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A B S T R A C T

This paper presents a novel data-driven approach that leverages reinforcement learning to enhance the
efficiency and safety of existing energy flexibility controllers, addressing challenges posed by the dynamic and
uncertain nature of modern energy landscapes. With the increasing integration of renewable energy sources,
conventional controllers struggle to maintain both safety and optimality. Our proposed approach introduces
two significant contributions to standard RL approaches: a data-driven predictive safety filter and an online
changepoint detection and policy updating module. Through continuous constraint satisfaction, the predictive
safety filter guarantees absolute safety of the proposed controller. Meanwhile, the changepoint detection and
policy updating module, inspired by the concept of continual learning, enhances the controller’s adaptivity to
non-stationary environments. By identifying changes in the environment, it triggers relearning of the agent,
making the controller resilient to evolving conditions. Validation of our approach is conducted on a grid-
connected PV-battery-load system, demonstrating its effectiveness in simultaneously improving safety and
performance over traditional learning methods. More specifically, the proposed solution was able to increase
the energy flexibility by reducing energy costs with 9.3%.
1. Introduction

Existing power grid controllers face efficiency challenges in light of
a rapidly changing energy landscape. They are often fixed and struggle
to adapt to the growing stochastic and unpredictable nature on both the
load and supply side. Additionally, the intricate multi-physical nature
of the energy system adds complexity to controller deployment and
tuning. These challenges render state-of-the-art controllers not just sub-
optimal but potentially unsafe, presenting substantial technical and
economic challenges for power system planning and operation [1,2].
Addressing these challenges requires the implementation of advanced
control strategies that are able to increase the grid flexibility by out-
performing current controllers in terms of safety and energy efficiency
in the face of dynamic and complex environments.

One promising area of focus to increase the grid flexibility is model
predictive control (MPC) [3]. A notable advantage of MPC lies in its
inherent safety, as it systematically considers and adheres to system
constraints throughout the control horizon [4]. However, MPC typically
requires a dynamic model to calculate the optimal control actions,
making it difficult to deploy swiftly for energy flexibility problems.

∗ Corresponding author at: Dynamics Design Lab D2LAB, Tech Lane Science Park 131, Ghent, 9052, Belgium.
E-mail address: siebe.paesschesoone@ugent.be (S. Paesschesoone).

Furthermore, it is recognized that MPC lacks adaptivity in the face of
dynamic environments [5]. To overcome this challenge of adaptivity,
recently, adaptive data-driven MPC techniques have been devised that
adapt online while performing repetitive tasks [6]. Next to this, recent
studies aim to enhance the effectiveness of standard MPC by exploring
robust and stochastic MPC techniques for addressing energy flexibility
problems. Robust MPC (RMPC) tackles environment uncertainties by
incorporating them directly into the optimization problem, envisioning
a worst-case scenario. In [7], the authors have designed a novel RMPC
algorithm for energy scheduling within a multi-carrier energy system,
i.e. an energy system based on gas and electricity. Similarly, in [8], a
two-level control scheme based on RMPC to offer frequency reserves for
an energy district was proposed. To overcome the challenge of phys-
ical modeling, a data-driven model was leveraged. While RMPC has
proven to improve the performance of standard MPC approaches with
respect to uncertainties and disturbances, this method often compro-
mises performance due to the protection against improbable outliers.
Additionally, describing process uncertainties for RMPC is often chal-
lenging [9]. Stochastic Model Predictive Control (SMPC) interprets
306-2619/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
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constraints probabilistically through chance constraints, allowing for
a small probability of constraint violation. In [10], a stochastic MPC
is built for microgrid optimization in order to address uncertainties
in energy forecasts, enabling enhanced flexibility services for system
operators. [11] introduces a scenario-based stochastic MPC for resi-
dential microgrid control including solar and battery systems, aiming
to minimize energy and peak power costs while maximizing flexibility
revenue. Unfortunately, solving chance-constrained control problems
like SMPC is generally difficult and often requires approximations [12].

As a counterpart to MPC, machine learning techniques like rein-
forcement learning (RL) are being proposed in the literature to solve
energy flexibility problems [13]. In RL-based techniques, agents in-
teract with the environment and gradually learn an optimal control
policy based on their experience. This optimal control policy refers
to the maximization of the expected cumulative reward [14]. RL can
be model-free and function as a data-driven controller, being a main
advantage compared to MPC as no prior knowledge of the system
is needed. However, RL also faces various challenges, particularly
in terms of safety and maintaining optimality in dynamic environ-
ments. Safety concerns arise from the explorative actions taken by RL
agents [2]. These pose a direct threat to controller safety, a crucial
concern given the inherently safety–critical nature of energy systems.
Safe RL has emerged as a promising framework to address safety
concerns in RL applications. In this framework, the goal is to maximize
cumulative rewards while ensuring safety. To this end, the flexibility
problem is often modeled as a constrained Markov Decision Process
(CMDP), integrating safety constraints as costs in the objective func-
tion [15–18]. Although CMDP provides a formalism for safety, it does
not guarantee absolute safety [19]. In response, recent studies have
aimed at enforcing absolute safety by incorporating an additional layer
to constrain the actions of RL agents [20]. For instance, in [18], a
rule-based safety filter is introduced for an RL method designed to
optimize the charging strategy for electric vehicles in a residential
microgrid. Similarly, in [21], authors present a safe RL method for
real-time automatic control in a smart energy hub. This method utilizes
action clipping, restricting agent actions to maximum allowable values
when an unsafe action is proposed. While rule-based methods ensure
absolute safety through constraint satisfaction, they often come at
the cost of suboptimal performance. Additionally, while rule-based
methods can be straightforward and interpretable, defining rules that
cover all possible scenarios may become challenging for complex multi-
physical problems. In contrast, the authors of [22] propose the use
of Control Barrier Functions (CBF) to ensure safety for a controller
providing regulation services for district cooling systems. Although
CBFs can handle constraint satisfaction in more complex and dynamic
systems compared to rule-based systems, the computational complexity
of this method leads the authors to approximate the problem using a
neural network, impacting the accuracy of their approach. Addressing
the computational intricacies associated with barrier functions, [23]
suggests implementing a computationally efficient convex safety layer
for RL to address real-time optimal power flow problems. However, a
significant drawback of their approach lies in its reliance on physics-
based parameters, which are often challenging to measure or estimate.
In [24,25], the authors employ supervised learning techniques to train
a security layer for the RL controller in a multi-energy microgrid. A
drawback of this method is the reliance on substantial training data
and learning convergence; otherwise, the safety assurance could again
be compromised.

Surprisingly, next to the concerns of safety, RL also faces chal-
lenges in maintaining optimality in dynamic environments [26,27].
RL policies often become static post-training, leading to suboptimal
performance in non-stationary settings. The concept of Continual Learn-
ing (CL) emerges as a promising tool, emphasizing a learning sys-
tem’s ability to adapt and accumulate knowledge over time [28]. In
RL, this involves ongoing adaptation and refinement of policies to
2

ensure effectiveness in evolving situations, enabling agents to make
optimal decisions over an extended period. Non-stationary changes
may not be identifiable from past contexts, requiring online detection.
Methods must be developed for flexibility controllers to identify and
adapt to changes while online, ensuring optimal performance under
continuously changing environments [29].

Changepoint (CP) detection is a statistical technique specifically
designed to identify shifts or changes in sequential data [30]. In the
context of RL, CP detection algorithms play a crucial role in detect-
ing alterations in the statistical properties of the environment over
time. These algorithms analyze sequential data, such as time-series
data, to pinpoint points where statistically significant deviations occur
compared to a baseline. These deviations could manifest as changes
in the mean, variance, distribution, or other statistical properties of
the data. For RL agents operating in non-stationary environments, CP
provides a valuable mechanism for real-time monitoring and adapta-
tion. By detecting changepoints, RL agents can recognize when the
underlying dynamics of the environment have shifted [31]. Upon iden-
tifying a changepoint, RL agents can dynamically adapt their policies
to accommodate the non-stationary environment. This adaptation may
involve updating action-selection strategies, revising reward functions,
or retraining the agent using the most recent data. By doing so, RL
agents can maintain optimal performance even in the face of evolving
environmental conditions.

In the context of energy flexibility problems, CL is essential as
energy systems exhibit non-stationary behavior due to factors like
consumption patterns, renewable energy output, and energy prices.
RL agents employing CL techniques are better equipped to handle
these challenges, ensuring adaptivity and optimality in dynamic energy
environments. Despite its benefits, the specific application of CL in
energy flexibility problems requires further exploration and research.

This paper presents a novel control strategy to address the various
challenges of existing controllers when solving flexibility problems. To
realize this, a data-driven approach is followed using RL. To alleviate
safety issues, an MPC is added as a safety filter. Furthermore, the
RL controller is augmented with a changepoint detection and policy
updating mechanism to cope with the issue of sub-optimality in the
face of non-stationary environments.

The fusion of MPC and RL capitalizes on their unique strengths.
While MPC offers inherent safety and optimality, its reliance on precise
models poses challenges in dynamic systems like energy systems. In
contrast, RL operates model-free, learning optimal policies through
interaction with the environment. However, safety concerns persist in
RL [32]. By merging MPC and RL, we aim to create a controller that
combines safety assurance with the ability to learn optimal policies
adaptively. Specifically, MPC provides immediate control benefits by
ensuring safety and efficiency from the outset based on existing models
and constraints. Concurrently, RL works in the background, learning
from the system’s performance to enhance future responses and strate-
gies. This dual approach offers both short-term reliability and long-term
improvements in control tactics. With respect to this, the main objective
of this article is to realize an adaptive and safe control approach that is
able to increase energy flexibility within dynamic energy systems. First,
the design of the proposed method is established in Section 2. There-
after, in Section 3, the method’s ability to improve the performance
and safety of state-of-the-art RL flexibility controllers is validated. To
this end, implementation details are presented and results are obtained
by applying the proposed solution to a grid-connected PV-battery-load
system, being an exemplary use case for energy flexibility. In short, this
paper presents the following contributions:

1. Introduction of a novel safe continual reinforcement learning
architecture, allowing the use of RL algorithms for safety–critical
critical applications and enabling online adaptivity of controllers
without prior knowledge of the system dynamics. To realize
this, standard RL is augmented with a data-driven MPC safety
filter to guarantee absolute safety. Additionally, a changepoint
detector and a dynamic policy updating mechanism is built into

the design to cope with non-stationary environments.
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2. Validation of the proposed method on a grid-connected PV-
battery-load system, demonstrating its effectiveness in increas-
ing both the safety and performance of standard RL approaches
while addressing various real-world flexibility applications.

2. Proposed methodology

2.1. Reinforcement learning

In RL, an agent learns an optimal policy through interactions with
the environment [14]. Markov Decision Processes (MDPs) serve as a
common mathematical model to describe RL problems. An MDP is
defined by the four-tuple (, , ,  ), where  represents the state
pace,  the action space,  the reward space, and  the transition
unction. In the RL framework, an agent observes a state 𝑠𝑡 of the
nvironment, takes an action 𝑎𝑡 at time 𝑡, receives a reward 𝑟𝑡, and
pdates its policy 𝜋(𝑎𝑡|𝑠𝑡). This is depicted graphically in Fig. 1. The
rocess iterates until policy convergence. The objective is to find an
ptimal policy 𝜋∗ maximizing the discounted cumulative reward:

(𝜃) = E𝑡

[ ∞
∑

𝑡=0
𝛾 𝑡𝑟𝑡

]

, (1)

where 𝜃 represents policy parameters, 𝑟𝑡 is the reward at time step 𝑡, and
𝛾 is the discount factor. This study focuses on Proximal Policy Optimiza-
tion (PPO), a state-of-the-art RL algorithm classified as an actor–critic
method, which combines the strengths of both policy gradient and
value function estimation approaches. PPO excels in mitigating issues
associated with destructive policy updates by introducing a clipping
mechanism. Its superior performance in solving multi-dimensional
continuous environments makes it particularly relevant for power grid
management problems [33]. In the actor–critic paradigm, the actor is
responsible for selecting actions based on the current policy, while the
critic evaluates the chosen actions by estimating the value or advantage
function. PPO employs a policy gradient approach, calculating the
gradient of the expected reward with respect to policy parameters
𝜃. Simultaneously, it incorporates a critic component, represented by
the advantage function 𝐴𝑡. The gradient of the expected reward with
respect to policy parameters 𝜃 is mathematically formulated as follows:

∇𝐿(𝜃) = E𝑡

[ ∞
∑

𝑡=0
∇∞ log(𝜋𝜃(𝑎𝑡|𝑠𝑡))𝐴𝑡

]

, (2)

where 𝜋∞(𝑎𝑡|𝑠𝑡) is the probability of taking action 𝑎𝑡 in state 𝑠𝑡 under
policy 𝜋𝜃 , and 𝐴𝑡 is the advantage function. PPO’s clipped objective
unction is expressed as:

clipped(𝜃) = E𝑡

[

min

(

𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃old (𝑎𝑡|𝑠𝑡)

𝐴𝑡, clip(
𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃old (𝑎𝑡|𝑠𝑡)

,

1 − 𝜖, 1 + 𝜖)𝐴𝑡
)]

.

(3)

where 𝜖 is the arbitrarily determined clipping parameter that avoids
large policy updates. PPO updates policy parameters 𝜃 to maximize this
objective. For further details concerning the PPO algorithm, readers are
referred to [34].

2.2. Safe continual reinforcement learning (SCRL)

Building on the principles of RL, this study introduces a novel
paradigm called Safe Continual Reinforcement Learning (SCRL). It is
designed to elevate the efficacy and safety of existing RL methodolo-
gies. The proposed SCRL structure, depicted in Fig. 2, encompasses
two pivotal enhancements differentiating it from conventional RL ap-
proaches. First, by integrating a data-driven MPC safety filter, this
method boosts the safety of conventional RL methods leveraging the
advantages of RL and MPC [9]. Second, drawing inspiration from
the principles of CL, the proposed design incorporates a changepoint
3

detector coupled with a policy updating mechanism to address the
Fig. 1. Illustration of the working principle of reinforcement learning. An agent
observes a state 𝑠𝑡 of the environment, takes an action 𝑎𝑡 at time 𝑡, receives a reward
𝑟𝑡, and updates its policy 𝜋(𝑎𝑡|𝑠𝑡) until policy convergence.

ntricacies of dynamic environments. The following paragraphs delve
nto a detailed discussion of each of these contributions.
(1) Data-driven MPC as safety filter for RL: Based on the work in [9],

he introduction of a data-driven MPC safety filter for the RL controller
s proposed. If a suggested control action of the RL agent is deemed
nsafe, the MPC safety filter intervenes, proposing a secure alternative.
his is illustrated graphically in Fig. 3. Consequently, absolute safety is
uaranteed through continuous constraint satisfaction.

The main state-of-the-art approaches to render RL safe have been
iscussed in the introduction. While conventional methods such as CBFs
r rule-based systems are effective in enforcing safety, the proposed
PC safety filter offers distinct advantages. First, the MPC controller

tands out by dynamically selecting the most optimal safe action, driven
y a model continuously updated using RL data. This adaptability
nsures that our system’s response remains finely tuned to real-time
onditions, optimizing safety while maintaining efficiency. The MPC
afety filter thus not only ensures real-time corrective actions based
n predictive outcomes but also optimizes these adjustments to main-
ain the intent of the RL agent’s decisions. This integrated, adaptive
pproach enhances safety without compromising the learning and per-
ormance efficacy of the RL system, making it particularly suitable for
nvironments with rapid or uncertain changes. Second, the MPC filter
rovides a more general solution compared to constructing rule-based
cenarios or functions. Its ability to effortlessly navigate complex multi-
hysical problems underscores its broader applicability across diverse
omains. Specifically, MPC excels in handling complex multi-physical
roblems because it integrates models of various physical processes and
teratively optimizes control actions over time, allowing it to account
or dynamic interactions and adapt to changing conditions effectively.
his iterative approach enables MPC to refine predictions and control
trategies, addressing the intricacies of interconnected systems with
recision and flexibility.

To overcome the challenges of constructing a physical model, a
ata-driven model is established. To realize this, a multivariate linear
egression model is fitted onto the data gathered from the RL process’s
tate and action pairs. This data-driven model therefore captures the
ystem’s real-time behavior, remaining up-to-date and offering a more
daptive approach compared to a fixed model. Note that the adoption
f a data-driven model, as opposed to a physical model, does not
ompromise the safety of the controller, given that safety is assured
hrough the constraints alongside the dynamic model. The mathemat-
cal formulation of the safety filter closely mirrors a standard MPC
ormulation. The primary deviation from this formulation lies in the
bjective function. Specifically, the objective function of the safety
ilter aims to minimize the absolute difference between the suggested
ontrol input and the safe control input, as depicted in Eq. (4). This
nsures that the deviation from the suggested RL actions is minimized,
ligning the proposed control actions with those deemed safe.

in
𝑢

‖𝑢RL − 𝑢safe, 0‖ (4)

where 𝑢RL and 𝑢safe, 0 represent the proposed and safe control actions
respectively.
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Fig. 2. Overview of the proposed Safe Continual Reinforcement Learning (SCRL) architecture. In the physical domain, the energy system is controlled by an RL controller using
PPO. The data-driven MPC reacts to unsafe RL agent actions, adding a safety layer to the controller. In the digital domain, RL agent interactions are stored and used to build
a regression model for the MPC. The monitoring and detection unit triggers RL agent retraining and policy updates in response to environmental changes. Simultaneously, the
data-driven model of the safety filter is dynamically updated.
Fig. 3. MPC safety filter for RL, based on [9]. If the RL agent proposes an unsafe
action, the safety filter intervenes.

(2) Changepoint detection and policy updating: To leverage the con-
cept of CL, a changepoint detector is built into the proposed framework.
This detector monitors the environment and can detect changes in the
location and scale parameters of the distributed data stream. The algo-
rithm employed in this paper is derived from Ross et al.’s work [35]. In
their study, the authors present an innovative technique for detecting
changes in the location and scale parameter of continuously distributed
univariate data streams. A distinctive aspect of their approach is the
introduction of what they term stream discretization. This feature
enables rapid computation of test statistics, rendering the technique
well-suited for high-frequency data streams. This capability is partic-
ularly interesting for energy-like systems, where high-frequency data
streams are prevalent. Ross’ framework proposes the use of Lepage’s
statistical test, a non-parametric test designed to detect changes in both
location and scale parameters in two samples [36]. It combines the
Wilcoxon test statistic for location and the Ansari–Bradley test statistic
for scale into a single test statistic 𝐿 [37]. The Wilcoxon rank-sum
statistic is defined by:

𝑇𝑊 =
𝑁
∑

𝑖
𝑖 ⋅ 𝑉𝑖 (5)

where 𝑖 represents the ranks and 𝑉𝑖 is set to 1 if the 𝑖th smallest
observation is from the first sample and 0 otherwise. The total number
of observations is denoted as 𝑁 = 𝑛 + 𝑚, where 𝑛 and 𝑚 represent the
sizes of the two samples being compared. The Ansari–Bradley test is a
rank test for dispersion, the test statistic is defined by:

𝑇𝐴𝐵 = 1
2
𝑛 (𝑁 + 1) −

𝑁
∑

𝑖

|

|

|

|

𝑖 − 1
2
(𝑁 + 1)

|

|

|

|

⋅ 𝑉𝑖 (6)

With 𝑉𝑖 = 1 if the 𝑖th smallest observation is from the first sample, and
0 otherwise. Lepage’s test statistic combines both statistics as follows:

𝐿 =
(

𝑇𝑊 − 𝜇𝑊
𝜎𝑊

)2
+
(

𝑇𝐴𝐵 − 𝜇𝐴𝐵
𝜎𝐴𝐵

)2
(7)

where 𝜇 and 𝜎 are the expected values and variances, respectively, un-
der the null hypothesis. The statistic 𝐿 is asymptotically 𝜒2-distributed
with two degrees of freedom under 𝐻 . To decide whether a change
4

0

has occurred, one compares the calculated 𝐿 statistic to a critical value
from the distribution of 𝐿 under the null hypothesis of no change. If
𝐿 exceeds this critical value, it suggests evidence of change in either
location or scale or both. The first main advantage of this method over
current state-of-the-art detectors for RL algorithms is that it can detect
both changes in scale and location of the distribution, outperforming
existing detectors that often only detect for location shifts. The second
main advantage of this method is the use of a non-parametric test,
meaning that no distribution of the monitored datastream needs to be
assumed.

Upon detecting change, the RL policy needs updating. This is cru-
cial to align the agent’s actions with the new dynamics. Failure to
adapt may lead to suboptimal decisions, rendering the current strategy
ineffective or unsafe. Various ways to update the RL policy exist, as
detailed in [27]. In this article, the policy is retrained with the updated
data. This method eliminates the need to relearn the entire policy from
scratch, which not only speeds up the adaptation process but also keeps
computational resources to a minimum.

The frequency and duration of retraining the RL model stand as
crucial elements within the proposed framework. Firstly, excessive re-
training duration may result in the framework persisting with the initial
RL policy, yielding suboptimal performance. Secondly, overly frequent
retraining may interrupt the training process before the new pol-
icy reaches completion, necessitating further retraining cycles. These
concerns will be thoroughly examined in Section 3.2.

3. Grid-connected PV-battery-load system

To validate the proposed SCRL algorithm, it is applied to a grid-
connected PV-battery-load system, an exemplary use case for energy
flexibility. The use case is represented in Fig. 4 and involves the control
of a Battery Energy Storage System (BESS) within a grid-connected PV-
battery-load configuration. This setup encompasses (a) a PV production
profile, (b) an electricity consumption profile or demand, (c) a connec-
tion to the grid allowing for energy import or export in case of excess
or shortage, and (d) a battery, being the system under control. The key
characteristics of the BESS are summarized in Table 1. The response
time of the BESS is considered less than 15 min, being a reasonable as-
sumption according to the literature [38]. The objective is to minimize
total energy costs while satisfying the demand. The main challenge lies
in the unpredictability of solar production, electricity consumption, and
fluctuating electricity prices. The dataset used in this study represents
actual data for Flanders in 2021–2022 and was sourced from Elia, the
Belgian Transmission System Operator (TSO) [39]. Fig. 5 provides a
snapshot of the data, illustrating PV generation, electricity demand,
and electricity prices, highlighting the multi-source stochastic nature
of the problem. The data is scaled with a constant factor. Descriptive
statistics for the dataset can be found in Table 2. The granularity of the
data points is 15 min.
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Fig. 4. Schematic overview of the grid-connected PV-battery-load system use case.

Table 1
Summary of the key characteristics of the BESS.
BESS characteristic Value

Energy capacity (MWh) 1
Power capacity (MW) 1
Round-trip efficiency (%) 90
Response time <15 min

Fig. 5. PV, demand, and electricity price data retrieved from Elia, the Belgian
TSO [39]. The data was rescaled with a scaling factor.

Table 2
Descriptive statistics of the dataset used for simulations.

Statistic Load [kW] PV [kW] Price [e/kWh]

Count 8400 8400 8400
Mean 2277.13 1520.21 32.46
Standard deviation 1681.79 2318.49 15.37
Minimum 300.00 0.00 0.00
25th percentile 1070.00 0.00 21.94
Median 1740.00 47.36 31.61
75th percentile 2970.00 2454.66 41.28
Maximum 16 910.00 9134.72 200.04

The optimal solution of this problem can be obtained by formulating
5

the problem as a mixed integer linear programming problem (MILP).
However, in reality, achieving the optimal solution is impossible as it
presupposes not only a precise understanding of the system dynamics
but also a perfect knowledge of future data, such as PV generation,
demand, and solar generation.

min.
∑

𝑡
𝑝import
𝑡 ⋅ 𝑃 import

𝑡 − 𝑝export
𝑡 ⋅ 𝑃 export

𝑡 (8)

st. 𝐸𝑡+1 = 𝐸𝑡 + 𝑃 charge
𝑡 ⋅ 𝛥𝑡 (9)

𝑃 import
𝑡 − 𝑃 export

𝑡 = 𝑃 demand
𝑡 − 𝑃 solar

𝑡 + 𝑃 charge
𝑡 (10)

𝑀 ⋅ 𝑆 import
𝑡 ≥ 𝑃 import

𝑡 (11)

𝑀 ⋅ 𝑆export
𝑡 ≥ 𝑃 export

𝑡 (12)

𝑆 import
𝑡 + 𝑆export

𝑡 ≥ 0 (13)

𝑆 import
𝑡 + 𝑆export

𝑡 ≤ 1 (14)

𝐸lower limit ≤ 𝐸𝑡 ≤ 𝐸upper limit (15)

− 𝑃 charging capacity ≤ 𝑃 charge
𝑡 ≤ 𝑃 charging capacity (16)

𝐸0 = 0 (17)

𝑃 import
𝑡 ≥ 0, 𝑃 export

𝑡 ≥ 0 (18)

𝑆export
𝑡 , 𝑆 import

𝑡 ∈ {0, 1} (19)

where 𝑝import
𝑡 , 𝑝export

𝑡 are the import and export price at time 𝑡, 𝑃 import
𝑡

and 𝑃 export
𝑡 the import and export power at time 𝑡, 𝐸𝑡 and 𝐸𝑡+1 the

battery state of charge at time 𝑡 and 𝑡 + 1, 𝛥𝑡 the time step, 𝑃 charge
𝑡 the

charging power, 𝑃 demand
𝑡 the demand, 𝑃 solar

𝑡 the generated solar power
at time 𝑡. 𝑀 is a large constant value, facilitating big M constraints
(11) and (12). 𝑆export

𝑡 and 𝑆 import
𝑡 are binary variables, that are equal

to one if 𝑃 export
𝑡 and 𝑃 import

𝑡 are bigger than 0 respectively. 𝐸lower limit

and 𝐸upper limit the upper and lower limits of the battery state of
charge. 𝑃 charging capacity represents the maximum (dis)charging power
of the battery. Constraint (8) represents the objective function, i.e. the
minimization of total energy cost. The variable to be controlled is the
(dis)charging power of the battery 𝑃 charge

𝑡 . Constraint (9) represents
the battery dynamics. Constraint (10) reflects the energy balance of
the system. Constraints (11)–(14) ensure that at most one variable of
𝑃 import
𝑡 or 𝑃 export

𝑡 is equal to 1, as importing and exporting electricity
cannot occur simultaneously. Constraint (15) confines the state of
charge of the battery within the limits of 𝐸lower limit and 𝐸upper limit.
The charging power is further restricted by constraint (16). Constraint
(17) is the initial energy constraint of the battery, set to zero. Finally,
𝑃 import
𝑡 and 𝑃 export

𝑡 must be greater than or equal to zero. 𝑆export
𝑡 and

𝑆 import
𝑡 are binary variables.

3.1. SCRL implementation details

In this section, implementation details related to the proposed
framework are expounded.

(1) MDP formulation: The BESS is taken as an agent. Its optimal
decision-taking in the uncertainty of PV generation, electricity demand
and price can be formulated as an MDP. Consequently, the system state
at a certain point in time 𝑡 includes the following variables:

𝑠𝑡 =
(

𝑡, 𝐸batt
𝑡 , 𝑃 demand

𝑡 , 𝑃 solar
𝑡 , 𝑝import

𝑡 , 𝑝export
𝑡 , 𝑃 demand

𝑡+1 ,

𝑃 solar
𝑡+1 , 𝑝import

𝑡+1 , 𝑝export
𝑡+1

) (20)

where 𝐸batt
𝑡 is the battery state of charge at time 𝑡, 𝑃 demand

𝑡 the demand
at time step 𝑡, 𝑃 solar

𝑡 the generated solar power at time step 𝑡. 𝑝import
𝑡 and

𝑝export
𝑡 represent the import and export price at time step 𝑡. Analogously,
𝑃 demand
𝑡+1 , 𝑃 solar

𝑡+1 , 𝑝import
𝑡+1 , 𝑝𝑒𝑥𝑝𝑜𝑟𝑡𝑡+1 are the predicted demand, PV generation

and prices at time step 𝑡 + 1.
The action an agent can take corresponds to the (dis)charging

power.

𝑎 =
(

𝑃 charge
)

(21)
𝑡 𝑡
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Fig. 6. Performance comparison of PPO, QR-DQN, TRPO, and DDPG algorithms.
Ultimately, PPO was chosen based on its rapid and stable convergence, together with
its computational efficiency. A 95% confidence interval is added around the curve (100
runs).

Table 3
PPO hyperparameter tuning.
Hyperparameter Value

Learning rate 0.0005
Discount factor (𝛾) 0.95
Entropy coefficient (𝛽) 0.02
PPO clip parameter (𝜖) 0.2
Mini-batch size 64
Episode length 24
Training episodes 20 000

where 𝑃 charge
𝑡 is bounded by the maximum (dis)charging power (cf.

Eq. (16)). The reward 𝑟𝑡 𝜖  consists of two parts: the energy cost and
a penalty for taking an unsafe action. In this case, an unsafe action is
an action that drives the battery state of charge out of its predefined
limits (cf. Eq. (15)).

𝑟𝑡 = −𝑐1 ⋅ 𝑝
import
𝑡 ⋅ 𝑃 import

𝑡 + 𝑐2 ⋅ 𝑝
export
𝑡 ⋅ 𝑃 export

𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Energy cost

− 𝑐3 ⋅ 𝑢𝑛𝑠𝑎𝑓𝑒_𝑎𝑐𝑡𝑖𝑜𝑛
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Safety penalty

(22)

where 𝑐1, 𝑐2, 𝑐3 are weighting parameters, and 𝑢𝑛𝑠𝑎𝑓𝑒_𝑎𝑐𝑡𝑖𝑜𝑛 is a
boolean variable equal to 1 if the proposed action by the RL controller is
unsafe, and 0 otherwise. The tuning of parameters 𝑐1, 𝑐2, and 𝑐3 requires
a nuanced balance between the safety and performance considerations
of the controller. Achieving this balance, normalization was imple-
mented across the reward components. As detailed in Section 2, this
paper focuses on Proximal Policy Optimization (PPO) [34]. However,
for comprehensive analysis, a comparison was drawn with three other
state-of-the-art RL algorithms—Quantile Regression Deep Q-Network
(DQN) [40],Trust Region Policy Optimization (TRPO) [41], and Deep
Deterministic Policy Gradient (DDPG) [42]. The learning curves pre-
sented in Fig. 6 provide a comparison of their performance. TRPO
and PPO outperformed QR-DQN and DDPG, demonstrating quicker and
more stable convergence. Considering computational efficiency, PPO
was selected over TRPO for this study [34]. For this particular use case,
the PPO parameters are tuned as indicated in Table 3.

(2) Safety filter : The data-driven model used for the MPC is devised
as a multivariate regression model, which predicts the battery state of
charge in the next time step, based on the current system state 𝑠𝑡 and
the action 𝑎𝑡 that is taken. The data for fitting this regression model is
gathered online, by keeping track of the agent’s interactions with the
environment. Let 𝑺𝒕 represent the current system state, 𝑃 charge denote
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𝑡

the (disc)charging action, and 𝐸𝑡+1 represent the predicted battery state
of charge in the next time step. The multivariate linear regression
model is then formulated as:

𝐸𝑡+1 = 𝑺𝒕 ⋅𝑊 + 𝑃 charge
𝑡 ⋅ 𝑉 + 𝑏 (23)

where 𝑊 and 𝑉 denote the fitted weight matrices associated with the
state and action variables 𝑺𝒕 and 𝑃 charge

𝑡 , respectively. The term 𝑏 rep-
resents the fitted intercept. The coefficients of the weight matrices and
intercept term are initially fitted in the training phase. Subsequently,
during online operation, the model undergoes updates triggered by the
online changepoint detection mechanism, ensuring its continual adap-
tation to changes in the environment. This updating mechanism enables
the model to stay up-to-date and enhances the overall adaptivity of the
proposed control strategy. For instance, consider the scenario where the
battery experiences degradation over time, leading to an impact on the
efficiency of both charging and discharging processes. This would have
an impact on the battery dynamics model. The proposed strategy allows
to accounts for this degradation, by considering the actual updated and
measured dynamics of the controlled system.

(3) CP detection and policy updating: The online changepoint detec-
tion mechanism is implemented by utilizing the ocpdet Python library,
which incorporates the two-sample test proposed by Lepage [36,43].
The analysis focuses on the live datastream represented by [(𝑃 demand

𝑡 −
𝑃 solar
𝑡 ) ∗ 𝑝𝑡]. The detector is illustrated onto 350 days of data in Fig. 8.

The black dotted lines show points in time where the detector identified
a change in either scale or location of the data stream. When a change
is detected, the RL agent is retrained on the changed data stream,
encompassing ten days, for a total of 7500 training episodes. Once the
training process is completed, the updated policy is pushed online. The
confidence level 𝛼 for Lepage’s test is set at 0.05.

3.2. Results and discussion

(1) Performance aspects: The first achievement is the RL agent’s
ability to efficiently control the battery in order to minimize the total
energy costs. This means the battery is being charged during low-price
periods and discharged during high-price periods. The learned policy
closely aligns with the optimal policy, obtained by solving the MILP
problem. This is illustrated in Fig. 7. This is a major achievement given
that the learning agent bases its decisions solely on the current system
state and predictions about the next state. In contrast, the optimal
solution assumes perfect knowledge of system dynamics and future
data.

The numerical results of the PPO, TRPO, QR-DQN, and DDPG algo-
rithms are presented in Table 4. The results are represented relatively
to the optimal solution, which is obtained by solving the MILP. These
results confirm indeed that PPO is the preferred RL algorithm for the
proposed controller, as was already clear from the analysis in Fig. 6.
Comparing these numerical results, also noted as the optimality gap, to
literature findings proves challenging and often unfair as outcomes are
heavily influenced by the specific system characteristics, such as input
features like solar generation and the battery system itself. However, a
fairer comparison can be made by evaluating the algorithm against a
standard RL approach. In Fig. 9, the performance of the final proposed
controller, which integrates PPO, is juxtaposed with that of a standard
RL approach. The comparison reveals that the proposed algorithm
surpasses the standard RL method, highlighting the efficacy of incorpo-
rating dynamic policy updating mechanisms alongside an MPC safety
filter. More specifically, the employed policy and updating mechanism
contribute to performance enhancement, as reflected by the reduced
rewards, indicating lower overall energy costs. The adaptive approach
demonstrates an average reduction of 9.3% in energy costs. Analogous
to Fig. 8, the dotted lines in the graph indicate instances where the
changepoint detector identified changes in the environment, leading
to subsequent agent retraining and a corresponding policy update.

This outcome underscores the performance benefits of integrating a
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Fig. 7. Comparisons between the optimal and learned policy in testing phase.
Fig. 8. Illustration of the changepoint detection method. 𝑃𝑑 represents the demand, 𝑃𝑠
the solar output and 𝑝𝑡 the electricity price. The dotted lines represent points in time
where the detection method identified a change in the data.

changepoint detector within energy flexibility controllers in the face
of dynamic environments.

In this simulation, retraining occurs 7 times over a 200-day long test
dataset, as can be seen from the vertical dotted lines in both Figs. 9
and 11. Retraining intervals are determined by the variance of the
input data, (𝑃demand − 𝑃solar) ∗ 𝑝𝑡, the statistical test performed, i.e. the
Lepage’s test, and the used significance level 0.05. The retraining
process is executed in a brief timeframe, typically less than 5 min,
7

Table 4
Average energy cost comparison of the different
algorithms compared to the optimal solution.
Algorithm Relative energy cost

Optimal solution 1
PPO [34] 1.79
TRPO [41] 1.82
QR-DQN [40] 1.91
DDPG [42] 2.11
Random agent 10.71

Table 5
Retraining times in simulation.

Retraining time (minutes:seconds)

4:15 3:47 4:01 4:34 2:27 4:36 3:08

as illustrated in Table 5. This swift retraining mitigates any potential
impact on control results and ensures the model remains responsive to
evolving dynamics.

(2) Safety aspects: During training, the agent learns to avoid unsafe
actions over time, as illustrated in Fig. 10. In the early training stages,
the agent explores and frequently suggests unsafe actions, prompting
the MPC safety filter to intervene, thereby enforcing absolute safety. As
a result of penalization in the reward function, the agent progressively
learns to refrain from proposing these unsafe actions.
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Fig. 9. Performance comparison between the proposed adaptive RL strategy and a
standard non-adaptive RL strategy. Rewards represent negative energy costs, indicating
superior performance of the adaptive strategy. Black dotted lines show instances where
the detector identified an environment change and the algorithm was retrained. A 95%
confidence interval is shown around the curve (100 runs).

Fig. 10. Illustration of MPC safety filter interventions during the training process.
The agent effectively learns to avoid unsafe actions due to penalization in the reward
function, leading to less interruptions by the safety filter over time. A 95% confidence
interval is added around the curve (100 runs).

Next, the frequency of proposed unsafe actions during operation is
compared between the adaptive framework and a conventional, non-
adaptive RL framework, as depicted in Fig. 11. The figure suggests an
improvement in online safety within the proposed strategy, indicated
by a reduced occurrence of suggested unsafe actions during operation.
This enhancement stems from the dynamic nature of the RL policy,
which is updated following changes, providing the RL agent with a
better understanding of actions that may lead to unsafe situations in
specific environments. Enhancing online safety results in reduced inter-
ventions by the MPC filter during its operation. This is advantageous
because it minimizes the real-time usage of the safety filter, thereby
reducing the computational effort required.

4. Conclusions and future work

In this paper, SCRL was proposed, a method to improve the perfor-
mance and safety of current flexibility controllers. Current controllers
are often fixed and lack the capability to deal with dynamics involved
in modern power systems caused by, for instance, the increasing intro-
duction of RES into the grid. These non-stationarities render existing
controllers suboptimal and potentially unsafe. The SCRL algorithm
introduces a changepoint detection method that allows the controller
to adapt to changes in the environment. Moreover, a dynamic data-
driven MPC safety filter is introduced in the proposed framework to
8

Fig. 11. Safety comparison between the proposed adaptive RL strategy and a standard
non-adaptive RL strategy in testing phase. The adaptive method clearly shows less
unsafe actions compared to the conventional RL strategy. Black dotted lines show
instances where the detector identified an environment change and the algorithm was
retrained. A 95% confidence interval is added around the curve (100 runs).

guarantee absolute safety of the controller. The model employed in
the model predictive controller is data-driven as it is based on data
from RL interactions with the environment. The effectiveness of the
framework was validated on a grid-connected PV-battery-load system,
showcasing improved flexibility and safety compared to a conventional,
non-adaptive framework. By increasing the energy flexibility of the
system, the energy costs were reduced by 9.3%. Future work will
focus on exploring more complex use cases to further validate the
framework’s applicability and performance.
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