 is a finite quantity. The latter assumption is justified
a posteriori by the fact that dispersive, nonlinear, and
dissipative terms will arise on equal footing, in the perturbative
analysis, at a certain order.
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Substituting Equations (9)–(15) into Equations (6)–(8) leads
to the following expressions, upon solving the first-order
equations:
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An algebraic compatibility condition leads to the following
expression for the wave phase speed λ:
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Note that the right-hand side (RHS) is equal to c1 (essentially
the signature of the kappa distribution in the linear results),
which was defined previously. It is interesting to point out that,
had one considered the dispersion relation (Equation (10)) in
the infinite-wavelength (i.e., vanishing wavenumber) limit
k→ 0, one would have found precisely Equation (18), via a
different approach. One concludes, therefore, that parameter λ
represents the phase speed of low-k linear waves, i.e.,
essentially the true IA (“sound”) speed in the given plasma
configuration, as physically and mathematically expected.

Proceeding to the next higher order of ò, one finds the
following equations:
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One may now eliminate the second-order quantities from
Equations (19)–(21) by simply using Equations (17)–(18).
After some straightforward algebraic manipulation, one obtains
a closed partial-differential equation (PDE) in the form of a
hybrid KdVB equation:
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The coefficients appearing in the KdVB Equation (22) consist
of the nonlinearity coefficient

⎧
⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎭u u

cA B 3 2 , 231

1,0
4

2

2,0
4 2

d
l

d
l

=
-

+
-

-
( ) ( )

( )

the dispersion coefficient

⎡
⎣⎢

⎤
⎦⎥u u

B
1

2
, 241

1,0
3

2

2,0
3

1
d

l
d

l
=

-
+

-

-

( ) ( )
( )

and the dissipation coefficient
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Recall that c2 is a kappa-dependent parameter related to
quadratic nonlinearity in f, which was defined earlier; see
Equation (9) above.

It is interesting to point out that both the dispersion
coefficient B and the damping coefficient C, given in
Equations (24) and (25) above, respectively, may acquire
negative values, due to an interplay between the values of the
beam speeds u1,0 and u2,0 (and also η1,0 and η2,0, as regards C).
This new possibility, nonexistent in beam-free plasmas—since,
upon setting u1,0= u2,0= 0, both B and C become positive
definite—calls for a certain caution in the physical interpreta-
tion of analytical solutions for physically meaningful quan-
tities, such as, e.g., f1, governed here by Equation (22) above.
In the investigation that follows, we have considered a pair

of proton (H+) beams, i.e., consisting of identical microscopic
particles (ions). Therefore, we may set η1,0= η2,0= η0 to
proceed. The dissipation coefficient is thus given by C= η0/2
(>0). Note that C is positive, therefore, throughout the
remainder of the paper. However, B may either be positive
(as in the beam-free case) or negative, depending on the value
(s) of the beam speed(s) entering the expression (Equation (24))
above.

4.1. Symmetric Model

Let us consider a pair of counterpropagating beams of equal
density and (absolute) drift velocity, by taking δ1= δ2= 1/2
and u2,0=− u1,0= u0, along the lines introduced by Lakhina
et al. (2020) and Verheest & Hellberg (2021). Equation (18)
thus reduces to
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Two roots for λ2 can be computed from the above
biquadratic equation, in the form of
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From the above four roots thus obtained for λF,S, we shall
retain the (two) positive roots for numerical analysis. Indeed,
we need not discuss the case λ< 0, as it just follows the same
behavior as λ> 0 in the symmetric case. It is straightforward to
show that the latter two expressions could also be recovered
from the dispersion relation (Equation (13)) in the small
wavenumber limit, i.e., by assuming k2= c1, viz.  k c0

2 2
1w

and setting λ= ω/k for the phase speed.
In this (symmetric) case, the nonlinearity, dispersion and

dissipation coefficients in the KdVB equation can be
respectively rewritten as
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Iterating an earlier comment, note that C> 0, while B may
either be positive (as in the beam-free case) or negative,
depending on the value(s) of u0 entering the expression
(Equation (31)) above.

4.2. Asymmetric Model

We shall now consider a specific composition, by taking
δ1= 2/3, δ2= 1/3, u1,0=− u0, and u2,0= 2u0. This ensures
that the equilibrium is charge- and current-neutral, viz.
δ1+ δ2= 1 and δ1u1,0+ δ2u2,0= 0. Equation (18) thus reduces
to
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which can be rewritten as
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This quartic polynomial equation in λ has four roots. In this
(asymmetric) case, the coefficients in the KdVB equation can
be rewritten as
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We notice that, as in the symmetric case above, C> 0 here too,
while B may either be positive (as in the beam-free case) or
negative, depending on the value(s) of u0 entering the
expression (Equation (36)) above.

4.3. Shock-wave Solution of the KdVB Equation

To obtain a stationary-profile solution of the KdVB equation,
one may consider the variable transformation to the moving
coordinate c x t= -  (while the variation, i.e., the derivative
with respect to time τ will be suppressed). Here, λ is the speed
of the electrostatic shock wave in the moving reference frame
(i.e., moving at the sound speed), normalized by C0; in other
words, the shock speed will be equal to vshock l= +   .
Consider Φ= f1(ξ, τ), obeying Equation (22), which now
becomes Φ(χ) in the moving reference frame, whose dynamics

Figure 1. Symmetric case: fast mode. The variation of (a) the phase speed λF, based on Equation (28), (b) the nonlinearity coefficient A, and (c) the dispersion
coefficient B with respect to κ and u0. We have taken δ = 0.5.
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will obey the ordinary differential equation:

d

d

d

d
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d
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F
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F
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Kourakis et al. (2012b) revisited the well-known shock
solutions of the KdVB equation, together with their limitations
in the context of astrophysical plasma applications. The
analytical solution of the KdVB equation can be found by
using the hyperbolic tangent (tanh) method (Malfliet &
Hereman 1996; Kourakis et al. 2012b; Sultana et al. 2012) to
read
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Here,
3C

25AB
m

2
F =

is the shock amplitude and

1B

C
D =

is related to the shock width, i.e., its spatial extension (the
larger the value of Δ, the more stretched the shock form will
be). Furthermore, the shock speed  is prescribed, as

6C

25B
.

2
=

We should point out that the shock excitation obtained for
the electrostatic potential will be associated with a monopolar

Figure 2. Symmetric case: fast mode. The variation of an electrostatic shock profile Φ is shown vs. χ, for different values of (a) the spectral index κ (for fixed
u0 = 1.5, η0 = 0.5); (b) the beam velocity u0 (for fixed κ = 2, η0 = 0.5); and (c) the fluid viscosity η0 (for fixed κ = 2, u0 = 1.5). Furthermore, in panels (d), (e), and
(f) the variation of the monopolar electric field (E) associated with the shock profiles corresponding to panels (a), (b), and (c), respectively, is depicted. We have taken
δ = 0.5 in these plots.
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(pulse-like) form expected to be observed for the electric field.
Recalling that E=−∇Φ (in the electrostatic approximation),
one obtains the following expression (in 1D geometry) for the
E-field:

⎛
⎝

⎞
⎠

⎡
⎣

⎛
⎝

⎞
⎠

⎤
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E E sech 1 tanh , 400
2 c c

=
D

+
D

( )

where E0 2

3C

500AB
m

3

2= =F
D

represents the maximum/minimum
(for A> 0 or for A< 0, respectively) value of the monopolar
E-field form. The former case (E0> 0) will be the standard case
for IA waves (“positive polarity”) in monopolar E-field space
observations, while the latter case (E0< 0) will be referred to as
a “negative polarity” excitation. This prediction matches,
qualitatively speaking, certain space observations of propagat-
ing monopolar electric field waveforms (Tsurutani et al. 1998;
De Keyser et al. 2010).

It is interesting to point out that, since all of the coefficients
(A, B, and C) may be either positive or negative (see the
discussion above), their sign may affect the sign(s) of Φm, Δ,
and  . As a consequence, different possibilities exist, as
regards the shock behavior. Recall that B> 0 in the beam-free
case; therefore, some of the possibilities open in our case did
not exist in a beam-free model.

Let us assume that Δ> 0. Note that the limit of RHS of
Equation (39) for χ→m∞ is Φm and 0, respectively, in this
case. Therefore, the latter expression represents a positive-
valued function, monotonically decreasing from Φm> 0 to
zero, for AB> 0.

On the other hand, the inverse monotonic behavior will be
witnessed for AB< 0: a negative-valued function is obtained
that increases from Φm< 0 to zero as χ varies from −∞ to ∞.
Inversely, assuming that Δ< 0, the limit of RHS of

Equation (39) for χ→m∞ is 0 and Φm, respectively, in this
case. Therefore, the latter expression represents a positive-
valued function, monotonically increasing from zero to Φm> 0,
for AB> 0. On the other hand, for AB< 0, a negative-valued
function is obtained that decreases from zero to Φm< 0 as χ
varies from −∞ to ∞.
Interestingly, the sign of B determines the sign of the

propagation speed  also: a positive B value (as in the beam-
free case u0= 0) implies a rightward propagating excitation: an
anti-kink soliton form is thus obtained if A> 0, while a kink
soliton is obtained in A< 0. Inversely, a negative B value
implies a leftward propagating excitation: however, a step-
shaped function (Φm< 0) propagating backwards is tantamount
to an anti-kink propagating to the left (this is obvious, upon a
space-reversal). Likewise, a descending-step-like function
(Φm> 0) propagating backward is tantamount to a kink
excitation propagating to the left.
The different possibilities that exist in terms of our plasma

parameters will be exposed in detail in Section 5.

5. Parametric Analysis

Based on the above algebraic results, we may now carry out
a parametric investigation to study the characteristics of IA
shocks associated with fast and slow modes in non-Maxwellian
plasma.

Figure 3. Symmetric case: slow mode. ((a), (b)) The variation of the phase speed λS, based on Equation (29); (c) the nonlinearity coefficient A, and (d) the dispersion
coefficient B with respect to κ and u0. We have taken δ = 0.5. Note that the slow mode does not exist for u0 values below a certain threshold, as illustrated in panel (b),
hence the gap appearing in panel (a).

7

The Astrophysical Journal, 966:203 (13pp), 2024 May 10 Singh, Verheest, & Kourakis



5.1. Nonlinear Analysis

5.1.1. Symmetric Model

Fast mode. Figure 1 shows the dependence of (a) the phase
velocity (λF) (i.e., the shock speed, to leading order), (b) the
nonlinearity coefficient A, and (c) the dispersion coefficient B
associated with the fast mode in a symmetric bi-ion-beam
plasma, on the beam speed (u0) and the electron spectral index
(κ). Notice that all of the coefficients (A, B, and C) are positive
in this case, which prescribes positive values of (all of) Φm, Δ,
and  (see the definitions above). Note that the phase speed
increases with either a larger beam velocity (value) or with a
higher spectral index. In other words, stronger deviation from
Maxwellian statistics (i.e., lower kappa) leads to a slower
acoustic (“sound”)—as expected from earlier works (Kourakis
et al. 2012a)—and, consequently, to the possibility for a slower
shock speed. An analogous effect regards the beam velocity,

which actually seems to energize the shocks: the faster the
beam, the faster a shock may be. It turns out that the
nonlinearity coefficient (A) is slightly higher (for finite beam
speed) for smaller κ (i.e., for stronger deviation from the
Maxwellian), and also higher for higher beam speed (see
Figure 1 (b)). Conversely, the dispersion coefficient decreases
(slightly) for larger u0, although it also decreases for smaller
spectral index (value), as shown in Figure 1(c). Recall, in
passing, that the dissipation coefficient in Equation (22) is
directly proportional to the medium’s viscosity (coefficient).
Figure 2 depicts an electrostatic shock profile associated with

the fast mode, emphasizing its variation with different
parameters. Note that only positive polarity (monopolar)
electric field profiles associated with “shocks” (or anti-kink
soliton forms) moving toward the right are predicted in this
case, since both A and B are positive, for any u0 and κ; see the
definition of Φm in Equation (39). It is clearly seen that the

Figure 4. Symmetric case: slow mode. The variation of the shock profile Φ is shown vs. χ, for different values of (a) spectral index κ for fixed u0 = 1.5, η0 = 0.5; (b)
beam velocity u0 for fixed κ = 2, η0 = 0.5; (c) fluid viscosity (η0) for fixed κ = 2, u0 = 1.5. Panels (d), (e), and (f) show the variation of the monopolar electric field
profile (E) of the shock profiles corresponding to panels ((a), (b), (c)), respectively. We have taken δ = 0.5.
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amplitude of IA shocks associated with the fast mode in the
symmetric model decreases for higher values of either the
spectral index and the beam velocity, as shown in panels (a)
and (b), respectively. Lower values of kappa (i.e., stronger
deviation from the Maxwellian behavior) will therefore result
in stronger shocks. Note that larger amplitude shocks develop
for higher values of viscosity coefficient, as seen in Figure 2(c):
this is due to the amplitude being related to C2, which in turn is
directly proportional to η. Panels (d), (e), and (f) in the same
figure illustrate the variation of the monopolar electric field (E)

pulse profile of shocks corresponding to panels (a), (b), and (c),
respectively.
Slow mode. Figure 3 depicts the variation of ((a), (b)) the

phase speed (λS), (c) the nonlinearity coefficient A, and (d) the
dispersion coefficient B, for electrostatic shocks associated
with the slow mode in a symmetric bi-ion-beam plasma. Notice
that coefficients A and B are both negative in this case (while
C> 0), which prescribes positive values of Φm, but negative Δ
and negative  (see the definitions above). Note that slow IA
shocks only occur for values of the beam velocity exceeding a
certain threshold value, as discussed in Singh et al. (2023). The
phase speed increases for higher beam speed (value), and also
for larger electron spectral index (kappa). Note that the
nonlinear coefficient is negative for the slow mode. The
absolute value of the nonlinear coefficient first decreases up to
κ≈ 4 and then increases (see Figure 3(c)). We also notice that
the nonlinearity coefficient increases in absolute value as the
beam speed increases. The dispersion coefficient is also
negative and increases (in absolute value) for larger u0 and
the spectral index as shown in Figure 3(d).
Figure 4 illustrates the variation of an electrostatic shock

profile associated with the slow IA mode. Only negative
polarity monopolar electric field profiles and anti-kink soliton
forms (for f) moving toward the left are observed, since B is
negative in this case; see the definition of the propagation speed
 following Equation (39).

One clearly sees that the amplitude of IA shocks associated
with the slow mode in the symmetric model decreases for higher
values of spectral index and beam velocity, as shown in panels

Figure 5. Asymmetric case. The phase velocity of the fast and slow mode(s) vs. the spectral index (κ), for (a) u0 = 0; (b) u0 = 0.5; (c) u0 = 1; and (d) u0 = 1.5, as well
as for a fixed value of δ1 = 2δ2 = 2/3. The fast mode is shown in blue color and the slow mode is in red.

Figure 6. Asymmetric case. The variation of the coefficients A and B vs. the
spectral index κ for the fast and the slow mode, respectively, are shown. In this
plot, δ1 = 2δ2 = 2/3, η0 = 0.5, and u0 = 1.5 are kept fixed.
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4(a) and (b), respectively. Note that larger amplitude IA shocks
will evolve for high values of the viscosity coefficient, as shown
in panel 4(c). Panels (d), (e), and (f) illustrate the variation of the
monopolar electric field (E) pulse profile associated with the
shocks shown in panels (a), (b), and (c), respectively.

5.1.2. Asymmetric Model

The variation of the phase speed (for both fast and slow
modes) versus the spectral index of electron (κ) for different
values of beam velocity is shown in Figure 5. Recall that only
the fast mode exists below a certain threshold in the beam
speed (value), as shown in Figure 5; see panels (a) and (b)
therein. Above this threshold, both fast and slow modes may
occur in the κ domain. Conversely to the previous case (slow
mode), the fast mode phase speed increases for lower κ (see

Figures 5(c) and (d)), i.e., for stronger deviation from the
Maxwellian picture.
Figure 6 shows the variation of the nonlinearity (A) and

dispersion (B) coefficients versus the spectral index (kappa),
for a fixed value of the beam speed. Note that both coefficients
are negative for the fast mode and positive for the slow mode.
Fast mode. Notice that the coefficients A and B are both

negative in this case (while C> 0), which prescribes positive
values of Φm, but negative Δ and negative  (see the
definitions above). Figure 7 illustrates the variation of an IA
shock profile associated with the fast mode. Only negative
polarity electric field profiles associated with shocks (or anti-
kink solitons) moving toward the left are observed, since B< 0
in this case; note the definition of the propagation speed 
following Equation (39). We see that the amplitude of IA
shocks associated with the fast mode in the symmetric model

Figure 7. Asymmetric case: fast mode. The variation of the shock profile Φ vs. χ is shown, for different values of (a) spectral index κ for fixed u0 = 1.5, η0 = 0.5; (b)
beam velocity u0 for fixed κ = 2, η0 = 0.5; and (c) fluid viscosity (η0) for fixed κ = 2, u0 = 1.5. Panels (d), (e), and (f) show the electric field (E) profile associated
with the shocks depicted in panels (a), (b), and (c), respectively. Note that δ1 = 2δ2 = 2/3.
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decreases for higher values of either the spectral index or beam
velocity as shown in panels (a) and (b), respectively. Note that
large amplitude IA shocks will evolve for high values of the
viscosity coefficient given in panel (c). The last three panels
((d), (e), (f)) in the same figure show the variation of the
monopolar electric field (E) pulse profile associated with the
potential forms depicted in panels (a), (b), and (c), respectively.

Slow mode. Notice that all coefficients A, B, and C are
positive in this case, which prescribes positive values of (all of)
Φm, Δ, and  (see their definitions above). Figure 8 illustrates
the variation of IA shock profiles associated with the slow
mode. Only positive polarity electric field profiles associated
with shocks (or anti-kink solitons) moving toward the right are
observed, since B> 0 in this case; note the definition of the
propagation speed  following Equation (39). We see that the
amplitude of IA shocks associated with the slow mode in the

symmetric model decreases for higher values of either the
spectral index or the beam velocity, as shown in Figure 8(a)
and (b), respectively. Note that large amplitude IA shocks will
evolve for high values of the viscosity coefficient, as shown in
panel (c) in the same figure. Panels (d), (e), and (f) show the
variation of monopolar electric field pulse profile (E) of shocks
corresponding to panels (a), (b), and (c), respectively.

6. On the Occurrence of Shocks in Earth’s Magnetotail:
Prediction from First Principles

Drawing inspiration from the observations of Liu et al.
(2019) in reconnection jet regions in Earth’s magnetotail, we
have considered two cold counterstreaming ion beams with
non-Maxwelian electrons. We have adopted the plasma
parameters reported in the latter reference. The concentration

Figure 8. Asymmetric case: slow mode. The variation of the shock profile Φ vs. χ is shown, for different values of (a) spectral index κ for fixed u0 = 1.5, η0 = 0.5; (b)
beam velocity u0 for fixed κ = 2, η0 = 0.5; and (c) fluid viscosity (η0) for fixed κ = 2, u0 = 1.5. Panels (d), (e), and (f) show the electric field profile (E) of shocks
corresponding to panels (a), (b), and (c). Note that δ1 = 2δ2 = 2/3.
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of the first proton beam I is n1= 2.6× 104 m−3, while its
streaming velocity is u1=− 900 km s−1. The concentration of
the second proton is n2= 0.9× 104 m−3, with streaming
velocity u2= 950 km s−1. The electron concentration is
ne= 3.5× 104 m−3, with temperature Te= 2.86 keV. The IA
sound speed for these values (in e-i plasma) is CS= 523 km s−1

and the Debye length is λDe= 2.12 km. Thus, the dimension-
less parameters in our model take the values δ1= 0.74,
δ2= 0.26, U1=− 1.72, and U2= 1.82. Note that we have
considered viscosity η0= 0.5 (as an arbitrary, indicative value).

The signatures of electrostatic waves propagating antiparallel
to the ambient magnetic field B that were observed by the
MMS spacecraft in the reconnection jet region, as reported by
Liu et al. (2019), with potential f∼ (50–200) V, velocity
antiparallel to B=−650 km s−1 and width Δ∼ 20 km. Table 1
presents the attributes of both fast and slow modes of IA shock
waves corresponding to parallel (antiparallel) waves relative to
the magnetic field. Our findings demonstrate good agreement
with the findings reported by Liu et al. (2019).

In this work, we have introduced an analytical framework
modeling the occurrence of shock waves, with implications in
the reconnection jet regions in Earth’s magnetotail. In
summary, our observations suggest that streaming beams,
suprathermal electrons, and fluid viscosity combined could
bear a significant impact on the existence and also on the
propagation characteristics of subsonic waves in the reconnec-
tion jet region of the magnetotail. Notwithstanding the (limited)
disparity in the (value of the) velocity of the fast mode—in
comparison with the observations reported by Liu et al. (2019)
—the predicted amplitude and phase velocity falls within an
acceptable magnitude range. This is true, particularly, in the
direction parallel to the magnetic field. It is worth noting that
Liu et al. (2019) exclusively detected signals of electrostatic
nonlinear waves with an antiparallel orientation.

The results of this fundamental investigation, from first
principles, is in good agreement with the observations of
nonlinear excitations in the reconnection jet region(s) in Earth’s
magnetotail that were reported by Liu et al. (2019) and may be
further confirmed by some future space missions.

7. Conclusions

We have investigated the existence domains for both fast and
slow IA subsonic shock waves in suprathermal space plasma

comprising two counterstreaming (drifting) ion beams with
non-Maxwellian (suprathermal) electrons. We have employed a
perturbative technique to derive an evolution equation in the
form of a hybrid KdVB type PDE for the electrostatic potential.
Our ambition was to shed some light on the role of the beam
velocity and the spectral index on the evolution of subsonic
shock waves and also on their potential existence in the
magnetotail.
We have considered, separately, two cases, namely a

symmetric beam pair, and also an asymmetric case (of two
different beams). In both of these cases, for beam velocity
above the threshold, both supersonic as well as subsonic waves
may exist. Note that only positive polarity monopolar electric
field profiles—associated with shocks of anti-kink soliton
shape—moving toward the right (i.e., in the positive direction)
are predicted, for the symmetric fast mode and—independently
—for the asymmetric slow mode. Inversely, only negative
polarity electric field (monopolar) profiles—associated with
shocks of anti-kink soliton shape—moving toward the left (i.e.,
in the positive direction) are found for the symmetric case fast
modes and also—independently—in the asymmetric case slow
modes. The combined effects of the beam velocity (value) and
electron superthermality on the characteristics of subsonic
shock waves have been analyzed. Both symmetric and
asymmetric models are considered to explore the evolution of
subsonic shock waves in non-Maxwellian plasma.
The findings of this investigation should help elucidate the—

mostly unexplored—characteristics of subsonic shock waves
observed in the magnetosphere. Our investigation establishes
the possible occurrence of subsonic shocks inside reconnection
jets of Earth’s magnetosphere (Liu et al. 2019; Lakhina et al.
2021; Singh et al. 2023), based on observations by Liu et al.
(2019).
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Table 1
The Characteristics of IA Shock Waves Have Been Computed by Using the Data Sets Listed in Liu et al. (2019)

S. No Mode Distribution V f |Δ| E
(km s−1) (V) (km) (mV m−1)

1 Fast IA mode κe = 2 1102 120 4.3 15
parallel to B κe = 20 1212 −18 21 −0.6

2 Slow IA mode κe = 2 790 118 4.4 −14
parallel to B κe = 20 675 −14 23 0.34

3 Fast IA mode κe = 2 −1156 400 6.7 −31
antiparallel to B κe = 20 −1340 −526 33 0.1

4 Slow IA mode κe = 2 −638 542 7.2 41
antiparallel to B κe = 20 −453 −5.72 36 −0.1

Note. The concentration of the first proton beam I is n1 = 2.6 × 104 m−3, while its streaming velocity is u1 = − 900 km s−1. The concentration of the second proton is
n2 = 0.9 × 104 m−3, with streaming velocity u2 = 950 km s−1. The electron concentration is ne = 3.5 × 104 m−3, with temperature Te = 2.86 keV. The IA sound
speed for these values (in e-i plasma) is CS = 523 km s−1 and the Debye length is λDe = 2.12 km. Note that we considered viscosity η0 = 0.5. Here, f is the shock
amplitude (in volts), V is the phase speed (in kilometers per second), and |Δ| is the width of shocks (in kilometers).
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