
I.  INTRODUCTION 
For an accurate quantification of the tracer distribution, 
attenuation correction (AC) and scatter correction (SC) are 
essential in PET. As the emitted 511 keV photons travel through 
the body (before being detected), they are likely to interact with 
the underlying tissue, resulting in both undetected coincidences 
(attenuated photons) and detected scattered coincidences. Most 
AC methods rely on CT scans to obtain AC factors which are 
derived from a µ-map. Single scatter simulation (SSS) is widely 
used to estimate the scatter fraction for each particular line-of-
response. SSS requires the µ-map and emission data to calculate 
the scatter distribution using the Klein-Nishina formula. 

Most commercial PET systems have an integrated CT 
component to not only provide an anatomical reference but also 
to derive a µ-map for AC and SC (ASC). However, there are 
some concerns: 1) the radiation burden resulting from PET-CT 
scans limits applications in pediatric and longitudinal imaging, 2) 
CT-based correction methods are challenging for stand-alone 
PET systems, and 3) image artefacts frequently originate from a 
spatial mismatch between PET and CT (due to respiratory as 
well as rigid body motion between PET and CT). For SC, in 
addition to being sensitive to errors in the µ-map, SSS does not 
model multiple-scattering, requires sinogram tail-fitting to scale 
the estimate, and relies on the (iterative) reconstruction of 
emission images that can be time-consuming [1-2]. 

While there are conventional methods for CT-less AC (with 
transmission sources, MR images, or algorithms for joint 
reconstruction of activity and attenuation maps with time-of-
flight) and energy-based scatter estimation methods, deep 
learning (DL) shows promise for achieving more accurate and 
faster PET ASC [2]. The most common DL approach for CT-less 
AC predicts a CT-like image from a non-corrected (NC) PET 
that can then be used in the conventional reconstruction pipeline. 
DL-based SC methods either classify which events originated 
from scatter based on position and energy or predict the scatter 
profile from NC PET data. Other neural networks attempt to 
directly output a fully corrected (AC + SC) PET image from a 
NC PET input.  

However, one challenge is to develop a single DL solution for 
both AC and SC that works for long axial field-of-view (AFOV) 
images, while being tracer-independent. This work investigates 
different image-based DL frameworks for AC and SC, starting 
from a NC PET image as input. We propose two training 
strategies (Fig 1) to fine-tune such neural networks for long 
AFOV PET and multiple tracer studies. 

(i) We present a two-stage neural network that is separately 
trained for the tasks of AC and SC (Fig 1A), under the premise 
that AC is multiplicative and object-dependent, while SC is 
subtractive and uptake (distribution) dependent. This will be 
compared to a DL framework that predicts a transmission (Tr) 
image, followed by conventional reconstruction with the SSS 
scatter estimate, and a network that directly predicts an ASC 
PET, both from a NC PET input.  
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(ii) We propose a co-learning strategy using NC PET and 
radiographic projection images, so-called scout scans used to 
position patients, as inputs in a multi-branch neural network (Fig 
1B). Building upon previous work on a DL model for 3D 
pseudo-CT reconstruction from 2D projections for specific organ 
regions [3], we extend this approach to long AFOV data. We 
investigate the potential of utilizing scout scans, rich in 
anatomical information, to constrain network training for PET 
AC and SC. The clinical advantage lies in operating current 
PET-CTs with only scout scans at significantly lower X-ray 
doses (by one order of magnitude). 

II. MATERIALS AND METHODS 
A. Datasets 
35 research scans acquired on the 142 cm AFOV PennPET 
Explorer were collected: 19 18F-fluorodeoxyglucose (18F-FDG), 
7 18F-labeled nitric oxide synthase (18F-NOS) and 9 11C- 
carfentanil (11C-CFN) datasets. Each study included a NC PET 
image, a CT-rescaled Tr image, a PET image reconstructed only 
with CT-based AC (no SC), and a PET image reconstructed with 
CT-based AC and 3 iterations of TOF-enhanced SSS for SC. All 
NC PET images and all PET images with CT-based AC and 
ASC were reconstructed using list-mode TOF OSEM. 21 from 
those 35 datasets studies also included dual-view radiographic 
projection images (coronal and sagittal scouts). Note that for 
training purposes, datasets with minimal motion mismatch 
between PET and CT were selected. We plan to collect further 
data, including 18F-labeled fluorthanatrace studies. 

B. Deep Learning Frameworks 
This study compares different DL training strategies for AC and 
SC in PET, and more specifically considers different input-target 
image pairs. The DL frameworks (Fig 1) use coronal and sagittal 
slices of NC PET images as input, either independently or 
combined with the corresponding coronal or sagittal scout image. 
The target training images vary based on the specific DL model, 

 
Fig 1. (A) Schematic of the investigated DL frameworks, with different input-
target image pairs. The NC-2-Tr model needs further reconstruction steps and 
SSS, as opposed to the other DL models that directly predict the final PET 
image. (B) The DL models are either trained with only NC PET images (left), 
or with NC PET and scout images in a multi-branch neural network (right). 
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and include CT-derived Tr images, CT-based AC PET images, 
or CT-based ASC images. The NC-2-Tr model predicts a Tr 
image that is then utilized to derive the µ-map needed for image 
reconstruction (using list-mode TOF OSEM). The NC-2-ASC 
model directly predicts an ASC PET image from a NC PET 
image, tasking this single network to jointly predict AC and SC. 
The NC-2-AC-2-ASC model consists of a first network that 
predicts a PET image with only AC from a NC PET image (= 
attenuation prediction), followed by a second network that 
predicts a PET image with ASC from a PET image with only AC 
(= scatter prediction). So, the output of the first network serves 
as input to the second network. 

C. Neural Network Architectures and Training settings 
All DL models adopt a U-Net type structure. For the encoder, the 
feature maps are increased from 64 to 1024 through 2D 
convolutional layers (with batch normalization and parametric 
rectified linear unit activation) and max-pooling is used for 
down-sampling. The decoder uses 2D transposed convolutions 
for up-sampling. For the multi-branch Scout/NC(PET) model 
(Fig 1B), two separate encoders are implemented to extract 
modality-specific features and latent features are concatenated 
before the decoder. Both encoders and the shared decoder have 
the same network topology as the single-branch input models. 

For training, an element-wise loss function, using the mean 
squared error (L2) or mean absolute error (L1), was combined 
with a feature-wise perceptual loss function derived from a pre-
trained VGG16 network [4]. When predicting Tr images, L2 loss 
was used to improve sensitivity in reducing larger discrepancies 

on bone regions of high pixel values. For the models predicting 
AC or ASC PET images, L1 loss was applied.  

III. RESULTS AND DISCUSSION 
Fig 2 compares the CT-based ASC PET images to those obtained 
from the different DL frameworks. For the 11C-CFN example in 
Fig 2A, enhanced lung activity is seen for the NC-2-ASC and 
NC-2-AC-2-ASC models using only NC PET data as input. 
Quantitative comparisons in the liver and lung suggest that the 
co-learning strategy with a multi-branch Scout/NC(PET) input 
model significantly reduces the SUVmean bias. The DL models 
that directly predict a PET image (in less than 1 min) eliminate 
the extra reconstruction steps with the SSS scatter estimate 
(which take a few hours) resulting in much faster AC and SC, 
but lead to higher biases (in the order of ± 1 SUV unit) than the 
NC-2-Tr model, as exemplified by the 18F-FDG example in Fig 
2B. The comparatively higher biases seen for the head region 
suggest that the DL training strategies are not yet optimized to 
capture the more refined brain structures. Recall that training 
used coronal and sagittal image slices, where the relative size of 
the brain region compared to the whole-body is small, which 
may lead to insufficient attention during training. 

IV. CONCLUSIONS 
This work studies different DL training strategies for AC and SC 
in PET, eliminating artefacts seen with CT-based AC and 
accelerating PET image reconstruction thanks to DL-based SC. 
The resultant reduction in radiation burden opens up applications 
in pediatric imaging, longitudinal studies, and the use of stand-
alone (dedicated) PET systems.  

 

 

 

 
Fig 2. For 11C-CFN (A) and 18F-FDG (B), visual 
comparison between the NC PET, reference CT-based ASC 
PET and DL-based images obtained from the NC-2-Tr, 
NC-2-ASC and NC-2-AC-2-ASC models when trained 
only with NC PET images or in combination with scout 
images. In (A), the red arrow points to the ‘banana’ artefact 
at the liver dome in the CT-based ASC PET (due to 
respiratory motion causing a mismatch between PET and 
CT) that is eliminated in the DL-based images. In (A), liver 
and lung SUVmean measures are reported as percent error 
relative to the CT-based PET image. In (B), difference 
images (PETDL-based – PETCT-based) are shown (note scale 
change) with some systematic differences on the order of ± 
1 SUV unit. 
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