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Abstract

In this work a stochastic dynamic version of the container drayage problem (CDP)
is studied. The presented model incorporates uncertainty in the form of stochas-
tic loading and unloading times at both terminals and customers, and stochastic
travel times, conditionally dependent upon the departure time, allowing robust
planning with respect to varying processing times. Moreover, the presented model
is dynamic, allowing flexible orders and having the capability of re-solving the
optimization problem in case of last-minute orders. Finally, the model also incor-
porates a truck appointment system (TAS) operating at each terminal. First,
a description of the general model is given, which amounts to a mixed integer
non-linear program. In order to efficiently solve the optimization problem, and
linearize both the objective and the conditional chance constraints, it is reformu-
lated based on time window partitioning, yielding a purely integer linear program.
As a test case, a large road carrier operating in the port of Antwerp is consid-
ered. We demonstrate that the model is efficiently solvable, even for instances of
up to 300 orders. Moreover the impact of incorporating stochastic information is
clearly illustrated.

Keywords: container drayage problem, truck appointment scheduling, real-time,
stochastic, routing optimization

1



1 Introduction

Considering global trades, short-distance transport of containers over road, drayage, is
an important link in the associated logistic chain (see Figure 1) and contributes roughly
30 % to the total long-distance transportation cost [1]. Drayage operations encompass
all short-distance transports of containers over road, as sea vessels or trains lack door-
to-door services. Ever-increasing overseas trades make the problem of optimizing these
drayage operations as relevant as ever.

Fig. 1: A simplified schematic of overseas transport.

The container drayage problem (CDP) models these drayage operations and aims
to optimize them with respect to e.g. traveled distance, number of trucks, operational
costs, profits, etc. The CDP is typically handled as a pickup and delivery problem
(PDP) [2] or the multiple traveling salesman problem (m-TSP) [3], variants of the
well-known rich class of vehicle routing problems (VRP) [4]. In the general PDP,
transport requests are point-to-point transports, i.e. for each transportation request,
goods are picked up at one location, and goods are delivered to another, see [5, 6] for
an overview. In order to model the CDP however, an extra constraint is necessary,
namely, no fractional shipments are allowed, and a container is always transported as
a whole. The m-TSP is a variant of the renowned TSP, where multiple salesmen are
considered, see [7] for an overview of the general problem.

Typically, the problems considered are assumed to be static and deterministic, full
information is assumed and a complete planning is computed. In practice, however,
problems are rarely static or deterministic. For example, orders may be canceled or
changed during operation, new high-priority orders might pop up, truck of driver avail-
abilities might change, etc. Moreover, often expected operating-, loading-, unloading-
and travel-times are assumed, but in practice, the uncertainty upon these quantities
is non-negligible; truck turnaround times in the container terminals might vary due to
different internal operations, loading or unloading at customers might also experience
unforeseen delays, and finally, travel times along the traffic network are dependent on
the state of traffic and congestion and will vary considerably.
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Taking these facts into consideration, we will formulate the CDP with conditional
(i.e. time-dependent) chance constraints based on given general probability distribu-
tions which are conditioned upon the time of initiating certain activities. Additionally,
the model will be capable of handling flexible orders and recomputing a planning.
Finally, a truck appointment system (TAS) operational at multiple terminals will be
incorporated into the mathematical model. The objective will be minimizing opera-
tion time needed to serve all customers, i.e. the sum of the time spent by each truck
during operations. The full optimization model will be a mixed integer non-linear pro-
gram (MINLP), however, we will reformulate it based on a time window partitioning,
which results in a pure integer linear program (ILP), while still allowing completely
general conditional probability distributions to be integrated into the model. More-
over, this linearization will allow the model to be solved and dynamically re-solved in
an efficient way. Our contributions can thus be summarized as follows:

• Incorporating stochasticity, flexible orders, and a TAS into one model
• Incorporating chance constraints which are conditionally dependent on departure
time

• Linearizing these non-linear conditional chance constraints by time window parti-
tioning

• Testing on large instances based on the real-world case of the port of Antwerp

The remainder of this article is structured as follows: Section 2 will give an overview
of existing work that is relevant to the content of the article; Section 3 will give a
detailed description of the mathematical model that is used; in Section 4 some context
will be given for the experimental test case used; Section 5 contains the obtained
experimental results; and finally, Section 6 covers the final discussion and conclusions.

2 Literature review

The CDP has been, like the more general class of VRPs, the subject of quite some
research. The authors of [3] have studied the container drayage problem as “local truck-
load pickup and delivery” along with time window constraints and formulated it as
a m-TSP with time window constraints (m-TSPTW). Moreover, they propose a time
window partitioning scheme to solve the model more efficiently. In [8] the CDP is con-
sidered with time windows and social constraints on the working time of truck drivers,
which they formulate as an m-TSPTW. In [9] the VRP with full container loads is
tackled by a heuristic based on the Lagrangian relaxation of the problem containing
two subproblems: the classical assignment problem and the generalized assignment
problem. More recently, the authors of [10] conducted an in-depth literature review
on drayage optimizations.

The problem of drayage optimization in actuality consists of 2 subproblems, namely
a VRP, and an empty container allocation problem. These two problems are sometimes
solved in a sequential manner, where the objective of the first is to find the optimal
tours, while the objective of the latter is to optimally distribute empty containers
among customer locations, depots and terminals, based on supply and demand. The
empty container allocation problem in itself has been studied by different authors
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[11–13]. The VRP and empty container allocation problem have also been solved
together in an integrated manner [14]. The authors of [15] for example propose a
cluster method and a reactive tabu search heuristic to solve the integrated problem,
which they formulate as a m-TSPTW. In [16], the authors extended their previous
work, considering empty containers as a transportation resource, and assuming a finite
number of empty containers available at the depot. Often, it is assumed that enough
empty containers are available at the depots and that an unlimited number of empty
containers can be stored at the depots, such as in e.g. [17, 18], the same assumption
will be made here.

With the aim of reducing congestion and waiting times and improving their overall
efficiency, many terminals have introduced a truck appointment system (TAS) [19].
The main idea behind a TAS is to set up time windows which can be booked by
truckers who want to pick up or deliver a certain container. The number of times
a certain time slot can be booked is limited which allows the terminal operators to
effectively control the truck arrival rates such that the number of visiting trucks can
be spread out more evenly throughout the day. The integration of a TAS into the CDP
has also been investigated in literature [20, 21].

Integrating uncertainty and stochasticity into VRPs has been the subject of ear-
lier studies as well, where different techniques are discerned. Broadly speaking, these
techniques can be divided into: chance-constrained optimization [22], stochastic pro-
gramming [23], and robust optimization [24]. When stochasticity pertains solely to
the constraints rather than the objective function, a conventional method known as
chance-constrained optimization is employed. This framework enables the formulation
of an optimization problem with the condition that the probability of violating specific
constraints should be limited to a predetermined value. In stochastic programming,
the probability distributions of the random variables are assumed to be known, and
the objective is to optimize the expected value of the objective function. On the other
hand, robust optimization focuses on scenarios where the underlying distributions are
often unknown (though not necessarily), and the objective is to find a solution that
remains robust (i.e., feasible) against all potential uncertainty scenarios. In the con-
text of CDPs, there has been little research on integrating uncertainty into the models.
The authors of [18] studied the CDP with a TAS operating at a single terminal, and
incorporated stochastic container packing and unpacking times. Their model is based
on chance constraints which are linearized by less strict approximation which make
no assumptions about the specific form of the probability distributions. In [25], a
truck dispatching model is studied in the setting of truck-train intermodal transport,
where uncertainty in truck roundtrip durations and uncertain train departure times
are incorporated.

There has also been done some research on handling flexible orders and the dynamic
CDP. For example, in [26, 27], a framework which allows to re-optimize drayage oper-
ations based on real-time GPS data of the trucks is studied. The authors of [17] study
the CDP with flexible orders, where during operation, orders can be canceled or new
orders can be added and the planning can be re-optimized. In order to handle flexible
orders, they introduce a temporal vertex set in the graph formulation which represents
the orders that are being handled at the decision epoch.
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Some studies have considered discretization or partitioning of time windows as a
means to handle continuous time variables and time windows, by replacing them with
a set of assignment variables. As early as [28], where a ship-scheduling problem is
solved based on time discretization, while in [29] a similar method is used to generate
flight assignments. The authors of [3] are the first to apply window partitioning in the
context of the m-TSPTW such as container drayage optimization. In [30] the authors
build upon the results of [3] and show a clear improvement in the computation time
required to solve the CDP.

3 Problem formulation

The problem that will be tackled in this work is thus stochastic as well as dynamic
with respect to flexible orders. Both time-windows and a TAS will be incorporated.
The objective considered will be minimizing the total drayage operating time needed
to process all orders. In the following subsections, the assumptions, notations and
formulation will be discussed in more detail.

3.1 Description and assumptions

For the CDP considered here, a set of depot nodes VD is considered, each having
a location Li and a certain number of identical trucks present ni,∀i ∈ VD at each
decision epoch. At the end of each operating day, the trucks are assumed to return to
one of the depots. We will also assume that there is no limit on the number of empty
containers that can be stored or retrieved at one of these depots. It is also assumed
that a truck transports only one container at a time, i.e. no 20-foot containers are
combined onto one trailer. In practice, two containers are seldom combined onto one
trailer, because of the risk of exceeding the legally allowed weight limits on a single
truck.

Next, a set of orders VO is given, all of which should be handled. Each order has
a number of attributes: origin Oi; destination Di; time window [Ai, Bi]; type; and a

requiring and releasing attribute pQi and pLi . Both the origin and destination of an
order can be either a customer location or a container terminal. The time window
[Ai, Bi] denotes the time frame in which the activities of order i ∈ VO should be
commenced. The type of the order can be either:

• Import: the origin of the order is a container terminal, the destination a customer
• Export: the origin of the order is a customer, the destination a container terminal
• Customer: both the origin and destination of the order are a customer

In the formulation of the optimization model, additionally, the subset of import orders
and export orders V I

O ⊂ VO and V E
O ⊂ VO will be used. In order to model the flow of

empty containers, the requiring and releasing attributes pQi and pLi are used, similar
to the work in [17].

pQi =

{
0 No empty container is required at the origin of order i

1 An empty container is required at the origin of order i
(1)
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pLi =

{
0 No empty container is released at the destination of order i

1 An empty container is released at the destination of order i
(2)

Using these two attributes a number of different types of orders can be modeled, see
Table 1.

Table 1: Different types of orders that can be modeled with attributes pQi and
pLi .

Type of order pQi pLi
Import order, truck does not wait at customer to unload the container 0 0

Import order, truck waits at customer to unload the container 0 1

Export order, truck picks up a loaded container 0 0

Export order, truck waits at customer to load the container 1 0

Transport a loaded/unloaded container from a customer to another customers 0 0

Load an empty container at a customer and drop it off at another customers 1 0

Pick up a loaded container at a customer and unload it at another customers 0 1

Load a container at a customer and unload it at another customers 1 1

In order to handle flexible orders and recompute a planning, a set of temporal
vertices VT is introduced, comparable to [17]. This set contains all trucks working on
an order at the time s of a decision epoch, and each vertex resembles the remaining
time of the activities of the order being processed.

Finally, a set of arcs A is defined between order vertices, depots, and temporal
vertices, representing the transitions. First of all, arcs from depots to order nodes are
defined, as well as arcs from order nodes to depots. Secondly, arcs between different
order nodes are defined. Finally, we have arcs going from temporal vertices to order
vertices.

A ={(i, j) : i ∈ VD, j ∈ VO, or i ∈ VO, j ∈ VO, i ̸= j, or

i ∈ VO, j ∈ VD, or i ∈ VT , j ∈ VO, or i ∈ VT , j ∈ VD}
(3)

With each arc, and thus physical displacement, a travel time is associated as follows:

τij =


τ(Li, Oj), ∀i ∈ VD, j ∈ VO

τ(Di, Lj), ∀i ∈ VO ∪ VT , j ∈ VD

τ(Di, Oj), i ∈ VO ∪ VT , j ∈ VO, p
L
i = pQj

mink∈VD
(τ(Di, Lk) + τ(Lk, Oj)), i ∈ VO ∪ VT , j ∈ VO, p

L
i ̸= pQj

(4)

In the model considered here, a truck appointment system (TAS) is incorporated at
each of the container terminals. A distinction is made between import orders V I

O ⊂ VO
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and export orders V E
O ⊂ VO, each having a separate TAS. Each terminal m ∈ M has

a number of time slots for import Ql
m, and export Rl

m, where l ∈ Tm denotes the time
slots of terminal m. The width of the time slots is chosen to be the same for each
terminal and is set to 2 hours, i.e. the time slots are 0:00-2:00, 2:00-4:00, 4:00-6:00,
6:00-8:00, 8:00-10:00, 10:00-12:00, 12:00-14:00, 14:00-16:00, 16:00-18:00, 18:00-20:00,
20:00-22:00, 22:00-24:00. The number of available time slots, of course, depends on
the capacity and the number of slots that are booked by other transport companies,
which will be elaborated in more detail in Section 4.

In the formulation of the optimization model, a few different types of variables
are used. The first type yi ∈ R, ∀i ∈ VO represents the time at which the activities
of order i are commenced. Next, the binary variables xij ∈ {0, 1}, ∀(i, j) ∈ A denote
which vertex j should succeed the activities in i. Finally, two sets of binary variables
are introduced in order to capture the TAS functionality:

qil =

{
1, if l ∈ Tm(i) is booked in the import TAS of terminal m(i) for import order i

0, otherwise

ril =

{
1, if l ∈ Tm(i) is booked in the export TAS of terminal m(i) for export order i

0, otherwise

3.2 Stochasticity

The model formulated and studied in this work will incorporate uncertainty and
stochasticity of both travel times and loading and unloading times. First of all the
probability distribution of the loading and unloading time will depend on the attributes

pQi and pLi and on the location (terminal or customer), p
O/D
i (ti|pQ/L

i ), see Section
4. These distributions will however be assumed to be unconditioned on the time of
arrival. The travel time between locations will be assumed to be distributed according
to a given probability distribution, conditioned upon the time of departure pτ (τ |T ).
The travel time described in (4) will thus be distributed accordingly

τij =


τ(Li, Oj) ∼ p1(τij |s), ∀i ∈ VD, j ∈ VO

τ(Di, Lj) ∼ p2(τij |yi), ∀i ∈ VO ∪ VT , j ∈ VD

τ(Di, Oj) ∼ p2(τij |yi), i ∈ VO ∪ VT , j ∈ VO, p
L
i = pQj

mink∈VD
(τ(Di, Lk) + τ(Lk, Oj)) ∼ p2(τij |yi), i ∈ VO ∪ VT , j ∈ VO, p

L
i ̸= pQj

(5)
Here p1(τij |s) = pτ (τij |s) for the first case, since departure from a depot takes place
at time s for a decision epoch at time s. For the second, third, and fourth case, the
time of departure from the destination Di of order i depends on the time it took to
complete the other activities of order i. Let us therefore first compute the distribution
of this departure time, given the activities of order i are initiated at time yi. The first
activity is the loading of a container at the origin Oi, for which the time needed to
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complete this, tOi , is distributed as pi(t
O
i |p

Q
i ). The next activity is the trip from Oi to

Di, with departure time yi+ tOi , with travel time τi. The distribution of tOτ
i = tOi + τi

is then given by

pOτ (tOτ
i |yi) =

∫
pi(t

O
i |p

Q
i )pτ (t

Oτ
i − tOi |yi + tOi )dt

O
i (6)

The following activity is the unloading of the container at the destination Di, the time
for which, tDi , is distributed as pi(t

D
i |pLi ). The probability distribution of the total

time of all activities in order i, ti = tOτ
i + tDi is then given by

pOτD(ti|yi) =
∫

pOτ (tOτ
i |yi)pDi (ti − tOτ

i |pLi )dtOτ
i (7)

Finally, the distribution of the travel time between i and j is given by

p2(τij |yi) =
∫

pτ (τij |yi + ti)p
OτD(ti|yi)dti (8)

In the optimization model, the probability distribution of the sum tij = ti + τij
will be needed, which can be computed in the following way

pij(tij |yi) =
∫

pτ (tij − ti|yi + ti)p
OτD(ti|yi)dti (9)

3.3 Optimization model: MINLP

The objective of the optimization model will be to minimize the expected value of
the total operation time needed to complete all orders. The complete optimization
problem is given below and is a mixed integer non-linear program (MINLP).

min

[ ∑
i∈VO

∑
j∈VD

(yi + E[ti + τij ])xij −
∑
i∈VD

∑
j∈VO

(yj − E[τij ])xij

+
∑
i∈VT

∑
j∈VD

(yi + E[ti + τij ])xij −
∑
i∈VT

∑
j∈VO∪VD

yixij

]
(10a)

Subject to
∑
j∈VO

xij ≤ ni, ∀i ∈ VD (10b)

∑
j∈VO∪VD

xij = 1, ∀i ∈ VT (10c)

∑
j∈VO∪VD∪VT

xji =
∑

j∈VO∪VD

xij = 1, ∀i ∈ VO (10d)

Ai ≤ yi ≤ Bi, ∀i ∈ VO (10e)

P (xij(yi + ti + τij) ≤ yj |yi) ≥ (1− α), ∀i, j ∈ VO (10f)
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P (xij(yi + ti + τij) ≤ yj |yi) ≥ (1− α), ∀i ∈ VT , ∀j ∈ VO (10g)

P (xij(s+ τij) ≤ yj |s) ≥ (1− β), ∀i ∈ VD, ∀j ∈ VO (10h)

yiqil ≤ U
m(i)
l , ∀i ∈ V I

O, ∀l ∈ Tm(i) (10i)

yi ≥ qilL
m(i)
l , ∀i ∈ V I

O, ∀l ∈ Tm(i) (10j)

P (L
m(i)
l ril ≤ ril(yi + tOi + τi) ≤ U

m(i)
l |yi) ≥ (1− ϵ), ∀i ∈ V E

O , ∀l ∈ Tm(i)

(10k)∑
l∈Tm(i)

qil = 1, ∀i ∈ V I
O (10l)

∑
l∈Tm(i)

ril = 1, ∀i ∈ V E
O (10m)

∑
i∈V I

O

m(i)=h

qil ≤ Qh
l , ∀l ∈ Th, ∀h ∈ M (10n)

∑
i∈V E

O

m(i)=h

ril ≤ Rh
l , ∀l ∈ Th, ∀h ∈ M (10o)

xij ∈ {0, 1}, i ̸= j, ∀i ∈ VO ∪ VD ∪ VT , ∀j ∈ VO ∪ VD (10p)

yi ∈ R, ∀i ∈ VO (10q)

qil ∈ {0, 1}, ∀i ∈ V I
O, ∀l ∈ Tm(i) (10r)

ril ∈ {0, 1}, ∀i ∈ V E
O , ∀l ∈ Tm(i) (10s)

Let us first discuss the objective (10a) of minimizing the total operating time. The
first line consists of two terms, the first of these represents the times at which trucks
arrive back at a depot after finishing their orders, i.e. a truck departing from order
i to depot j will arrive at time yi + E[ti + τij ]; the second term in this line denotes
the departing times of all trucks, i.e. if a truck start an order j at time yj , it should
depart at time yj −E[τij ] at depot i. The difference of the time at which trucks return
to a depot and the time at which they depart at a depot thus represents the total
operation time, including waiting, loading, unloading, driving, etc. The second line in
the objective is the total operating time for temporal vertices, i.e. they arrive at time
yi + E[ti + τij ] at a depot j and depart at time yi.

The basic constraints (10b), (10c), and (10d) ensure that at most ni trucks can
depart at a given depot i, each temporal vertex must be left, and every order ver-
tex must have exactly one incoming and one outgoing truck, respectively. Next, the
starting time should respect the time windows (10e), and the probability of arriv-
ing before the starting time of the next order yj should meet at least some threshold
(10f), (10g), (10h), where α, β ∈ [0, 1] are some user-defined parameters. Note that
these constraints also eliminate subtours among orders. These probabilities can be
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easily computed by integrating (9) with the correct corresponding bounds. The next
set of constraints implements the TAS functionality. For any import orders, the start-
ing time of an order should meet the time slot booked in the TAS (10i) and (10j),
and for any export orders, the probability of meeting the booked time slot should be
at least a certain threshold value (10k), with ϵ ∈ [0, 1] a user-defined parameter. For
every import or export order, exactly one time slot should be booked, (10l) and (10m).
And for every terminal, the number of booked time slots for import and export should
not exceed the number of available time slots, (10n) and (10o). Finally, (10p), (10q),
(10r), and (10s) define the variable domains.

This optimization problem is a mixed integer problem and is also non-linear
due to the objective (10a) and constraints (10f), (10g), (10h), and (10k). In the
next subsection, a framework which fully linearizes this optimization problem will be
discussed.

3.4 ILP: Window partitioning

In order to make the problem efficiently solvable for a considerable number of orders,
the optimization model of the previous subsection will be reformulated and approxi-
mated based on the discretization of the continuous time variable and time windows,
yi ∈ [Ai, Bi]. Consider order i and its time window [Ai, Bi], a discretization width δ
is chosen and the time window is replaced by a set of smaller time windows

[Ai, Bi] → [Ai, Ai + δ], [Ai + δ, Ai + 2δ], ...[Ai + (n− 1)δ,Bi] (11)

where n = ⌊(Bi −Ai)/δ⌋. Each order vertex is replaced by a set of suborder vertices.
Each suborder has a certain smaller time window [ai, bi], which represents the discrete
starting time of that suborder by only considering the latest time at which that sub-
order should be commenced, bi. Introducing the set of all suborders ω, the respective
sets for import and export, ωI and ωE , and replacing VO by ω in the set of arcs A
and in the definition of the variables xij , as well as replacing VT by ωT , the stochastic
travel time becomes:

τij =


τ(Li, Oj) ∼ p1(τij |s), ∀i ∈ VD, j ∈ ω

τ(Di, Lj) ∼ p2(τij |bi), ∀i ∈ ω ∪ ωT , j ∈ VD

τ(Di, Oj) ∼ p2(τij |bi), i ∈ ω ∪ ωT , j ∈ ω, pLi = pQj
mink∈VD

(τ(Di, Lk) + τ(Lk, Oj)) ∼ p2(τij |bi), i ∈ ω ∪ ωT , j ∈ ω, pLi ̸= pQj
(12)

By substituting the decision variable yi by the parameter bi, the optimization problem
from Subsection 3.3 can thus be reformulated as (where the indicator o(i) ∈ VO, ∀i ∈ ω
denotes the order to which a suborder belongs):

min

[∑
i∈ω

∑
j∈VD

(bi + E[ti + τij ])xij −
∑
i∈VD

∑
j∈ω

(bj − E[τij ])xij
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+
∑
i∈ωT

∑
j∈VD

(bi + E[ti + τij ])xij −
∑
i∈ωT

∑
j∈ω∪VD

bixij

]
(13a)

Subject to
∑
j∈ω

xij ≤ ni, ∀i ∈ VD (13b)

∑
j∈ω∪VD

xij = 1, ∀i ∈ ωT (13c)

∑
j∈ω∪VD∪ωT

xji =
∑

j∈ω∪VD

xij , ∀i ∈ ω (13d)

∑
i∈ω∪VD∪ωT

∑
j∈ω

o(j)=k

xij = 1, ∀k ∈ VO (13e)

P (bi + ti + τij ≤ bj |bi) ≥ (1− α)xij , ∀i, j ∈ ω (13f)

P (bi + ti + τij ≤ bj |bi) ≥ (1− α)xij , ∀i ∈ ωT , ∀j ∈ ω (13g)

P (s+ τij ≤ bj |s) ≥ (1− β)xij , ∀i ∈ VD, ∀j ∈ ω (13h)

biqil ≤ U
m(i)
l , ∀i ∈ ωI , ∀l ∈ Tm(i) (13i)

bi ≥ qilL
m(i)
l , ∀i ∈ ωI , ∀l ∈ Tm(i) (13j)

P (L
m(i)
l ≤ bi + tOi + τi ≤ U

m(i)
l |bi) ≥ (1− ϵ)ril, ∀i ∈ ωE , ∀l ∈ Tm(i)

(13k)∑
i∈ω

o(i)=k

∑
l∈Tm(i)

qil = 1, ∀k ∈ V I
O (13l)

∑
i∈ω

o(i)=k

∑
l∈Tm(i)

ril = 1, ∀k ∈ V E
O (13m)

∑
i∈ωI

m(i)=h

qil ≤ Qh
l , ∀l ∈ Th, ∀h ∈ M (13n)

∑
i∈ωE

m(i)=h

ril ≤ Rh
l , ∀l ∈ Th, ∀h ∈ M (13o)

xij ∈ {0, 1}, i ̸= j, ∀i ∈ ω ∪ VD ∪ ωT , ∀j ∈ ω ∪ VD (13p)

qil ∈ {0, 1}, ∀i ∈ ωI , ∀l ∈ Tm(i) (13q)

ril ∈ {0, 1}, ∀i ∈ ωE , ∀l ∈ Tm(i) (13r)

The new objective (13a) is the straightforward linearization of (10a). Constraints
(13b), (13c), and (13d) are the equivalents of constraints (10b), (10c), and (10d), while
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constraint (13e) enforces that for every order, exactly one suborder vertex should be
visited. Constraints (13f), (13g) and (13h) are the linear versions of (10f), (10g) and
(10h). The TAS constraints (13i), (13j), (13k), (13l), (13m), (13n), and (13o) are also
the direct translation of (10i), (10j), (10k), (10l), (10m), (10n), and (10o). Finally
(13p), (13q), and (13r) define the variables.

The obtained model is a pure integer linear program (ILP) for which the optimal
solution is in general a suboptimal solution (more specifically an upper bound) of the
MINLP, though will approach the optimal solution for a small enough discretization δ.

3.5 Feasibility and deterministic model

In order to validate the stochastic model presented above, it will be compared to a
deterministic model, which is given below. The chance constraints have been changed
to their deterministic counterparts, namely (14f), (14g), (14h), and (14l).

min

[∑
i∈ω

∑
j∈VD

(bi + E[ti + τij ])xij −
∑
i∈VD

∑
j∈ω

(bj − E[τij ])xij

+
∑
i∈ωT

∑
j∈VD

(bi + E[ti + τij ])xij −
∑
i∈ωT

∑
j∈ω∪VD

bixij

]
(14a)

Subject to
∑
j∈ω

xij ≤ ni, ∀i ∈ VD (14b)

∑
j∈ω∪VD

xij = 1, ∀i ∈ ωT (14c)

∑
j∈ω∪VD∪ωT

xji =
∑

j∈ω∪VD

xij , ∀i ∈ ω (14d)

∑
i∈ω∪VD∪ωT

∑
j∈ω

o(j)=k

xij = 1, ∀k ∈ VO (14e)

(bi + E[ti] + E[τij ])xij ≤ bj , ∀i, j ∈ ω (14f)

(bi + E[ti] + E[τij ])xij ≤ bj , ∀i ∈ ωT , ∀j ∈ ω (14g)

(s+ E[τij ])xij ≤ bj , ∀i ∈ VD, ∀j ∈ ω (14h)

biqil ≤ U
m(i)
l , ∀i ∈ ωI , ∀l ∈ Tm(i) (14i)

bi ≥ qilL
m(i)
l , ∀i ∈ ωI , ∀l ∈ Tm(i) (14j)

L
m(i)
l ril ≤ bi + E[tOi ] + E[τi], ∀i ∈ ωE , ∀l ∈ Tm(i) (14k)

(bi + E[tOi ] + E[τi])ril ≤ U
m(i)
l , ∀i ∈ ωE , ∀l ∈ Tm(i) (14l)
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∑
i∈ω

o(i)=k

∑
l∈Tm(i)

qil = 1, ∀k ∈ V I
O (14m)

∑
i∈ω

o(i)=k

∑
l∈Tm(i)

ril = 1, ∀k ∈ V E
O (14n)

∑
i∈ωI

m(i)=h

qil ≤ Qh
l , ∀l ∈ Th, ∀h ∈ M (14o)

∑
i∈ωE

m(i)=h

ril ≤ Rh
l , ∀l ∈ Th, ∀h ∈ M (14p)

xij ∈ {0, 1}, i ̸= j, ∀i ∈ ω ∪ VD ∪ ωT , ∀j ∈ ω ∪ VD (14q)

qil ∈ {0, 1}, ∀i ∈ ωI , ∀l ∈ Tm(i) (14r)

ril ∈ {0, 1}, ∀i ∈ ωE , ∀l ∈ Tm(i) (14s)

As a means of testing the feasibility and robustness of a solution under uncertain
process times, a number of Monte Carlo simulations will be performed, where each
random variable is drawn from its respective probability distribution. In a solution,
each tour is simulated by generating random variables for the different steps in the
tour, i.e. traveling from a depot to the first customer, loading the container, traveling
to the destination, etc., advancing the time. For each time window, it is checked
whether the current time falls in this window; if it is too early, the time is set to the
lower bound of the time window; when it is too late, the solution is marked as failed
or infeasible for that particular generated instance.

4 Experimental setup and test case

As already mentioned earlier, the experiments and test cases will be based on the port
of Antwerp, Belgium. The port of Antwerp is a seaport located centrally in Europe,
near the city of Antwerp, is Europe’s second-largest seaport and is the 14th largest
container port worldwide. The port generates an added value of roughly 22 billion
euros, i.e. about 4.1 % of Belgian GDP [31]. In 2022, 13 484 122 TEU (twenty-foot
equivalent unit) of containers were handled in the port of Antwerp, closely following
the largest port in Europe, namely the port of Rotterdam with 14 455 000 TEU handled
in 2022. Below, the test case will be discussed in more detail.

4.1 Terminals, customers and depots

The port of Antwerp has 5 main container terminals, see Figure 2. In Table 2 the
terminals are listed with their respective annual capacities. When generating orders
for the experiments, it is assumed 45 % will be import, 45 % will be export, and 10 %
are transports between customer nodes. Moreover, for import and export orders, the
container terminal is chosen in a random fashion, weighted by the respective capacities.
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Fig. 2: The port of Antwerp and its hinterland, along with the locations of the 5 main
container terminals.

Label in Figure 2 Terminal Capacity (TEU)

A MSC PSA European Terminal (MPET) 9 000 000 (53 %)

B DP World Antwerp Gateway Terminal 2 500 000 (15 %)

C PSA Antwerp Noordzee Terminal 2 600 000 (15 %)

D PSA Antwerp Europa Terminal 1 800 000 (11 %)

E Antwerp Container Terminal 1 000 000 (6%)

Table 2: The 5 container terminals in the port of Antwerp, and their annual
capacities.

As described earlier, each of the terminals employs a TAS for import and for export.
Each terminal is assumed to have the same time slots. In order to model the number
of available time slots at each terminal, the number of available slots are weighted by
the capacities of the terminals, and reduced by an amount proportional to the typical
arrival rate at each time, see Figure 3. The resulting available time slots used in the
experiments (import + export) are summarized in Table 3.

Customer vertices are sampled randomly in the area of study, 100 such vertices
are generated, see Figure 2. In generating orders, the customers are picked randomly
from this set.

The transport company considered in the experiments is assumed to own and
manage 3 different depots at which trucks and empty containers can be stored, their
locations are depicted in Figure 2 as well. For all experiments, the number of trucks
is assumed to be distributed equally over the different depots.
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Fig. 3: The typical arrival frequency at a container terminal.

Terminal 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

A 171 175 164 78 93 55 35 35 75 131 167 172

B 48 49 46 22 26 16 10 10 21 37 47 48

C 50 51 48 23 27 16 11 10 22 38 49 50

D 35 35 33 16 19 11 7 7 15 27 34 35

E 19 20 19 9 11 7 4 4 9 15 19 20

Table 3: The number of available slots in the TAS for each time window, for the
different container terminals.

The travel time matrix between all vertices is computed based on the underlying
traffic network. To this end data from OpenStreetMap [32] was used.

4.2 Constructing probability distributions

4.2.1 Travel time

In order to estimate the conditional probability distribution of travel times, historic
GPS data of trucks in Belgium was used. Since no trip-specific data is available for
every possible route, a “global” distribution of the delay on the road network is con-
structed, averaged over all road segments. To this end a network of origins o and
destinations d that appear in the historic data is constructed, and for each pair the
travel times are scaled by the minimum value that appears for that specific (o, d) pair,
θ = tod/t

min
od , in function of the departure time T . This allows us to consider all (o, d)

pairs together, and construct a global distribution pθ(θ|T ). To construct this global
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distribution, for each departure time T , a weighted Gaussian KDE was used of all
points, with the weights given by

w(θi) = e−
1
2

(
Ti−T
σw

)2

∀ (T i, θi) (15)

where σw = 30 minutes, see also Figure 4. Putting this all together an estimator for the
distribution pθ(θ|T ) is obtained, depicted in Figure 5. In Figure 6 the mean of pθ(θ|T )
is given for each T , from which one can clearly see 2 distinctive peaks corresponding
to peak hours in traffic. Note that the increase in the mean around the morning and
evening is not so much due to the peak of pθ(θ|T ) shifting for each T , but due to the
tail of the distribution reaching much further at these moments, as can be seen in
Figure 5, meaning there is way more variation or uncertainty about the travel time at
these moments.

Fig. 4: Illustration of the weighing in the KDE of pθ(θ|T ).

Using the global delay distribution pθ(θ|T ), the travel time distributions of specific
(o, d) pairs within the road network can be approximated by scaling this distribution
by the minimal possible travel time between this origin and destination. For example

pτ (τij |T ) = pθ(τij/τ
0
ij |T ) (16)

Note that in general, the delay or travel time distribution should not only be
dependent on the departure time, but also on the specific trajectory or the roads
within it. Here, however, longer trajectories are considered, for which one can assume
that the localized effects of specific roads within a trajectory get averaged out. This
in turn justifies approximating the travel time distribution of a given trajectory by
rescaling the global averaged delay distribution.

4.2.2 Turnaround time at container terminals

The probability distribution of the turnaround time (both import and export) at
container terminals was determined from historical data from a terminal in the port of
Antwerp, averaged over a typical day. The resulting distribution is depicted in Figure
7.
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Fig. 5: The obtained estimator for pθ(θ|T ).

Fig. 6: The mean of pθ(θ|T ).
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Fig. 7: Distribution of the truck turnaround time at a container terminal.
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4.2.3 Handling time at customer

The (un)loading time at the customer vertices is assumed to be distributed according
to a log-normal distribution, since no quantitative data is available:

ph(th) =
1

thσ
√
2π

e−
(ln th−µ)2

2σ2

µ = ln

(
µ2
h√

µ2
h + σ2

h

)
, σ = ln

(
1 +

σ2
h

µ2
h

) (17)

Both the mean and standard deviation are assumed to depend on the attributes pQ

and pL:

(µh, σh) =

{
(30 min., 10 min.) pQ/L = 0

(60 min., 15 min.) pQ/L = 1
(18)

5 Results

The linearized optimization model is solved using the commercial solver Gurobi [33].
All experiments were performed on a computer with an Intel Core i7-8650U CPU @
1.90GHz×8 processor and 16 GB of RAM, under Ubuntu 18.04 x64.

5.1 Varying instance size

Let us first consider problem instances of varying numbers of orders and trucks, with
a fixed planning without dynamic orders. Setting δ = 10 minutes, α = β = 0.1 and
ϵ = 0.2, the results are summarized in Table 4, where the computing time, the objective
value, and the operating time per order is given for the optimal solutions. We were
able to solve problems of substantial size in less than an hour, which is sufficient for
a daily static planning. Moreover, for average-sized problems of 150 orders, a solution
can be found in under 5 minutes. As a general trend, the computing time decreases
with an increase in the number of available trucks, for a given number of orders. The
reason for this is that for a smaller number of trucks, the constraints are tighter and
more orders have to be combined in larger tours. It is also clear that the operating
time per order decreases for an increasing number of orders and trucks, which can be
expected since this results in a greater solution space meaning further optimization is
possible.

Figures 8, 9 and 10 depict the computation time, objective value and operating
time per order, respectively, for a varying number of orders, further illustrating these
trends. In Figure 8, the computation time is on average a factor 2-3 higher for 30
trucks compared to 60 trucks, and a factor of 1.5-2 for 60 trucks compared to 90.
The operating time per order in Figure 10 is equal for small orders set sizes, since 30
trucks is excessive and not all trucks are used. For larger numbers of orders on the
other hand, the operating time per order for 60 trucks is about 1.9 % higher than for
90 trucks, and for 30 trucks about 5.1 % higher compared to 90 trucks. The effect of
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increasing the number of trucks from 60 to 90 is smaller, since the number of tours
that is impacted or can be split up is smaller (all trucks were used in all three cases
for order set sizes equal to or greater than 160).

Table 4: Solutions for different problem sizes, where δ = 10 min-
utes, α = β = 0.1 and ϵ = 0.2. When no feasible solution exists,
this is denoted by “/”.

# Orders # Trucks Comp. time (s) Objective (min.) Min./order

10 2 0.009 / /

10 3 0.06 1699 169.9

10 4 0.06 1699 169.9

20 4 0.26 / /

20 6 0.26 3046 152.3

20 8 0.26 3046 152.3

50 10 6.2 7989 159.8

50 15 2.4 7720 154.4

50 20 3.6 7642 152.8

100 20 95 15334 153.3

100 30 23 14958 149.6

100 40 16 14762 147.6

150 30 256 22046 147.0

150 45 146 21718 144.8

150 60 84 21494 143.3

200 40 574 29288 146.4

200 60 329 28871 144.4

200 80 452 28646 143.2

250 50 1396 36411 145.6

250 75 474 35865 143.5

250 100 416 35578 142.3

300 60 2213 43383 144.6

300 90 1299 42871 142.9

300 120 775 42612 142.0
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Fig. 8: Computation time for different amounts of orders.

Fig. 9: Objective value of the optimal solution for different amounts of orders.
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Fig. 10: Operation time per order in the optimal solution for different amounts of
orders.
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5.2 Stochastic vs. deterministic

In Table 5 a comparison is made between the deterministic model and the stochastic
model (δ = 10 minutes, α = β = 0.1 and ϵ = 0.2), in terms of the number of feasible
instances for the optimal solution found with the respective model. The instances are
generated by Monte Carlo simulations, each solution was tested 1000 times. First of all,
the impact of the stochastic model is very clear. The probability of the solutions found
with the deterministic model failing due to varying processing times is significantly
higher than for the solutions found with the stochastic model, especially for larger
instances. On the other hand, the probability of the solutions found with the stochastic
model being feasible under randomly sampled instances is very high, decreasing slightly
with increasing instance sizes, as can be expected since the probability of something
going wrong somewhere in the planning is higher.

Table 5: Percentage of feasible instances in
Monte Carlo simulations for the deterministic
and the stochastic models. When no feasible
solution exists, this is denoted by “/”.

# Orders # Trucks Deterministic Stochastic

10 2 / /

10 3 99.3 % 100.0 %

10 4 99.6 % 100.0 %

20 4 65.1 % /

20 6 90.7 % 99.0 %

20 8 92.2 % 99.5 %

50 10 35.5 % 94.3 %

50 15 72.5 % 95.6 %

50 20 58.8 % 96.6 %

100 20 8.4 % 82.1 %

100 30 11.0 % 92.4 %

100 40 19.0 % 95.9 %

150 30 19.1 % 95.4 %

150 45 6.3 % 95.0 %

150 60 10.8 % 99.3 %

200 40 11.4 % 89.7 %

200 60 13.2 % 92.7 %

200 80 19.1 % 91.1 %

250 50 2.5 % 86.9 %

250 75 4.7 % 90.7 %

250 100 14.4 % 92.5 %

300 60 1.3 % 82.4 %

300 90 1.1 % 82.6 %

300 120 1.4 % 90.9 %
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5.3 Influence of α, β and δ

Let us now consider the influence of the confidence-parameters α and β in the chance
constraints on the obtained solutions. Let us set β = α in the remainder of this
subsection. Figure 11 depicts the objective value for the optimal solutions found for
different values of α ranging1 from 0.01 to 0.5. The other parameters are set to δ = 10
minutes and ϵ = 0.2. When making the chance constraints less strict, i.e. increasing
α, the obtained objective (total operating time) is lower, as is to be expected, the
relative change in the objective value is however limited. In Figure 12 the operating
time per order is given for different α-values, clearly illustrating the influence of α.
Comparing the two extreme values of α = 0.01 and α = 0.5, the relative difference in
the operating time is approximately 16 %. In Figure 13 the probability of the optimal
solution being feasible under random realizations of the model, for varying values of α,
is shown. It is clear that the probability of a solution proving to be infeasible greatly
increases when increasing α. We can conclude that a value of α = 0.1 results in a good
balance between the slight increase in operating times, and the success probability of
the planning.

Fig. 11: Objective value of the optimal solution for values of α (= β) ranging from
0.01 to 0.5.

1Setting α to even lower values is futile, since one needs very good knowledge of the tails of the
distributions in this case.
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Fig. 12: Operation time per order in the optimal solution for values of α (= β) ranging
from 0.01 to 0.5.

Fig. 13: Probability of the optimal solution being feasible for values of α (= β) ranging
from 0.01 to 0.5.
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Another important parameter of the model is the discretization width δ. Figure
14 shows the computation time for different values of δ, where it is apparent that
there is a strong increase in computation time for smaller δ-values. This is to be
expected, as the number of variables in the ILP formulation scales as ∼ 1/δ2. In Figure
15 the optimal objective value is given for varying δ. Since the approximate model
based on time window partitioning provides an upper bound to the exact model, the
optimal objective value decreases with decreasing δ, however, the influence is limited.
Figure 16 contains the operating time per order for varying δ, clearly illustrating
the δ-dependence. Over the considered range of δ, the operating time varies only by
approximately 5 %. For the value of δ = 10 min. used in the experiments before,
the difference is only about 1.5 %. From this one could conclude that by increasing
δ, problems of far greater size can be solved efficiently, in exchange for only a small
increase in the objective.

Fig. 14: Computation time for varying values of δ.
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Fig. 15: Objective value of the optimal solution for different values of δ.

Fig. 16: Operation time per order in the optimal solution for different values of δ.
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5.4 Dynamic orders

Finally, let us consider the dynamic aspect of the model. To this end, a given set of 200
orders is considered at the start of the day, for which an initial planning is computed.
Next, a total of 7 decision epochs is considered, with times s ∈ [3:00, 6:00, 9:00, 12:00,
15:00, 18:00, 21:00], where during each epoch, 12 new orders (with the lower bound
of their time window, Ai, between s and 23:59) are added to the pool orders still to
be initiated at that time, and the model is re-optimized. The number of trucks is set
equal to 90, δ = 10 minutes, α = β = 0.1 and ϵ = 0.2.

Figure 17 depicts the computation time needed to optimize and re-optimize the
model at each decision epoch. The epoch at time 0:00 represents the initial planning
for the initial 200 known orders. This initial planning takes longer to compute as
the set of given orders is large. Each consecutive re-optimization however takes very
little time, making it feasible to do in real-time. In Figure 18 the number of orders in
the order set VO as well as the number of temporal orders (or suborders, since only
one temporal suborder exists for each temporal order) is given for each epoch. The
number of orders is steadily decreasing as more orders are executed as time passes.
The number of temporal orders remains relatively constant during operations, since
at a given time, the number of orders being processed at that time remains mostly
the same, only to drop off near the end of the day.

Fig. 17: Computation time and re-computation time for the dynamic instance at each
epoch.
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Fig. 18: Number of orders and temporal orders for the dynamic instance at each
epoch.

6 Conclusion

In this work, a model for the dynamic stochastic container drayage problem with a
truck appointment system operating at the different terminals is presented. Stochastic
truck turnaround times at the terminals, loading and unloading times at the customers,
and travel times conditioned upon the departure time, are incorporated in the form
of conditional chance constraints. The general formulation results in a mixed integer
nonlinear program, which we linearized by partitioning time windows and discretizing
the time variable. The model is tested on instances based on a real-world case based
in the port of Antwerp.

The experiments showed that the model is efficiently solvable, even for large
instances of up to 300 orders. It was also illustrated that the obtained solutions are
robust with respect to stochastic operating times. Based on Monte Carlo simulations,
the probability of a solution or planning not failing was computed and was shown
to remain high, even for large instances, while the solutions obtained with a deter-
ministic model had a low probability of succeeding overall. By varying the confidence
parameters in the chance constraints a trade-off can be made between robustness
(i.e. probability of a planning succeeding) and minimizing the objective. We demon-
strated that by lowering these parameters, a great increase in success probability can
be obtained in exchange for only a limited increase in total operating times. We also
showed that varying the time discretization width δ only had a minor impact on the
resulting objective, but can greatly decrease computation times, which might be very
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useful when considering very large problem instances. Finally, it was demonstrated
that in the case of flexible orders, the model can be re-optimized efficiently.

Future research might encompass extending the framework to include a live data
stream of e.g. traffic information or delays at different terminals, updating the prob-
ability distributions accordingly. Another possible extension might be to make the
discretization width variable instead of fixed, based on e.g. the time-sensitivity of
certain distributions at certain time intervals, increasing efficiency.
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[10] Escudero-Santana, A., Muñuzuri, J., Cortés, P., Onieva, L.: The one container
drayage problem with soft time windows. Research in Transportation Economics
90, 100884 (2021)

[11] Chang, H., Jula, H., Chassiakos, A., Ioannou, P.: A heuristic solution for the
empty container substitution problem. Transportation Research Part E: Logistics
and Transportation Review 44(2), 203–216 (2008)

[12] Braekers, K., Janssens, G.K., Caris, A.: Challenges in managing empty container
movements at multiple planning levels. Transport Reviews 31(6), 681–708 (2011)

[13] Kuzmicz, K.A., Pesch, E.: Approaches to empty container repositioning problems
in the context of eurasian intermodal transportation. Omega 85, 194–213 (2019)

[14] Sterzik, S., Kopfer, H.: A tabu search heuristic for the inland container trans-
portation problem. Computers & Operations Research 40(4), 953–962 (2013)

[15] Zhang, R., Yun, W.Y., Moon, I.: A reactive tabu search algorithm for the multi-
depot container truck transportation problem. Transportation Research Part E:
Logistics and Transportation Review 45(6), 904–914 (2009)

[16] Zhang, R., Yun, W.Y., Moon, I.K.: Modeling and optimization of a container
drayage problem with resource constraints. International Journal of Production

31

https://doi.org/10.1137/1.9781611973594
https://epubs.siam.org/doi/abs/10.1137/1.9781611973594
https://epubs.siam.org/doi/abs/10.1137/1.9781611973594


Economics 133(1), 351–359 (2011)

[17] Zhang, R., Lu, J.-C., Wang, D.: Container drayage problem with flexible orders
and its near real-time solution strategies. Transportation Research Part E:
Logistics and Transportation Review 61, 235–251 (2014)

[18] Shiri, S., Ng, M., Huynh, N.: Integrated drayage scheduling problem with stochas-
tic container packing and unpacking times. Journal of the Operational Research
Society 70(5), 793–806 (2019)

[19] Huynh, N., Smith, D., Harder, F.: Truck appointment systems: where we are and
where to go from here. Transportation Research Record 2548(1), 1–9 (2016)

[20] Namboothiri, R., Erera, A.L.: Planning local container drayage operations given
a port access appointment system. Transportation Research Part E: Logistics and
Transportation Review 44(2), 185–202 (2008)

[21] Shiri, S., Huynh, N.: Optimization of drayage operations with time-window
constraints. International Journal of Production Economics 176, 7–20 (2016)

[22] Li, P., Arellano-Garcia, H., Wozny, G.: Chance constrained programming
approach to process optimization under uncertainty. Computers & chemical
engineering 32(1-2), 25–45 (2008)

[23] Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, ???
(2011)

[24] Yu, C.-S., Li, H.-L.: A robust optimization model for stochastic logistic problems.
International journal of production economics 64(1-3), 385–397 (2000)
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