
Efficient Microservice Deployment in Kubernetes
Multi-Clusters through Reinforcement Learning

José Santos∗, Mattia Zaccarini†, Filippo Poltronieri†, Mauro Tortonesi†,
Cesare Stefanelli†, Nicola Di Cicco‡, Filip de Turck∗

∗ Ghent University - imec, IDLab, Department of Information Technology, Gent, Belgium
Email: {josepedro.pereiradossantos, filip.deturck}@UGent.be

† Distributed Systems Research Group, University of Ferrara, Ferrara, Italy
Email: {filippo.poltronieri, mauro.tortonesi, mattia.zaccarini}@unife.it

‡ Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Italy
Email: nicola.dicicco@polimi.it

Abstract—Microservices have revolutionized application de-
ployment in popular cloud platforms, offering flexible scheduling
of loosely-coupled containers and improving operational effi-
ciency. However, this transition made applications more complex,
consisting of tens to hundreds of microservices. Efficient orches-
tration remains an enormous challenge, especially with emerging
paradigms such as Fog Computing and novel use cases as au-
tonomous vehicles. Also, multi-cluster scenarios are still not vastly
explored today since most literature focuses mainly on a single-
cluster setup. The scheduling problem becomes significantly more
challenging since the orchestrator needs to find optimal locations
for each microservice while deciding whether instances are
deployed altogether or placed into different clusters. This paper
studies the multi-cluster orchestration challenge by proposing
a Reinforcement Learning (RL)-based approach for efficient
microservice deployment in Kubernetes (K8s), a widely adopted
container orchestration platform. The study demonstrates the
effectiveness of RL agents in achieving near-optimal allocation
schemes, emphasizing latency reduction and deployment cost
minimization. Additionally, the work highlights the versatility
of the DeepSets neural network in optimizing microservice
placement across diverse multi-cluster setups without retraining.
Results show that DeepSets algorithms optimize the placement
of microservices in a multi-cluster setup 32 times higher than its
trained scenario.

Index Terms—Kubernetes, Orchestration, Microservices, Re-
inforcement Learning, Resource allocation

I. INTRODUCTION

In the last few years, containers have revolutionized applica-
tion deployment and life-cycle management [1]. Applications
evolved from a single monolith to a complex composition
of loosely-coupled microservices, resulting in remarkable im-
provements in deployment flexibility and operational effi-
ciency [2]. However, managing these modern, microservice-
based applications requires extremely sophisticated orchestra-
tion solutions. The emergence of novel paradigms such as Fog
Computing [3] and Edge Computing [4] and new use cases
(e.g., autonomous vehicles [5], virtual reality services [6])
demanding computing resources closer to devices and end-
users adds further complexity and puts even more pressure on
popular cloud infrastructures (e.g., Amazon ECS, Kubernetes
(K8s), and Red Hat OpenShift). The lack of efficient multi-
cluster management features has hindered the deployment of

these applications due to their stringent requirements (e.g., low
latency, high bandwidth) [7].

Current literature (e.g., [8], [9]) focuses mainly on a single-
cluster scenario where applications are deployed based on the
available computing resources. Existing works studying multi-
cluster orchestration are still scarce, however, the scheduling
problem becomes significantly more challenging in these sce-
narios. For instance, the orchestrator has to determine where
to deploy each microservice and decide whether to place all its
instances in a single cluster or distribute them across multiple
ones. An efficient strategy is crucial to choose when to dis-
tribute microservice instances across different clusters, aiming
to enhance resource utilization and decrease the application’s
latency. Only a few works (e.g., [10]–[13]) address multi-
cluster orchestration by proposing either theoretical formula-
tions or heuristic-based methods that are typically evaluated
via simulations or small testbeds, making their applicability in
popular platforms difficult.

This paper strives to tackle the orchestration challenge in
a multi-cluster infrastructure by proposing an Reinforcement
Learning (RL)-based Global Topology Manager (GTM) for
efficient application deployment in K8s, a widely adopted
container orchestration platform [14]. An RL environment
has been developed to provide a scalable and cost-effective
solution to train RL agents for the multi-cluster orchestration
problem. Numerous works [15], [16] reported that online train-
ing in RL is significantly expensive for complex tasks in the
network management domain. It allows training an RL agent
with a valuable dataset collected over a specific time period
(e.g., several days) or by creating a realistic simulation-based
environment. In addition, this work leverages the capabilities
of the open-source project Kubernetes Armada (Karmada)
[17], which acts as a control-plane solution for managing
multi-cluster applications across hybrid cloud settings. This
study aims to make Karmada’s behavior more adaptive and
intelligent than its current one by developing new components
and novel orchestration policies to accomplish more efficient
multi-cluster scheduling. The main contributions of the paper
are the following:

• gym-multi-k8s framework: Implementation of an of-



fline RL-based framework for proper scheduling of
microservice-based applications in multi-cluster scenar-
ios. The proposed framework1 has been open-sourced,
allowing researchers to evaluate their scheduling ideas.
Sec. IV presents the RL-based GTM, including obser-
vation state, action space, and the reward functions. The
approach addresses multi-cluster orchestration focused on
two opposing strategies: reducing deployment costs and
minimizing latency.

• Evaluation with microservice-based applications: The
evaluation considers a real-world application named
Cloud2Edge (C2E). Experiments in multiple multi-cluster
K8s setups show that the RL-based GTM can find near-
optimal allocation schemes for the selected strategy while
achieving a high percentage of accepted requests.

• RL generalization: The paper also evaluates the gen-
eralization potential of the DeepSets neural network
architecture by applying it to different problem sizes
without retraining. Results show that the RL-based GTM
can optimize microservice placement in a multi-cluster
scenario 32 times higher than its trained setup (Sec. VI).

The remainder of the paper is organized as follows: the
state-of-the-art on multi-cluster orchestration is discussed in
the next section. Sec. III highlights the importance of efficient
multi-cluster orchestration, describing the proposed approach
focused on its integration with the Karmada open-source
project. Sec. IV details the RL-based GTM orchestration
solution, including its observation and action spaces. Sec. V
describes the evaluation setup, followed by the results in
Sec. VI. Sec. VII concludes this paper.

II. RELATED WORK ON MULTI-CLUSTER
ORCHESTRATION

Cloud orchestration has been an active research topic in
recent years. Several studies have proposed scheduling policies
to optimize container allocation in popular cloud platforms.
This section reviews the most relevant works on application
scheduling, mainly focusing on orchestration methods for
multi-cluster infrastructures. The awareness of the scheduler
plays a crucial role in these scenarios since it will allow
more refined scheduling decisions in order to improve the
performance and responsiveness of the system.

Heuristics and Theoretical Formulations are vastly ex-
plored in the literature [10]–[13]. For example, in [12], the
authors propose three task scheduling algorithms for hetero-
geneous cloud environments. These algorithms find the most
suitable location for each task while optimizing makespan,
resource utilization, and throughput. Also, in [13], S. Qin
et al. define a reliability-aware multi-objective algorithm
demonstrating the effectiveness of the approach in comparison
with other analogous algorithms in solving multi-objective
workflow scheduling problems in multi-cloud systems. The
main drawback of these methods is that they are designed

1https://anonymous.4open.science/r/gym-multi-k8s-8643

and developed for a specific platform, reducing its potential
applicability in practice.

Scheduling Optimizations in K8s is an active topic lately
[17]–[20]. Most efforts aim to improve resource efficiency
[18], [20] or reduce the application response time by focusing
on the network latency between geo-distributed clusters [19],
showing the benefits of network-aware placement. Karmada
[17] scheduling focuses on deployment preferences specified
by cloud administrators. Microservice replicas can all be
deployed into a single cluster or distributed across different
clusters. If the spreading policy is selected, a simplified
cluster resource modeling is applied to decide how to spread
replicas across the clusters. The proposed RL GTM aims to
find the optimal decision based on the current status of the
infrastructure, without cloud administrators having to decide
beforehand how they prefer to deploy these replicas across
their infrastructure.

RL algorithms have been proposed in recent years as an
alternative to current heuristics [21]–[23]. These techniques
aim to teach an agent how to deploy microservices in a
multi-cluster setting by giving it the current status of the
infrastructure after each applied action. RL approaches are
typically robust to dynamic demands since the algorithm
adjusts the model parameters if any notable event occurs
(i.e., online learning). Nonetheless, the main drawback of RL
techniques is the high execution time to converge to a stable
model and thus trigger inefficient scheduling actions during the
learning period. The proposed GTM enables a more scalable
and cost-effective solution for RL training via its gym-multi-
k8s framework.

Table I compares all works referred to in this section.
These methods have been classified based on their main
characteristics. Nonetheless, the quantitative assessment is
challenging since these techniques are designed for a partic-
ular system or virtualization technology. To the best of our
knowledge, no standard testing framework for multi-cluster
scheduling exists. In our previous work, numerous studies
have proposed scheduling optimizations for a single cluster
addressing microservice-based applications (e.g., [24]). This
paper builds on those efforts to propose an RL-based approach
focused on multi-cluster scenarios. The work differs from the
current literature by addressing multiple factors (e.g., resource
efficiency, network latency) for application scheduling and its
potential integration with the Karmada project. In addition, this
paper addresses the need for RL generalization by evaluating
the DeepSets neural network architecture. The aim is to teach
an agent in a small-scale scenario and directly apply the
learned policy to large-scale setups.

III. TOWARD EFFICIENT MULTI-CLUSTER ORCHESTRATION

A. System Overview

This paper envisions a multi-cluster scenario as an ag-
gregation of multiple heterogeneous K8s clusters managed
singularly by a control-plane entity (Fig.1). It will enable a
dynamic methodology for developing, deploying, and man-
aging all the clusters distributed between all the computing



TABLE I: Comparison of existing works related to multi-cluster application scheduling.

Authors Year Virtualization Dimension Main Focus Generalization Evaluation Method
Bhamare, D. el al. [10] 2017 VMs N R & NL ✕ S
Guerrero, C. el al. [11] 2018 VMs & C MO R & NL ✕ S
Panda, S. K. et al. [12] 2019 VMs MO R & M ✕ S

Qin, S. et al. [13] 2023 VMs MO RL ✕ S
Lee, S et al. [18] 2020 C R R ✓ K8s

Rossi, F, et al. [19] 2020 C N NL ✓ K8s
Tamiru, M. A. et al. [20] 2021 C R R ✓ K8s

Karmada [17] 2020 C L R ✓ K8s
Zhang, Y. et al. [21] 2020 N/A R R & NL ✕ S

Shi, T. et al. [22] 2021 VMs L R & NL ✕ S
Suzuki, A. et al. [23] 2023 N/A N R & NL ✕ S
Our RL-based GTM 2023 C N + R R & NL ✓ RL

Virtualization: VMs = Virtual Machines, C = Containers, N/A = no clear distinction.
Dimension: N = Network-aware, MO = Multi-objective, L = Location-aware, R = Resource-aware.
Main Focus: R = Resources, RL = Reliability, NL = Network Latency, M = Makespan.
Generalization: ✓= addressed, ✕= not considered.
Evaluation Method: K8s = Kubernetes, S = Simulation, RL = RL environment.

Karmada

Prometheus

Cluster

Prometheus

Cluster

Prometheus

Cluster

Prometheus

Cluster

Global Topology Manager (GTM)

Fig. 1: Envisioned Global Topology Manager (GTM) for
Multi-Cluster K8s Orchestration.

layers in the cloud continuum (i.e, edge, fog, and cloud).
The proposed architecture employs K8s at every layer of the
cloud continuum due to its various heterogeneous distributions
such as MicroK8s, Kubedge, and K3s [25]. With a large
variety of managed K8s setups, it is logical to consider
this scenario as a federation of multi-cluster environments.
Thus, our approach adopts Karmada [17] as a Federation
Layer, a Cloud Native Computing Foundation (CNCF) project
developed in continuation of Kubernetes Federation (KubeFed)
consisting of a control-plane management system capable of
deploying cloud-native applications across multiple K8s clus-
ters. Its main objective is to provide autonomous management
for multi-cluster applications in multi-cloud and hybrid cloud
scenarios, with key features such as centralized management,
high availability, failure recovery, and traffic scheduling [17].
The main reason to choose Karmada as our federation layer is
that it seems a more mature solution than others available as
open-source, such as Open Cluster Management (OCM). For
instance, Karmada can already exploit the K8s Native API in
the resource templates, making it easier to integrate with the
plethora of existing K8s tools and extending it with plugins.

B. Karmada Integration
Despite these aspects and considerations, there is still plenty

of room for improvement in the standard behavior of Karmada,
especially regarding application scheduling. Karmada supports
two modes for deploying replicas in a K8s cluster: duplicated
and divided. The first mode implies deploying the number
of requested instances in all clusters, and the second strategy
splits the number of requested replicas across all the clusters.
Depending on the strategy favored by the cloud administrator,
extra options (e.g., ClusterAffinities, LabelSelectors) can be
inserted to the PropagationPolicy object to fine-tune the be-
havior of the Karmada scheduler. Karmada decides to divide
replicas mainly by the resource availability of each cluster, but
typically does not consider fragmented resources leading to
suboptimal scheduling. Also, the duplication policy typically
leads to resource wastage since the demand is lower than the
number of reserved resources. The proposed GTM aims to
automate microservice deployment in multi-cluster scenarios
by finding an optimal balance between deploying the number
of requested replicas in a single cluster or distributing them
across several ones. Two opposing orchestration policies have
been developed focused on resource efficiency and network la-
tency to find near-optimal multi-cluster placement for different
application scenarios.

The GTM communicates directly with Karmada, influencing
the operations performed by the Karmada Controller Manager.
Consequentially, the Karmada Controller manager selects the
correct controller that manages the corresponding resources of
the underlying clusters through their API servers. For example,
the Policy Controller monitors the deployed PropagationPolicy
objects by creating ResourceBinding objects for each resource
object of the group that matches the ResourceSelector field.
The necessary deployment information for the GTM is given
by extended PropagationPolicy objects, describing the require-
ments of the deployed services to permit the comprehensive
evaluation of their performance requirements and adapt the
resource allocation dynamically. In addition, Prometheus is
applied as a monitoring agent since it provides a higher level
of visibility into workloads, APIs, and distributed applications



running in the cluster. The GTM takes advantage of monitoring
information from Prometheus regarding cluster resource avail-
ability at every moment to make efficient scheduling decisions.

IV. REINFORCEMENT LEARNING (RL)-BASED
MULTI-CLUSTER ORCHESTRATION

A. Problem Overview - Efficient multi-cluster orchestration

In the last few years, RL has become an active research
topic in networking [26], often applied to solve decision-
making problems in which an agent learns to choose an action
based on the current state of the network. The agent typically
learns an optimal policy by receiving a reward for each
applied action. This reward corresponds to the new observation
state after applying the selected action. On the one hand, in
microservice scheduling, the reward is positive if the action
increases the cluster’s or the application’s performance (e.g.,
high resource usage, low response time). On the other hand,
the agent receives a penalty (i.e., typically a negative reward)
if the cluster’s or application’s performance degrades. Thus,
the agent learns through repeated interactions with the envi-
ronment and determines the inherent synergies between states,
actions, and subsequent rewards. Based on our expertise, RL
is well-suited for scheduling problems as the efficient multi-
cluster orchestration addressed in this paper since it can learn
a winning strategy based on a given goal, and applied for
long-term decision-making in repeated scheduling problems.
RL agents can adjust their action selection and achieve long-
term objectives in complex situations by receiving adequate
feedback (i.e., rewards). The following subsections describe
the RL approach for solving the scheduling of microservices
in a multi-cluster K8s environment.

B. Reinforcement Learning (RL) Environment

An OpenAI Gym-based framework [27] named gym-multi-
k8s has been developed to train the RL-based GTM in a
scalable and cost-efficient manner. The framework enables RL
agents to learn how efficiently deploy microservices in multi-
cluster scenarios. The environment consists of a discrete-event
RL scenario to reenact the behavior of multiple deployment
requests for a given microservice deployed via Karmada
on several K8s clusters. The deployment requirements (e.g.,
CPU and Memory requests) and the number of available
resources in each cluster are updated during training based
on the scheduling actions of the agent. Sec. V shows the
deployment requirements used for the RL environment based
on a realistic microservice-based application to create near-
real experiments. In addition, the proposed approach adopts
the DeepSets methodology presented in [28], [29]. Deep RL
methods based on Multi-Layer Perceptrons (MLPs) operate
in fixed-length vector spaces, which cannot support variable
input and/or output dimensionalities. In other words, for the
microservice scheduling problem, if an MLP-based RL agent
learns on a multi-cluster setup with four clusters, it cannot
be directly applied to another multi-cluster scenario that man-
ages eight clusters. Instead, DeepSets assume that inputs and
outputs can be arbitrarily-sized sets, meaning that the learned

TABLE II: The structure of the Observation Space.

Set Metric Description

App

R The number of requested replicas.
ωcpu The CPU request of each replica.
ωmem The memory request of the replica.
∆ The latency threshold of the request.
T The expected execution time of the request.

Cluster

Πcpu The cluster’s cpu capacity.
Πmem The cluster’s memory capacity.
Θcpu The CPU allocated in the cluster.
Θmem The memory allocated in the cluster.
δc The latency of cluster c to cluster cj .

TABLE III: The hardware configuration of each cluster based
on Amazon EC2 On-Demand Pricing [30].

Cluster Type Amazon Cost ($/h) Cost (τc) CPU RAM
Cloud t4g.2xlarge (0.2688) 16.0 8.0 32.0

Fog Tier 2 t4g.xlarge (0.1344) 8.0 4.0 16.0
Fog Tier 1 t4g.large (0.0672) 4.0 2.0 8.0

Edge Tier 2 t4g.medium (0.0336) 2.0 2.0 4.0
Edge Tier 1 t4g.small (0.0168) 1.0 2.0 2.0

policy by the RL agent is not bound to a fixed number of
clusters. Because of this, a DeepSets-based RL agent can
generalize its learned policy to different multi-cluster scenarios
without retraining. The aim is that the proposed GTM, by
applying DeepSets, generalizes well to problem sizes larger
than training, which would be beneficial to cloud providers
scaling their infrastructure by adding further computing power.

C. Observation Space

Table II shows the observation space considered for the
multi-cluster orchestration problem, describing the environ-
ment at a given step. It includes two sets of metrics: App
and Cluster. The first set App corresponds to the deployment
requirements of the microservice-based application, such as
the requested number of replicas (R), and its CPU and memory
requests (ωcpu and ωmem). Each request also has a latency
threshold, which the cluster hosting the request should respect.
The second set Cluster corresponds to the current status of the
infrastructure in terms of resource capacity (Πcpu and Πmem),
the current amount of allocated resources (Θcpu and Θmem),
among others. Also, the cluster latency consists of several
latency metrics depending on the number of available clusters
in the multi-cluster setup, translating into C latency metrics
for each cluster. Latency values are represented as values
in [1.0, 500.0] milliseconds. Table III shows the resource
capacities for each cluster based on different cluster types
and their corresponding deployment cost. Resource capacities
are then represented as values in [2.0, 32.0], and allocated
resources are initiated as values in [0.0, 0.2] since each cluster
has a reserved amount of resources for background services
(e.g., monitoring). This information helps the agent to select
adequate actions at a given moment from the action space
described next.



TABLE IV: The structure of the Action Space.

Action Name Description
Deploy-all-c Deploy all replicas in cluster c.

Spread Divide and spread replicas across different clusters.
Reject The agent rejects the request. Nothing is deployed.

D. Action Space

Table IV shows the action space designed for gym-multi-
k8s as a discrete set of possible actions, where a single action
is chosen at each timestep. Given a deployment request, the
GTM can decide to allocate the total number of requested
replicas to a single cluster, divide the number of instances
across all available clusters, or reject the request. Nevertheless,
the size of the action space depends on the total number
of clusters in the multi-cluster scenario. Let’s assume the
multi-cluster setup consists of C clusters, the action space
length is then C+2. Rejection is allowed since computational
resources might be scarce at a certain moment, and no cluster
can satisfy the request. The agent should not be penalized
in these cases. Regarding penalties (i.e., negative reward), a
simple approach commonly followed in the literature [31] is to
penalize the agent if it selects an invalid action since these are
typically known beforehand based on the allocated computing
resources. In contrast, action masking [32] can teach the agent
that depending on the current state s specific actions are
invalid. This approach has recently shown significantly higher
performance and sample efficiency than penalties. Action
masks for each cluster cεC at state s can be defined as follows:

mask(s)[c] =

{
true, If cluster c has enough resources.
false, Otherwise.

(1)
Whereas for spread and reject actions, the action mask is

always true, avoiding the lock in case all actions were marked
invalid. It is noteworthy that the current Karmada does not
make this decision between deploy-all and spread placement.
The cloud administrator decides by indicating the preferred
strategy in the PropagationPolicy object. The GTM aims to
find the optimal balance between both policies by following
a First Fit Decreasing (FFD) approach for the spread action
(Alg. 1). This balance depends on the selected reward function,
in which two opposing strategies were designed for the GTM
as described next.

E. Reward

The purpose of a reward function is to guide the agent
towards maximization of accumulated rewards by choosing
suitable actions depending on the current observation state.
Two reward functions have been designed based on different
objectives: cost-aware (2), and latency-aware (3). The cost-
aware function leads the agent to deploy requests on clusters
focused on minimizing the allocation cost (i.e., τc). The cloud
type is significantly more expensive than fog and edge types,
so the agent will prefer to deploy requests to the edge or fog
since it receives a higher reward. The request’s deployment

Algorithm 1 First Fit Decreasing (FFD) for spread placement

Input: R, the number of requested replicas.
C, the number of clusters.
ωcpu,mem, the replica’s requested cpu/memory.
Ωcpu,mem, the cluster’s amount of free cpu/memory.

Output: α, the distribution of replicas across all clusters
if R = 1 then

penalty ← true ▷ Penalize the agent
return α = 0

end if
min← 1, max← R, ∆← R ▷ Get min and max replicas
for each c ∈ C do ▷ Calculate min factor

f ← min(Ωcpu[c]/ωcpu[c],Ωmem[c]/ωmem[c])
∆← min(f,∆)

end for
if ∆ ≥ R then

∆← R− 1 ▷ To really distribute replicas
end if
S ← sorted(Ωcpu) ▷ Sort by decreasing order of CPU
for each c ∈ S do ▷ DistLoop: distribute replicas

if R = 0 then
break

else if R > 0 & ∆ < R & (ωcpu ×∆ < Ωcpu[c]) &
(ωmem ×∆ < Ωmem[c]) then

α[c] = α[c] + ∆
R = R−∆

else if R > 0 & (ωcpu < Ωcpu[c]) & (ωmem <
Ωmem[c]) then

α[c] = α[c] +min
R = R−min

end if
end for
if R = 0 then

return α
else if R ̸= 0 then

repeat
DistLoop ▷ Repeat the DistLoop

until R = 0
end if

cost is given by c while the maximum allocation cost is given
by max. The agent is penalized if the request is rejected,
and computing resources are available even when the agent
supports action masking. The latency-aware function aims to
satisfy the latency threshold (i.e., th) of each request. If the
agent chooses a cluster that meets the latency requirements,
it receives a positive reward (i.e., +1). In contrast, the agent
is penalized if the threshold is not respected. The request’s
latency (i.e., l) corresponds to the average latency of the cluster
by considering all latency metrics.



r =


max− c if req. is accepted ∨ (req. is rejected ∧

no resources.)
−1 if req. is rejected ∧ avail. resources.

(2)

r =

{
1.0 if l ≤ th ∨ (req. is rejected ∧ no resources).
−1 if l > th ∨ (req. is rejected ∧ avail. resources).

(3)

F. Agents - Implementation Details

Multiple agents have been evaluated in the gym-multi-k8s
environment. Most of these algorithms have been implemented
based on the stable baselines 3 [33] library, a set of reli-
able implementations of RL algorithms written in Python.
The evaluation consists mainly of four agents that support
discrete action spaces: Advantage Actor Critic (A2C) [34],
maskable Proximal Policy Optimization (PPO) [35], DeepSets
PPO [29], and DeepSets Deep Q-Network (DQN). A2C is
a synchronous, deterministic algorithm that combines policy
and value-based algorithms. Policy-based agents learn a policy
mapping input states to output actions (i.e., actors), and value-
based algorithms select actions based on the predicted value of
the input state (i.e., critic). The evaluated version of A2C does
not support action masking. PPO is a policy gradient method
for RL vastly used today for different scenarios (e.g., robot
control and video games), and maskable PPO adds support for
action masking. DQN combines the classical Q-Learning RL
algorithm with deep neural networks. The DeepSets version
of both PPO and DQN support the DeepSets neural network
to evaluate its generalization potential.

V. EVALUATION SETUP

This section presents an overview of the C2E application
used to validate the offline gym-multi-k8s RL environment.
Sec. V-A describes C2E and shows its deployment require-
ments, and Sec. V-B details the dynamics of the gym-multi-k8s
environment.

A. Cloud2Edge (C2E) application

The C2E package provides a scalable, cloud-based Internet
of Things (IoT) platform, connecting sensor style devices
and processing their respective data with a Digital Twin
(DT) platform. As shown in Fig. 2, its architecture includes
two main applications: Eclipse Hono and Eclipse Ditto. The
first relates to an open-source framework that enables the
connection of several IoT devices through remote service
interfaces and the communication between them thanks to
various protocol implementations (e.g., HTTP REST, MQTT).
Thus, lower-end devices are connected to the back-end in the
Cloud to publish or report data like telemetry. At the same
time, Eclipse Hono facilitates their usage to update the DT
provided by Eclipse Ditto and other functional operations, such
as sending commands or communicating events. It is important
to note that Hono has become the subject of different studies

Digital Twin

E
cl

ip
se

 D
it

to
E

cl
ip

se
 H

o
n

o

Things

ditto-policies ditto-connectivity

Telemetry Events

Device Connectivity

Application

adapter-amqp

adapter-http adapter-mqtt

adapter-http adapter-mqtt adapter-amqpWebSocket

ditto-things ditto-thingssearch

Fig. 2: The Eclipse Cloud2Edge (C2E) architecture: processing
sensor data with a digital twin cloud platform.

TABLE V: Deployment properties of the C2E application.

Application Deployment CPU MEM Latency Th.

Cloud2Edge
(C2E)

adapter-amqp 0.20 0.30 200 ms
adapter-http 0.20 0.30 200 ms
adapter-mqtt 0.20 0.30 200 ms
artemis 0.20 0.60 200 ms
dispatch-router 0.20 0.64 200 ms
ditto-connectivity 0.20 0.75 100 ms
ditto-gateway 0.20 0.50 100 ms
ditto-nginx 0.05 0.016 100 ms
ditto-policies 0.20 0.50 100 ms
ditto-swaggerui 0.05 0.016 400 ms
ditto-things 0.20 0.5 200 ms
ditto-thingssearch 0.20 0.50 200 ms
ditto-mongodb 0.015 0.25 200 ms
service-auth 0.20 0.20 300 ms
service-comm-router 0.015 0.25 300 ms
service-dev-registry 0.20 0.40 200 ms

in the last few years (e.g., [36], [37]) due to its capability to
support functionalities like device authentication and machine-
to-machine management. On the other end, Ditto presents
numerous services to realize DT of IoT devices. Therefore, it
permits the definition of IoT solutions without the need for
managing a custom back end, allowing the users to focus
only on business requirements and the implementation of
their applications. Through the years, Ditto has been applied
in several works in the literature, especially in combination
with other system and tools to realize more sophisticated IoT
environments [38], [39]. We argue that C2E is a convenient
application to test the proposed multi-cluster orchestration
approach since it consists of several microservices, aiming to
ease the proper life-cycle management of IoT applications.
Table V shows the deployment requirements for the several
microservices of the C2E application applied in the gym-multi-
k8s environment.



TABLE VI: The execution time per episode during training.

Algorithm Execution Time (in s)
A2C 0.121 ± 0.011

Maskable PPO 0.148 ± 0.227
Deepsets PPO 0.317 ± 0.053
Deepsets DQN 0.215 ± 0.042

B. gym-multi-k8s RL environment dynamics

The gym-multi-k8s framework has been implemented in
Python to ease the interaction with both the OpenAI Gym and
the stable baselines 3 libraries. In the evaluation, an episode
consists of 100 steps where the agent attempts to maximize the
reward based on the current deployment request. If the agent
deploys the request in one of the clusters, its average latency
increases by increasing its corresponding latency metrics. In
contrast, if a microservice is terminated based on a mean
service duration (as default one time unit), the average latency
decreases by decreasing the corresponding metrics. Also, the
action selected by the agent directly impacts the latency
calculation since a spread policy means all used clusters for
deployment will increase its latency. During training for all
algorithms, the multi-cluster setup consists of four clusters.
The agents have been executed on a 14-core Intel i7-12700H
CPU @ 4.7 GHz processor with 16 GB of memory. The
performance of the agents has been evaluated based on the
following metrics:

• Accumulated reward during each episode.
• Percentage of rejected requests represented as [0, 1]. 1

equals to 100% rejection rate.
• Average deployment cost of deploying all requests in

the multi-cluster setup.
• Average latency expected by each accepted request.

VI. RESULTS

Time Complexity has been accessed based on the training
execution time for the multiple RL agents (Table VI). The
results highlight that training RL agents in near-real envi-
ronments is significantly faster, and that RL environments
can speed up the applicability of RL methods in operational
environments. A2C and Maskable PPO are considerable faster
than Deepsets PPO and Deepsets DQN. Training results for
2000 episodes are shown in Fig. 3 and Fig. 4 for both reward
functions. The number of available clusters during training cor-
responds to four for all algorithms, and a smoothing window
of 200 episodes is applied to reduce spikes in the graphs. All
algorithms seem to converge around 1000 episodes despite
the fact that DeepSets PPO for the latency reward function
had a period with significantly lower rewards. After this
period, DeepSets PPO seems to achieve even higher rewards.
Regarding the number of rejected requests, all algorithms seem
to converge to a state where the percentage is below 20%,
being Maskable PPO capable of reaching 0%. In terms of
deployment costs, all algorithms reach average deployment
costs between 6 and 12, and slightly higher values for the
latency reward function, as expected. In addition, during
training, the number of available clusters is set to four, which

means that it might be difficult to accept a high percentage
of requests while keeping the overall deployment cost low.
Lastly, concerning latency, all algorithms are able to reduce
it significantly during training, obtaining significantly lower
values for the latency reward function (on average below 50
ms).

Testing has been executed for all algorithms during 100
episodes with the saved configuration after 2000 training
episodes. Table VII shows the results obtained during the
testing phase concerning accumulated rewards, the percentage
of rejected requests, the average deployment costs, and the
average latency for the different algorithms. Both DeepSets al-
gorithms achieve higher performance than A2C and maskable
PPO for both reward functions though the slightly worse train-
ing. For the cost-aware strategy, accumulated rewards of 1100
were obtained on average, corresponding to a low percentage
of rejected requests of 3.9%, and an overall deployment
cost of 4.3 units. For the latency-aware function, DeepSets
PPO on average achieves 0% rejection rate while attaining a
deployment cost of 11.7 units and an average latency of 28.57
ms. DeepSets DQN on average obtains a lower deployment
cost of 5.76 units, corresponding to a rejection rate of 0.3%
and an average latency of 42.16 ms. Generalization has
been assessed for both DeepSets algorithms by varying the
cluster size [4, ..., 128]. Results demonstrate the enormous
potential of the DeepSets neural network. Both algorithms
can find near-optimal allocation schemes for both strategies
even when trained in a small-scale setup. The latency goal is
considerably more complex than the cost objective while the
number of clusters increases. Latency increases throughout the
experiment, but both agents achieve adequate latency values
for both strategies, lower than 100 ms for latency-aware, and
lower than 300 ms for cost-aware. DQN achieves slightly
lower latency than PPO at a cost of a rejection rate of almost
4%. In conclusion, both algorithms can optimize the placement
of microservices in a multi-cluster setup 32 times higher than
its trained setup.

In summary, this paper investigates efficient multi-cluster
orchestration strategies focused on the well-known K8s plat-
form and in recent trends as RL. Two opposing objectives
demonstrate that RL algorithms can find appropriate actions
that maximize the accumulated reward. An offline RL en-
vironment validated the RL approach since most algorithms
achieved significantly high performance. The Karmada multi-
cluster orchestration solution would benefit from our GTM
since it finds a near-optimal balance between deploying all
replicas into a single cluster or distributing them into multiple
ones. This trade-off has been found for different objectives,
as shown in this paper. In the testing phase, all algorithms
achieved high rewards for both strategies. Last but not the
least, the DeepSets neural network has shown its enormous
potential. These RL algorithms can be applied directly into
different multi-cluster environments with varying cluster sizes,
significantly reducing the training time. Without DeepSets,
RL algorithms need retraining for that particular cluster size,
which is considerably more costly.



200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

0

200

400

600

800

1000

1200

1400

1600
Re

wa
rd

A2C
Maskable PPO
Deepsets PPO
Deepsets DQN
max reward= 1500

(a) Accumulated Reward.

200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f R
ej

ec
te

d 
Re

qu
es

ts

A2C
Maskable PPO
Deepsets PPO
Deepsets DQN

(b) Number of Rejected Requests.

200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

0

2

4

6

8

10

12

14

16

18

Av
g.

 C
os

t (
in

 u
ni

ts
)

A2C
Maskable PPO
Deepsets PPO
Deepsets DQN

(c) Deployment Cost.

200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

0

50

100

150

200

250

300

Av
g.

 L
at

en
cy

 (i
n 

m
s)

A2C
Maskable PPO
Deepsets PPO
Deepsets DQN

(d) Avg. Latency.

Fig. 3: The training results for the multiple agents evaluated for the cost reward function.

200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

0

20

40

60

80

100

Re
wa

rd

A2C
Maskable PPO
Deepsets PPO
Deepsets DQN
max reward= 100

(a) Accumulated Reward.

200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

 o
f R

ej
ec

te
d 

Re
qu

es
ts

A2C
Maskable PPO
Deepsets PPO
Deepsets DQN

(b) Number of Rejected Requests.

200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

0

2

4

6

8

10

12

14

16

18

Av
g.

 C
os

t (
in

 u
ni

ts
)

A2C
Maskable PPO
Deepsets PPO
Deepsets DQN

(c) Deployment Cost.

200 400 600 800 1000 1200 1400 1600 1800 2000
Episode

0

50

100

150

200

250

300

Av
g.

 L
at

en
cy

 (i
n 

m
s)

A2C
Maskable PPO
Deepsets PPO
Deepsets DQN

(d) Avg. Latency.

Fig. 4: The training results for the several evaluated agents for the latency reward function.

TABLE VII: Results obtained during the testing phase.

Algorithm Reward Function Acc. Reward Number of Rejected Requests Avg. Deployment Cost Avg. latency
A2C Cost 893.25 ± 300.23 7.30% ± 8.8% 6.30 ± 3.55 (units) 191.61 ± 53.71 (ms)

Maskable PPO Cost 941.58 ± 183.50 9.08% ± 7.73% 5.46 ± 2.15 (units) 191.42 ± 45.85 (ms)
Deepsets PPO Cost 1150.89 ± 289.90 1.22% ± 2.24% 4.38 ± 2.81 (units) 57.84 ± 17.34 (ms)
Deepsets DQN Cost 1143.66 ± 256.59 3.90% ± 5.84% 4.08 ± 2.58 (units) 85.14 ± 56.70 (ms)

A2C Latency 6.04 ± 58.23 7.90% ± 13.29% 6.51 ± 5.74 (units) 183.64 ± 63.46 (ms)
Maskable PPO Latency 33.22 ± 36.85 6.61% ± 7.89% 6.96 ± 3.55 (units) 147.79 ± 44.26 (ms)
Deepsets PPO Latency 92.64 ± 7.11 0.0% ± 0.0% 11.73 ± 4.88 (units) 28.57 ± 14.55 (ms)
Deepsets DQN Latency 87.98 ± 21.61 0.31% ± 1.18% 5.76 ± 2.77 (units) 42.16 ± 34.09 (ms)

0 20 40 60 80 100 120
Total Number of clusters

0

200

400

600

800

1000

1200

1400

Ac
cu

m
ul

at
ed

 R
ew

ar
d

Deepsets PPO (Cost)
Deepsets DQN (Cost)
Deepsets PPO (Latency)
Deepsets DQN (Latency)

(a) Accumulated Reward.

0 20 40 60 80 100 120
Total Number of clusters

0.00

0.02

0.04

0.06

0.08

0.10

Pe
rc

en
ta

ge
 o

f R
ej

ec
te

d 
Re

qu
es

ts

Deepsets PPO (Cost)
Deepsets DQN (Cost)
Deepsets PPO (Latency)
Deepsets DQN (Latency)

(b) Number of Rejected Requests.

0 20 40 60 80 100 120
Total Number of clusters

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
pl

oy
m

en
t C

os
t

Deepsets PPO (Cost)
Deepsets DQN (Cost)
Deepsets PPO (Latency)
Deepsets DQN (Latency)

(c) Deployment Cost.

0 20 40 60 80 100 120
Total Number of clusters

0

100

200

300

400

500
Av

g.
 L

at
en

cy
 (i

n 
m

s)
Deepsets PPO (Cost)
Deepsets DQN (Cost)
Deepsets PPO (Latency)
Deepsets DQN (Latency)

(d) Avg. Latency.

Fig. 5: The results for the trained Deepsets agents for both reward functions while varying the number of available clusters.

VII. CONCLUSIONS

This paper studies the efficient scheduling of microservices
in a multi-cluster scenario. An RL-based approach inspired on
the OpenAI Gym library has been proposed to handle efficient
multi-cluster orchestration in the well-known K8s platform.
The evaluation considers two opposing strategies that show the
feasability of RL for the multi-cluster ocrhestration problem
addressed in the paper. Results also show that generalization
is attainable by incorporating the DeepSets neural network
in typical RL algorithms, achieving higher performance for
scenarios 32 times higher than the trained one. Multi-objective
formulations and multi-agent RL scenarios will be studied as

future work to find optimal combinations of opposing scehdul-
ing strategies. Our work contributes to the field by providing
a framework released in open-source, allowing researchers
to evaluate their scheduling ideas and potentially guide the
development of more efficient scheduling algorithms.

ACKNOWLEDGMENT

This work has been partially supported by the Spoke 1 “Fu-
tureHPC & BigData” of the Italian Research Center on High-
Performance Computing, Big Data and Quantum Computing
(ICSC) funded by MUR Missione 4 - Next Generation EU
(NGEU). José Santos is funded by the Research Foundation
Flanders (FWO), grant number 1299323N.



REFERENCES

[1] J. Thönes, “Microservices,” IEEE software, vol. 32, no. 1, pp. 116–116,
2015.

[2] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” Present and ulterior software engineering, pp. 195–216, 2017.

[3] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Fog computing:
Enabling the management and orchestration of smart city applications
in 5g networks,” Entropy, vol. 20, no. 1, p. 4, 2017.

[4] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopou-
los, “Challenges and opportunities in edge computing,” in 2016 IEEE
international conference on smart cloud (SmartCloud). IEEE, 2016,
pp. 20–26.

[5] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[6] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A
survey on mobile augmented reality with 5g mobile edge computing:
Architectures, applications, and technical aspects,” IEEE Communica-
tions Surveys & Tutorials, vol. 23, no. 2, pp. 1160–1192, 2021.

[7] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards low-
latency service delivery in a continuum of virtual resources: State-of-the-
art and research directions,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2557–2589, 2021.

[8] Z. Zhong and R. Buyya, “A cost-efficient container orchestration strategy
in kubernetes-based cloud computing infrastructures with heterogeneous
resources,” ACM Transactions on Internet Technology (TOIT), vol. 20,
no. 2, pp. 1–24, 2020.

[9] Y. Han, S. Shen, X. Wang, S. Wang, and V. C. Leung, “Tailored learning-
based scheduling for kubernetes-oriented edge-cloud system,” in IEEE
INFOCOM 2021-IEEE conference on computer communications. IEEE,
2021, pp. 1–10.

[10] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,
“Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Computer Communications, vol. 102,
pp. 1–16, 2017.

[11] C. Guerrero, I. Lera, and C. Juiz, “Resource optimization of container
orchestration: a case study in multi-cloud microservices-based applica-
tions,” The Journal of Supercomputing, vol. 74, no. 7, pp. 2956–2983,
2018.

[12] S. K. Panda, I. Gupta, and P. K. Jana, “Task scheduling algorithms for
multi-cloud systems: allocation-aware approach,” Information Systems
Frontiers, vol. 21, pp. 241–259, 2019.

[13] S. Qin, D. Pi, Z. Shao, Y. Xu, and Y. Chen, “Reliability-aware multi-
objective memetic algorithm for workflow scheduling problem in multi-
cloud system,” IEEE Transactions on Parallel and Distributed Systems,
vol. 34, no. 4, pp. 1343–1361, 2023.

[14] B. Burns, J. Beda, and K. Hightower, Kubernetes: up and running: dive
into the future of infrastructure. O’Reilly Media, 2019.

[15] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “gym-hpa: Efficient
auto-scaling via reinforcement learning for complex microservice-based
applications in kubernetes,” in NOMS 2023-2023 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2023, pp. 1–9.

[16] R. Galliera, A. Morelli, R. Fronteddu, and N. Suri, “Marlin: Soft
actor-critic based reinforcement learning for congestion control in real
networks,” in NOMS 2023-2023 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2023, pp. 1–10.

[17] “Karmada documentation.” accessed on 26 June 2023. [Online]. Avail-
able: https://karmada.io/.

[18] S. Lee, S. Son, J. Han, and J. Kim, “Refining micro services placement
over multiple kubernetes-orchestrated clusters employing resource mon-
itoring,” in 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2020, pp. 1328–1332.

[19] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with kubernetes,” Computer Commu-
nications, vol. 159, pp. 161–174, 2020.

[20] M. A. Tamiru, G. Pierre, J. Tordsson, and E. Elmroth, “mck8s: An
orchestration platform for geo-distributed multi-cluster environments,”
in 2021 International Conference on Computer Communications and
Networks (ICCCN). IEEE, 2021, pp. 1–10.

[21] Y. Zhang, B. Di, Z. Zheng, J. Lin, and L. Song, “Distributed multi-cloud
multi-access edge computing by multi-agent reinforcement learning,”

IEEE Transactions on Wireless Communications, vol. 20, no. 4, pp.
2565–2578, 2020.

[22] T. Shi, H. Ma, G. Chen, and S. Hartmann, “Location-aware and budget-
constrained service brokering in multi-cloud via deep reinforcement
learning,” in Service-Oriented Computing, H. Hacid, O. Kao, M. Me-
cella, N. Moha, and H.-y. Paik, Eds. Cham: Springer International
Publishing, 2021, pp. 756–764.

[23] A. Suzuki, M. Kobayashi, and E. Oki, “Multi-agent deep reinforcement
learning for cooperative computing offloading and route optimization in
multi cloud-edge networks,” IEEE Transactions on Network and Service
Management, 2023.

[24] J. Santos, C. Wang, T. Wauters, and F. De Turck, “Diktyo: Network-
aware scheduling in container-based clouds,” IEEE Transactions on
Network and Service Management, 2023.

[25] M. Fogli, T. Kudla, B. Musters, G. Pingen, C. Van den Broek, H. Bas-
tiaansen, N. Suri, and S. Webb, “Performance evaluation of kubernetes
distributions (k8s, k3s, kubeedge) in an adaptive and federated cloud
infrastructure for disadvantaged tactical networks,” in 2021 International
Conference on Military Communication and Information Systems (ICM-
CIS). IEEE, 2021, pp. 1–7.

[26] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[27] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[28] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” Advances in neural information processing
systems, vol. 30, 2017.

[29] N. D. Cicco, G. F. Pittalà, G. Davoli, D. Borsatti, W. Cerroni, C. Raf-
faelli, and M. Tornatore, “Drl-forch: A scalable deep reinforcement
learning-based fog computing orchestrator,” in 2023 IEEE 9th Interna-
tional Conference on Network Softwarization (NetSoft), 2023, pp. 125–
133.

[30] Amazon AWS, “Amazon ec2 on-demand pricing.” accessed on
28 September 2023. [Online]. Available: https://aws.amazon.com/ec2/
pricing/on-demand/.

[31] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “Demand-driven deep
reinforcement learning for scalable fog and service placement,” IEEE
Transactions on Services Computing, vol. 15, no. 5, pp. 2671–2684,
2021.

[32] S. Huang and S. Ontañón, “A closer look at invalid action masking in
policy gradient algorithms,” arXiv preprint arXiv:2006.14171, 2020.

[33] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dor-
mann, “Stable baselines3,” 2019.

[34] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[35] C.-Y. Tang, C.-H. Liu, W.-K. Chen, and S. D. You, “Implementing action
mask in proximal policy optimization (ppo) algorithm,” ICT Express,
vol. 6, no. 3, pp. 200–203, 2020.

[36] M. Aly, F. Khomh, and S. Yacout, “Kubernetes or openshift? which
technology best suits eclipse hono iot deployments,” in 2018 IEEE 11th
Conference on Service-Oriented Computing and Applications (SOCA),
2018, pp. 113–120.

[37] J. Lee, S. Kang, and I.-G. Chun, “miotwins: Design and evaluation of
miot framework for private edge networks,” in 2021 International Con-
ference on Information and Communication Technology Convergence
(ICTC), 2021, pp. 1882–1884.

[38] Y. Lim, Y. K. Lee, J. Yoo, and D. Yoon, “An open source-based digital
twin broker interface for interaction between real and virtual assets,” in
2022 13th International Conference on Information and Communication
Technology Convergence (ICTC), 2022, pp. 1657–1659.

[39] J. Kristan, P. Azzoni, L. Römer, S. E. Jeroschewski, and E. Londero,
“Evolving the ecosystem: Eclipse arrowhead integrates eclipse iot,” in
NOMS 2022-2022 IEEE/IFIP Network Operations and Management
Symposium, 2022, pp. 1–6.


