
ar
X

iv
:2

31
1.

04
53

8v
1

 [
cs

.D
S]

 8
 N

ov
 2

02
3

Faster Maximal Exact Matches
with Lazy LCP Evaluation

Adrián Goga∗, Lore Depuydt†, Nathaniel K. Brown‡,
Jan Fostier†, Travis Gagie§ and Gonzalo Navarro¶

∗Dept. of Comp. Sci. †Dept. of Inf. Tech. ‡Dept. of Comp. Sci.
Comenius University Ghent University Johns Hopkins University
Bratislava, Slovakia Ghent, Belgium Baltimore, USA

adrian.goga@fmph.uniba.sk lore.depuydt@ugent.be, nbrown99@jhu.edu

jan.fostier@ugent.be

§CeBiB & Fac. of Comp. Sci. ¶CeBiB & Dept. of Comp. Sci.
Dalhousie University University of Chile

Halifax, Canada Santiago, Chile
travis.gagie@dal.ca gnavarro@dcc.uchile.cl

Abstract

MONI (Rossi et al., JCB 2022) is a BWT-based compressed index for computing the match-
ing statistics and maximal exact matches (MEMs) of a pattern (usually a DNA read) with
respect to a highly repetitive text (usually a database of genomes) using two operations:
LF-steps and longest common extension (LCE) queries on a grammar-compressed represen-
tation of the text. In practice, most of the operations are constant-time LF-steps but most
of the time is spent evaluating LCE queries. In this paper we show how (a variant of) the
latter can be evaluated lazily, so as to bound the total time MONI needs to process the pat-
tern in terms of the number of MEMs between the pattern and the text, while maintaining
logarithmic latency.

1 Introduction

The FM-index [1] is one of the most popular data structures in bioinformatics — its
co-inventors, Paolo Ferragina and Giovanni Manzini, recently shared the Paris Kanel-
lakis Award with Mike Burrows, the co-inventor of the Burrows-Wheeler Transform
(BWT) on which the FM-index is based — and it drives the most popular short-read
DNA aligners, such as Bowtie [2, 3] and BWA [4]. These aligners generally use a
single reference genome but, as bioinformaticians have realized how much that biases
research results and medical diagnoses, there have been efforts to scale the FM-index
to thousands or more genomes at once.

The first such effort was the run-length compressed BWT (RLBWT) by Mäkinen,
Navarro, Sirén and Välimäki [5], which can support fast counting queries in O(r)
space, where r is the number of runs in the BWT of the indexed text. For a highly
repetitive text, such as a collection of genomes from the same or closely related
species, r is orders of magnitude smaller than the size of the uncompressed text. The
RLBWT cannot support fast locating queries in O(r) space, however, and it took

http://arxiv.org/abs/2311.04538v1

several years before Gagie, Navarro and Prezza [6] proposed the r-index, which can.
Soon after, Bannai, Gagie and I [7] showed how to modify the r-index — adding a
grammar-compressed representation of the indexed text to support longest common
extension (LCE) queries — to compute matching statistics and thus maximal exact
matches (MEMs). MEMs have been among the most popular kinds of seeds for DNA
alignments at least since the introduction of BWA-MEM [8].

Bannai et al.’s design was implemented by Rossi et al. [9] as their tool MONI,
which was used as the basis for SPUMONI [10], SPUMONI 2 [11] and Sigmoni [12]. To
compute the matching statistics of a pattern with respect to an indexed text T [1..n],
MONI uses two operations: constant-time LF-steps, where LF(i) is the position in
the BWT of the character preceding BWT[i] in T , and longest common extension
(LCE) queries, where LCE(i, j) is the length of the longest common prefix of the
suffixes T [i..n] and T [j..n] of T . LF-steps take constant time in theory [13] and, when
T is over a constant-sized alphabet, also in practice.

In contrast, LCE queries on a grammar-compressed representation of T are slow:
Bille et al. [14] gave an O(g)-space data structure, where g is the number of rules
in a given straight-line program (SLP) for T , that answers LCE(i, j) in O(logn +
log2 LCE(i, j)) time; I [15] gave an O(g)-space structure with O(logn) query time,
but it works only with SLPs built with recompression [16] (which are larger in practice
than SLPs built with heuristics). MONI uses a simple O(g)-space representation of
a height-balanced SLP — which is not a significant restriction in theory [17] or in
practice — and a heuristic for queries that works fairly well in practice but can use
Ω(log n+LCE(i, j)) time to answer LCE(i, j) in the worst case. Mart́ınez-Guardiola
et al. [18] gave another heuristic that allows us to skip some LCE queries and found
that in practice it gives a significant speedup, albeit without a theoretical bound.

Very recently, Baláž et al. [19] observed that we can replace LCE queries by simpler
longest common prefix (LCP) queries between suffixes of the pattern P [1..m] and the
text T [1..n], where LCP(S1, S2) is the length of the longest common prefix of strings
S1 and S2 (which may not be suffixes of the same string). If we precompute the Karp-
Rabin hashes of the prefixes of P in O(m) time, then we can use a modification of Bille
et al.’s structure — assuming the SLP is height-balanced — to answer LCP queries
between suffixes of P and T in O(logn) time and correctly with high probability.
Therefore, we can compute the matching statistics and MEMs of P with respect to
T in O(m logn) time and correctly with high probability.

In this paper, we show how using LCP queries also allows us to evaluate those
queries lazily and thus compute the matching statistics and MEMs in
O(m+µ log(m/µ) logn) total time with high probability, where µ ≤ m is the number
of MEMs of P with respect to T . We can do this while always knowing the matching
statistics for all but the O(logn) characters of P we have processed most recently.
We alo briefly sketch two practical results: first, we show how Cobas, Gagie and
Navarro’s [20] scheme for subsampling the suffix array can be simplified when used
with MONI instead of with the original r-index; second, we extend our techniques to
a simple and practical algorithm to find quickly either all MEMs of at least a given
length or all the longest common substrings (LCSs) of P and T .

2 Preliminaries

2.1 Matching Statistics, MEMs and LCSs

The matching statistics of a pattern P [1..m] with respect to a text T [1..n] are an
array MS[1..n] of (pos, len) pairs such that

T
[

MS[i].pos..MS[i].pos +MS[i].len − 1
]

= P
[

i..i+MS[i].len− 1
]

and P [i..i+MS[i].len] does not occur in T . In other words, MS[i].len is the length of
the longest prefix of P [i..m] that occurs in T and MS[i].pos is the position of one of
its occurrences in T .

One of the main uses of matching statistics is computing maximal exact matches

(MEMs). A substring P [i..j] of P has an exact match in T if j < i+MS[i].len, and
is called a MEM of P with respect to T if j = i+MS[i].len− 1 and MS[i− 1].len ≤

MS[i].len. In other words, P [i..j] is a MEM if it occurs in T but P [i − 1..j] and
P [i..j + 1] do not. Since we cannot have two MEMs P [i1..j1] and P [i2..j2] nested —
that is, with i1 ≤ i2 ≤ j2 ≤ j1 — the number µ of MEMs of P with respect to T is
at most m, and is usually significantly less in practice.

The longest common substrings (LCSs) of P and T are the maximum MEMs.
Finding LCSs is one of the classic problems of stringology, and indexes for it have
played a key role at least since Weiner’s [21] optimal-time solution with suffix trees.

2.2 MONI

The main component of MONI is a run-length compressed Burrows-Wheeler Trans-
form (BWT) of the text T [1..n], with the suffix array (SA) sampled at the begin-
ning and end of every BWT run. Between any two consecutive runs BWT[s1..e1]
and BWT[s2..e2] of the same character in the BWT, MONI also stores a threshold

t with e1 < t ≤ s2 such that LCE(SA[q], SA[e1]) ≥ LCE(SA[q], SA[s2]) for q < t
and LCE(SA[q], SA[e1]) ≤ LCE(SA[q], SA[s2]) for q ≥ t, where the longest common

extension LCE(x, y) of two suffixes T [x..n] and T [y..n] of T is the length of their
longest common prefix. Rossi et al. noted that we can choose t to be the position of a
minimum in LCP[e1+1..s2], where LCP[j] — not to be confused with LCP(S1, S2) —
is the length of the longest common prefix of T [SA[j−1]..n] and T [SA[j]..n]. Finally,
MONI stores a balanced straight-line program (SLP) for T to support LCE queries.

Suppose we know MS[i + 1] and the lexicographic rank q of T [MS[i + 1].pos..n]
among the suffixes of T (so SA[q] = MS[i+ 1].pos). If BWT[q] = P [i], then

MS[i].pos = MS[i+ 1].pos− 1

MS[i].len = MS[i+ 1].len + 1

and the lexicographic rank of T [MS[i].pos..n] among the suffixes of T is LF(q), where
LF is the last-to-first function that maps the position in the BWT of a character to
the position in the BWT of that character’s predecessor in T .

If BWT[q] 6= P [i] and BWT[s1..e1] and BWT[s2..e2] are the runs of copies of P [i]
preceding and following BWT[q], respectively, then by the definition of the BWT
either

MS[i].pos = SA[e1]− 1

MS[i].len = min
(

MS[i+ 1].len,LCE(MS[i+ 1].pos, SA[e1])
)

+ 1

or

MS[i].pos = SA[s2]− 1

MS[i].len = min
(

MS[i+ 1].len,LCE(MS[i+ 1].pos, SA[s2])
)

+ 1

and we can tell which by comparing q to the threshold between BWT[s1..e1] and
BWT[s2..e2]. Notice that, as e1 and s2 are the end of a run and the beginning of one,
respectively, we have SA[e1] and SA[s2] stored.

MONI stores its SLP for T augmented such that each symbol is annotated with
its expansion’s length, allowing random access to a substring of T of length ℓ in
O(logn+ℓ) time. To evaluate LCE(x, y), we extract and compare T [x..n] and T [y..n],
essentially performing depth-first traversals of the parse tree starting at the xth and
yth leaves. Whenever those traversals would descend into copies of the same subtree
at the same time, however, we know that the substrings we extract from them will be
the same, so we can skip them. This heuristic works fairly well in practice but can use
Ω(log n+LCE(x, y)) time in the worst case. Of course, if we are evaluating LCE(x, y)
in order to take the minimum of that value and the current matching-statistics length,
then we can stop once we know LCE(x, y) is at least that length.

If we compute both LCE(MS[i + 1].pos, SA[e1]) and LCE(MS[i + 1].pos, SA[s2]),
then we do not need the threshold t. In practice, however, the space for the thresholds
is small and it is worthwhile to store them to halve the number of LCE queries we
perform. Mart́ınez-Guardiola et al. [18] showed that in practice we can often avoid
even more LCE queries if we precompute and store the LCE values LCE(SA[t −
1], SA[e1]) and LCE(SA[t], SA[s2]) between each threshold t and the corresponding
run boundaries e1 and s2, which takes a total of O(r) space. This is because, if
e1 < q < t then

LCE(SA[t− 1], SA[e1]) ≤ LCE(SA[q], SA[e1]) ,

so if
MS[i+ 1].len ≤ LCE(SA[t− 1], SA[e1])

then MS[i].len = MS[i+1].len+1; the case when t ≤ q < s2 is symmetric. At and after
a sequencing error in a read, for example, we often find several mismatches bunched
together with small matching-statistics lengths until we have processed enough char-
acters of P to re-orient ourselves in the BWT, and Mart́ınez-Guardiola et al.’s heuris-
tic lets us avoid the corresponding LCE queries. In their experiments, they found this
speeds up computing matching statistics by about 20%.

2.3 Bille et al.’s Structure and Computing MEMs with LCP Queries

Bille et al.’s [7] data structure is an SLP further augmented such that each symbol is
annotated with the Karp-Rabin hash of its expansion, allowing hashing of T [1..x−1]
in O(logn) time and then subsequent hashing of T [x..x + ℓ− 1] in O(log ℓ) time for
any ℓ. In theory it does not matter whether the SLP is height-balanced, since we
can balance it without increasing its size by more than a constant factor [17], but
in practice it should be. To compute LCE(x, y), we use exponential search to find
the largest ℓ such that the hashes of T [x..x+ ℓ− 1] and T [y..y + ℓ− 1] are equal, in
O(logn + log2 LCE(x, y)) total time. With O(n logn) expected-time preprocessing,
we can find a Karp-Rabin hash with no collisions between the substrings of T [22],
with which Bille et al.’s structure answers all LCE queries correctly.

Baláž et al. [19] recently noted that

min
(

MS[i+ 1].len,LCE(MS[i+ 1].pos, SA[e1])
)

= LCP
(

P [i+ 1..i+MS[i+ 1].len], T [SA[e1]..n]
)

min
(

MS[i+ 1].len,LCE(MS[i+ 1].pos, SA[s2])
)

= LCP
(

P [i+ 1..i+MS[i+ 1].len], T [SA[s2]..n]
)

.

In other words, we can replace LCE queries with LCP queries when we are computing
matching statistics and MEMs.

If we precompute the Karp-Rabin hashes of all the prefixes of P [1..m] in O(m)
total time, then afterward we can use Bille et al.’s structure — assuming the SLP is
given height-balanced or we have balanced it — to answer LCP(P [i+ 1..i +MS[i +
1].len], T [y..n]) in O(logn) time and correctly with high probability. To do this, we
descend to the (y−1)st leaf of the parse tree for T and compute the hash for T [1..y−1];
re-ascend the tree until we reach a symbol X with expansion T [z..w] such that w−y >
MS[i+1].len or the hash of T [y..w] is not equal to the hash of P [i+1..(i+1)+w−y];
and finally descend to the (y + LCP(P [i+ 1..i+MS[i+ 1].len], T [y..n])− 1)st leaf.

Since P [i+1..i+MS[i+1].len] occurs in T so, if we spend O(n logn) expected-time
preprocessing choosing the Karp-Rabin hash function, Bille et al.’s structure answers
LCP(P [i + 1..i + MS[i + 1].len], T [y..n]) correctly. Since we compute the matching
statistics from right to left, by induction, all the lengths are correct and we obtain
the following result:

Theorem 1 ([19]) We can store a text T [1..n] in O(r + g) space, where r is the

number of runs in the BWT of T and g is the number of rules in a given SLP for T ,
such that later, given P [1..m], we can compute the matching statistics and MEMs of

P correctly with respect to T in O(m logn) worst-case time.

3 MEMs in O(m+ µ log(m/µ) logn) Time

Mart́ınez-Guardiola et al.’s heuristic lets us compute matching lengths for some mis-
matches without evaluating the corresponding LCE queries but, when computing

matching statistics with MONI and LCE queries, we know of no general way to
compute matching-statistic lengths except in right-to-left order. Suppose we have
computed MS[i1..m].pos and MS[i3..m].len, for example, and

P [i1] 6= T [MS[i1 + 1].pos− 1

P [i2] 6= T [MS[i2 + 1].pos− 1

P [i3] 6= T [MS[i3 + 1].pos− 1

but P [i′] = T [MS[i′+1].pos−1] for all i′ 6= i2 strictly between i1 and i3. If we perform
LCE queries when processing P [i1] and P [i3] but not when processing P [i2], then in
general we do not see how to continue and compute MS[1..i2].len.

On the other hand, if we know MS[i1].pos then we can compute MS[i1].len =
LCP(P [i1..m], T [MS[i1].pos..n]) even without knowing matching-statistics lengths fur-
ther to the right. This could be useful for parallelizing MONI and, more intrigu-
ingly, for reducing the number of LCP queries we evaluate. To see why, suppose
P [i1..i1 +MS[i1].len − 1], P [i2..i2 +MS[i2].len − 1] and P [i3..i3 +MS[i3].len − 1] are
all suffixes of the same MEM, which ends at position

i1 +MS[i1].len− 1 = (i1 + 1) +MS[i1 + 1].len− 1 = · · ·

= (i3 − 1) + MS[i3 − 1].len− 1 = i3 +MS[i3].len− 1

in P . Then, once we know MS[i1].len and MS[i3].len, we can infer MS[i2].len — and
all of MS[i1..i3].len — without evaluating LCP(P [i2..m], T [MS[i2].pos]) directly.

Working right to left, we can compute MS[1..m].pos without LCP queries, and
then find the start of each MEM in P using exponential search (still only evaluating
LCP queries when P [i] 6= T [MS[i + 1].pos − 1]). This way, we can compute the
matching statistics of P with respect to T using O(µ log(m/µ)) LCP queries, in a
total of O(m + µ log(m/µ) logn) ⊆ O(m logn) time, where µ ≤ m is again the
number of MEMs. It does not change our asymptotic time bounds but, since each
step in the exponential search for the start of a MEM requires testing only whether
the LCP of a suffix of P and a suffix of T extends at least to the end of that MEM,
we can use substring-equality checks — which are easier to implement in practice —
rather than full LCP queries.

This has low latency when all MEMs are fairly short and we compute MS[i].pos
and MS[i].len entries more or less simultaneously. In other words, when all MEMs
are fairly short we can always compute both MS[i].pos and MS[i].len fairly quickly
after processing P [i]. However, suppose there is a long MEM P [i..i + 2k + 1] and,
in our exponential search for the start of that MEM, we perform LCP queries when
processing P [i+2k +1], P [i+2k], P [i+2k − 1], P [i+2k − 3], P [i+2k − 7], . . . , P [(i+
2k + 1) − 2k = i + 1]. We may not perform another LCP query until we process
P [i+2k+1)−2k+1 = i−2k+1], so we do not learn MS[i].len until we have processed
2k − 1 characters after processing P [i].

Since an LCP query takes O(logn) time, however, we can perform an additional
one (again, when P [i] 6= T [MS[i + 1].pos − 1]) after processing every logn charac-
ters of P while using only O(m) extra time. Done carefully, this guarantees we use

O(m/ logn+µ log(m/µ)) LCP queries and O(m+µ log(m/µ) logn) time while com-
puting the matching statistics, and we always know the matching-statistics lengths
for all but the log n characters of P we have processed most recently.

When evaluating the LCP queries lazily, we cannot be sure that the substrings of
P we pass them as arguments are all substrings of T , and thus we cannot rule out the
possibility of hash values colliding. This would mean we obtain the correct matching-
statistics lengths of P with respect to T only with high probability, but we can ensure
their correctness if we weaken our time bound from holding in the the worst case to
holding with high probability. To do this, we first compute the (probably correct)
matching statistics, then compute the (probably correct) MEMs and finally, for each
MEM from left to right in P , use Bille et al.’s structure to extract from T the suffix
of that MEM that does not overlap any MEM further to the left in P and compare
the characters in that suffix to the corresponding ones in P .

If all the pairs of corresponding characters in all suffixes are equal, then we verify
the matching statistics in a total of O(m+µ logn) time. We note that this verification
process lets us check for supposed MEMs that extend too far to the right, but not
for ones that do not extend far enough to the right. Fortunately, by inspection of
how we compute an LCP and the fact Karp-Rabin hashing can indicate false-positive
matches but not false-negative mismatches, we can never underestimate an LCP and
so we can never underestimate how far a MEM extends to the right.

If any of the pairs or corresponding characters are not equal — which happens
with low probability — then we detect a hash collision in O(m logn) time. In this
case, we can compute the matching statistics näıvely in O(m(logn + m)) time by
extracting and scanning T [MS[1].pos..MS[1].pos + m − 1], T [MS[2].pos..MS[2].pos +
m − 2], . . . , T [MS[m].pos]. Because this case happens with low probability, we still
use O(m+ µ log(m/µ) logn) time overall with high probability. This approach does
not require the O(n logn) expected-time preprocessing Bille et al. use for derandom-
ization.

Theorem 2 We can store a text T [1..n] in O(r + g) space, where r is the number

of runs in the BWT of T and g is the number of rules in a given SLP for T , such
that later, given P [1..m], we can compute the matching statistics of P with respect

to T in O(m+ µ log(m/µ) logn) ⊆ O(m logn) time with high probability, where µ is

the number of MEMs of P with respect to T . We work right to left and always know

the matching-statistics positions for all the characters of P we have processed and the

matching-statistics lengths for all but the lg n characters that we have processed most

recently.

4 Practical Results

In this section we first show how Cobas et al.’s scheme for subsampling the SA
can be simplified and slighly improved when used with MONI instead of with the
original r-index. Although they showed that their scheme significantly reduces the
space of the r-index without significantly affecting its query time, this is the first
time it has been used with MONI, with or without our further optimization. Because

short MEMs are poor seeds and not interesting for many applications, we then give
a simple algorithm that uses LCPs to find either all MEMs of P with respect to T
or all LCSs of P and T . Despite the simplicity of our modified subsampling scheme
and of our algorithm, we have found no good theoretical bounds for them, so we give
some preliminary experimental results for them. Due to space constraints, however,
we leave a complete evaluation for the full version of this paper.

4.1 Subsampling

Cobas et al. noticed that, in practice, if BWT[i] is at the beginning or end of a run
in the BWT, then BWT[LF(i)] is often at the beginning or end of a run as well. In
such cases, if we store SA[LF(i)]− 1 corresponding to BWT[LF(i)], then we need not
store SA[i]− 1 for BWT[i] as well. They devised a scheme that takes a parameter s
and subsamples the SA entries at boundaries of run in the BWT such that

• if BWT[i] is at the beginning or end of a run, then one of SA[i]−1, SA[LF(i)]−
1 = SA[i]− 2, . . . , SA[LFs−1(i)]− 1 = SA[i]− s is subsampled;

• three SA samples SA[i] − 1, SA[j] − 1 and SA[k] − 1 with SA[i] < SA[j] <
SA[k] ≤ SA[i] + s are never all subsampled;

• if BWT[j] is at the beginning or end of a run and sample (SA[j]−1)’s predecessor
and successor among the sorted sampled SA values are SA[i]− 1 and SA[k]− 1
with SA[k]− SA[i] > s, then SA[j] is always subsampled.

The third constraint guarantees that φ queries [23] can be evaluated with at most
s−1 LF-steps. Although MONI uses φ queries when enumerating MEMs’ occurrences
in T , it does not use them when computing matching statistics, so here we can omit
that constraint and obtain even smaller SA subsamples.

4.2 Finding Long MEMs

If we are interested only in MEMs of length at least d, where d is a reasonably
large parameter, then we can use faster version of Theorem 1 that is simpler than
Theorem 2. Assume we have already found all the MEMs of length at least d whose
left endpoints are strictly to the right of P [j], and just computed

MS[j].len = LCP

(

P [j..m], T
[

MS[j].pos..n
]

)

< d

while processing P [j]. Because MS[i].len ≤ MS[i+1].len+1, it follows that MS[i].len <
d for j − d +MS[j].len < i ≤ j and so, even if P [i] 6= T [MS[i+ 1].pos− 1], we need
not perform another LCP query for processing P [i] while j − d+MS[j].len < i ≤ j.

A MEM cannot start at P [i + 1] when P [i] = T [MS[i + 1].pos − 1], so we can
safely wait to perform our next LCP query until we reach a character P [i] with both
i ≤ j − d+MS[j].len and P [i] 6= T [MS[i+ 1].pos− 1]. At that point, we compute

MS[i+ 1].len = LCP

(

P [i+ 1..m], T
[

MS[i+ 1].pos..n
]

)

.

If MS[i + 1].len < d then, again, we need not perform another LCP query until we
reach P [i− d+MS[i+ 1].len]. Otherwise, we compute

MS[h+ 1].len = LCP(P [h+ 1..m], T [MS[h+ 1].pos..n])

whenever P [h] 6= T [MS[h+1].pos] until one of those LCP queries returns a value less
than d.

This algorithm can be summed up simply as follows: we perform LCP queries
only when we reach characters P [i] 6= T [MS[i + 1].pos]; an LCP query that returns
a value less than d gives us a lower bound on how long we can safely wait before
performing another query; an LCP query that returns a value at least d tells us to
perform the next query as well.

We note that d can be given at query time, and even modified during the query.
For example, if we keep d equal to the length of the longest match we have found so
far, then we will find all the LCSs of P and T .

4.3 Experiments

We ran all our experiments on a server1 with an Intel(R) Xeon(R) Gold 6248R CPU
running at 3.00 GHz with 24 cores and 1.5TB of memory. For P we used the 600
MB concatenation of ten distinct copies of chromosome 19 from the 1000 Genomes
dataset, and for T we used the 60 GB concatenation of 1000 other distinct copies of
chromosome 19 from the same dataset.

We first modified Mart́ınez-Guardiola et al.’s Aug-1 index (their most competitive
version) to use our subsampling from Subsection 4.1 with s = 1 (no subsampling),
2, 5 and 10, and computed the matching statistics of P with respect to T with each
version of the index. The versions of the index occupied 850, 750, 630 and 594 MB —
all at most 1.5% the size of the uncompressed dataset — and took 1650.78, 1722.51,
1755.75 and 2280.10 seconds, respectively, to compute the matching statistics. This
means, for example, that with s = 5 the index took less than three quarters as much
space as without subsampling and used only 6% more query time.

We then further modified Mart́ınez-Guardiola et al.’s index (with subsampling
parameter s = 5) to use LCPs instead of LCEs and to find LCSs with our algorithm
from Subsection 4.2. We found the LCSs of P and T in 1155.37 seconds, which
is significantly faster — 1155.37/1650.78 < 70% — than computing the LCSs by
computing the matching statistics with any version of the index. As far as we know,
this is the fastest way to compute LCSs in comparably compressed space.

References

[1] Paolo Ferragina and Giovanni Manzini, “Indexing compressed text,” Journal of the
ACM, vol. 52, no. 4, pp. 552–581, 2005.

[2] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg, “Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome,” Genome

Biology, vol. 10, no. 3, pp. 1–10, 2009.

1This server is part of the Advanced Research Computing at Hopkins (ARCH) core facility
(rockfish.jhu.edu), supported by NSF grant OAC 1920103.

[3] Ben Langmead and Steven L Salzberg, “Fast gapped-read alignment with Bowtie 2,”
Nature Methods, vol. 9, no. 4, pp. 357–359, 2012.

[4] Heng Li and Richard Durbin, “Fast and accurate short read alignment with Burrows–
Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[5] Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki, “Storage and retrieval
of highly repetitive sequence collections,” Journal of Computational Biology, vol. 17,
no. 3, pp. 281–308, 2010.

[6] Travis Gagie, Gonzalo Navarro, and Nicola Prezza, “Fully functional suffix trees and
optimal text searching in bwt-runs bounded space,” Journal of the ACM, vol. 67, no.
1, pp. 1–54, 2020.

[7] Hideo Bannai, Travis Gagie, and Tomohiro I, “Refining the r-index,” Theoretical

Computer Science, vol. 812, pp. 96–108, 2020.

[8] Heng Li, “Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM,” arXiv.org, 2013.

[9] Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher,
“MONI: a pangenomic index for finding maximal exact matches,” Journal of Compu-

tational Biology, vol. 29, no. 2, pp. 169–187, 2022.

[10] Omar Ahmed, Massimiliano Rossi, Sam Kovaka, Michael C Schatz, Travis Gagie,
Christina Boucher, and Ben Langmead, “Pan-genomic matching statistics for targeted
nanopore sequencing,” iScience, vol. 24, no. 6, pp. 102696, 2021.

[11] Omar Y Ahmed, Massimiliano Rossi, Travis Gagie, Christina Boucher, and Ben Lang-
mead, “SPUMONI 2: improved classification using a pangenome index of minimizer
digests,” Genome Biology, vol. 24, no. 1, pp. 122, 2023.

[12] Vikram S Shivakumar, Omar Y Ahmed, Sam Kovaka, Mohsen Zakeri, and Ben Lang-
mead, “Sigmoni: classification of nanopore signal with a compressed pangenome in-
dex,” bioRxiv.org, 2023.

[13] Takaaki Nishimoto and Yasuo Tabei, “Optimal-time queries on BWT-runs compressed
indexes,” in Proc. ICALP, 2021.

[14] Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, and Inge Li Gørtz,
“Finger search in grammar-compressed strings,” Theory of Computing Systems, vol.
62, pp. 1715–1735, 2018.

[15] Tomohiro I, “Longest common extensions with recompression,” in Proc. CPM, 2017.

[16] Artur Jeż, “Approximation of grammar-based compression via recompression,” The-

oretical Computer Science, vol. 592, pp. 115–134, 2015.

[17] Moses Ganardi, Artur Jeż, and Markus Lohrey, “Balancing straight-line programs,”
Journal of the ACM, vol. 68, no. 4, pp. 1–40, 2021.

[18] César Mart́ınez-Guardiola, Nathaniel K Brown, Fernando Silva-Coira, Dominik Köppl,
Travis Gagie, and Susana Ladra, “Augmented thresholds for moni,” in Proc. DCC,
2023.

[19] Andrej Baláz, Travis Gagie, Adrián Goga, Simon Heumos, Gonzalo Navarro, Alessia
Petescia, and Jouni Sirén, “Wheeler maps,” arXiv.org, 2023.

[20] Dustin Cobas, Travis Gagie, and Gonzalo Navarro, “A fast and small subsampled
r-index,” in Proc. CPM, 2021.

[21] Peter Weiner, “Linear pattern matching algorithms,” in Proc. SWAT, 1973.

[22] Philip Bille, Inge Li Gørtz, Patrick Hagge Cording, Benjamin Sach, Hjalte Wedel
Vildhøj, and Søren Vind, “Fingerprints in compressed strings,” Journal of Computer

and System Sciences, vol. 86, pp. 171–180, 2017.

[23] Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi, “Permuted longest-
common-prefix array,” in Proc. CPM, 2009.

