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Background
Deep Neural Networks (DNNs) have emerged as a popular and powerful tool in machine 
learning, revolutionizing the way we approach complex problems [1]. The early successes 
of DNNs in computer vision, for example in object recognition and image segmentation, 
demonstrated their ability to learn complex features from raw data and make accurate 
predictions [2]. These models have also shown great promise in the field of genomic data 
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analysis, showcasing their ability to learn from and interpret large amounts of genetic 
data [3], and have seen increased use to solve a variety of biological problems including 
predicting translation initiation sites (TIS) [4–6], splice sites [7, 8], promoter sites [9], 
functional effects of non-coding variants [10], and to characterize protein-specific prop-
erties [11–13]

While DNNs have shown themselves to be powerful tools for predictive tasks, they 
also have several well-known shortcomings. One such shortcoming in utilizing DNNs 
is the requirement of data abundance, which can be a significant barrier to their use 
in areas where data availability is limited [14, 15]. A popular method to overcome this 
shortcoming is by using data augmentation techniques that have been widespread in 
both computer vision [16–18] and natural language processing [19–21]. In both of the 
aforementioned fields, data augmentation techniques not only improve the performance 
of models that are trained in a supervised fashion but also enable self-supervised learn-
ing, where the advent of self-supervised learning has given rise to now-famous frame-
works like BERT  [22], GPT  [23], and LLaMA  [24] in the domain of natural language 
processing, as well as MoCo [25, 26], DINO [27], and MAE [28] in computer vision.

Unfortunately, most data augmentation techniques used in computer vision or natural 
language processing cannot be directly applied to genomic data due to the unique char-
acteristics of genomic datasets. Genomic data is highly structured and the application 
of even the smallest transformations may alter the properties of the underlying data or 
even introduce unintended signals. As a result, despite the tremendous impact of data 
augmentation techniques on the development of state-of-the-art AI-based solutions in 
other fields, the field of genomics has not yet been able to harness this powerful tool to 
its fullest extent.

Fortunately, genomic sequences come with certain properties that allow for other 
types of data augmentations, such as sequence flanking [29], base pair shifting [30], and 
sequence complementing [30, 31]. These data augmentations are reviewed in detail in 
“Related work” section and operate on the entire sequence (or part thereof ), and often 
require specific conditions to be met. As a result, these augmentations have limited use-
fulness, or give rise to relatively few augmented sequences.

Unlike the aforementioned augmentation techniques, genetic mutations, as data aug-
mentations, can be employed with any genomic data, and result in a plethora of new 
sequences. However, mutations as augmentations remain underutilized and underinves-
tigated, due to fears of introducing unintended signals into the data that would mislead 
the trained model. Indeed, almost by definition, mutations may exert an influence on 
the genomic sequence, fundamentally altering its inherent meaning. Nevertheless, we 
will show that the augmentation of training data through point mutations not only com-
pensates for sporadic adverse impacts but also leads to a significant improvement in the 
performance of neural networks that are trained with it.

In this work, we investigate the usage of single nucleotide polymorphisms (i.e., point 
mutations) as a data augmentation method for genomic data. Our investigation focuses 
on translation initiation site (TIS) detection [5, 6], as well as splice site detection [7], since 
both are established as important tasks in genomics, cover both mutations in coding 
(i.e., exons) and non-coding (i.e., untranslated regions and introns) regions of genomic 
sequences, and are extremely sensitive to mutations [6]. Based on this investigation, we 
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propose a principled and novel augmentation method that is straightforward to incorpo-
rate into any pipeline that employs such data. We find that the proposed augmentation 
method not only improves the performance of models but also helps models understand 
certain biological signals better. As a result of comprehensive experiments, we find that:

•	 Point mutations are useful in increasing the performance of neural networks across 
different genomic tasks when employed appropriately.

•	 Silent mutations (mutations which do not change the encoded amino acids) posi-
tively influence the performance of DNNs when applied moderately.

•	 Surprisingly, missense mutations (mutations which change the encoded amino acids) 
also lead to performance improvements and prove more useful than silent mutations 
in the majority of experiments.

•	 Nonsense mutations generally result in performance degradation in the majority of 
experiments.

•	 Similarly, random mutations in non-coding regions generally have a detrimental 
effect on performance.

•	 For all types of mutations, increasing the number of mutations leads to a significant 
decline in the model performance.

Related work
In this section, we briefly cover the most commonly used data augmentation techniques 
for genomic data in conjunction with DNNs.

Complement and reverse complement

DNA is composed of two complementary, anti-parallel strands [32]. This allows for the 
reverse complement to be used as a data augmentation technique [30, 31].

Shortcoming While the reverse complement is a useful genomic data augmentation 
method, it may not be biologically meaningful in certain situations. For coding proteins, 
the reverse complement sequence may not necessarily produce the same amino acid 
sequence as the original sequence due to the genetic code being read differently in the 
opposite direction. Another shortcoming is that the reverse complement method only 
provides a single additional sequence for each original sequence, leading to relatively few 
newly created data points.

Flanking and shifting

[29] propose the usage of data flanking as augmentation where sequences are flanked 
with arbitrary subsequences while [30] use sequence shifting for data augmentation.

Shortcoming Flanking and shifting may not always be appropriate due to the unique 
structure and function of genomic data, thus heavily limiting the usage of this aug-
mentation technique. DNA contains regional information, meaning that in a specific 
position, a certain nucleotide may be necessary for the proper function or binding of 
proteins [33]. For example, when base pairs are added or removed from a coding region, 
the reading frame of the sequence may be shifted, resulting in an incorrect translation of 
the genetic code. Similarly, shifting base pairs in the sequence may also introduce errors, 
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resulting in the alteration or loss of important regulatory elements, such as promoters or 
enhancers [34].

Masking

Masking is a data augmentation technique commonly used in computer vision and NLP. 
In computer vision, mask augmentation involves randomly masking out a portion of the 
input image, either by setting the pixel values to zero or by replacing the masked region 
with noise or other transformations. This forces the model to focus on the remaining 
unmasked regions of the image and to learn to recognize objects and patterns even when 
parts of the image are missing or occluded [35, 36]. In NLP, masking can be used to train 
models to predict missing words in a sentence or sequence of words. For example, in the 
Bidirectional Encoder Representations from Transformers (BERT) model, masking is 
used to randomly conceal some of the input tokens and then train the model to predict 
the original tokens based on the context [37]. This technique of masking can be utilized 
in genomic data augmentation as well [6, 38].

Shortcoming A masking operation does not generate novel sequences but rather alters 
the same sequence by concealing certain basepairs or regions. As a result, the utility of 
this approach is constrained because the scope of generated variations is limited [39].

Codon degeneracy

[40] introduced a novel data augmentation technique that utilizes the inherent degen-
eracy of the genetic code. As such, it is one of the more recent approaches to employ 
and endorse the usage of mutations as augmentations. They observe that the inherent 
variability in the codon table of natural amino acids (using, for example, six codons for 
Serine and only one for Methionine) can introduce a bias in the learning process. To 
address this issue, they devise a method called Codon Balance, where three codons are 
allocated to each amino acid in a balanced manner. Furthermore, to evaluate the ben-
efits of the natural codon relationship over an arbitrary one, they introduce the so-called 
Codon Shuffle approach, which randomizes the amino acid-to-codon relationship while 
preserving the original count of codons per amino acid.

Shortcoming Both Codon Shuffle and Codon Balance require additional calculations 
over the entire sequence to assess how the augmentation should be applied, potentially 
lengthening the training process, especially for models trained with longer sequences. 
Furthermore, since both approaches rely on the codon table of natural amino acids, the 
number of newly created sequences is limited (as their method avoids certain types of 
mutations). In contrast to their approach, our work investigates all point mutations—
silent, missense, and nonsense in the coding region, as well as non-coding mutations—
to address a broader question about the utility of mutations.

Evolutionary mutations

Lee et al. [41] introduce a data augmentation that uses an evolutionary process (involv-
ing point mutations as well as larger structural variations) to increase genomic diver-
sity while maintaining biological functionality. Their method consists of two steps: in 
the first, a deep neural network is trained on randomly mutated data, imparting some 
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degree of robustness to the final model. In the second stage, the model is then fine-tuned 
on the original, unmutated data.

Shortcoming The process of repeatedly mutating the data and training the model on 
the augmented data increases the training time for the final, optimized model. This is 
especially the case for models trained on long sequences. Nevertheless, this method is 
conceptually the most similar to ours, the difference being that our training process is 
off-line, i.e. happens once, before training takes place.

Methods
Data

To facilitate comparisons with earlier research, we utilize datasets previously employed 
in relevant literature, particularly those that involve coding regions that are used for TIS 
and splice site detection since those tasks are more sensitive to point mutations com-
pared to others. We make use of the CCDS, Chromosome-21, and Gao15 datasets for 
TIS detection [4, 5, 42] and the NN269 and Arabidopsis datasets for splice site detec-
tion [7, 43, 44]. In Table 1, we outline key characteristics of these datasets, and in Fig. 1, 
we provide a visual description of the sequences within each dataset.

Table 1  Characteristics of the datasets used in this study

Dataset Objective Task Total Positive seq. Negative seq. Pos./Neg. ratio Source

CCDS TIS Train 728,990 27,834 701,156 0.0396  [42]

Chromosome21 Test 2,535,402 516 2,534,886 0.0002

Gao15 TIS Train 76,464 7148 69,316 0.1031  [4]

Test 10,033 935 9098 0.1028

NN269 Splice Train 5788 1116 4672 0.2389  [43]

Test 1089 208 881 0.2361
Arabi Accep-
tor

Splice Cross-val. 286,534 9309 277,225 0.0336 [44]

Arabi Donor Splice Cross-val. 272,715 9208 263,507 0.0349 [44]

Fig. 1  Arrangement of coding and non-coding regions in the six datasets used for TIS or splice site 
detection. Each sequence consists of either a TIS or a splice site, flanked by a coding or non-coding region of 
fixed length, as indicated in the figure
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•	 CCDS and Chromosome-21 These datasets comprise pre-transcript human DNA 
sequences of 203 bp in length, each containing the canonical TIS ATG codon located 
at position 61 [42]. The label distribution in both datasets is heavily skewed, with a 
positive-to-negative ratio of 1/25 for the CCDS dataset and 1/4913 for the Chromo-
some-21 dataset.

•	 Gao15 This dataset consists of DNA sequences that have a length of 203 bp, contain-
ing canonical TISs (ATG) positioned at 101 [45]. This dataset is extracted from QTI-
seq data obtained from the HEK293 cell line along with the annotated TISs obtained 
from Ensembl v84 [46]. In total, the Gao15 dataset comprises 8083 positive samples 
and 78,414 negative samples derived from 4111 transcripts. We follow [4] in allocat-
ing 400 transcripts for testing purposes, while the remaining transcripts are consid-
ered as training data.

•	 NN269 The NN269 dataset, which is a compilation of human splice sites obtained 
from 269 genes [47], comprises two separate datasets: donor splice sites and accep-
tor splice sites. However, we excluded the donor site sequences from our analysis 
because of their short length (15 bp) and focused solely on the acceptor dataset. The 
total length of sequences in this dataset is 90 bp, with the acceptor splice site AG 
located at position 69 [43, 48].

•	 Arabidopsis dataset The Arabidopsis dataset was curated for the purpose of 
predicting splice sites in Arabidopsis thaliana. It includes two datasets for acceptor 
and donor site detection, where each sequence in the datasets consists of 402 bp, 
with the splice acceptor site ‘AG’ and donor site ‘GT’ located at position 201 [44].

Note that as these datasets consist of short sequences with certain pre-defined genomic 
characteristics, they necessarily present a limited view of genomic diversity and come 
with certain inherent sources of bias. For example, the TIS datasets contain sequences 
with the canonical start codon ATG only, so that alternative translation initiation sites 
are not taken into account. A similar observation can be made for the splicing datasets, 
whose sequences are centered on the canonical splicing acceptor and donor sites AG 
and GT. Other sources of potential bias include the fact that the intronic and extronic 
part of the sequences are generally different in length (see Fig. 1) so that the latter carry 
more weight in the classification process. Lastly, all datasets were created based on the 
human genome and the A. thaliana genome. We emphasize, however, that our method 
is species-agnostic, and is therefore applicable to a wide range of genomic datasets.

Deep neural networks

In recent years, deep neural networks (DNNs) have emerged as highly effective mod-
els for addressing sequence-related problems. Notably, several prominent models have 
been developed for DNN-based detection of translation initiation sites (TIS), including 
TITER [4], NeuroTIS  [49], DeepTIS  [50], TISRover  [5], and TISRover+  [6]. Addition-
ally, for splice site detection, Deep belief networks [51], Spliceator [52], SpliceRover [7], 
and SpliceAI [8] were created. TISRover and SpliceRover are highly specialized con-
volutional neural networks tailored for TIS and splice site detection, respectively. For 
our experiments, we utilize TISRover and SpliceRover for a number of reasons. Their 
performance approaches that of the state-of-the-art for the given task, and due to their 
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moderate complexity, they permit an uncomplicated analysis for biological explainabil-
ity (as done in “Discussion” section). Furthermore, as both TISRover and SpliceRover 
are convolutional neural networks, they exemplify an architecture widely applicable in 
genomic deep learning, suggesting that findings derived from these methods are applica-
ble to deep neural networks for other tasks as well.

Error measurements

Commonly used metrics like accuracy can present a misleading picture when evaluating 
neural networks on genomic data, due to the pronounced class imbalance between posi-
tive and negative samples. Instead of accuracy, we use a number of performance metrics 
that are suitable for imbalanced data, as described below.

•	 fpr80 In order to mitigate potential misleading results in datasets with label skew-
ness, we employ the false-positive rate at a fixed sensitivity of 0.8 (fpr80) as the 
benchmarking metric for the Chromosome-21 dataset, following the proposal 
by [42].

•	 auROC The area under the Receiver Operating Characteristic (auROC) curve is used 
as the evaluation metric for the NN269 and Gao15 datasets, as it is particularly suit-
able for heavily skewed data due to its robustness in handling imbalanced class distri-
butions.

•	 auPRC The performance evaluation for the Gao15 dataset involves two metrics: 
auROC and the area under the Precision-Recall Curve (auPRC). The auPRC spe-
cifically addresses the challenge of skewed data by considering the precision-recall 
trade-off.

•	 Pr95 In the evaluation of the Arabidopsis acceptor and Arabidopsis 
donor datasets, the precision (Pr) for sensitivity or recall of 0.95 is employed as a 
performance measure. The original authors of SpliceMachine [44] defined this met-
ric to assess the effectiveness of the models.

These metrics were chosen because they were introduced with the datasets introduced 
in “Data” section, to evaluate the efficacy of machine learning models trained on their 
respective datasets. Note that for fpr80, lower is better, while for the other metrics 
(auROC, auPRC, Pr95), a higher value is better.

Point mutations

Point mutations are changes in a single nucleotide base pair of a DNA molecule. They 
can occur spontaneously during DNA replication, or they can be induced by environ-
mental factors such as radiation or chemicals. Point mutations can result in various types 
of alterations in the genetic code, including silent, missense, and nonsense mutations.

•	 Silent A silent mutation is a type of point mutation that does not change the amino 
acid sequence of the protein that is being encoded.

•	 Missense Missense mutations involve a change in a single DNA base pair that leads 
to the incorporation of a different amino acid in the protein sequence.
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•	 Nonsense Nonsense mutations are mutations that introduce a premature stop codon 
in the DNA sequence. As a result, protein synthesis is prematurely terminated, giving 
rise to truncated proteins that frequently exhibit nonfunctional characteristics.

•	 Non-coding Mutations that take place in regions of the genome other than the cod-
ing region, such as in introns or in the 5’ UTR, are referred to as non-coding muta-
tions. These mutations can have detrimental effects on protein delivery and timing of 
production, protein localization, and protein abundance as a whole [53].

The advantage of using point mutations as a data augmentation method is that it yields 
a method that is generally applicable to sequence data (i.e. not limited to a specific 
genomic task) and sufficiently powerful to result in significant performance improve-
ments. Our method is not the first to employ point mutations (see [40, 41] for other 
mutation-based approaches) but it is the first to compare the performance improve-
ments stemming from different mutation types.

Results
To investigate the effects of mutations on the genomic sequences, we conduct a number 
of experiments where we introduce up to 10 point mutations for each mutation type, 
including silent, missense, nonsense mutations, and random mutations in the non-cod-
ing region. In each run, we apply only one type of mutation, maintaining consistency 
throughout the experimentation process, and train and evaluate the model on the aug-
mented data (using the evaluation metrics described in “Error measurements” section). 
Each run is repeated six times, with different random seeds.

To conduct a comparative analysis, we contrast the performance of the baseline 
approach, which does not involve any mutations, with the sequences that have under-
gone mutations. Figures  2 and  3 show for each dataset the distribution of evaluation 
metrics across training runs, as a function of the mutation count. Tables 2, 3, and 4 list 
the maximum accuracy across training runs for each mutation type.

Based on the aforementioned results, the primary observation we make is that exces-
sive numbers of mutations adversely affects model performance across various muta-
tion types, resulting in a decline in evaluation metrics. In contrast, a moderate level of 
augmentation (up to three point mutations) generally has a positive impact on model 
performance.

To further understand the effect of a moderate number of mutations, we show in Fig. 4 
the accuracy of individual training runs, separated by mutation type and for one, two 
and three mutations. Specifically, for each training run, we display the three best out-
comes of training in order to account for the stochastic variability of accuracy during 
training. These outcomes are compared with the mean performance of training runs 
without any augmentation, indicated by the black horizontal line. A more detailed view 
is provided by Additional file 1: Figs. S1, S2, and S3, which show the distribution of error 
metrics for each dataset and mutation type separately. Additional file 1: Tables S1 and S2 
furthermore provide the results of a Mann–Whitney-U test at the 5% significance level, 
comparing each mutation type/count with the baseline, where no mutations are applied.

When it comes to mutation types, we observe that nonsense mutations are gener-
ally detrimental to model performance, resulting in a significant increase in the error. 
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This is especially visible for Chromosome 21, which shows significant increases in the 
fpr80 metric (see Fig. 4 and Additional file 1: Fig. S1(a)), indicating a decrease in accu-
racy. This observation conforms with our expectations, and we further discuss the rea-
sons behind this observation in “Nonsense mutations” section. On the other hand, we 
expected silent mutations to be mostly harmless since this type of mutation does not 
affect the encoded amino acid. However, our experiments show otherwise, with at best 
no improvement. Similar to other types of mutations, silent mutations also adversely 
affect model performance when they are applied in abundance (usually when the muta-
tion count is larger than three). Further discussions on this topic can be found in “Silent 

Fig. 2  Changes in neural network performance for each of the five datasets after introducing up to 10 point 
mutations of different types in the coding region. Applying a moderate number of silent and missense 
mutations improves the performance, while large numbers of missense and nonsense mutations are 
generally detrimental
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mutations” section. Lastly, missense and random mutations in the non-coding region, 
which we believed would not lead to substantial improvements, show surprising levels of 
performance improvements, which are significant on all datasets except Chromosome 
21 and Arabidopsis Acceptor. This is further discussed in “Missense mutations” 
and “Random mutations” sections, respectively.

Discussion
In this section, we discuss the implications and findings of our study, analyzing the 
results and focusing on their biological significance and relevance. We subdivide our dis-
cussion into four parts, with each part focusing on a different mutation type.

Silent mutations

      Observation We observe that for the NN269 dataset, the application of silent muta-
tions in moderate numbers (usually less than 3) results in enhancements in performance, 
as can be seen in Table 2 and Fig. 4. Figure 2 shows that a higher number of point muta-
tions application of point mutations (more than three) often impairs the performance of 
the splicing site detection process, as it potentially disrupts the accurate identification 
and recognition of splice sites.

Biological significance Silent mutations, which preserve the amino acid sequence of 
a protein, can still influence protein expression and abundance. Based on this informa-
tion, we hypothesize that the application of silent mutations would be a suitable candi-
date as a data augmentation for genomic data.

Somewhat unexpectedly, we observe that the usage of silent mutations as augmen-
tation in large amounts negatively impacts the performance of the model. We believe 
this is due to their potential impact on the biochemical activity or functional proper-
ties of the protein itself [54]. While previously synonymous codon mutations (i.e., silent 

Fig. 3  Changes in neural network performance for each of the five datasets after introducing up to 10 
random mutations in the non-coding region. Applying random mutations generally has a detrimental effect 
on performance



Page 11 of 19Lee et al. BMC Bioinformatics          (2024) 25:170 	

mutations) were considered to have no effect, multiple research efforts (see [55] and 
the references therein) have shown that codon usage affects protein structure and gene 
expression through effects on co-translational protein folding, translation efficiency and 
accuracy, mRNA stability, and transcription.

Missense mutations

      Observation In addition to silent mutations, the moderate application of missense 
mutations can significantly enhance performance. Notably, Table 3 exhibits a majority 

Fig. 4  Effect of applying different mutation types for each dataset under comparison. Up to three mutations 
are applied, since higher mutation counts generally have a detrimental effect. The vertical dashed line 
indicates the median accuracy for the baseline case, in which no mutations are applied. Dots in the scatter 
plot indicate repetitions of the same experiment, with a different random seed, as explained in the body of 
the text
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of cases where missense mutations result in model improvements, indicating a more 
pronounced impact achieved through the usage of missense mutations. Figure  4 like-
wise shows a majority of cases in which performance improves upon the application 
of missense mutations, compared to silent mutations. Remarkably, among the various 
mutation types examined, there were no cases of performance deterioration under the 
moderate application of missense mutations.

Biological significance Unlike silent mutations, missense mutations can have vari-
ous potentially negative effects, ranging from altering macromolecular stability to 

Table 2  Effect of silent mutations as an augmentation technique across datasets and performance 
metrics

Highlighted values indicate improvements over the baseline, where no mutations are applied

Dataset Metric Baseline Mutation count

1 2 3 4 5 6 7 8 9 10

Chrom21 ↓ fpr80 .025 .023 .025 .025 .026 .025 .026 .027 .025 .026 .025
Gao15 ↑ auROC .857 .859 .857 .857 .857 .858 .859 .854 .858 .862 .863

↑ auPRC .584 .585 .583 .585 .578 .576 .582 .570 .578 .582 .576

NN269 ↑ auROC .993 .992 .993 .993 .992 .992 .992 .991 .991 .991 .991

A.Acc ↑ Pr95 .961 .953 .962 .962 .961 .960 .960 .957 .946 .959 .945

A.Don ↑ Pr95 .973 .973 .967 .958 .962 .965 .961 .968 .968 .959 .953

Table 3  Effect of missense mutations as an augmentation technique across datasets and 
performance metrics

Highlighted values indicate improvements over the baseline, where no mutations are applied

Dataset Metric Baseline Mutation count

1 2 3 4 5 6 7 8 9 10

Chrom21 ↓ fpr80 .025 .025 .024 .025 .022 .023 .024 .023 .024 .024 .023
Gao15 ↑ auROC .857 .862 .864 .863 .857 .858 .858 .856 .856 .855 .849

↑ auPRC .584 .593 .583 .592 .579 .592 .582 .583 .585 .576 .575

NN269 ↑ auROC .993 .993 .993 .993 .993 .993 .994 .994 .994 .994 .993
A.Acc ↑ Pr95 .961 .971 .970 .966 .974 .968 .962 .957 .956 .944 .957

A.Don ↑ Pr95 .973 .968 .973 .967 .969 .967 .968 .971 .966 .966 .969

Table 4  Effect of non-sense mutations as an augmentation technique across datasets and 
performance metrics

Highlighted values indicate improvements over the baseline, where no mutations are applied

Dataset Metric Baseline Mutation count

1 2 3 4 5 6 7 8 9 10

Chrom21 ↓ fpr80 .025 .030 .042 .046 .050 .052 .057 .042 .065 .051 .058

Gao15 ↑ auROC .857 .846 .857 .848 .859 .849 .854 .860 .853 .852 .860
↑ auPRC .584 .582 .586 .586 .587 .580 .572 .576 .566 .572 .574

NN269 ↑ auROC .993 .992 .992 .992 .992 .992 .991 .991 .991 .992 .991

A.Acc ↑ Pr95 .961 .958 .963 .969 .957 .950 .955 .957 .950 .946 .945

A.Don ↑ Pr95 .973 .973 .970 .969 .961 .968 .952 .958 .958 .957 .951
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perturbing interactions and cellular localization. These mutations may disrupt protein 
stability, hydrogen bonds, dynamics, and activity, ultimately leading to the onset of dis-
eases [56]. Initially, we expected missense mutations to have a negative impact on the 
model performance. However, experimental results show the opposite, as we observed 
missense mutations to be the most beneficial augmentation technique across all data-
sets. This revelation leads us to believe that the models are relatively robust to mutations 
of this type when it comes to evaluated tasks (TIS detection and splicing). Upon closer 
examination, the possibility of amino acids mutating into other similar amino acids via 
missense mutations, particularly taking into their polar or hydrophobic properties, may 
explain the observed effect. In such cases, although the encoded amino acid differs, its 
properties may still bear similarity to those of its unmutated counterpart, thereby poten-
tially reinforcing the training signal for the model.

Nonsense mutations

      Observation Figures 2 and 4 shows that applying nonsense mutations as an augmen-
tation method results in a decrease in performance compared to the baseline approach. 
This decrease is particularly noticeable in datasets focused on TIS detection, such as 
the Chromosome-21 and Gao15 datasets, highlighting the disruptive effect of non-
sense mutations on translation initiation. As shown in Fig. 2, we also observe a decrease 
in performance when applying nonsense mutations for splice site detection. Although 
there were no cases where nonsense mutations improved the performance, the impact 
on splice site detection is not as significant as for TIS detection.

Biological significance Nonsense mutations, which can potentially prematurely ter-
minate translation, have significant implications in the final stage of mRNA translation. 
Accurate termination is crucial for proper protein synthesis and maintaining cellular 
proteomes, with release factors playing a vital role in identifying stop codons [57]. Pre-
mature termination can lead to the accumulation of truncated and potentially harmful 
proteins. Additionally, unstable mRNA can result in translational errors, triggering non-
sense-mediated mRNA decay (NMD), a specialized mechanism for rapid degradation of 
faulty mRNAs [58].

Nonsense mutations also have a profound impact on the splicing process, leading to 
nonsense-associated alternative splicing, as explained by the scanning and splice motif 
disruption models. The splice motif disruption model suggests that nonsense muta-
tions disrupt ESEs, also mentioned in  “Silent mutations” section. Genome-wide tran-
scriptomic and k-mer enrichment analyses support this model, demonstrating that ESEs 
are prone to disruptive nonsense mutations due to their purine-rich composition and 
the scarcity of termination codons. Additionally, both in-frame and out-of-frame muta-
tions to premature termination codons (PTCs) are associated with exon skipping. These 
findings emphasize the importance of considering splice motif modulation in compre-
hending the etiology of diseases associated with PTCs [59]. This highlights the complex 
interplay between nonsense mutations and splicing processes.

The impact of applying nonsense mutations as an augmentation method varies across 
different TIS datasets. In the Chromosome-21 dataset, the performance is substan-
tially affected, as indicated by a much higher fpr80 (Fig. 2a). In contrast, the Gao15 data-
set also shows a decrease in performance with nonsense mutations, but the effect is less 
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pronounced. We believe that the dissimilarity in impact can be attributed to the distinct 
curation of data in these datasets. The Gao15 negative dataset was constructed by select-
ing up to 10 codon sites of the same triplet within the same transcript as negative samples 
for each TIS in the positive dataset, taking into account the leaky scanning nature of the 
translation initiation process [4]. However, this specific approach was not employed when 
creating the Chromosome-21 dataset. This dataset was constructed with 294 genes and 
sequences with consensus TIS (i.e. ATG) were selected as positive data, while the remaining 
ATGs were included as negative data. The difference in data curation likely contributes to 
the varying degrees of impact observed with nonsense mutations in these datasets.

Random mutations

           Observation Random mutations in non-coding regions generally have a detrimental 
effect on performance, as evidenced by Fig. 3. Also, as the number of random mutations 
applied increases, the performance further deteriorates, indicating a strong correlation 
between the extent of mutation and the decline in performance. However, for the NN269 
dataset, although a small improvement is observed, this improvement is exceedingly mar-
ginal compared to the overall performance degradation caused by random mutations.

Biological significance Mutations occurring in non-coding regions have been shown to 
have an impact on the problem of TIS detection. Recent studies have highlighted the func-
tional role of somatic non-coding variants, particularly in the context of transcriptional and 
post-transcriptional gene regulation [60]. Additionally, mutations in the 5’ UTR have been 
implicated in disease pathogenesis, as alterations in the translation initiation consensus 
sequence can lead to context-dependent leaky scanning and initiation from downstream 
ATG codons. For instance, mutations in the 5’ UTR of the BRCA1 gene have been found 
to affect translation efficiency and contribute to breast cancer aggressiveness [61]. Moreo-
ver, 5’ UTR mutations have the potential to disturb the anticipated secondary structure and 
resultant inaccessibility of the cap structure can inhibit translation [62].

Mutations occurring within introns may have a profound impact on splicing, resulting 
in the generation of aberrant transcripts and contributing to the development of various 
diseases. As with point mutations in the coding region, mutations in introns can disrupt 
existing splice sites or splicing regulatory sequences (intronic splicing silencers, enhanc-
ers, and snoRNAs) [63, 64]. These mutations disrupt proper intron recognition, leading to 
errors during the splicing process and alterations in the open reading frame [65, 66]. Conse-
quently, splicing mutations can directly cause disease or influence disease susceptibility and 
severity. For instance, a single point mutation within the first intron of the beta-globin gene 
can cause beta thalassemia [6]. Thus, the interplay between splicing efficiency and intron 
removal is critical for maintaining proper gene expression and functionality.

Implementation
In order to foster reproducible research and to enable the straightforward usage of the 
proposed augmentation method, we are sharing an easy-to-use implementation of the 
method in Python. In what follows, we provide details about the usage of this implemen-
tation and discuss its limitations.

The implementation contains a single class called AugmentMutations(mut_
type, orf_pos, mutable_bp_range, unmutable_bp_range). This class 
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can be initialized with the desired mutation type that will be employed: silent, missense, 
nonsense, or random and the position of the open reading frame (ORF) of the sequence 
(0, 1, or 2). Furthermore, the implementation is flexible enough to accommodate multi-
range mutation locations, which are handled by the next two parameters: mutable_
bp_range and unmutable_bp_range, both of which take lists of lists containing bp 
ranges. The primary reason behind the implementation of unmutable_bp_range is 
to prevent mutations on regions of the sequence that should be conserved (such as the 
translation initiation or the acceptor/donor sites). The implementation can perform a 
given amount of mutations within the ranges provided in mutable_bp_range, based 
on the mutation type and the ORF. As a result, this implementation can be easily used 
in any pipeline as an additional data augmentation with very little additional effort. An 
example usage of the implementation is provided in Listing 1. Usage of the implementa-
tion for mutation augmentation used in this work.

1 from cls_mutation import AugmentMutations
2

3 mut_aug = AugmentMutations(mut_type=’random ’, orf_pos=0,
4 mutable_bp_range =[[0, 11], [14, 20]],
5 unmutable_bp_range =[[11, 13]])
6

7 seq = ’AAATTTCCCGGGAAATTTCCCGGGAAATTTCCCGGGAAATTTCCCGGG ’
8 mutated_seq = mut_aug.mutate(seq , mut_cnt =5)
9 >>’AAAAGTTCAGGGAAATTTCTCGGGAAATTTCCCGGGAAATTTCCCGGG ’

Although the proposed method and its implementation are flexible to be used in a 
wide-range of scenarios, the primary shortcoming in augmenting silent, missense, and 
nonsense mutations is the necessity of the ORF location. Indeed, if the ORF location 
is not known for the sequence, every mutation essentially becomes a random muta-
tion. This is the fundamental limitation of using mutations as augmentations in coding 
regions where the ORF is not known. As such, in such scenarios, we advise the reader to 
exercise caution while using the proposed method.

Conclusions
In this study, we focused on exploring the utility of various mutation types as augmenta-
tion methods for genomic datasets. Through a series of comprehensive experiments, we 
investigated the impact of silent, missense, nonsense, and random mutations on clas-
sification problems using genomic data, particularly TIS detection and splicing. To the 
best of our knowledge, this is one of the first large-scale computational experiments of a 
generally applicable data augmentation method specifically designed for genomic data.

We found that silent mutations, while preserving the amino acid sequence of a pro-
tein, positively influenced protein expression and abundance, and resulted in small 
but significant performance improvements, making them a viable option for enhanc-
ing performance when applied in moderate numbers. Similarly, the strategic applica-
tion of missense mutations led to improvements in performance. Although missense 
mutations have various effects on protein function, they exhibited a similar impact to 
silent mutations on splicing processes. On the other hand, applying nonsense muta-
tions as an augmentation method generally resulted in performance degradation, 
particularly affecting datasets focused on TIS detection. Nonsense mutations, which 
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prematurely terminate translation, can lead to the accumulation of truncated and 
potentially harmful proteins and have complex effects on splicing processes. Further-
more, random mutations in non-coding regions consistently had a detrimental effect 
on performance, disrupting intron recognition and proper splicing processes.

We expect that our data augmentation technique will be most useful in the context of 
building DNNs for which there is a limited amount of data available. In this case, data 
augmentation serves a dual purpose of increasing the size of the underlying dataset, and 
helping to elucidate the biological function, as demonstrated in “Discussion” section.

The findings from this study highlight the potential benefits of employing strategic 
silent and missense mutations as augmentation methods for genomic datasets, while 
also underscoring the importance of understanding the impact of different muta-
tions on splicing processes. Exploring the use of different mutations as augmenta-
tion methods in genomic datasets provides valuable opportunities for improving the 
accuracy and performance of TIS and splice site detection. It also provides valuable 
insights into the optimization of augmentation strategies, suggesting the importance 
of carefully selecting the appropriate level and type of augmentation to enhance the 
accuracy and reliability of predictive models for DNA sequences. We expect that our 
method will, with the same level of tuning, be able to deliver similar performance 
improvements for other genomic tasks as well.

For future work, we are interested not just in the improvement of deep learning mod-
els per se, but also in the degree of biological explainability that augmentations provide 
for a well-trained model. It is clear, after all, that a data augmentation method must bal-
ance creating new sequences with the need to (approximately) preserve the biological 
function(s) in those sequences, and as we have argued in “Discussion” section and else-
where [6], deep neural networks learn biological features precisely through their sus-
ceptibility to point mutations. Furthermore, we are also interested in quantifying the 
improvements made in the feature-space of models using various interpretability tech-
niques similar to the works of [68]. We plan to extend this line of enquiry towards other 
tasks in genomic machine learning, especially in gene expression regulation.

An additional avenue for investigation involves applying the methodology to alter-
native types of data that involve proteins such as [69–71]. The findings of this study 
demonstrate that incorporating point mutations in genomic data can enhance the 
robustness of a deep learning model and provide insights into biological functions. It 
is anticipated that a mutation-based data augmentation method for protein data, for 
example, could play a comparable role.
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