SoftwareX 26 (2024) 101755

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication ' ,.)

Check for
updates

Discovering and exploring cases of educational source code plagiarism with
Dolos

Rien Maertens *, Maarten Van Neyghem, Maxiem Geldhof, Charlotte Van Petegem, Niko Strijbol,
Peter Dawyndt, Bart Mesuere

Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium

ARTICLE INFO ABSTRACT

Keywords: Source code plagiarism is a significant issue in educational practice, and educators need user-friendly tools
Web app to cope with such academic dishonesty. This article introduces the latest version of Dolos, a state-of-the-
Plagiarism

art ecosystem of tools for detecting and preventing plagiarism in educational source code. In this new
version, the primary focus has been on enhancing the user experience. Educators can now run the entire
plagiarism detection pipeline from a new web app in their browser, eliminating the need for any installation
or configuration. Completely redesigned analytics dashboards provide an instant assessment of whether a
collection of source files contains suspected cases of plagiarism and how widespread plagiarism is within
the collection. The dashboards support hierarchically structured navigation to facilitate zooming in and out of
suspect cases. Clusters are an essential new component of the dashboard design, reflecting the observation that
plagiarism can occur among larger groups of students. To meet various user needs, the Dolos software stack
for source code plagiarism detection now includes a self-hostable web app, a JSON application programming
interface (API), a command line interface (CLI), a JavaScript library and a preconfigured Docker container.
Clear documentation and a free-to-use instance of the web app can be found at https://dolos.ugent.be. The
source code is also available on GitHub.

Source code

Academic dishonesty
Cheating

Learning analytics
Educational data mining
Online learning
Programming language

Code metadata

v2.6.0
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00117

Current code version
Permanent link to code/repository used for this code version

Permanent link to Reproducible Capsule n/a
Legal Code License MIT
Code versioning system used git

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

TypeScript, JavaScript, Ruby, Rails, Docker, Vue.js
NodeJS, Yarn, Python 3, GCC
http://dolos.ugent.be/docs

dodona@ugent.be

1. Motivation and significance reuses source-code authored by someone else and, intentionally or uninten-

tionally, fails to acknowledge it adequately, thus submitting it as his/her

The rise in computer science enrolments [1] and the inclusion
of computational thinking and software development in secondary
and higher education curricula [2,3] has resulted in an increase in
source code production for classroom assignments. This worldwide
trend comes with its own set of challenges, including source code pla-
giarism [4,5]. Cosma and Joy [6] define this phenomenon as "Source-
code plagiarism in programming assignments can occur when a student

* Corresponding author.
E-mail address: rien.maertens@ugent.be (Rien Maertens).

https://doi.org/10.1016/j.s0ftx.2024.101755

own work. [...]“ The temptation for students to circumvent learning
and to cheat on assessments increases with higher stakes and access to
online sources, peer-to-peer communication and generative Al [7-9].
The migration from paper-based to digital computer science ed-
ucation has increased the use of software tools for detecting source
code plagiarism. These tools aid educators in detecting, proving, and
preventing such forms of educational dishonesty by automating the

Received 22 February 2024; Received in revised form 26 April 2024; Accepted 29 April 2024

Available online 9 May 2024

2352-7110/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://dolos.ugent.be
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00117
http://dolos.ugent.be/docs
mailto:dodona@ugent.be
mailto:rien.maertens@ugent.be
https://doi.org/10.1016/j.softx.2024.101755
https://doi.org/10.1016/j.softx.2024.101755
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101755&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Rien Maertens et al.

process of finding, comparing, and visualising similar code fragments
among large collections of source files. However, a number of studies
on source code plagiarism rely on unpublished tools that are not or
no longer publicly available [10]. Additionally, the process of down-
loading, installing and running plagiarism detection tools can become
tedious and error-prone, which negatively impacts the user experience.
Through our interactions with more than 1000 secondary and higher
educational institutions [11], we have repeatedly heard that this is a
significant barrier for a large group of educators, especially for those
with varying levels of technical expertise. Proper interpretation of the
results is also a bottleneck [12]. This might explain why many educa-
tors still refrain from using source code plagiarism detection [13,14].
MOSS' [15] and JPlag® [16] are currently the most popular free-to-
use tools for plagiarism detection in educational source code. However,
MOSS is a closed-source, externally hosted web service that requires
running a local submission script, and JPlag requires local software
installation to perform the detection.

For natural language processing, the significance of plagiarism de-
tection is emphasised by the abundance of commercial and free web
apps available [17,18]. Some of these tools are specifically designed
for educational purposes. They enable educators to conduct plagiarism
detection checks directly from their browser, without the need for
complex installation procedures or multiple tools. For source code,
various commercial web apps for plagiarism detection exist, such as
Codequiry,® Copyleaks.* and Gradescope® However, none of these apps
are fully open-source and free to use.

To fill this gap, we expanded on the initial prototype of Do-
los [19]. This initial version was already competitive with state-of-
the-art tools in terms of performance and prediction accuracy while
using a language-agnostic pipeline [19]. However, it also needed local
installation and its user interface was quite basic. The latest major re-
lease of Dolos (version 2.x) addresses these issues and offers numerous
improvements. A new web app has been developed that obviates the
need for local installation, with a free-to-use instance hosted at https://
dolos.ugent.be. We also provide easy configuration and documentation
on how to self-host the Dolos web app. This allows educators to comply
with local privacy policies or to use its API for seamless integration
into online learning environments. While the command line interface
(CLD) from the first version is still supported, all new and improved
features are now also accessible from the new web app. The web app
also supports sharing reports in an easy, secure, and privacy-preserving
way, stimulating discussions among educators about possible source
code plagiarism. In addition, the web interface has been redesigned
to include new powerful dashboards that allow educators to zoom
in from the entire collection, over clusters and pairs, to individual
source files. All visualisations have been significantly improved for
better responsiveness and the plagiarism detection pipeline has been
optimised for faster runtimes and reduced memory footprints. Finally,
the user experience has also been improved with faster load times,
support for anonymisation, automatic programming language detec-
tion, highlighting differences between two source files, sharing online
dashboards safely with colleagues, and a new packaging strategy for
programming language support.

2. Illustrative example

This section provides instructions on how to use the Dolos web app
to detect plagiarism in a collection of programming assignment submis-
sions. From an educator’s perspective, the process involves two steps:

https://theory.stanford.edu/~aiken/moss/
https://github.com/jplag/JPlag
https://codequiry.com/
https://copyleaks.com/code-plagiarism-checker
https://www.gradescope.com/

SoftwareX 26 (2024) 101755

(i) uploading source files and (ii) checking dashboards for suspected
cases. To follow along, it is recommended to use the free-to-use instance
hosted at Ghent University (https://dolos.ugent.be) with either your
own collection of submissions or our sample dataset. You can also take
a video tour at https://dolos.ugent.be/tour.

For more information on how to install and run the CLI locally,
self-host a local instance of the web app using Docker, or use the
JavaScript library directly, please refer to the online documentation at
https://dolos.ugent.be/docs.

Step 1: data submission

The web app’s launchpad consists of two panels (Fig. 1). The left
panel features an upload form for submitting new collections of source
files, while the right panel contains a searchable table for retrieving
previously submitted collections and reviewing their analysis results.

To submit a new collection, begin by selecting a ZIP archive contain-
ing the source files from the local file system. The app can automatically
detect the programming language, or it can be manually specified by
selecting from a drop-down list. The archive may also contain a CSV-
formatted file with metadata provided by online learning environments
such as submission timestamps, authors and free-form labels. Dolos
currently supports the simple CSV-format exported by Dodona [11].

Upon submission, the app launches a server-side job that executes
the source code similarity analysis pipeline. Jobs usually finish within a
few seconds, and the results are then accessible for further examination.
The analysis is intentionally finely tuned for smaller source code files.
For collections containing more than 1000 files, files with over 1000
lines of code, or when integrating Dolos into an automated pipeline, we
recommend using the Dolos CLI or Javascript library. These restrictions
are not hardcoded into the web app, but the pipeline will gracefully
abort when there is insufficient memory to complete the analysis.

Each uploaded collection of source and metadata files is stored
server-side, along with the analysis results. Instead of relying on user
accounts, each result is assigned a unique secret key that is stored in
the browser’s local storage. The table in the launchpad allows for easy
access to previous analysis results, which can be shared with colleagues
or deleted both client and server-side.

Step 2: exploring analysis results

Like other plagiarism detection tools, Dolos’ server-side analysis
pipeline merely automates the detection of highly similar code frag-
ments shared between source files and calculates pairwise similarities
between each pair of files in the collection. However, gathering enough
convincing evidence is undoubtedly the most challenging aspect of
dealing with educational source code plagiarism. This task is challeng-
ing to fully automate, but the web app assists the educator’s expert eye
with new and carefully crafted plagiarism analytics dashboards.

Dolos provides dashboards for various subsets of source files in the
collection: the complete collection, a cluster of files, a pair of files,
and a single file. This creates a hierarchical structure of linked dash-
boards at different zoom levels. Moving between linked dashboards
provides a natural zooming experience when investigating suspected
cases of plagiarism.

The exploration of the complete collection starts at an overview
dashboard (Fig. 2). Its analytics and visualisations provide an imme-
diate impression of whether the collection contains suspected cases of
plagiarism and the extent of plagiarism within the collection. Clues
can be found, for example, by contrasting the highest and average
pairwise similarities between files, relating source files to their nearest
neighbour in terms of global similarity (both available as a histogram
and a list), and inspecting the number and size of file clusters.

The same underlying goal led us to visualise the hierarchically
structured subsets of the collection as a plagiarism graph (Fig. 3). The
graph shows suspect files (as nodes coloured by label), pairs (as edges

https://dolos.ugent.be
https://dolos.ugent.be
https://dolos.ugent.be
https://theory.stanford.edu/~aiken/moss/
https://github.com/jplag/JPlag
https://codequiry.com/
https://copyleaks.com/code-plagiarism-checker
https://www.gradescope.com/
https://dolos.ugent.be
https://dolos.ugent.be/tour
https://dolos.ugent.be/docs

Rien Maertens et al.

DOLOS

Source code plagiarism detection

Analyze a dataset.
o

e » 15 older than 30 days may be deleted from our server to save space. You can always delete the
da

iy ink-cognito.zip (119.5 kB)

Week 9

Automatic -

When you upload a dataset, it will be analyzed on our server. Only you and the people you share the report with will be able to view the
analysis results.

SoftwareX 26 (2024) 101755

Previous analysis results Q sear
! is results of pre on this compu

Name Upload date Status

Week 8 Mon, 4 Dec, 13:28 Finished <
Week 7 Mon, 27 Nov, 16:55 i <
Week 6 Mon, 20 Nov, 15:46 i <
Week 5 Mon, 13 Nov, 15:14 Fir i <
Week 4 Mon, 6 Nov, 15:45 inished <
Week 3 Mon, 30 Oct, 10:07 inishe <
Week 2 Mon, 23 Oct, 14:58 Finished i<

femsperpage: | 15 ~ | 170f7

Fig. 1. Launchpad of the Dolos web app. Left panel: upload form for submitting a new collection of source files. Right panel: searchable table for accessing, deleting and sharing

previously submitted collections.

DOLOS - exercise - Pyramidal constants

“ Exercise - Pyramidal Constants

Source code plagiarism detection report

Report inf
eport info Highest similarity @

similarity distribution @

Global settings

Sty Thveshold

(6 i i TR N 100% 5
0 352 submissions -
9 labels detected z -
- ——— Average similarity @ 2 w0
. @ © o
o Professors 5 © Clusters @ » .
" w0 © 2 56 « Horned Supent
o Ravenclaw O
Submissions Clusters ® Professors ©
Label Highest similarity ‘Submissions © tffepult /‘
000000000000 PVOOIOG0DD C\
fre— [oo Yo JaerTouiodfor e TusYiaYooli Yo YasToul v YouTooT c) i ©
Septima Fltwick py © Huffepuft [o0 [} Fows ©
Fos— p— Q000000
020000
Q00000
@000C0
R— - 00000
O aeonrocehpy syt Q0000
@ peropeatpy Siytherin
a

VIEW ALL 392 SUDMISSIONS >

VIEW ALL 56 CLUSTERS >

Fig. 2. The overview dashboard’s analytics and visualisations summarise the plagiarism detection results. This specific report suggests that plagiarism is prevalent in this publicly

available collection of source files.

drawn between nodes whose global similarity exceeds a similarity
threshold), and clusters (coloured regions that group nodes connected
by edges).

Existing source code plagiarism tools traditionally only report po-
tential plagiarism from the perspective of file pairs. Larger groups of
collaborating students quickly result in an unmanageable list of file
pairs (e.g. 10 students result in 45 file pairs), which may be scattered
across a list of reported file pairs. However, seeing the same data visu-
alised as a clustered graph feels very intuitive. As a result, the cluster
concept is now an integral part of the Dolos dashboard design as a
separate hierarchical level. This feature helps distinguish between peer-
to-peer plagiarism events (two students sharing code) and broadcast
events (larger groups of students sharing code, e.g. via social media).
The cluster dashboard reconstructs the distribution timeline based on
submission timestamps. This feature is useful for tracking the original
author or observing how the distribution process has evolved over time.

The pair dashboard displays two source files side by side (Fig. 4). It
assists educators in identifying adequate and conclusive evidence that
high global similarity or lengthy shared fragments are not coincidental.
Students intentionally employ various obfuscation techniques to con-
ceal that they have copied someone else’s code [10]. Both plagiarism
detection pipelines and educators must try to see through this. The
pair dashboard offers two views: one highlights matching fragments

found by the Dolos plagiarism detection pipeline, while the other shows
a diff [20] of the two submissions. When educators land on a pair
dashboard, the app automatically selects the most relevant view for the
two source files at hand.

All dashboards share three global settings, which can be modified
in a dedicated panel (expanded from the far right of the top navigation
bar; Fig. 2) or in some panels within the dashboards themselves.
Suspect pairs and clusters are delineated based on a global similarity
threshold. Dolos employs a simple heuristic to automatically deter-
mine an appropriate initial value for this threshold. All analytics and
visualisations can be anonymised to present dashboards in a privacy-
friendly manner. Discussing the impact and consequences of plagiarism
with students could be part of a preventive strategy [19,21]. Label-
based filtering is used to control which subset of the total collection
is considered by the dashboards.

3. Software description

All Dolos source code is available in a public monorepo on GitHub.®
and in the Zenodo software repository [22] This section describes the

6 https://github.com/dodona-edu/dolos

https://github.com/dodona-edu/dolos

Rien Maertens et al. SoftwareX 26 (2024) 101755

M slytherin

B pukwudgie

M Gryffindor

M Thunderbird

B Hufflepuff

M professors

M Ravenclaw

B Wampus

M Horned Serpent

Threshold 2 83%

— 9]

E] Display singletons

Fig. 3. Graph showing suspected cases of plagiarism within the same collection of source files used for Fig. 2. Each node represents a submission and has a colour corresponding
to its labels. Edges connect nodes whose pairwise similarity exceeds an adjustable threshold (bottom right). Unconnected submissions are currently hidden, but can be shown by
checking the “Display singletons” option. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Comparing Alice with Bob

The compare view matches code fragments & differences between 2 files.

® MATCHES §) DIFF n = Similarity:89% | Longest fragment:83 |B Total overlap: 239
Dalicepy & Alice (2023-12-18 16:43:5740100) @ 18/12/2023,16:43 VIEW SUBMISSION > D bobpy 2 Bob (20231218 16:38:11+0100) (@ 18/12/2023,16:38 VIEW SUBMISSION >
1-def lees_sleutel(locatie): B 1+def lees_sleutel(bestandsnaan): ooem]
2 sleutel = 2 sleutel = {} -
3ty 3 try: -
4 with open(locatie, 'r') as bestand: | with open(bestandsnaam, 'r') as bestand:
5 for regel in bestand: 5 for regel 1n bestand:
3 # wit ruimtes er uit halen en dan splitten op tabulaties (vormt zo drie delenfll ¢ delen = regel.strip().split('\t') 1
7- gedeeld = regel.strip().split(‘\t') -
= if len(gedeeld) == 3: 74 if len(delen) == 3:
9 symbool, 1, j - gedeeld 8 symbool, 4, j = delen ‘ m
10- sleutel[symbool] = fint(1), int(3) 94 sleutel[symbool] = (int(1), int(3))
1 else: 10 else: | B
12 print(fiFoutieve regel in het bestand: {regel}") 11+ print(f*Foutieve regel in het bestand: {regel}")
13 # algeneen 17+ except FileNotFoundError: =)
13 print(f*Fout: Het bestand '{bestandsnaan}' kon niet gevonden worden.")
14+ except ValueError as ve:
15 prant(f*Fout bij het lezen van het bestand: ongeldige waarde gevonden. {ve}*) u
16 except Exception as e: 16 except Exception as e
15 print(f'Fout bij het lezen van het bestand: {e}!)] 17+ print(f*Onverwachte fout bij het lezen van het bestand: {e}")
18
16 return sleutel 19 return sleutel
Y 20
15-def symbolen2cijfers(sleutel, s, wisselen-False): 21+def symbolen2cijfers(s, sleutel,|wisselen-False):
i-m 22 cijferreeks = "*
20 for symbool in s: 23 for symbool in s:
21 1, 3 = sleutel[symbool] 2 1, 3 = sleutel[synbool]
2 if wisselen: 25 if wisselen:
23+ #ondraaien van getallen 26+ i, 3 = 3, i #wissel de volgorde van de cijfers on
2% P
25 € += str(1) + str(3) 27 cijferreeks += str(1) + str(j)
2 return ¢ 28+ return cijferreeks
27 29
25 def maak_rooster(sleutel): 30 def maak_rooster(sleutel):
29 rooster = {1 31 rooster =
30 for 1 in range(1, 10): 32 for 1 in range(1, 10):
31 1y = 33+ iy = B
32 for j in range(1, 10): 34 for j in range(1, 10):
33 for symbool, (symbool_i, symbool_j) in sleutel.items(): 35 for symbool, (symbool_i, symbool_j) in sleutel.items():
% if synbool_i == i and symbool j == j: 36 if synbool i == i and symbool j == j:
35 r1) += symbool 37 r1) += symbool
36 rooster[1] = rij 38 rooster(1] = ri)

Fig. 4. The new diff view highlights the differences in the dashboard for comparing two files. In this particular case, the two solutions are almost identical, with only minor
syntactic differences.

software architecture of the web app (version 2.x). It is intended for re- can be executed on any platform that provides a
searchers, developers, and power users who wish to reuse components JavaScript runtime engine (web browser, Node.js).
in isolation or contribute to the project. dolos—parsers collection of tree-sitter parsers [23] for major pro-

gramming languages bundled in a single package.
Aggregates a collection of Git submodules with a
single node-gyp configuration to build these

These software components make up the Dolos web app (Fig. 5):

dolos-core implements core algorithms of the source code sim-

ilarity analysis pipeline. An original TypeScript im- parsers and create a single JavaScript package with
plementation of the winnowing algorithm [15] that the resulting node bindings. A custom module ag-
is transpiled into a pure ECMAScript Module (ESM) gregating all parsers allows faster integration of
without external dependencies. The ESM package additional programming languages into Dolos and

Rien Maertens et al.

SoftwareX 26 (2024) 101755

dolos-docker

° [

X docker '

: :

X dolos-web dolos-parsers | |

: normal nede |

! mode ® ‘

: depends on :

' [

et . dolos-core depends on’

A "dolos‘ugent.bé\‘ ' launches JS :

J or self hosted : : \ .

- = 'front-end back-end = = . ' depends on :

," dolos-web | ., dc_)los»api "_ run analysis with E dolo;—cli depends on dolo;lib E

. & - *’ Q Q [

L Y[| MfRens | Lneee ool ¥

. e " T T
Dolos web app T

Teacher

Power-user Developer

Fig. 5. Diagram of the different components in the Dolos ecosystem and their relationships (Dolos version 2.x). Some components can be used in isolation, as shown by the three
users interacting with the components. External dependencies and standalone documentation pages (dolos—docs) have been excluded.

keeps supported languages up to date. Avoids de-
pendencies on maintainers of individual parsers to
publish new releases on npm.

dolos-1ib Node.js” library for reading source files, parsing
source code (depends on dolos-parsers), and
generating plagiarism reports (depends on dolos-
core). Supports integration of plagiarism detec-
tion into online learning environments. Re-exports
algorithms implemented in dolos-core.

dolos-web web interface implemented on top of the Vue 3%
JavaScript framework. Provides clean and consis-
tent UX/UI by using Vuetify® components. Includes
D3-based [24] interactive visualisations from dash-
boards. Depends on dolos-core for client-side
execution of some plagiarism analysis pipeline steps
(in browser) to keep the app responsive and inter-
active. May be built in normal mode to generate
dashboards from an external run of the plagiarism
analysis pipeline (used by dolos-cli). May be
built in server mode to add upload functionality onto
a normal mode build used in the Dolos web app,
interacting with the dolos—-api.

dolos-cli Node.js command line interface (CLI) for plagia-
rism detection functionalities provided by dolos-—
1ib. Results from the analysis pipeline can be dis-
played in the terminal, exported to CSV-files, or
launched as dashboards in the browser (depends on
dolos-web).

dolos—api Ruby on Rails'® web server exposing an application
programming interface (API) for plagiarism detec-
tion functionalities provided by Dolos. Results are
returned in JSON format. For proper sandboxing,
each new request uploads source files and runs
dolos-cli in its own Docker container (dolos—
docker). The analysis results are stored server-
side. The dolos-web web interface built in server

7 https://nodejs.org/
8 https://v3.vuejs.org
9 https://v3.vuetifyjs.com
10 https://rubyonrails.org/

mode communicates with this API to upload datasets,
fetch report information, and display the results.

The Dolos documentation website’s (https://dolos.ugent.be) source
code is included in the dolos-docs module. The dolos—docker
module contains a Docker!! container pre-installed with the Dolos CLI
(dolos-cli component). For each new release, a new version of the
dolos-docker package is automatically published in the GitHub
container registry (https://ghcr.io/dodona-edu/dolos). Additionally,
new versions of the dolos—core, dolos-parsers, dolos-1ib,
dolos-web and dolos-cli packages are automatically published
on npm under the @dodona scope: @dodona/dolos-core,
@dodona/dolos-parsers, @dodona/dolos-1lib, @dodona/
dolos-web, with @dodona/dolos providing the dolos-cli pack-
age.

System requirements

The software components and docker images of Dolos are cross-
platform and run on Linux, MacOS and Windows. To run the CLI,
Node.js is required with capabilities to install native modules. The CLI
runs with 500 MiB of RAM or less and requires more RAM as larger
datasets are analysed. We recommend having at least 3 GiB of RAM for
hosting a local instance of the web app. The web app can be used in
any modern browser (Firefox, Chrome, Edge, ...).

4. Impact

In May 2023, following a ‘“release often/release early” strategy,
Ghent University (Belgium) started hosting a first standalone instance
of the Dolos web app. At the time of writing (April 2024) this preview
version alone has scanned over 5000 collections of source files for
possible cases of plagiarism. The significance of source code plagiarism
in education is further highlighted by the fact that Dolos has received
over 200 stars on GitHub from people from around the world. The code
repository also had 52 issues or discussions opened by users outside
the core development team to report bugs, ask questions, or suggest
features for unsupported use cases.

11 https://docker.com

https://nodejs.org/
https://v3.vuejs.org
https://v3.vuetifyjs.com
https://rubyonrails.org/
https://dolos.ugent.be
https://ghcr.io/dodona-edu/dolos
https://docker.com

Rien Maertens et al.

Industry players have begun integrating the Dolos web app into
their online learning environments. Codio,'? an online platform that
supports computer science courses, recently switched from using MOSS
and JPlag for source code plagiarism detection to a self-hosted in-
stance of Dolos. They justify this decision on their website, stating
that: “Plagiarism detection systems available such as MOSS and JPlag
were not developed for university programming courses. Therefore, they can
require considerable effort to submit large files of student code projects
and to interpret the results. Codio integrates the Dolos plagiarism detection
system developed by CS educators for programming courses. This integration
provides instructors with enough data and analysis for a lecturer to make
a conclusive, final decision. The burden of project data preparation and
submission to remote systems such as MOSS and JPlag is removed. The result
is a single-click process for the lecturer or teacher”.

Software components of the Dolos code similarity and clustering
pipeline are also being used beyond the original application domain of
educational source code plagiarism detection. For instance, in a study
on the prevalence of large language models (LLMs) violating software
copyright, Yu et al. [25] used Dolos to compare original copyrighted
source code with LLM-generated code for. Dolos has also been used for
malware detection (personal communication), where k-gram analysis is
commonly used to classify computer viruses [26].

5. Conclusions

The latest major release of Dolos (version 2.x) includes a free
and open-source web app for educators to detect plagiarism in ed-
ucational source code. This novel app can be run directly from the
browser without any installation or configuration. It is built on top
of a state-of-the-art source code similarity detection pipeline that has
been optimised for speed and memory consumption. The app supports
numerous programming languages out of the box, and the procedure
for adding new language parsers has been enhanced. It offers a well-
designed set of dashboards for plagiarism analytics. The hierarchical
structure of the dashboards enables a thorough examination of sus-
pected plagiarism cases within a collection of source files. Identifying
clusters of source files helps comprehend the distribution of plagiarism
incidents among groups of students. A comparison of source files
side by side can help to identify conclusive evidence that high code
similarity is not a coincidence.

Dolos primarily focuses on detecting source code plagiarism in
educational settings. However, it has also been utilised for other code
similarity and clustering applications, such as malware analysis and
generative Al research. We offer comprehensive documentation for
power users who wish to host an instance of the web app, integrate
plagiarism detection into external learning platforms using its JSON API
or JavaScript library, or perform source code similarity analysis from
the command line. Dolos’ roadmap includes further research into the
use of advanced index structures to enable fast scanning of more and
longer source files. Additionally, we want to provide specific support
for multi-file student projects and take into account the additional
longitudinal dimension of students submitting multiple solutions to the
same programming exercise. Collaboration on these issues is welcome,
and we would be happy to hear about other use cases.

CRediT authorship contribution statement

Rien Maertens: Writing — original draft, Software, Investigation.
Maarten Van Neyghem: Writing — review & editing, Software, In-
vestigation. Maxiem Geldhof: Writing — review & editing, Software,
Investigation. Charlotte Van Petegem: Writing — review & editing.
Niko Strijbol: Writing — review & editing. Peter Dawyndt: Writing
- review & editing, Supervision. Bart Mesuere: Writing — review &
editing, Supervision, Conceptualization.

12 https://codio.com

SoftwareX 26 (2024) 101755
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
No data was used for the research described in the article.
Acknowledgements

Dolos is part of the ecosystem surrounding the Dodona online
learning platform'® [11]. Team Dodona expresses gratitude for the fi-
nancial support provided by Ghent University (UGent, Belgium) and the
Flemish Government (Belgium) through various grants for innovation
in education. Additionally, we thank UGent for hosting a free-to-use
instance of the Dolos web app (https://dolos.ugent.be). This work was
partially supported by the Research Foundation — Flanders (FWO) for
ELIXIR Belgium (I002819N, 1000323N).

We appreciate all users who reported issues, shared use cases and
provided constructive feedback.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.s0ftx.2024.101755.

References

[1] Sax LJ, Lehman KJ, Zavala C. Examining the enrollment growth: Non-CS majors
in CS1 courses. In: Proceedings of the 2017 ACM SIGCSE technical symposium
on computer science education. Seattle Washington USA: ACM; 2017, p. 513-8.
http://dx.doi.org/10.1145/3017680.3017781.

[2] Balanskat A, Engelhardt K. Computing our future - priorities, school curricula
and initiatives across Europe. Tech. rep., European Schoolnet; 2014, p. 28.

[3] UK Department for Education. National curriculum in England: Computing
programmes of study. 2013, GOV.UK, URL https://www.gov.uk/government/
publications/national- curriculum-in-england-computing- programmes-of-study.

[4] Albluwi I. Plagiarism in programming assessments: A systematic review. ACM
Trans Comput Educ 2019;20(1):6:1-28. http://dx.doi.org/10.1145/3371156.

[5] Pierce J, Zilles C. Investigating student plagiarism patterns and correlations
to grades. In: Proceedings of the 2017 ACM SIGCSE technical symposium
on computer science education. SIGCSE 17, New York, NY, USA: Association
for Computing Machinery; 2017, p. 471-6. http://dx.doi.org/10.1145/3017680.
3017797.

[6] Cosma G, Joy M. Towards a definition of source-code plagiarism. IEEE Trans
Educ 2008;51(2):195-200. http://dx.doi.org/10.1109/TE.2007.906776.

[7] McCabe DL, Trevino LK, Butterfield KD. Academic integrity in honor code
and non-honor code environments: A qualitative investigation. J Higher Educ
1999;70(2):211-34. http://dx.doi.org/10.2307/2649128, arXiv:2649128.

[8] Ngo MN. Eliminating plagiarism in programming courses through assessment
design. Int J Inform Educ Technol 2016;6(11):873-9. http://dx.doi.org/10.7763/
1JIET.2016.V6.808.

[9] Ruiperez-Valiente JA, Alexandron G, Chen Z, Pritchard DE. Using multiple
accounts for harvesting solutions in MOOGCs. In: Proceedings of the third (2016)
ACM conference on learning @ scale. Edinburgh Scotland UK: ACM; 2016, p.
63-70. http://dx.doi.org/10.1145/2876034.2876037.

[10] Novak M, Joy M, Kermek D. Source-code similarity detection and detection
tools used in academia: A systematic review. ACM Transactions on Computing
Education 2019;19(3):1-37. http://dx.doi.org/10.1145/3313290.

[11] Van Petegem C, Maertens R, Strijbol N, Van Renterghem J, Van der Jeugt F,
De Wever B, et al. Dodona: Learn to code with a virtual co-teacher that supports
active learning. SoftwareX 2023;24:101578. http://dx.doi.org/10.1016/j.s0ftx.
2023.101578.

[12] Weber-Wulff D. Plagiarism detectors are a crutch, and a problem. Nature
2019;567(7749):435. http://dx.doi.org/10.1038/d41586-019-00893-5.

[13] Chuda D, Navrat P, Kovacova B, Humay P. The issue of (software) plagiarism: A
student view. IEEE Trans Educ 2012;55(1):22-8. http://dx.doi.org/10.1109/TE.
2011.2112768.

13 https://dodona.ugent.be

https://codio.com
https://dolos.ugent.be
https://doi.org/10.1016/j.softx.2024.101755
http://dx.doi.org/10.1145/3017680.3017781
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb2
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb2
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb2
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
http://dx.doi.org/10.1145/3371156
http://dx.doi.org/10.1145/3017680.3017797
http://dx.doi.org/10.1145/3017680.3017797
http://dx.doi.org/10.1145/3017680.3017797
http://dx.doi.org/10.1109/TE.2007.906776
http://dx.doi.org/10.2307/2649128
http://arxiv.org/abs/2649128
http://dx.doi.org/10.7763/IJIET.2016.V6.808
http://dx.doi.org/10.7763/IJIET.2016.V6.808
http://dx.doi.org/10.7763/IJIET.2016.V6.808
http://dx.doi.org/10.1145/2876034.2876037
http://dx.doi.org/10.1145/3313290
http://dx.doi.org/10.1016/j.softx.2023.101578
http://dx.doi.org/10.1016/j.softx.2023.101578
http://dx.doi.org/10.1016/j.softx.2023.101578
http://dx.doi.org/10.1038/d41586-019-00893-5
http://dx.doi.org/10.1109/TE.2011.2112768
http://dx.doi.org/10.1109/TE.2011.2112768
http://dx.doi.org/10.1109/TE.2011.2112768
https://dodona.ugent.be

Rien Maertens et al.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Culwin F, MacLeod A, Lancaster T. Source code plagiarism in UK HE computing
schools. In: Proceedings of the 2nd annual LTSN-ICS conference. London, United
Kingdom: LTSN Centre for Information and Computer Sciences; 2001, p. 1-7.
Schleimer S, Wilkerson DS, Aiken A. Winnowing: Local algorithms for document
fingerprinting. In: Proceedings of the 2003 ACM SIGMOD international confer-
ence on management of data. SIGMOD ’03, New York, NY, USA: Association
for Computing Machinery; 2003, p. 76-85. http://dx.doi.org/10.1145/872757.
872770.

Prechelt L, Malpohl G, Philippsen M. Finding plagiarisms among a set of
programs with jplag. J UCS 2002;8(11):1016-38. http://dx.doi.org/10.3217/
jucs-008-11-1016.

Chandere V, Satish S, Lakshminarayanan R. Online plagiarism detection tools in
the digital age: A review. Ann Roman Soc Cell Biol 2021;7110-9.

Jiffriya MAC, Akmal Jahan MAC, Ragel RG. Plagiarism detection tools and
techniques: A comprehensive survey. J Sci-FAS-SEUSL 2021;02(02):47-64.
Maertens R, Van Petegem C, Strijbol N, Baeyens T, Jacobs AC, Dawyndt P, et al.
Dolos: Language-agnostic plagiarism detection in source code. J Comput Assist
Learn 2022;38(4):1046-61. http://dx.doi.org/10.1111/jcal.12662.

Myers EW. An O(ND) difference algorithm and its variations. Algorithmica
1986;1(1):251-66. http://dx.doi.org/10.1007/BF01840446.

[21]

[22]

[23]

[24]

[25]

[26]

SoftwareX 26 (2024) 101755

Berrezueta-Guzman J, Paulsen M, Krusche S. Plagiarism detection and its effect
on the learning outcomes. In: 2023 IEEE 35th international conference on
software engineering education and training. 2023, p. 99-108. http://dx.doi.
org/10.1109/CSEET58097.2023.00021.

Maertens R, Van Petegem C, Strijbol N, Baeyens T, Jacobs AC, Van Neyghem M,
et al. Dolos — Source code plagiarism detection system. 2023, http://dx.doi.org/
10.5281/zenodo.7966722, Zenodo.

Brunsfeld M, Hlynskyi A, Qureshi A, Thomson P, Vera J, Turnbull P, et al. Tree-
Sitter/tree-Sitter: V0.20.9. 2024, http://dx.doi.org/10.5281/ZENODO.4619183,
Zenodo.

Bostock M, Ogievetsky V, Heer J. D° data-driven documents. IEEE Trans Vis
Comput Graphics 2011;17(12):2301-9. http://dx.doi.org/10.1109/TVCG.2011.
185.

Yu Z, Wu Y, Zhang N, Wang C, Vorobeychik Y, Xiao C. CodeIPPrompt: Intellec-
tual property infringement assessment of code language models. In: Krause A,
Brunskill E, Cho K, Engelhardt B, Sabato S, Scarlett J, editors. Proceedings of
the 40th international conference on machine learning. Proceedings of machine
learning research, vol. 202, PMLR; 2023, p. 40373-89, URL https://proceedings.
mlr.press/v202/yu23g.html.

Gandotra E, Bansal D, Sofat S. Malware analysis and classification: A survey. J
Inform Secur 2014;05(02):56-64. http://dx.doi.org/10.4236/jis.2014.52006.

http://refhub.elsevier.com/S2352-7110(24)00126-2/sb14
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb14
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb14
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb14
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb14
http://dx.doi.org/10.1145/872757.872770
http://dx.doi.org/10.1145/872757.872770
http://dx.doi.org/10.1145/872757.872770
http://dx.doi.org/10.3217/jucs-008-11-1016
http://dx.doi.org/10.3217/jucs-008-11-1016
http://dx.doi.org/10.3217/jucs-008-11-1016
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb17
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb17
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb17
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb18
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb18
http://refhub.elsevier.com/S2352-7110(24)00126-2/sb18
http://dx.doi.org/10.1111/jcal.12662
http://dx.doi.org/10.1007/BF01840446
http://dx.doi.org/10.1109/CSEET58097.2023.00021
http://dx.doi.org/10.1109/CSEET58097.2023.00021
http://dx.doi.org/10.1109/CSEET58097.2023.00021
http://dx.doi.org/10.5281/zenodo.7966722
http://dx.doi.org/10.5281/zenodo.7966722
http://dx.doi.org/10.5281/zenodo.7966722
http://dx.doi.org/10.5281/ZENODO.4619183
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
https://proceedings.mlr.press/v202/yu23g.html
https://proceedings.mlr.press/v202/yu23g.html
https://proceedings.mlr.press/v202/yu23g.html
http://dx.doi.org/10.4236/jis.2014.52006

	Discovering and exploring cases of educational source code plagiarism with Dolos
	Motivation and significance
	Illustrative example
	Step 1: data submission
	Step 2: exploring analysis results

	Software description
	System requirements

	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Supplementary data
	References

