
Published as a conference paper at ICLR 2024

FAIRRET: A FRAMEWORK FOR DIFFERENTIABLE FAIR-
NESS REGULARIZATION TERMS

Maarten Buyl
Ghent University
maarten.buyl@ugent.be

MaryBeth Defrance
Ghent University
marybeth.defrance@ugent.be

Tijl De Bie
Ghent University
tijl.debie@ugent.be

ABSTRACT

Current fairness toolkits in machine learning only admit a limited range of fairness
definitions and have seen little integration with automatic differentiation libraries,
despite the central role these libraries play in modern machine learning pipelines.
We introduce a framework of fairness regularization terms (FAIRRETs) which
quantify bias as modular, flexible objectives that are easily integrated in auto-
matic differentiation pipelines. By employing a general definition of fairness in
terms of linear-fractional statistics, a wide class of FAIRRETs can be computed
efficiently. Experiments show the behavior of their gradients and their utility in
enforcing fairness with minimal loss of predictive power compared to baselines.
Our contribution includes a PyTorch implementation of the FAIRRET framework.

1 INTRODUCTION

Many machine learning fairness methods aim to enforce mathematical formalizations of non-
discrimination principles (Mehrabi et al., 2021), often by requiring statistics to be equal between
groups (Agarwal et al., 2018). For example, we may require that men and women receive positive
decisions at equal rates in binary classification (Dwork et al., 2012). The main interest in fairness
tools is to meet such constraints without destroying the accuracy of the ML model.

A large class of these fairness tools utilizes regularization terms, i.e. quantifications of unfairness
that can be added to the existing error term of an unfair ML model (Kamishima et al., 2012; Berk
et al., 2017; Zafar et al., 2019; Padala & Gujar, 2021; Padh et al., 2021; Buyl & De Bie, 2022). The
modularity of such loss terms appears to align well with the paradigm of automatic differentiation
libraries like PyTorch (Paszke et al., 2019), which have become the bedrock of modern machine
learning pipelines. However, the practical use of this modularity has seen little interest thus far.

Contributions Hence, we formalize a framework of fairness regularization terms (FAIRRETs) that
consolidates research in differentiable fairness methods. A FAIRRET quantifies a model’s unfairness
as a single value that is minimized like any other objective through automatic differentiation.

We implement two types of FAIRRETs: FAIRRETs that directly penalize the violation of fairness con-
straints and FAIRRETs that minimize the distance between a model and its projection onto the set of
fair models. These FAIRRETs support any fairness notion defined through linear-fractional statistics
(Celis et al., 2019), which is a far wider range than the exclusively linear statistics typically consid-
ered in literature (Zafar et al., 2019; Agarwal et al., 2018). Moreover, our framework generalizes to
the simultaneous handling of multiple sensitive traits and (a weaker form of) fairness with respect
to continuous sensitive variables. By design, FAIRRETs are both modular and extensible such that
future work that can benefit from their wide applicability. Appendix E contains a code example.

We visualize the FAIRRETs’ gradients and evaluate their empirical performance in enforcing fairness
notions compared to baselines. We infer this is far more difficult for fairness notions with linear-
fractional statistics, which were rarely studied in prior work, than those with linear statistics.

The framework is available as a package at https://github.com/aida-ugent/fairret.

Related Work Fairness tools are classified as preprocessing, inprocessing or postprocessing
(Mehrabi et al., 2021). FAIRRETs perform inprocessing, as they are minimized during training.
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A popular approach to fairness regularization is to penalize the violation of fairness constraints
(Zemel et al., 2013; Padala & Gujar, 2021; Wick et al., 2019), which we formalize as a FAIRRET. We
also take inspiration from postprocessing methods that project classifiers onto a fair set (Alghamdi
et al., 2020; Wei et al., 2020) and penalize the cost of this projection (Buyl & De Bie, 2021) as a
FAIRRET. Fair representation learning (McNamara et al., 2019; Oneto et al., 2020; Franco et al.,
2022) finds intermediate representations that minimally contain sensitive information. An example
is the adversarial approach of Adel et al. (2019), which is a baseline in our experiments.

Celis et al. (2019) observed that many fairness definitions express a parity between linear-fractional
statistics. They propose a meta-algorithm to find optimal classifiers that satisfy this constraint.
Instead, we employ a simpler (yet sufficiently expressive) linear-fractional form and propose an
algorithm to use them in the construction of linear constraints that does not require a meta-algorithm.

Popular fairness toolkits such as Fairlearn (Bird et al., 2020) and AIF360 (Bellamy et al., 2018)
expect the underlying model in the form of scikit-learn Estimators1 that can be retrained at-will in
fairness meta-algorithms. Instead, our proposed FAIRRETs act as a loss term that can simply be
added within a training step. The aforementioned toolkits have some integration with automatic
differentiation libraries in adversarial fairness approaches (Zhang et al., 2018), yet these still require
full control over the training process and lack generality in the fairness notions they can enforce.

Two PyTorch-specific projects with similar goals as our paper are FairTorch (Masashi, 2020) and the
Fair Fairness Benchmark (FFB) (Han et al., 2023). However, neither present a formal framework
and both only support a limited range of fairness definitions.

2 FAIRNESS IN BINARY CLASSIFICATION

In fair binary classification, we are provided with random variables (X, S, 𝑌 ) with X ∈ R𝑑𝑥 the
feature vector of an individual, S ∈ R𝑑𝑠 their sensitive feature vector and 𝑌 ∈ {0, 1} the binary
output label. In what remains, all expectations are taken over the joint distribution of (X, S, 𝑌 ).
The goal is to learn a classifier 𝑓 such that its predictions 𝑓 (X) match 𝑌 while avoiding discrimi-
nation with respect to S. In this section, we will assume 𝑓 directly provides binary decisions, i.e.
𝑓 : R𝑑𝑥 → {0, 1}, as this is expected in traditional formalizations of fairness. However, since such
‘hard’ classifiers are not differentiable, we will instead be learning probabilistic classifiers in Sec. 3.

Further note that our definition of sensitive features S as real-valued and 𝑑𝑠-dimensional vectors
is a generalization of typical fairness definitions which assume a categorical (or binary) domain
for sensitive features (Verma & Rubin, 2018). We will one-hot encode such categorical traits, e.g.
by encoding ‘white’ or ‘non-white’ as the vectors S = (1, 0)⊤ and S = (0, 1)⊤ respectively. Our
generalization allows us to take multiple non-exclusive sensitive traits into account by mapping
them to different values 𝑆𝑘 in the same vector S for 𝑘 ∈ [𝑑𝑠] = {0, ..., 𝑑𝑠 − 1}. Additionally, by
letting 𝑆𝑘 ∈ R, we allow soft specifications of identity rather than requiring hard discretization.

2.1 PARTITION FAIRNESS

Though we will allow any feature vector S ∈ R𝑑𝑠 in our framework, popular fairness definitions
require every person to belong to exactly one demographic group. We call this partition fairness.

Definition 1. In partition fairness, S is a one-hot encoding, i.e. 𝑆𝑘 ∈ {0, 1} and
∑

𝑘∈[𝑑𝑠 ] 𝑆𝑘 = 1.
Example 1. A straightforward, popular definition in partition fairness is Demographic Parity (DP),
also known as statistical parity (Dwork et al., 2012; Verma & Rubin, 2018). It enforces

∀𝑘 ∈ [𝑑𝑠] : 𝑃( 𝑓 (X) = 1 | 𝑆𝑘 = 1) = 𝑃( 𝑓 (X) = 1) (1)

which states that all groups ought to get positive predictions at the same rate (i.e. the overall rate).

Let 𝛾(𝑘; 𝑓 ) ≜ E[𝑆𝑘 𝑓 (X) ]
E[𝑆𝑘 ] . It is easily shown that 𝛾(𝑘; 𝑓 ) = 𝑃( 𝑓 (X) = 1 | 𝑆𝑘 = 1). Thus also

𝑃( 𝑓 (X) = 1 | 𝑆𝑘 = 1) = 𝑃( 𝑓 (X) = 1) ⇐⇒ 𝛾(𝑘; 𝑓 ) = E[ 𝑓 (X)] . (2)

1https://scikit-learn.org/1.3/developers/develop.html describes these Estimators
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Table 1: Fairness definitions and their 𝛼 and 𝛽 functions. Conditional Demographic Parity encom-
passes many notions with an arbitrary function 𝜁 conditioned on the input X.

Fairness Definition 𝛼0 𝛽0 𝛼1 𝛽1
Demographic Parity (Dwork et al., 2012) 0 1 1 0
Conditional Demographic Parity (Wachter et al., 2020) 0 𝜁 (X) 𝜁 (X) 0
Equal Opportunity (Hardt et al., 2016) 0 Y Y 0
False Positive Parity (Hardt et al., 2016) 0 1 - Y 1 - Y 0
Predictive Parity (Chouldechova, 2017) 0 Y 0 1
False Omission Parity Y -Y 1 -1
Accuracy Equality (Berk et al., 2021) 1 - Y 2Y - 1 1 0
Treatment Equality (Berk et al., 2021) Y -Y 0 1 - Y

In Example 1, fairness is formalized by requiring a statistic 𝛾 to be equal across groups. This prin-
ciple can be generalized to a wide class of parity-based fairness notions. In particular, we consider
those expressed through linear-fractional statistics (Celis et al., 2019).
Definition 2. A linear-fractional statistic 𝛾 computes values 𝛾(𝑘; 𝑓 ) ∈ R for sensitive variable 𝑆𝑘
and classifier 𝑓 : R𝑑𝑥 → {0, 1}. We assume 𝛾 is differentiable with respect to 𝑓 . It takes the form

𝛾(𝑘; 𝑓 ) = E[𝑆𝑘 (𝛼0 (X, 𝑌 ) + 𝑓 (X)𝛽0 (X, 𝑌 ))]
E[𝑆𝑘 (𝛼1 (X, 𝑌 ) + 𝑓 (X)𝛽1 (X, 𝑌 ))] (3)

with 𝛼0, 𝛼1, 𝛽0, and 𝛽1 all functions that do not depend on S or 𝑓 . Let Γ denote all such statistics.
Also, let 𝛾( 𝑓 ) ≜ E[𝛼0 (X,𝑌 )+ 𝑓 (X)𝛽0 (X,𝑌 ) ]

E[𝛼1 (X,𝑌 )+ 𝑓 (X)𝛽1 (X,𝑌 ) ] denote the overall statistic value without conditioning on S.

Definition 3. A fairness notion is expressed through a statistic 𝛾 ∈ Γ. The set F𝛾 of classifiers that
adhere to the fairness notion is defined as

F𝛾 ≜
{
𝑓 : R𝑑𝑥 → {0, 1} | ∀𝑘 ∈ [𝑑𝑠] : 𝛾(𝑘; 𝑓 ) = 𝛾( 𝑓 )

}
(4)

i.e. the statistic 𝛾(𝑘; 𝑓 ) for each 𝑆𝑘 equals the overall statistic 𝛾( 𝑓 ).

Indeed, the DP fairness notion in Example 1 is expressed as a fairness notion as defined in Def. 3
with linear-fractional statistics as defined in Def. 2. The same holds for the following notions.
Example 2. Equalized Opportunity (EO) (Hardt et al., 2016) only computes DP for actual positives
𝑌 = 1. Its statistic 𝛾 is thus the recall 𝑃( 𝑓 (X) = 1 | 𝑌 = 1, 𝑆𝑘 = 1), i.e. 𝛾(𝑘; 𝑓 ) = E[𝑆𝑘 𝑓 (X)𝑌 ]

E[𝑆𝑘𝑌 ] .

Example 3. Predictive Parity (PP) (Chouldechova, 2017), which compares the precision statistic
𝑃(𝑌 = 1 | 𝑓 (X) = 1, 𝑆𝑘 = 1), i.e. 𝛾(𝑘; 𝑓 ) = E[𝑆𝑘 𝑓 (X)𝑌 ]

E[𝑆𝑘 𝑓 (X) ] .

Example 4. Treatment Equality (TE) (Berk et al., 2021) balances the ratios of false negatives over
false positives, i.e. 𝛾(𝑘; 𝑓 ) = E[𝑆𝑘 (1− 𝑓 (X) )𝑌 ]

E[𝑆𝑘 𝑓 (X) (1−𝑌 ) ] . Unlike the other notions, its 𝛾 is not a probability.

Table 1 summarizes the 𝛼 and 𝛽 functions of several fairness notions (Verma & Rubin, 2018) with
linear-fractional statistics. Their derivations are found in Appendix A.1.
Definition 4. A linear-fractional statistic 𝛾 ∈ Γ is linear when 𝛽1 (X, 𝑌 ) ≡ 0.

Let ΓL ⊂ Γ denote the set of all linear statistics.

Fairness notions with linear statistics 𝛾 ∈ ΓL are thus identified in Table 1 by checking the column
for 𝛽1. Such notions are especially useful because the fairness constraint in Def. 3 is easily written
as a linear constraint over classifier 𝑓 . In turn, this makes the set of fair classifiers F𝛾 a convex set,
which leads to convex optimization problems (Boyd & Vandenberghe, 2004). Thus, the constrained
optimization of 𝑓 can be efficiently performed if 𝑓 is itself linear (Zafar et al., 2019).

However, fairness notions with linear-fractional statistics 𝛾 ∈ Γ \ ΓL do not directly lead to linear
constraints in Def. 3. To facilitate optimization, we therefore propose to narrow the set of fair
classifiers F𝛾 to the subset where the statistics are all equal in a particular value 𝑐.
Definition 5. Fix a 𝑐 ∈ R. A 𝑐-fixed fairness notion is expressed through a linear-fractional statistic
𝛾 ∈ Γ such that the set F𝛾 (𝑐) of classifiers 𝑓 that adhere to the fairness notion is defined as

F𝛾 (𝑐) ≜
{
𝑓 : R𝑑𝑥 → {0, 1} | ∀𝑘 ∈ [𝑑𝑠] : 𝛾(𝑘; 𝑓 ) = 𝑐

}
. (5)
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Proposition 1. With 𝛾 ∈ Γ, the 𝑐-fixed fairness notion F𝛾 (𝑐) enforces linear constraints:

𝛾(𝑘; 𝑓 ) = 𝑐 ⇐⇒ E[𝑆𝑘 (𝛼(X, 𝑌 , 𝑐) + 𝑓 (X)𝛽(X, 𝑌 , 𝑐))] = 0 (6)

where 𝛼(X, 𝑌 , 𝑐) = 𝛼0 (X, 𝑌 ) − 𝑐𝛼1 (X, 𝑌 ) and 𝛽(X, 𝑌 , 𝑐) = 𝛽0 (X, 𝑌 ) − 𝑐𝛽1 (X, 𝑌 ).

Using Prop. 1, we can still obtain linear constraints for fairness notions F𝛾 with linear-fractional
statistics 𝛾 ∈ Γ \ ΓL by considering their 𝑐-fixed variant F𝛾 (𝑐) instead. This sacrifices a degree
of freedom because statistics 𝛾(𝑘; 𝑓 ) are no longer allowed to be equal for any overall statistic
𝛾( 𝑓 ), they must now do so for the specific case where 𝛾( 𝑓 ) = 𝑐. However, there are 𝑐 values
that still lead to interesting sets F𝛾 (𝑐). In the FAIRRETs we propose, we take an unfair classifier ℎ
and fix 𝑐 = 𝛾(ℎ) to construct the set of all fair classifiers F𝛾 (𝛾(ℎ)) that would result from a fair
redistribution of scores in ℎ over the sensitive groups.

Though Prop. 1 is inspired by Celis et al. (2019), our use of this result vastly differs. Instead of fixing
the statistics to a single value 𝑐, they set many pairs of upper and lower bounds for each group’s
statistics, giving rise to as many optimization programs. They then propose a meta-algorithm that
searches the best classifier over each of these programs. A meta-algorithm is not necessary in our
framework, as we will allow 𝑐 to evolve during training. While we have no formal convergence
guarantees for this approach, empirical results show it works well in practice.

2.2 BEYOND PARTITION FAIRNESS

Having firmly rooted our definitions in partition fairness (Def. 1), we now abandon its assumptions.
First, we allow 𝑆𝑘 ∈ R. Second, we extend to multiple sensitive features with

∑
𝑘 𝑆𝑘 ∈ R.

2.2.1 CONTINUOUS SENSITIVE VALUES

Admitting continuous values for someone’s sensitive trait, i.e. 𝑆𝑘 ∈ R allows us to take naturally
continuous features, such as age, into account. Also, it provides an opportunity for an imprecise
specification of demographic group membership.

For instance, instead of exactly knowing the gender of an individual, we may only have a probability
available, e.g. because it is noisily predicted by a third-party classifier, or to protect the individual’s
privacy. By allowing 𝑆𝑘 ∈ (0, 1), the attribute 𝑆𝑘 could then express ‘woman-ness’ instead of
a binary ‘woman’ or ‘not woman’. Thus, we also allow individuals to themselves quantify how
strongly they identify with a group, rather than requiring a binary membership.

Our notation already generalizes to non-binary 𝑆𝑘 values; they can simply be filled in for linear-
fractional statistics 𝛾 ∈ Γ as defined in Def. 2. Fairness as formalized in Def. 3 can then still be
enforced through 𝛾(𝑘; 𝑓 ) = 𝛾( 𝑓 ).
Remark 1. Partition fairness constraints stem from the principle of treating distinct groups equally.
This does not directly apply for a non-binary 𝑆𝑘 . For example, if there is only one, continuous
sensitive variable (𝑆0) = S such as the age of an individual, then we cannot compare 𝛾(0; 𝑓 ) to
another group’s statistics. Instead, 𝛾(0; 𝑓 ) must be compared to a value independent of S.

Enforcing 𝛾(𝑘; 𝑓 ) = 𝛾( 𝑓 ) is then a sensible choice, as it satisfies key properties one can expect from
a fairness measure. First, the constraint is met when 𝑆𝑘 ≡ 𝑠, i.e. when 𝑆𝑘 is a deterministic constant.
Second, it holds if 𝑆𝑘 has no linear influence on the numerator and denominator of 𝛾, i.e.

cov(𝑆𝑘 , 𝛼0 (X, 𝑌 ) + 𝑓 (X)𝛽0 (X, 𝑌 )) = cov(𝑆𝑘 , 𝛼1 (X, 𝑌 ) + 𝑓 (X)𝛽1 (X, 𝑌 )) = 0 =⇒ 𝛾(𝑘; 𝑓 ) = 𝛾( 𝑓 ).
For a full derivation of this result, we refer to Appendix B.1.

2.2.2 MULTIPLE AXES OF DISCRIMINATION

By allowing
∑

𝑘 𝑆𝑘 ∈ R, we support that S contains information about people from several sensitive
traits, e.g. gender, ethnicity, and religion. Because these each form a possible axis of discrimination,
we can ‘sum’ these sources of discrimination by combining the constraints.

For example, if pairs of sensitive features (𝑆0, 𝑆1) and (𝑆2, 𝑆3) each partition the dataset, then fair-
ness requires both 𝛾(0; 𝑓 ) = 𝛾(1; 𝑓 ) = 𝛾( 𝑓 ) and 𝛾(2; 𝑓 ) = 𝛾(3; 𝑓 ) = 𝛾( 𝑓 ). Combined, these
constraints make up the fairness definition in Def. 3. The use of one-hot notations for sensitive
values thus already allows us to combine axes of discrimination for categorical sensitive traits.
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Remark 2. An important limitation is that we only view fairness separately per axis of discrimina-
tion. Outside the partition fairness setting, this means that some intersections of sensitive groups,
e.g. ‘black woman’, will not be represented in the constraints that enforce fairness with respect to
‘black’ and ‘woman’ separately (Kearns et al., 2018). A toy example is given in Appendix B.2.

3 FAIRNESS REGULARIZATION TERMS

The popular approach to modern machine learning is to construct pipelines consisting of modular,
parameterized components that are differentiable from the objective to the input. We therefore use
probabilistic classifier models ℎ : R𝑑𝑥 → (0, 1) from now on, where decisions are sampled from a
Bernoulli distribution with parameter ℎ(X). Let H denote the hypothesis class of these models.
Remark 3. Fairness statistics 𝛾(𝑘; ℎ) over the output of a probabilistic classifier ℎ only approxi-
mately verify their respective fairness notions, as these were only defined for hard classifiers with a
binary output (Lohaus et al., 2020). In Appendix B.3, we discuss the impact of this approximation
and how its fidelity can be traded-off with the quality of the gradient of 𝛾(𝑘; ℎ) with respect to ℎ.

In binary classification, we minimize a loss L𝑌 (ℎ) over the probabilistic classifier ℎ given output
labels 𝑌 , e.g. the cross-entropy. In fair binary classification we additionally pursue ℎ ∈ F𝛾:

min
ℎ∈F𝛾

L𝑌 (ℎ). (7)

For linear-fractional statistics, the constraint is linear when considering the 𝑐-fixed variant of F𝛾

(using Prop. 1). However, for non-convex models ℎ, the constrained optimization of ℎ will remain
non-convex as well. In the general case, we thus relax ℎ ∈ F𝛾 and instead incur a cost to ℎ ∉ F𝛾 .
Definition 6. A fairness regularization term (FAIRRET) 𝑅𝛾 (ℎ) : H → R≥0 quantifies the unfair-
ness of the model ℎ ∈ H with respect to the fairness notion defined through statistic 𝛾.

A FAIRRET is strict if it holds that ℎ ∈ F𝛾 ⇐⇒ 𝑅𝛾 (ℎ) = 0.

The objective in Eq. (7) is then relaxed as

min
ℎ

L𝑌 (ℎ) + 𝜆𝑅𝛾 (ℎ) (8)

with 𝜆 a hyperparameter. The objective in Eq. (8) is equivalent to Eq. (7) for 𝜆 → ∞ if 𝑅𝛾 is strict.
Remark 4. We call 𝑅𝛾 a regularization term, yet its purpose is not to reduce model complexity or
improve generalization performance, in contrast to traditional regularization in machine learning
(Kukačka et al., 2017). Instead, we aim to limit the hypothesis class of ℎ to the set of fair classifiers.

In what follows, we introduce two archetypes of FAIRRETs: violation and projection. We visualize
∇ℎ𝑅𝛾 for each FAIRRET in Fig. 1 with 𝛾 the positive rate statistic (thereby enforcing DP).

3.1 VIOLATION FAIRRETS

To quantify ℎ ∉ F𝛾 , we can start from the violation v(ℎ) of the constraint that defines F𝛾:

v𝑘 (ℎ) =
����𝛾(𝑘; ℎ)
𝛾(ℎ) − 1

���� (9)

with v : H → R𝑑𝑠 a vector-valued function with components v𝑘 . Clearly, v(ℎ) = 0 ⇐⇒ ℎ ∈ F𝛾 .

Note that v(ℎ) is normalized2 by 𝛾(ℎ) such that a classifier cannot minimize v(ℎ) by uniformly
downscaling its statistics 𝛾 without reducing relative differences between groups (Celis et al., 2019).
Definition 7. We define the Norm FAIRRET as 𝑅𝛾 (ℎ) ≜ ∥v(ℎ)∥, with ∥·∥ a norm over R𝑑𝑠 .

Many variants of the Norm FAIRRET have been proposed, e.g. by Zemel et al. (2013), Padala
& Gujar (2021), Wick et al. (2019) and Chuang & Mroueh (2020). However, fairness evaluation
metrics often only consider the maximal violation. Hence, we propose the SmoothMax variant.

2In cases where 𝛾(ℎ) = 0, we can simply use v𝑘 (ℎ) = |𝛾(𝑘; ℎ) | instead. We assume ℎ(X) ∈ (0, 1), so this
only occurs in degenerate cases for the notions in Table 1 (like when all 𝑌 = 0 for Equal Opportunity).
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Figure 1: The model ℎ was trained on the ACSIncome dataset without FAIRRET (i.e. 𝜆 = 0) and ends
up with disparate positive rates 𝛾(0; ℎ) > 𝛾(ℎ) > 𝛾(1; ℎ) for the one-hot encoded sensitive variables
(𝑆0, 𝑆1). These should be brought closer to the overall positive rate 𝛾( 𝑓 ). We show probability
scores ℎ and the gradients3 of several FAIRRETs 𝑅𝛾 with respect to ℎ. The gradients are normalized
by dividing them by their maximum absolute value per FAIRRET and per group. They are positive
for samples with 𝑆0 = 1, implying their scores should decrease, and vice versa for 𝑆1 = 1.

Definition 8. We define the SmoothMax FAIRRET as 𝑅𝛾 (ℎ) ≜ log
∑

𝑘∈[𝑑𝑠 ] exp(v𝑘 (ℎ)) − log 𝑑𝑠

Because the SmoothMax performs the log-sum-exp operation over the violation, it can be considered
a smooth approximation of the maximum. We subtract log 𝑑𝑠 to ensure the FAIRRET is strict.

Generally, violation FAIRRETs can be characterized as functions of the violation v(ℎ). This lends
them interpretability, but it also means that the gradient3 ∇ℎ𝑅𝛾 decomposes as

∇ℎ𝑅𝛾 =

(
𝜕v
𝜕ℎ

)⊤
∇v𝑅𝛾 (10)

with 𝜕v
𝜕ℎ

the Jacobian3 of v(ℎ). The gradients of violation FAIRRETs 𝑅𝛾 thus only differ in the
∇v𝑅𝛾 gradient. Hence, the Norm FAIRRET is excluded from Fig. 1 because its gradients equal those
of SmoothMax after normalization. Figure 1 also suggests that violation FAIRRETs convey little
information on how each individual ℎ(X) score should be modified. Instead, they merely direct
scores to uniformly increase or decrease within each group.

3.2 PROJECTION FAIRRETS

Recent postprocessing approaches to fairness redistribute all individual probability scores of a model
ℎ(X) to a fair scores vector with a minimal loss in predictive power. For example, Alghamdi et al.
(2020) project the scores onto the fair set F𝛾 as a postprocessing step. Yet, the cost of this projection
can be seen as a quantification of unfairness that may be minimized as a FAIRRET during training.

Given a statistical divergence or distance 𝐷, we can generally define such a projection FAIRRET as
𝑅𝛾 (ℎ) ≜ min

𝑓 ∈F𝛾 (𝛾 (ℎ) )
E[𝐷 ( 𝑓 (X) ∥ ℎ(X))] . (11)

Importantly, we do not project ℎ onto the general fair set F𝛾 , but on the 𝑐-fixed subset F𝛾 (𝑐) with
𝑐 = 𝛾(ℎ). The 𝑐-fixing is done such that the projection only requires linear constraints for linear-
fractional statistics (see Prop. 1). A projection FAIRRET (Eq. 11) is then a convex optimization
problem if we limit ourselves to a 𝐷 that is convex with respect to 𝑓 , which is the case for all
projections discussed here. In particular, we 𝑐-fix to the overall statistic 𝛾(ℎ) of ℎ because this
ensures ℎ can always be projected onto itself if it is already fair, as then ℎ ∈ F𝛾 (𝛾(ℎ)).

3There is some abuse of notation here. When taking the gradient or Jacobian with respect to ℎ, we take it
with respect to the vector of 𝑛 outputs of ℎ for a set of 𝑛 input features sampled from the distribution over X.
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Definition 9. The 𝐷KL-projection uses the binary Kullback-Leibler divergence

𝐷KL ( 𝑓 (X) ∥ ℎ(X)) ≜ 𝑓 (X) log
𝑓 (X)
ℎ(X) + (1 − 𝑓 (X)) log

1 − 𝑓 (X)
1 − ℎ(X) . (12)

The 𝐷KL-divergence is both a Csiszar divergence and a Bregman divergence (Amari, 2009). Also,
the cross-entropy error minimized in L𝑌 (ℎ) equals 𝐷KL (𝑌 ∥ ℎ(X)) up to a constant. The minimiza-
tion of Eq. (8) thus comes down to simultaneously minimizing 𝐷KL between ℎ(X) and the data 𝑌 ,
and between ℎ(X) and the closest 𝑓 ∈ F𝛾 (𝛾(ℎ)) (Buyl & De Bie, 2021).
Definition 10. The 𝐷JS-projection uses the binary Jensen-Shannon divergence.

𝐷JS ( 𝑓 (X) ∥ ℎ(X)) ≜ 1
2
𝐷KL ( 𝑓 (X) ∥ 𝑚(X)) + 1

2
𝐷KL (ℎ(X) ∥ 𝑚(X)) (13)

with 𝑚(X) = 1
2 𝑓 (X) + 1

2 ℎ(X).

Just like 𝐷KL, the 𝐷JS-divergence is a Csiszar divergence. However, the 𝐷JS-divergence is symmet-
ric with respect to its arguments 𝑓 and ℎ, which is not the case for the 𝐷KL-divergence.
Definition 11. The 𝐷SED-projection uses the squared Euclidean distance between the two points
(1 − 𝑓 (X), 𝑓 (X)) and (1 − ℎ(X), ℎ(X)):

𝐷SED ( 𝑓 (X) ∥ ℎ(X)) ≜ 2( 𝑓 (X) − ℎ(X))2. (14)

𝐷SED is a Bregman divergence between the Bernoulli distributions with parameters 𝑓 (X) and ℎ(X).
In practice, we evaluate projection FAIRRETs 𝑅𝛾 (ℎ) in two steps.

(i) 𝑓 ∗ = arg min
𝑓 ∈F𝛾 (𝛾 (ℎ) )

E[𝐷 ( 𝑓 (X) ∥ ℎ(X))] (15)

(ii) 𝑅𝛾 (ℎ) = E[𝐷 ( 𝑓 ∗ (X) ∥ ℎ(X))] (16)

While keeping ℎ fixed, step (i) computes the overall statistic 𝛾(ℎ) and then finds the projec-
tion 𝑓 ∗ through constrained optimization. Subsequently, step (ii) keeps 𝑓 ∗ fixed and computes
E[𝐷 ( 𝑓 ∗ (X) ∥ ℎ(X))] as a function of ℎ, which we use to compute the gradient with respect to ℎ.
This gradient differs from the actual gradient of the optimization as a function of ℎ in a projection
FAIRRET (Eq. 11), because the latter would require us to treat 𝑓 ∗ as a function of ℎ. However, by
treating 𝑓 ∗ as fixed instead (without backpropagating through it), we significantly simplify the FAIR-
RET’s implementation. The optimization in step (i) can then be solved generically using specialized
libraries such as cvxpy (Agrawal et al., 2018; Diamond & Boyd, 2016). In our experiments, we
find that only 10 optimization steps is enough to get a reasonable approximation of the solution. We
discuss this approximation and visualize each projection 𝑓 ∗ in Appendix C.1 and C.2 respectively.

Figure 1 shows that the gradients of the projection FAIRRETs increase with higher values of ℎ. We
hypothesize this occurs when 𝛾(𝑘; ℎ) > 𝛾(ℎ) because 𝛾(𝑘; ℎ) is more easily decreased by reducing
higher ℎ values than lower ones. Conversely, when 𝛾(𝑘; ℎ) < 𝛾(ℎ), there is more to gain from
increasing lower ℎ values than higher ones. The sharp bend of the gradients of the 𝐷SED-projection
is explained in Appendix C.2 through an analysis of the projected distributions.

3.3 ANALYSIS

Proposition 2. All FAIRRETs presented in this paper (i.e. Def. 7, 8, 9, 10 and 11) are strict.

Hence, all proposed FAIRRETs can indeed be properly regarded as quantifications of unfairness.

They are differentiable with respect to ℎ. Violation FAIRRETs owe this to the differentiability of 𝛾
and projection FAIRRETs to the differentiability of 𝐷. Hence, FAIRRETs are easily implemented with
an automatic differentiation library like PyTorch. The computational overhead is unaffected by the

complexity of the parameters 𝜽 of ℎ, as the gradients ∇𝜽L𝑌 =

(
𝜕ℎ
𝜕𝜽

)⊤
∇ℎL𝑌 and ∇𝜽𝑅𝛾 =

(
𝜕ℎ
𝜕𝜽

)⊤
∇ℎ𝑅𝛾

of both loss functions in the joint objective (Eq. 8) share the computation of the Jacobian 𝜕ℎ
𝜕𝜽 .

It is common to minimize L𝑌 using mini-batches; the same batches can be used to minimize 𝑅𝛾 .
Indeed, this is done in our experiments. Though this makes FAIRRETs scalable, insufficient batch
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sizes will lead to poor approximations of the statistics 𝛾. Clearly, the mean violation v(ℎ) in a viola-
tion FAIRRET (Eq. 9) computed over mini-batches is not an unbiased estimate of the actual violation
over all data. We report the mean SmoothMax loss for increasing batch sizes in Appendix C.3.

4 EXPERIMENTS

4.1 SETUP

Experiments were conducted on the Bank (Moro et al., 2014), CreditCard (Yeh & hui Lien, 2009),
LawSchool4, and ACSIncome (Ding et al., 2021) datasets. Each has multiple sensitive features,
including some continuous. The classifier ℎ was a fully connected neural net with hidden layers
of sizes [256, 128, 32] followed by a sigmoid and did not take sensitive features S as input. We
trained with all FAIRRETs discussed in Sec. 3 but only report results of Norm, 𝐷JS-projection and
𝐷SED-projection in Appendix C.4 to avoid clutter here. The remaining FAIRRETs, SmoothMax and
𝐷KL-projection, were representative for their archetype. These are compared against three baselines
implemented in the Fair Fairness Benchmark (FFB) by Han et al. (2023), as their implementation
provides these baselines as loss terms in idiomatic PyTorch. They are PRemover (Kamishima et al.,
2012), HSIC (Pérez-Suay et al., 2017), and AdvDebias (Adel et al., 2019) (where the reverse of the
adversary’s loss is the fairness loss term). In contrast to the FAIRRET implementations, they only
accept a single, categorical sensitive attribute. Each FAIRRET and FFB fairness loss was added to the
cross-entropy loss in the objective (Eq. 8) in a separate training run for a range of strengths 𝜆 > 0.

We measured fairness over the four statistics 𝛾 in Table 1 that relate to Demographic Parity (DP),
Equal Opportunity (EO), Predictive Parity (PP), and Treatment Equality (TE) respectively. Violation
of each fairness notion is computed as max𝑘 v𝑘 (ℎ) (see Eq. (9)). Each FAIRRET was minimized with
respect to each 𝛾 in a separate training run (and only the optimized violation is reported). The three
FFB baselines only consider one fairness notion, which is to maximize independence between the
model’s output and the sensitive attributes. Their violation is reported for each statistic 𝛾.

In summary, there was an experiment run for each dataset, fairness method, fairness strength 𝜆, and
statistic 𝛾 (except for the FFB baselines). Finally, we also use the Unfair baseline with 𝜆 = 0. Each
of these combinations was repeated across 10 random seeds with each different train/test splits.

4.2 RESULTS

Test set results are visualized in Fig. 2; train set results are found in Appendix C.5 (and display the
same trends). We separately discuss the notions with linear and with linear-fractional statistics.

For DP and EO, which have linear statistics, both the SmoothMax and 𝐷KL-projection FAIRRETs
are effectively used to minimize the fairness violation with respect to multiple sensitive attributes
while minimally suffering a loss in AUROC scores, though the projection FAIRRET clearly performs
better than the violation-based SmoothMax FAIRRET. As expected, the FFB baselines perform
worse than the methods implemented in our FAIRRET framework, since they cannot be configured to
optimize the same general range of fairness definitions. Also, their implementation only minimizes
bias with respect to a single sensitive attribute, and so they are oblivious to some of the components
in S that the violation in Fig. 2 measures. We report their violations on this single attribute in
Appendix C.6, though the FAIRRETs still outperform them there as well.

For PP and TE, which have linear-fractional statistics, all methods appear to struggle far more.
SmoothMax is most consistent and never makes the fairness violation worse, yet the 𝐷KL-projection
in most cases makes both the fairness violation and the AUROC worse. The same occurs for the FFB
baselines. To some extent, this can be attributed to overfitting, as SmoothMax leads to a significantly
more consistent reduction of the train set fairness violation than the test set (see Appendix C.5). Still,
non-linear fairness notions are clearly harder to optimize, which aligns with the results of Celis et al.
(2019). Though Barocas et al. (2019) conclude that sufficiency (a notion related to PP) ‘often comes
for free’, further work is needed to better understand how such notions can be consistently achieved.

4Curated and published by the SEAPHE project
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Figure 2: Mean test set results with confidence ellipse for the standard error. Each marker is a
separate combination of dataset, FAIRRET, FAIRRET strength, and statistic. Results in the lower
right are optimal. Failed runs (with an AUROC far worse than the rest) are omitted.

5 CONCLUSION

The FAIRRET framework allows for a wide range of fairness definitions by comparing linear-
fractional statistics for each sensitive feature. We implement several FAIRRETs and show how they
are easily integrated in existing machine learning pipelines utilizing automatic differentiation.

Empirically, violation FAIRRETs like SmoothMax consistently lead to trade-offs between fairness
and AUROC, though the more involved projection FAIRRETs like the 𝐷KL-projection clearly outper-
form them on fairness definitions with linear statistics. However, all methods struggle with fairness
notions that have linear-fractional statistics like PP and TE, which have mostly been ignored in prior
work. This signals a lucrative direction for future research.
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ETHICS STATEMENT

The FAIRRET framework was made as a technical tool to help unveil and address a mathematical
formalization of fairness in machine learning systems. However, such tools should never be con-
sidered a sufficient solution to truly achieve fairness in real-world decision processes because the
social, human component of fairness is completely outside the control of this framework (Selbst
et al., 2019). There is a significant risk that technologies such as ours may anyway be abused to
suggest discriminatory bias has been ‘removed’ from a decision process without actually addressing
underlying injustices (Hoffmann, 2019).

REPRODUCIBILITY

All proofs, i.e. for Table 1, Prop. 1 and Prop. 2, are found in the Appendix A. Appendix B contains
additional context for Remarks 1, 2 and 3. Appendix C provides experiments referred to in Sec. 3.2:
a visualization of the projections of the projection FAIRRETs and an empirical assessment of their
approximation for fewer optimization iterations. It also evaluates the mean SmoothMax loss for
smaller batch sizes mentioned in Sec. 3.3. Furthermore, Appendix C extends the main experiment
results of Sec. 4.2 by providing the metrics of the other FAIRRETs, the train set results and fairness
violations computed for only a single sensitive attribute. Finally, Appendix D further explains the
experiment setup already summarized in Sec. 4.1, i.e. the datasets, hyperparameters, the baselines
implementation, the computation of the confidence ellipses and runtimes.

The code for our full experiment pipeline is found in the rest of the supplementary material.

The streamlined package is available at https://github.com/aida-ugent/fairret.
Examples of the code use (at the time of writing the paper) are provided in Appendix E.
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A PROOFS

A.1 TABLE 1

Here, we show how the 𝛼0, 𝛼1, 𝛽0, and 𝛽1 functions are derived for each of the fairness notions in
Table 1. These fairness notions are typically defined in the partition fairness setting, and so we will
make the same assumptions here (see Def. 1). Before discussing each fairness notion separately, we
make some general observations.

First, there may be a concern that our fairness constraint, i.e. ∀𝑘 ∈ [𝑑𝑠] : 𝛾(𝑘; 𝑓 ) = 𝛾( 𝑓 ), requires
each group’s statistic 𝛾(𝑘; 𝑓 ) to equal the overall statistic 𝛾( 𝑓 ) ≜ 𝛾(1; 𝑓 ), whereas popular surveys
of fairness definitions such as by Verma & Rubin (2018) instead only require that each group’s
statistic is the same, i.e.

∀𝑘, 𝑙 ∈ [𝑑𝑠] : 𝛾(𝑘; 𝑓 ) = 𝛾(𝑙; 𝑓 ) (A.1)

However, these constraints are equivalent.

Proposition A.1. In partition fairness, with 𝛾 ∈ Γ:

∀𝑘 ∈ [𝑑𝑠] : 𝛾(𝑘; 𝑓 ) = 𝛾( 𝑓 ) ⇐⇒ ∀𝑘, 𝑙 ∈ [𝑑𝑠] : 𝛾(𝑘; 𝑓 ) = 𝛾(𝑙; 𝑓 ) (A.2)

Proof. The forward ( =⇒ ) relation is trivial: if all group statistics 𝛾(𝑘; 𝑓 ) = 𝛾( 𝑓 ), then necessarily
they are also all equal.

The reverse ( ⇐= ) is less straightforward. Clearly,

∀𝑘, 𝑙 ∈ [𝑑𝑠] : 𝛾(𝑘; 𝑓 ) = 𝛾(𝑙; 𝑓 ) ⇐⇒ ∃𝑐 ∈ R : ∀𝑘 ∈ [𝑑𝑠] : 𝛾(𝑘; 𝑓 ) = 𝑐 (A.3)

It thus suffices to show 𝑐 ≡ 𝛾( 𝑓 ) in such cases. Let 𝑔0 (X, 𝑌 ) = 𝛼0 (X, 𝑌 ) + 𝑓 (X)𝛽0 (X, 𝑌 ) and
𝑔1 (X, 𝑌 ) = 𝛼1 (X, 𝑌 ) + 𝑓 (X)𝛽1 (X, 𝑌 ). Then

𝛾(𝑘; 𝑓 ) = E[𝑆𝑘𝑔0 (X, 𝑌 )]
E[𝑆𝑘𝑔1 (X, 𝑌 )]

=

∑
𝑋,𝑌 ,𝑆 𝑆𝑘𝑔0 (X, 𝑌 )𝑃(𝑋,𝑌, 𝑆)∑
𝑋,𝑌 ,𝑆 𝑆𝑘𝑔1 (X, 𝑌 )𝑃(𝑋,𝑌, 𝑆)

=

∑
𝑋,𝑌 𝑔0 (X, 𝑌 )𝑃(𝑋,𝑌, 𝑆𝑘 = 1)∑
𝑋,𝑌 𝑔1 (X, 𝑌 )𝑃(𝑋,𝑌, 𝑆𝑘 = 1)

=

∑
𝑋,𝑌 𝑔0 (X, 𝑌 )𝑃(𝑋,𝑌 | 𝑆𝑘 = 1)∑
𝑋,𝑌 𝑔1 (X, 𝑌 )𝑃(𝑋,𝑌 | 𝑆𝑘 = 1)

=
E[𝑔0 (X, 𝑌 ) | 𝑆𝑘 = 1]
E[𝑔1 (X, 𝑌 ) | 𝑆𝑘 = 1]

(A.4)

where the third line used the partition fairness assumptions.

Thus, Eq. (A.3) also entails that E[𝑔0 (X, 𝑌 ) | 𝑆𝑘 = 1] = 𝑐 E[𝑔1 (X, 𝑌 ) | 𝑆𝑘 = 1].
By the law of total expectation, we now have

𝛾( 𝑓 ) = E[𝑔0 (X, 𝑌 )]
E[𝑔1 (X, 𝑌 )]

=
E[E[𝑔0 (X, 𝑌 ) | 𝑆]]
E[E[𝑔1 (X, 𝑌 ) | 𝑆]]

=

∑
𝑘 E[𝑔0 (X, 𝑌 ) | 𝑆𝑘 = 1]𝑃(𝑆𝑘 = 1)∑
𝑘 E[𝑔1 (X, 𝑌 ) | 𝑆𝑘 = 1]𝑃(𝑆𝑘 = 1)

=

∑
𝑘 𝑐 E[𝑔1 (X, 𝑌 ) | 𝑆𝑘 = 1]𝑃(𝑆𝑘 = 1)∑
𝑘 E[𝑔1 (X, 𝑌 ) | 𝑆𝑘 = 1]𝑃(𝑆𝑘 = 1)

= 𝑐

(A.5)

where the third line again used partition fairness. We thus indeed always have 𝑐 = 𝛾( 𝑓 ). Applying
Eq. (A.3) then completes the proof. □
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A second observation used to derive Table 1 is that fairness notions tend to be defined over proba-
bilities involving binary variables. To formulate fairness notions in terms of expectations, we can
thus extensively use these binary variables as indicator functions. For example, the frequency of true
positives 𝑃( 𝑓 (X) = 1, 𝑌 = 1) is easily counted as E[ 𝑓 (X)𝑌 ].
These observations can be applied to all fairness definitions presented by Verma & Rubin (2018) in
their Sections 3.1 and 3.2 and we refer to their work for a detailed interpretation of each definition.

We now show how Table 1 can be constructed by presenting the statistic of each fairness definition
and (a simplified form of) their 𝛾 function under our notation.

• demographic parity (a.k.a statistical parity) (Dwork et al., 2012) was already discussed in
Example 1. It requires equal positive rates 𝑃( 𝑓 (X) = 1 | 𝑆𝑘 = 1), i.e. 𝛾(𝑘; 𝑓 ) = E[𝑆𝑘 𝑓 (X) ]

E[𝑆𝑘 ] .

• conditional demographic parity (a.k.a conditional statistical parity) (Corbett-Davies
et al., 2017; Wachter et al., 2020) conditions demographic parity on a part of the input.
This is typically an input feature with respect to which we are allowed to discriminate. Let
𝜁 : R𝑑𝑥 → {0, 1} be an arbitrary function with a binary output. Then the fairness definition
requires equal 𝑃( 𝑓 (X) = 1 | 𝜁 (X), 𝑆𝑘 = 1), i.e. 𝛾(𝑘; 𝑓 ) = E[𝑆𝑘 𝑓 (X)𝜁 (X) ]

E[𝑆𝑘 𝜁 (X) ] . Note that this
statistic is easily extended to also allow non-binary 𝜁 functions.

• equal opportunity (Hardt et al., 2016) was already discussed in Example 2. It considers
positive rates over only the positive samples (𝑌 = 1). It thus compares false negative
rates, or equivalently true positive rates or recall 𝑃( 𝑓 (X) = 1 | 𝑌 = 1, 𝑆𝑘 = 1), i.e.
𝛾(𝑘; 𝑓 ) = E[𝑆𝑘 𝑓 (X)𝑌 ]

E[𝑆𝑘𝑌 ] .

• false positive parity (a.k.a. predictive equality) (Hardt et al., 2016; Corbett-Davies et al.,
2017) is similar to equal opportunity, but for the negative class. Hence, it compares true
negative rates, or equivalently false positive rates 𝑃( 𝑓 (X) = 1 | 𝑌 = 0, 𝑆𝑘 = 1), i.e.
𝛾(𝑘; 𝑓 ) = E[𝑆𝑘 𝑓 (X) (1−𝑌 ) ]

E[𝑆𝑘 (1−𝑌 ) ] . If combined with equal opportunity, it enforces equalized odds
(Hardt et al., 2016).

• predictive parity (Chouldechova, 2017) was already discussed in Example 3. It compares
the positive predictive value, a.k.a the precision 𝑃(𝑌 = 1 | 𝑓 (X) = 1, 𝑆𝑘 = 1), i.e. 𝛾(𝑘; 𝑓 ) =
E[𝑆𝑘 𝑓 (X)𝑌 ]
E[𝑆𝑘 𝑓 (X) ] .

• false omission parity is similar to predictive parity, but for the negative class. It is not
explicitly discussed in (Verma & Rubin, 2018), yet it clearly compares false omission rates
𝑃(𝑌 = 1 | 𝑓 (X) = 0, 𝑆𝑘 = 1), i.e. 𝛾(𝑘; 𝑓 ) = E[𝑆𝑘 (1− 𝑓 (X) )𝑌 ]

E[𝑆𝑘 (1− 𝑓 (X) ) ] .

• accuracy equality (Berk et al., 2021) compares accuracies 𝑃(𝑌 = 𝑓 (X) | 𝑆𝑘 = 1) across
groups. Hence, it computes the relative amount of true positives and true negatives of each
group, i.e. 𝛾(𝑘; 𝑓 ) = E[𝑆𝑘 ( 𝑓 (X)𝑌+(1− 𝑓 (X) ) (1−𝑌 ) ) ]

E[𝑆𝑘 ] .

• treatment equality (Berk et al., 2021) was already discussed in Example 4. It requires
the fraction of false negatives over false positives to be equal (or vice versa), and therefore
does not represent a probability. Its statistic is thus 𝛾(𝑘; 𝑓 ) = E[𝑆𝑘 (1− 𝑓 (X) )𝑌 ]

E[𝑆𝑘 𝑓 (X) (1−𝑌 ) ] .

A.2 PROPOSITION 1

Proof. Considering the definition of linear-fractional statistics 𝛾 ∈ ΓLF in Def. 2, we define the
shorthand notations 𝛼(X, 𝑌 , 𝑐) = 𝛼0 (X, 𝑌 ) − 𝑐𝛼1 (X, 𝑌 ) and 𝛽(X, 𝑌 , 𝑐) = 𝛽0 (X, 𝑌 ) − 𝑐𝛽1 (X, 𝑌 ). It is
then straightforward to see that

𝛾(𝑘; 𝑓 ) = 𝑐

⇐⇒ E[𝑆𝑘 (𝛼0 (X, 𝑌 ) + 𝑓 (X)𝛽0 (X, 𝑌 ))]
E[𝑆𝑘 (𝛼1 (X, 𝑌 ) + 𝑓 (X)𝛽1 (X, 𝑌 ))] = 𝑐

⇐⇒ E[𝑆𝑘 (𝛼(X, 𝑌 , 𝑐) + 𝑓 (X)𝛽(X, 𝑌 , 𝑐))] = 0

(A.6)

where the last step uses the linearity of the expectation operator E. The resulting constraint is linear
with respect to 𝑓 since 𝛼 and 𝛽 are both functions of functions that do not depend on 𝑓 . □
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A.3 PROPOSITION 2

To show the strictness of the proposed FAIRRETs, we use a separate strategy for violation and pro-
jection FAIRRETs.

A.3.1 VIOLATION FAIRRETS

Proof. Per Def. 3, it is easily seen that v(ℎ) = 0 ⇐⇒ ℎ ∈ F𝛾 . This also holds in the case where
𝛾(ℎ) = 0, as we can define v𝑘 (ℎ) = |𝛾(𝑘; ℎ) | there instead. Hence, we only need to show that
𝑅𝛾 (ℎ) = 0 ⇐⇒ v(ℎ) = 0 to show the strictness of violation FAIRRETs 𝑅𝛾 .

For the Norm FAIRRET, the strictness is obvious: a norm defined over a vector space is always
assumed to equal zero only for the vector of zeros, i.e.

𝑅𝛾 (ℎ) ≜ ∥v(ℎ)∥ = 0 ⇐⇒ v(ℎ) = 0. (A.7)

For the SmoothMax FAIRRET, the strictness follows from the log 𝑑𝑠 adjustment term:

𝑅𝛾 (ℎ) ≜ log
∑︁

𝑘∈[𝑑𝑠 ]
exp(v𝑘 (ℎ)) − log 𝑑𝑠 = 0

⇐⇒
∑︁

𝑘∈[𝑑𝑠 ]
exp(v𝑘 (ℎ)) = 𝑑𝑠

⇐⇒ v(ℎ) = 0

(A.8)

where the last step follows from the non-negativity of 𝑣𝑘 . □

A.3.2 PROJECTION FAIRRETS

Proof. A projection FAIRRET is easily shown to be strict if its divergence measure 𝐷 satisfies
𝐷 ( 𝑓 (X) ∥ ℎ(X)) > 0 ∧ 𝐷 ( 𝑓 (X) ∥ ℎ(X)) = 0 ⇐⇒ 𝑓 (X) = ℎ(X) (A.9)

Indeed, if ℎ ∈ F𝛾 , then also ℎ ∈ F𝛾 (𝛾(ℎ)) by construction. We can then choose 𝑓 = ℎ and use
Eq. (A.9) to get 𝐷 ( 𝑓 (X) ∥ ℎ(X)) = 0. This shows ℎ ∈ F𝛾 =⇒ 𝑅𝛾 (ℎ) = 0.

Conversely, the assumed properties of 𝐷 in Eq. (A.9) entail
𝑅𝛾 (ℎ) ≜ min

𝑓 ∈F𝛾 (𝛾 (ℎ) )
E[𝐷 ( 𝑓 (X) ∥ ℎ(X))] = 0

⇐⇒ ∃ 𝑓 ∈ F𝛾 (𝛾(ℎ)) : ∀X ∈ R𝑑𝑠 : 𝑓 (X) = ℎ(X)
⇐⇒ ℎ ∈ F𝛾 (𝛾(ℎ))

(A.10)

where the second line assumes5 the support of X equals R𝑑𝑠 . Since F𝛾 (𝛾(ℎ)) ⊂ F𝛾 , we have
𝑅𝛾 (ℎ) = 0 =⇒ ℎ ∈ F𝛾 .

To show the strictness of the projection FAIRRETs, it thus suffices to show that the divergences 𝐷 in
Def. 9, 10 and 11 all satisfy the requirements in Eq. (A.9).

It is a well-known property of the Kullback-Leibler divergence 𝐷KL that Eq. (A.9) holds (Csiszar,
1975).

The properties of the 𝐷KL-divergence also trivially imply non-negativity for the Jensen-Shannon
divergence. Moreover, it entails

𝐷JS ( 𝑓 (X) ∥ ℎ(X)) ≜ 𝐷KL ( 𝑓 (X) ∥ 𝑚(X)) + 𝐷KL (ℎ(X) ∥ 𝑚(X))
2

= 0

⇐⇒ 𝐷KL ( 𝑓 (X) ∥ 𝑚(X)) = 𝐷KL (ℎ(X) ∥ 𝑚(X)) = 0
⇐⇒ 𝑓 (X) = 𝑚(X) = ℎ(X)

(A.11)

which means Eq. (A.9) indeed also holds for 𝐷JS.

Finally, it is clear that 𝐷SED satisfies Eq. (A.9), as the Euclidean distance is non-negative and only
zero for overlapping points. □

5If the support of X does not equal R𝑑𝑠 , then we can simply reformulate our framework to only consider
function outputs 𝑓 (X) and ℎ(X) for points X that do lie in its support.

17



Published as a conference paper at ICLR 2024

B ADDITIONAL DISCUSSION

B.1 ADDENDUM TO REMARK 1

Observe that, for 𝛾 ∈ ΓLF:

𝛾(𝑘; 𝑓 ) ≜ E[𝑆𝑘 (𝛼0 (X, 𝑌 ) + 𝑓 (X)𝛽0 (X, 𝑌 ))]
E[𝑆𝑘 (𝛼1 (X, 𝑌 ) + 𝑓 (X)𝛽1 (X, 𝑌 ))] (B.1)

and
𝛾( 𝑓 ) ≜ E[𝛼0 (X, 𝑌 ) + 𝑓 (X)𝛽0 (X, 𝑌 )]

E[𝛼1 (X, 𝑌 ) + 𝑓 (X)𝛽1 (X, 𝑌 )] (B.2)

In Remark 1, we (non-exhaustively) mention two cases for 𝑆𝑘 ∈ R where 𝛾(𝑘; 𝑓 ) = 𝛾( 𝑓 ) holds:

1. 𝑆𝑘 is deterministic, i.e. 𝑆𝑘 ≡ 𝑠 for a constant 𝑠 ∈ R. Due to the linearity of the expectation
operator, we trivially have 𝛾(𝑘; 𝑓 ) = 𝛾( 𝑓 ). Though this case is degenerate, we should
indeed expect a fairness criterion to hold if the random variable 𝑆𝑘 expresses no information
about an individual (and as such cannot be grounds for discrimination).

2. 𝑆𝑘 has no linear influence on the numerator or denominator of 𝛾, i.e.

cov(𝑆𝑘 , 𝛼0 (X, 𝑌 ) + 𝑓 (X)𝛽0 (X, 𝑌 )) = cov(𝑆𝑘 , 𝛼1 (X, 𝑌 ) + 𝑓 (X)𝛽1 (X, 𝑌 )) = 0. (B.3)

Indeed, using the definition of the covariance operator, we have

𝛾(𝑘; 𝑓 ) = cov(𝑆𝑘 , 𝛼0 (X, 𝑌 ) + 𝑓 (X)𝛽0 (X, 𝑌 )) + E[𝛼0 (X, 𝑌 ) + 𝑓 (X)𝛽0 (X, 𝑌 )]
cov(𝑆𝑘 , 𝛼1 (X, 𝑌 ) + 𝑓 (X)𝛽1 (X, 𝑌 )) + E[𝛼1 (X, 𝑌 ) + 𝑓 (X)𝛽1 (X, 𝑌 )] . (B.4)

Unfortunately, Eq. (B.3) is only a sufficient condition for 𝛾(𝑘; 𝑓 ) = 𝛾( 𝑓 ) in general.
Still, it becomes a necessary condition for the DP fairness notion (which always has
cov(𝑆𝑘 , 𝛼1 (X, 𝑌 ) + 𝑓 (X)𝛽1 (X, 𝑌 )) = cov(𝑆𝑘 , 1) = 0).

Yet, though we argue 𝛾(𝑘; 𝑓 ) = 𝛾( 𝑓 ) is sensible to enforce for continuous variables 𝑆𝑘 ∈ R, it must
be stressed that linear-fractional statistics check linear effects of 𝑆 on 𝑓 (X). Higher-order moments
will thus not be measured.

For example, if 𝑆0 denotes ‘man-ness’ and 𝑆1 denotes ‘woman-ness’, then individuals who identify
with a non-binary gender may quantify their sensitive features as 𝑆0 = 50% and 𝑆1 = 50%. However,
linear covariance statistics (like ours) will not consider specific discrimination directed at those
with, e.g., 𝑆1 = 50%. Instead, this will be taken into account as ‘half as influential’ compared to
individuals who identify as 𝑆1 = 100%.

B.2 ADDENDUM TO REMARK 2

In Remark 2, we mention that intersections of demographic groups will not be considered in fairness
constraints if partition fairness does not hold.

For example, assume we want to check DP fairness with statistic 𝛾(𝑘; 𝑓 ) =
E[𝑆𝑘 𝑓 (X) ]
E[𝑆𝑘 ] for four

uniformly selected samples with scores (0.7, 0.3, 0.7, 0.3) given by 𝑓 , values (1, 1, 0, 0) for sensitive
variable 𝑆0 and values (1, 0, 0, 1) for sensitive variable 𝑆1. Then 𝛾(0; 𝑓 ) = 𝛾(1; 𝑓 ) = 0.5. However,
E[𝑆0𝑆1 𝑓 (X) ]
E[𝑆𝑘 ] = 0.7 and E[ (1−𝑆0 ) (1−𝑆1 ) 𝑓 (X) ]

E[𝑆𝑘 ] = 0.3. Here, the individual with sensitive feature vector
S = (0, 0), i.e. at the intersection of 𝑆0 = 0 and 𝑆1 = 0, thus receives worse scores than the others.

B.3 ADDENDUM TO REMARK 3

In our discussion of fairness definitions, we assume that we are enforcing constraints on classifiers
𝑓 : R𝑑𝑥 → {0, 1}, i.e. classifiers with a hard decision boundary. In practice, however, it is common
to base decisions off of a parameterized regressor 𝑟 : R𝑑𝑥 → R, e.g. with 𝑟 a neural network.
For example, we can then deterministically collect decisions from 𝑟 as 𝑓 (X) = 𝟙𝑟 (X)>0 with 𝟙 the
indicator function. However, such a thresholding function has a gradient of zero with respect to 𝑟

and a discontinuity in 𝑟 (X) = 0.
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Several works have investigated directly using 𝑟 (X) in fairness constraints (Zafar et al., 2019). For
example in DP fairness, directly computing 𝛾(𝑘; ℎ) will already enforce that the mean scores 𝑟 (𝑋)
should be equal across groups. Though this leads to interesting convex optimization problems for a
fair 𝑟, it has been noted that this only observes a relaxed form of actual fairness constraints (Lohaus
et al., 2020).

A middle ground is to construct a probabilistic classifier 𝑓 as a Bernoulli distribution with parameter
ℎ(X) = 𝜎(𝑟 (X)) where 𝜎 denotes the logistic function 𝜎(𝑠) = (1 + exp(−𝑠))−1. Hence, 𝑓 (X) is
fully specified through 𝑃( 𝑓 (X) = 1 | X) = ℎ(X). In the definition of 𝛾, we can then simply replace
the classification function 𝑓 in the expectation by the scoring model ℎ, because E[E[ 𝑓 (X) | X]] =
E[ℎ(X)]. Still, the fact that a probabilistic classifier is now not only dependent on X but also on the
randomness involved in sampling 𝑓 (X) introduces some noise into the decision process that we may
wish to avoid. There is also the danger that in practice, real-world decisions would still be made
according to a hard threshold on the scores ℎ(X), e.g. on 𝑓 (X) = 𝟙ℎ (X)>0.5.

If this becomes an issue, then we could make use of recent work (Padh et al., 2021; Bendekgey
& Sudderth) that has investigated surrogate functions that are better approximations of the thresh-
olding function 𝟙·>0 than the logistic function 𝜎. For example, a suitable surrogate is the scaled
logistic function 𝜎𝑎 (𝑠) ≜ 𝜎(𝑎𝑠), since lim𝑎→∞ 𝜎𝑎 (𝑠) = 𝟙𝑠>0 for 𝑠 ≠ 0. However, note also that
lim𝑎→∞

𝜕
𝜕𝑠
𝜎𝑎 (𝑠) = 0. Surrogate functions like 𝜎𝑎 thus allow us to trade-off the hardness of the

classification with the quality of its gradient.

C ADDITIONAL RESULTS

C.1 APPROXIMATE PROJECTION

In Sec. 3.2, we suggest that the convex optimization of the projections 𝑓 ∗ can already converge quite
well after only 10 iterations. By placing such a limit, we can significantly reduce the computational
cost of 𝑅𝛾 (ℎ), though 𝑅𝛾 (ℎ) will be an overestimate (as projections 𝑓 ∗ with a smaller divergence to
ℎ may not have been found yet).

In Fig. C.1, we observe that training with at most 10 iterations per projection is indeed enough to
minimize the DP violation while also being much faster to compute. Unexpectedly, we even observe
the DP violation to be slightly lower after training with at most 10 iterations than with more than 10,
which could indicate that fewer iterations can have a positive effect on the training process.

C.2 PROJECTION VISUALIZATION

In Fig. C.2, we visualize the projected distributions for the example in Fig. 1. The 𝐷KL- and
𝐷JS-projections appear to transform the shape of the probability distribution, whereas the 𝐷SED-
projection appear to linearly shift the probabilities within a group.

For the latter, this appears to form a problem, because its behavior leads to a large gap in densities
between ℎ and the projection 𝑓 ∗ at the edges of the [0, 1] interval. For example for 𝑆0 = 1, the
scores are linearly shifted to the left (lower probability scores), meaning that no scores are left in the
high probability range, and too many are allocated to the low probability range. The ‘blocking’ of
this shift on the low end for 𝑆0 = 1 and on the high end for 𝑆1 = 1 is in fact the reason for the ’crack’
in the gradients of the 𝐷SED-projection in Fig. 1, since the probabilities of ℎ cannot be projected
beyond these edges.

C.3 MINI-BATCHING THE FAIRRET

In Sec. 3.3, we propose that FAIRRETs 𝑅𝛾 can be minimized using the same mini-batches that we
use to minimize the cross-entropy loss L𝑌 . However, batches clearly need to be large enough to
adequately represent the imbalances for all sensitive features S. Hence, we report an experiment in
Fig. C.3 where we take an unfair classifier ℎ and compute the mean SmoothMax loss over batch
sizes with increasing granularity.

From a batch size of approximately 1024, the mean loss over all batches already closely matches the
SmoothMax loss computed over the full test set (39 133 samples). Note that for very small batch
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Figure C.1: (left) Test set DP violation, with a similar experiment setup as Fig. 2 on the ACSIncome
dataset. Each result bar results from a separate training run with the 𝐷KL-projection fairret that was
minimizing the DP violation. The configurations only differ in the maximum number of iterations
used in the convex optimizations that compute the actual 𝐷KL-projections 𝑓 ∗ (see Sec. 3.2). (right)
The total training time of these runs with standard error.

sizes, the loss becomes mostly meaningless, as batches will not even contain all members of each
protected group. To be on the safe side, we use a batch size of 4096 in all our experiments.

C.4 OTHER FAIRRET RESULTS

The test set results on the Norm, 𝐷JS-projection and 𝐷SED-projection FAIRRETs are shown in
Fig. C.4. The Norm FAIRRET follows a very similar gradient as the SmoothMax FAIRRET, whereas
the 𝐷JS-projection and 𝐷SED-projection give similar results as the 𝐷KL-projection.

C.5 TRAIN SET RESULTS

In Fig. C.5, we show the train set results for our main experiments. These follow the same trends
as the test set results, though with higher AUROC scores and lower fairness violations. The most
important difference is the performance of the SmoothMax fairret, e.g. on the CreditCard dataset,
which obtains a significantly lower fairness violation for the difficult PP and TE fairness notions
than it did on the test set.

C.6 FAIRNESS VIOLATIONS FOR A SINGLE SENSITIVE ATTRIBUTE

The FFB implementation (and indeed most fairness tools) only mitigate bias with respect to a single,
categorical sensitive feature. In our datasets (see Sec. D.1), these were the following:

• Bank: marital status

• CreditCard: sex

• LawSchool: sex

• ACSIncome: sex

The fairness violations for these single features are shown in Fig. C.6. Importantly, the FAIRRET
experiments were redone by training with only this single feature in mind when computing the
FAIRRET loss. Even for the DP fairness notion, the FAIRRETs remain competitive and the 𝐷KL-
projection obtains the best trade-off.
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Figure C.2: Starting from the same setup as in Fig. 1, we show the probability scores of both ℎ (full
line) and the projected distributions 𝑓 ∗ of each projection FAIRRET (dotted lines). The 𝑦-axis shows
the KDE densities of these scores, all on the same scale.

D ADDITIONAL EXPERIMENT DETAILS

D.1 DATASETS

We used four different datasets for the evaluation of our framework, namely the Bank Marketing
dataset (Moro et al., 2014), Credit card clients dataset (Yeh & hui Lien, 2009), Law School Ad-
missions dataset 6 and the ACSIncome dataset from Folktables (Ding et al., 2021). Their main
advantages are their range of sensitive attributes, their recency and their curation quality.

We deviate from the normal practice of using the German Credit and Adult data sets as advised by
Fabris et al. (Fabris et al., 2022) due to the ”contrived prediction tasks, noisy data, severe coding
mistakes, limitations in encoding sensitive attributes, and age” of these datasets.

D.1.1 BANK

The Bank marketing dataset was collected by a Portuguese bank between May 2008 and June 2013.
The dataset includes all information the bank has on a client, information about the previous attempt
for the client to subscribe for a long-term deposit, some economic information and if the client
decided to go for a long-term deposit following the telephone call.

6Curated and published by the SEAPHE project
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Figure C.3: Test set SmoothMax loss 𝑅𝛾 (ℎ) with 𝛾 the positive rate statistic (enforcing the DP
notion), computed for an unfair model ℎ trained with the same setup as in Fig. 1. Each loss is
computed over the entire test dataset, but chunked using different batch sizes. For smaller batch
sizes, the mean SmoothMax loss is an overestimate of the actual SmoothMax loss computed over
all 39 133 samples.

The dataset itself contains the information of 41 108 telephone contacts. Important to note for this
dataset is that the outcomes are severely unbalanced with only 4 640 of outcomes belonging to the
positive class.

The sensitive attributes which were used as such in this dataset were the age and marital status of a
person. A person’s eduction was not included as a sensitive attribute as discriminating on that value
could arguably be justifiable in this situation.

During preprocessing, we dropped five features: three relating to the outcome of the previous mar-
keting campaign as often there was no record of a previous contact and two features relating to the
date when the current marketing call took place. If the value of certain features were unknown then
they were were mapped onto the ’False’ value, except for the case if the marital status of the person
was unknown. In that instance the row was simply dropped, since this only occurred for 80 samples
in the entire dataset.

D.1.2 CREDITCARD

The Credit Card clients dataset is data from a bank in Taiwan in October 2005. The goal is to predict
whether a client would default on their credit in the next month. The features include the allocated
credit of the client, personal information, the status of previous payments, amounts of previous
payments and the amounts on previous bill statements.

In total the dataset contains 30 000 records. In 5529 of these instances the client defaulted in the
next month.

This dataset contains a wide range of sensitive attributes, namely sex, education, marital status and
age.

A total of 522 samples were removed from the dataset as they contained values unspecified in the
documentation of the data or if their eduction status fell under the category others. That was mainly
done as only 123 samples were of this category, making it too small to maintain adequate statistical
power for the fairness measure of the group.
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Figure C.4: Test set results for the experiments in Fig. 2, but with different FAIRRETs.

D.1.3 LAWSCHOOL

The Law School admissions dataset contains information about whether a student was accepted to
the law school, which we tried to predict in our experiments. The dataset also contains the student’s
race, gender, whether they live where they applied to law school, what college they applied to, the
year they did this, and their LSAT and GPA scores.

Although this dataset is hand-curated by the SEAPHE project, it is still fairly sizeable with 65 535
samples. Only 24.84% of these samples had a positive outcome.

The dataset only contains two sensitive attributes: race and sex. This is the only dataset where
the age features are not available. Interestingly, the range of values for the race attribute is fairly
balanced across all races, except for white which is overly represented with 39 742 samples.

In the preprocessing step only the year of the application column was not used as a feature.

D.1.4 ACSINCOME

The ACSIncome dataset has the familiar goal of predicting whether an individual’s annual income is
above $50 000. The source of the data is the US census study. This only includes individuals above
the age of 16, who indicate having worked at least one hour per week and reported an income above
$100. A myriad of personal information is available in the dataset.

The dataset is significantly larger than the others used, with 195 665 samples. It is also more bal-
anced as it has 80 335 positive samples.
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Figure C.5: The train set results corresponding with Fig. 2.

Four sensitive attributes are used for the calculations. In this case age, marital status, sex and race.
Information about employment and education is not included as sensitive attributes.

Due to the large amount of race groups in the survey, it is necessary to simplify this trait in order to
have each group be at least a total of 1% of the data set to guarantee statistical significance for each
group.

D.2 HYPERPARAMETERS

In addition to the hyperparameters discussed in Sec. 4.1, we also mention that our model was op-
timized with the Adam optimizer implementation of PyTorch, with a learning rate of 0.001 and a
batch size of 4096. The loss was minimized over 100 epochs, with 𝜆 = 0 for the first 20 to avoid
constraining ℎ before it learns anything.

To find these hyperparameters, we took the 80%/20% train/test split already generated for each seed,
and further divided the train set into a smaller train set and a validation set with relative sizes 80%
and 20% respectively. Keeping the FAIRRET strength 𝜆 = 0, we performed a grid search on the
neural architecture in range

[[], [128], [128, 32], [128, 64, 32], [256, 128, 32], [512, 256, 128, 32], [512, 512, 256, 128, 32]]
(D.1)

in combination with the learning rate in range [0.01, 0.005, 0.001, 0.0005, 0.0001]. We then selected
the combination with the best AUROC on the validation set of the Bank dataset. The number of
epochs and the batch size were tuned manually based on the convergence properties of the validation
AUROC.
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Figure C.6: Test set results for the experiments in Fig. 2, but with fairness violations computed for a
single sensitive feature. For these results, FAIRRET experiments were redone and optimized for only
this feature specifically.

D.3 FFB BASELINES

For all FFB (Han et al., 2023) baselines, we used the publicly available implementation7 with only
minor adjustments to make them fit in our experiment pipeline.

From their implementation, we used the following baselines.

• HSIC minimizes the Hilbert-Schmidt Independence Criterion between the model’s predic-
tion probabilities and the sensitive attributes (Pérez-Suay et al., 2017).

• PRemover minimizes the mutual information between the model’s prediction probabilities
and the sensitive attributes (Kamishima et al., 2012).

• AdvDebias maximizes an adversary’s cross entropy between its predictions for the sensitive
attribute and the actual sensitive attribute, given the last hidden layer of ℎ Adel et al. (2019).
after trying several configurations, we achieved the most stable results with an adversarial
net of one hidden layer of size 32.

We again stress these implementations only optimize for the specific fairness notion listed above and
only for a single categorical sensitive attribute.

7https://github.com/ahxt/fair_fairness_benchmark/commit/
abec4de80455831ce8d2e158629dfb738a572201
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At the time of writing, the FFB also contains implementations for a regularization term that mini-
mizes the gap to obtain DP and EO, but this is highly similar to our violation fairrets and would not
be an informative comparison.

D.4 CONFIDENCE ELLIPSES

The confidence ellipses we use in Fig. 1, Fig. C.4 and Fig. C.5 are uncommon in machine learning
literature. Yet, they work well for our purpose of comparing trade-offs between metrics that may be
noisy depending on randomness during training and dataset split selection.

Recall that 1-dimensional confidence intervals typically assume a mean estimator to be normally
distributed. The confidence interval then denotes the uncertainty of the sample mean using the
standard error. Similarly, confidence ellipses assume a 2-dimensional point, i.e. the 2-dimensional
mean estimator, to have a multivariate normal distribution that can be characterized through the
sample mean and standard error statistics.

Our implementation of the confidence ellipses follows a featured implementation on
matplotlib8. However, a crucial difference is that this implementation computes a confidence
interval for a 2-dimensional random variable based on the covariance matrix for the standard devi-
ation of samples of that variable. Following observations by Schubert and Kirchner (Schubert &
Kirchner, 2014), we instead want to show the uncertainty of the mean estimator, which should use
the standard deviation of that estimator, i.e. the covariance for the standard error. This is accom-
plished by dividing the covariance matrix in the matplotlib implementation by the number of
seeds (5) we use in our experiments.

D.5 COMPUTATION COST AND RUNTIMES

We report some of the runtimes in Fig. D.1 that illustrate the difference in computational cost be-
tween FAIRRETs and baselines during the main experiments of Sec. 4. Note that both our FAIRRET
implementation and the FFB implementation were designed for intuitive use in research and not yet
optimized for runtime speed.

103 104

total training time (s)

Norm

SmoothMax

DKL-projection

DJS-projection

DSED-projection

HSIC

PRemover

AdvDebias

Unfair

Figure D.1: Runtimes for the ACSIncome dataset experiments discussed in Sec. 4 with strength
𝜆 = 1 (except for the Unfair baseline). The FAIRRETS were optimizing the DP fairness notion. Note
the log scale.

All experiments in Sec. 4 were conducted on an internal server equipped with a 12 Core Intel(R)
Xeon(R) Gold processor and 256 GB of RAM. All experiments, including preliminary and failed
experiments, cost approximately 100 hours per CPU.
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1 import torch
2 import torch.nn.functional as F
3

4 from fairret.statistic import TruePositiveRate
5 from fairret.loss.violation import NormLoss
6

7

8 # The TruePositiveRate class is a subclass of LinearFractionalStatistic.
9 statistic = TruePositiveRate()

10

11 # The fairret modules accept any LinearFractionalStatistic instance.
12 fairret = NormLoss(statistic)
13 fairret_strength = 1.0
14

15

16 def train_epoch(train_loader, model, optimizer):
17 for feat, sens, target in train_loader:
18 optimizer.zero_grad()
19

20 logit = model(feat)
21 bce_loss = F.binary_cross_entropy_with_logits(logit, target)
22 fairret_loss = fairret(logit, feat, sens, target)
23 loss = bce_loss + fairret_strength * fairret_loss
24 loss.backward()
25

26 optimizer.step()

Listing E.1: Example use of the FAIRRET library in a simple PyTorch setup.

E CODE USE EXAMPLES

Listing E.1 displays a code example of how the FAIRRET can easily be deployed in a
typical PyTorch (Paszke et al., 2019) setup. It suffices to simply load a subclass of
LinearFractionalStatistic and pass it on to a FAIRRET implementation instance such
as NormLoss (as defined in Def. 7). The FAIRRET is then used to compute the quantification of
unfairness as a loss like any other in PyTorch. In this case, we use the true positive rate statistic to
pursue the fairness notion of equalized opportunity (EO).

In Listing E.2, we provide an example implementation of a LinearFractionalStatistic
class, which only entails the specification of the 𝛼 and 𝛽 functions as in Table 1.

8https://matplotlib.org/3.7.0/gallery/statistics/confidence_ellipse.
html.
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1 import torch
2

3 from fairret.statistic import LinearFractionalStatistic
4

5

6 class Accuracy(LinearFractionalStatistic, name="acc"):
7 # alpha_0
8 def nom_intercept(self, feat, label):
9 return 1 - label

10

11 # beta_0
12 def nom_slope(self, feat, label):
13 return 2 * label - 1
14

15 # alpha_1
16 def denom_intercept(self, feat, label):
17 return torch.ones(feat.shape[0])
18

19 # beta_1
20 def denom_slope(self, feat, label):
21 return torch.zeros(feat.shape[0])

Listing E.2: Example implementation of a custom LinearFractionalStatistic.
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