
The Web as a Common Data Environment: Management of Federated
Multi-Models

Jeroen Werbrouck

Doctoral dissertation submitted to obtain the academic degrees of
Doctor of Architectural Sciences and Engineering (UGent) and
Doktor der Ingenieurwissenschaften (Dr.-lng.) (RWTH)

Prof. Pieter Pauwels, PhD* - Prof. Jakob Beetz, PhD** - Prof. Erik Mannens, PhD***
* Department of Architecture and Urban Planning

Faculty of Engineering and Architecture, Ghent University

** Design Computation
Faculty of Architecture, RWTH Aachen University, Germany

*** Department of Electronics and Information Systems
Faculty of Engineering and Architecture, Ghent University

Supervisors

April 2024

Wettelijk depot: D/2024/10.500/31
NUR 986, 957
ISBN 978-94-6355-826-6

Members of the Examination Board

Chairs

Prof. Patrick De Baets, PhD, Ghent University
Prof. Marcel Schweiker, PhD, RWTH Aachen University, Germany

Other members entitled to vote

Prof. Sigrid Brell-Cokcan, PhD, RWTH Aachen University, Germany

Ben De Meester, PhD, Ghent University
Prof. Linda Hildebrandt, PhD, RWTH Aachen University, Germany
Prof. Jelle Laverge, PhD, Ghent University
Maria Poveda-Villalon, PhD, Universidad Politécnica de Madrid, Spain

Supervisors

Prof. Pieter Pauwels, PhD, Ghent University
Prof. Jakob Beetz, PhD, RWTH Aachen University, Germany
Prof. Erik Mannens, PhD, Ghent University

Acknowledgements
This dissertation is the result of a five-year journey, which would not have

been possible without the support of many people. Firstly, I wish to thank

my supervisors Pieter Pauwels, Jakob Beetz and Erik Mannens, who have

guided me throughout the years and offered me plenty of opportunities for

disseminating my work in an international context. Thanks also to Ruben

Verborgh and Pieter Colpaert, who have provided invaluable feedback on

many occasions. I would like to express my gratitude to Research Foundation

Flanders (FWO) to believe in the project and provide 4 years of funding, and to

the H2020 project BIM4Ren to kickstart the first year of my research.

I have always found a warm welcome among my colleagues in the ‘Land-

scape/Rommelaere Office’ of the Department of Architecture and Urban Plan-

ning, the people fromDigital Design Techniques and the team from ‘Knowledge

on Web Scale’ (KNoWS). The same holds for the chair of Design Computation

at RWTH Aachen, where I could stay multiple times in an amazing and fun

research context. Over the years, I had the pleasure to work with extremely tal-

ented minds on various international occasions. Mads, Olli, Madhu, Alex, Jyrki,

Ruben, Mathias and Anna, thank you for your enthusiasm, for the inspiring

semantic ping-pong, the engaging discussions, the hackathons.

Bedankt aan iedereen bij wie ik de voorbije jaren terechtkon voor ontspanning

en een goeie babbel. Team Dolfijn – Seppe, Sam, Eliah, Eline, Isabeau, Velika,

Freya, Andrew – voor alle spelletjes, het gezang, de mopjes, de weekendjes en

de café’s. Anton, Jolien, Seppe en Zoë voor de gezellige avonden die inmiddels

ook al vele jaren teruggaan. Louis, Haroun, Joke, Marie, Sofie, Annelies, Paco,

Veronica, Felix, Rik, Quinten, Lars, Soetkin en alle leden van de Dagen van de

Huismuziek, om twee weken per jaar een magische muziekbubbel te blazen.

Tim, Flor en Thomas; en Philippe, Thijs, Miró, Louis en Nathalie om dit traject

te doorspekken met zoveel muzikale energie.

In het bijzonder aan mama en papa, dank jullie wel voor het warme nest en

om me te steunen bij alles wat ik onderneem. Hetzelfde geldt voor oma Betty

en opa Maurits, oma Annie en opa Wilfried: bedankt – altijd fijn om langs te

komen. En, natuurlijk, Andreas, Jan en Marijn, voor de zever en de sfeer, en

het samen mogen opgroeien.

Gent, 9 april 2024

Jeroen Werbrouck

Contents
Summary (English) v

Samenvatting (Dutch) viii

Zusammenfassung (German) xi

List of Acronyms xvi

1 Introduction 1
1.1 Research Context . 1

1.2 Assumptions and Research Questions 5

1.3 Dissertation Outline . 7

1.4 Research Approach and Limitations 9

1.5 Main Contributions . 11

1.6 Audience . 13

1.7 Case Study . 13

1.8 Publications . 15

2 Background and Rationale 18
2.1 The Digital Built Environment 18

2.2 Common Data Environments 23

2.3 Web-based BIM and FAIR data 26

2.4 User interaction with Multi-models 31

2.5 Conclusion . 34

2.6 Related Publications . 34

3 Storage and Discovery of Federated Projects 36
3.1 Characteristics of the ecosystem 37

3.2 Technologies and Design Choices 39

3.3 Data Patterns . 50

3.4 Project Configurations . 57

3.5 Case study: iGent Tower . 60

3.6 Implementation . 63

3.7 Conclusion . 63

3.8 Related Publications . 65

4 Resource Linking and Annotation 66
4.1 Cross-document Links . 67

i

4.2 Annotation of digital documents 68

4.3 Reference Collections . 69

4.4 Case Study: iGent Tower . 73

4.5 Implementation . 83

4.6 Conclusion . 83

4.7 Related Publications . 85

5 Data Validation 86
5.1 Shape Collections . 86

5.2 Metadata Validation . 88

5.3 Extended Access Control Validation 91

5.4 Conclusion . 101

5.5 Related Publications . 102

6 Middleware Services 103
6.1 Components . 103

6.2 Interactions between vaults and middleware 106

6.3 Functional satellites: the ConSolid API 108

6.4 RDF Aggregators . 109

6.5 Mapping ConSolid Projects to industry standards 112

6.6 Case Study: ISO 21597 - ICDD 113

6.7 Case Study: BCF API . 115

6.8 Conclusion . 122

6.9 Related Publications . 123

7 Interfaces for Linking Federated Multi-Models 125
7.1 Characteristics . 126

7.2 Components . 131

7.3 The Mifesto vocabulary . 133

7.4 Mifesto Stores . 138

7.5 Proof-of-Concept . 139

7.6 Conclusion . 146

8 Evaluation 148
8.1 Research Results . 148

8.2 FAIR evaluation . 150

8.3 Limitations . 154

9 Conclusion 157
9.1 Contributions . 157

ii

9.2 Findings . 161

9.3 Future Research . 165

9.4 Valorisation . 168

References 171

A Prefixes and Namespaces 193

B The Semantic Web 194
B.1 The Semantic Web and Linked Data 194

B.2 Semantic Web Technologies for the Built Environment 196

B.3 Validating Linked Data . 198

C Solid 200

D FAIR Data Principles 202

E Containers 204
E.1 Containers - Semantic Web . 204

E.2 Containers - Industry . 205

F User Interfaces 210
F.1 Standalone Applications . 210

F.2 Micro-Frontends . 210

G Identifier Conformance for Selectors 213

H Vocabulary: ConSolid 214

I Vocabulary: PBAC 217

J Vocabulary: Mifesto 219

iii

Summary (English)
Information related to the built environment is produced by a multitude of

actors, many of whom only occasionally interact with one another. In addition

to a core team that consists of a client, an architect and project engineers,

a construction project often includes contributions from a more extensive

network of contractors, subcontractors, consulting firms, etc. In later stages,

facility managers, owners and occupants are added to this network, as well as

external agencies. Examples of such agencies are governmental institutions,

research institutions, surveyors and infrastructure specialists. Each project

thus has multiple partners, and each partner may be working on multiple

projects at the same time. These overlapping networks of actors and projects

makes it possible nor desirable to centralise ‘all’ available information on

a digital platform. Nonetheless, a centralised ‘Common Data Environment’

(CDE) is often seen as the only solution for information management related

to the built environment: a single Web platform for integration of project

information. Often, the only way to access information on a CDE is by using

a proprietary interface, usually provided by a software company that is not

involved in the project.

A CDE is deployed per project, meaning that an office may have to maintain

several CDEs simultaneously. In addition, project data itself (often a BIM

model) is often described in a proprietary format, so it is not easy to link it

with other project data (pictures, point clouds, planning), and to find reusable

information from adjacent domains (GIS, damage surveys, user data, historical

datasets) or other life cycle phases. Even with open, standardised formats such

as IFC (Industry Foundation Classes), linking with other data is not always

evident, due to the existing hierarchy between the 3D BIM model on the one

hand and the linked documents on the other.

This dissertation explores an alternative path, which starts from the decen-

tralised, multidisciplinary and heterogeneous nature of the built environment.

The basis for a ‘federated CDE’ is an infrastructure that allows using the

worldwide Web as a secure and scalable framework for storing sensitive, inter-

connected data. A ‘federated project’ is then an aggregation of project-specific

and contextual datasets, which may include and exclude specific datasets de-

pending on the task at hand. These aggregations are likely to be heterogeneous

in nature, e.g., consisting of BIM models, imagery, point clouds, spreadsheets,

regulatory datasets etc. Nevertheless, to form an over-arching information

v

catalogue, they must be connected to one another in a way that is independent

from the mediatypes used. The prerequisites for such an infrastructure will be

identified in this dissertation, as well as current technologies that can fulfil

these prerequisites. In addition, a technological implementation is devised

that illustrates the overall feasibility of the approach, while demonstrating

how compatibility with existing BIM standards can be largely maintained –

by strictly separating project datasets and metadata. Where project datasets

contain the actual information related to the built environment, metadata

records offer the necessary context to identify suitable tools for interacting

with a dataset. This allows the developed data patterns to be used for pur-

poses other than documenting the built environment: the format or schema of

project data does not matter. Consequently, the foundations of the ecosystem

will be domain-independent. This also means that connections can be made

between disparate documents. For example, one document may contain a 3D

representation of a specific object, another a photograph and yet another one

a semantic description. The result is an interdisciplinary catalogue of building

data that is scalable across the Web – a federated ‘multi-model’.

In this work, the developed ecosystem for decentralised data management on

the Web is referred to as ConSolid. ConSolid is based on the Semantic Web,

the Solid protocol for decentral data vaults (‘Pods’), and the FAIR (Findable,

Accessible, Interoperable, Reusable) principles for Web-based data manage-

ment. Where deemed necessary, extensions will be proposed to deploy the

Solid ecosystem as the basis for a federated CDE, such as a SPARQL endpoint

over an entire data vault and an extendible metadata structure based on the

Data Catalog (DCAT) ontology.

This extended infrastructure allows various higher-level data management

processes to take place. Firstly, data patterns are proposed to create, assign

and validate project-specific requirements to metadata records. Secondly,

an approach for an extended access control environment is devised, where

semantic properties of both visitors and resources can be validated to determine

whether access to this resource can be granted. For example: ‘everyone who

can prove they are employed by the architecture office involved in this project,

gains read access to the datasets with a ‘shared’ label.‘

However, in order to effectively use ConSolid as a CDE, a service layer is

necessary on top of this generic storage layer. At its core, this service layer

allows to interpret the proposed data patterns, aggregate the necessary data

fragments and adapt them to an output that conforms to existing, standardised,

vi

domain-specific formats. With this service layer, a federated infrastructure can

nevertheless be used in familiar industry environments that expect the data to

be available through centralised endpoints (e.g. BIM authoring tools) .

However, such desktop environments rarely give access to the expressivity

offered by (Web-wide) multi-models. As indicated before, it is – by definition

– uncertain what data formats such a catalogue will contain. Consequently,

human interaction with so much heterogeneity is not an easy task: user in-

terfaces (GUIs) are essential, especially in visually oriented industries such as

architecture, construction and facility management. To complement existing

applications for creating domain-specific datasets, this dissertation also for-

mulates the foundations of an ecosystem for modular GUIs, to enable these

heterogeneous datasets to be gradually linked together in a project-specific

sequence. Not unlike the ConSolid ecosystem, this ecosystem for GUIs is based

on federated modules, each with its own specialisation. These modules can be

brought together in specific configurations to form a well-defined GUI, which

is tailor-made for the activity at hand and the available datasets. Since this

ecosystem for interfaces is based on the relatively novel concept of micro-

frontends, and the result is a federated catalogue (or ‘store’), it bears the name

Mifesto (Micro-Frontend Store).

Although ConSolid and Mifesto can function independently of each other, the

full potential of either will only be achieved in their combination. In ConSolid,

any data type can be stored and connected into a larger project. Mifesto allows

a human user to contribute in a user-friendly way to the contents of a project

with such vast extents.

vii

Samenvatting (Nederlands)
Informatie gerelateerd aan de gebouwde omgeving wordt geproduceerd door

een veelheid aan actoren, waarvan velen slechts af en toe met elkaar inter-

ageren. Naast een kernteam bestaande uit een opdrachtgever, een architect

en projectingenieurs, omvat een bouwproject vaak bijdragen van een uit-

gebreider netwerk van aannemers, onderaannemers, adviesbureaus etc. In

latere fases worden facilitair managers, eigenaren en bewoners toegevoegd

aan dit netwerk, evenals externe instanties zoals overheidsinstellingen, onder-

zoeksinstituten, landmeters en infrastructuurspecialisten. Elk project heeft

dus meerdere partners, en elke partner kan tegelijkertijd aan meerdere pro-

jecten werken. Deze overlappende netwerken van actoren en projecten maken

het mogelijk noch wenselijk om ‘alle’ beschikbare informatie op een digitaal

platform te centraliseren. Desalniettemin wordt een gecentraliseerd ‘Common

Data Environment’ (CDE) vaak gezien als de enige oplossing voor het beheer

van informatie met betrekking tot de gebouwde omgeving: een CDE is een

webplatform voor de integratie van projectinformatie. Vaak is de enige manier

om toegang te krijgen tot informatie op een CDE via een propriëtaire interface,

meestal verstrekt door een commercieel softwarebedrijf dat niet bij het project

betrokken is.

Een CDE wordt per project ingezet, wat betekent dat een kantoor mogelijk

meerdere CDE’s tegelijk moet onderhouden. Daarnaast wordt projectdata

zelf (vaak een BIM-model) vaak beschreven in beschermde formaten, waar-

door het niet eenvoudig is om de inhoud te koppelen met andere projectdata

(bv. foto’s, puntenwolken en planning), of herbruikbare informatie te vinden

uit aangrenzende domeinen (bv. GIS, schadeonderzoek, gebruikersgegevens,

historische datasets) of andere fases uit de gebouwlevenscyclus. Zelfs met

open, gestandaardiseerde formaten zoals IFC (Industry Foundation Classes), is

het koppelen met andere gegevens niet altijd evident, vanwege de bestaande

hiërarchie tussen het 3D BIM-model enerzijds en de gekoppelde documenten

anderzijds.

Dit proefschrift verkent een alternatieve piste, die begint bij het gedecen-

traliseerde, multidisciplinaire en heterogene karakter van de gebouwde omgev-

ing. De basis voor een ’gefedereerde CDE’ is een infrastructuur die gebruik-

maakt van het wereldwijde web als een veilig en schaalbaar raamwerk voor

het opslaan van privacygevoelige, onderling verbonden gegevens. Een ’gefed-

ereerd project’ is in deze context een aggregatie van projectspecifieke en

viii

contextuele datasets, die – afhankelijk van de interactie – specifieke datasets

kunnen omvatten of uitsluiten. In veel projecten zullen deze aggregaties het-

erogeen van aard zijn, en bijvoorbeeld bestaan uit BIM-modellen, afbeeldingen,

puntenwolken, spreadsheets, regelgevingsdatasets, etc. Bijgevolg is het nodig

om deze datasets met elkaar te verbinden op een manier die onafhankelijk is

van de gebruikte data- en bestandstypes, teneinde een overkoepelende infor-

matiecatalogus te vormen. De voorwaarden voor een dergelijke infrastructuur

worden in dit proefschrift geïdentificeerd, evenals de huidige technologieën

die aan deze voorwaarden kunnen voldoen. Daarnaast wordt een technolo-

gische implementatie uitgewerkt die de algehele haalbaarheid van de aanpak

illustreert, terwijl tegelijkertijd aangetoond wordt hoe compatibiliteit met

bestaande BIM-normen grotendeels behouden kan blijven. Dit gebeurt o.a.

door projectinformatie strikt te scheiden van metadata. Waar projectdatasets

de daadwerkelijke informatie over de gebouwde omgeving bevatten, geeft de

metadata de nodige context voor identificatie van geschikte digitale hulpmid-

delen die interactie met bepaalde projectdatasets kunnen faciliteren. Dit laat

toe om de ontwikkelde datapatronen te gebruiken voor andere doeleinden

dan het documenteren van de gebouwde omgeving. Aangezien het formaat of

schema van projectgegevens niet uitmaakt, kunnen verbindingen tussen zeer

uiteenlopende documenten gemaakt worden. Het ene document kan bijvoor-

beeld een 3D-representatie van een specifiek object bevatten, een ander een

foto en nog een ander een semantische beschrijving. Het resultaat is een inter-

disciplinaire catalogus van bouwgegevens die schaalbaar is over het web – een

gefedereerd ’multimodel’. Dit ecosysteem voor gedecentraliseerd databeheer

op het web wordt verder aangeduid als ConSolid. ConSolid is gebaseerd op

het Semantisch Web, het Solid-protocol voor gedecentraliseerde datakluizen

(‘Pods’) en de FAIR-principes (Findable, Accessible, Interoperable, Reusable)

voor webgebaseerd databeheer. Waar dit nodig of wenselijk geacht wordt,

worden extensies voorgesteld om het Solid-ecosysteem te kunnen inzetten als

basis voor een gefedereerde CDE, zoals een SPARQL endpoint over een gehele

datakluis en een uitbreidbare metadatastructuur gebaseerd op de Data Catalog

(DCAT) ontologie.

Deze uitgebreide infrastructuur maakt verschillende bijkomende niveaus van

gegevensbeheerprocessen mogelijk. Een eerste voorbeeld in dit proefschrift

is de ontwikkeling van datapatronen om metadata te toetsen aan project-

specifieke vereisten. Ten tweede wordt een benadering voor een uitgebreide

toegangscontroleomgeving bedacht, waarbij de semantische eigenschappen

van zowel bezoekers als datasets kunnen worden gevalideerd, om te bepalen

ix

of toegang tot deze dataset verleend kan worden. Bijvoorbeeld: ‘iedereen die

kan bewijzen dat ze werken voor het architectuurbureau van dit project, krijgt

toegang tot de datasets waaraan een ‘gedeeld’ label toegekend werd’.

Om ConSolid echter effectief als een CDE te gebruiken, is het noodzakelijk

om de generieke opslaginfrastructuur, die bestaat uit Solid-datakluizen, uit te

breiden met een service-infrastructuur. Primair laat deze service-infrastructuur

toe om de datapatronen in ConSolid te interpreteren, de benodigde gegevens-

fragmenten te aggregeren, en deze om te vormen tot een output die voldoet aan

bestaande, gestandaardiseerde en domeinspecifieke formaten. Met deze service-

infrastructuur kan een gefedereerd ecosysteem toch geïntegreerd worden in

de huidige digitale omgevingen die ervan uitgaan dat de gegevens beschikbaar

zijn via gecentraliseerde eindpunten (bv. BIM-authoring tools).

Echter, dergelijke ‘desktopomgevingen’ bieden zelden toegang tot de expres-

siviteit die eigen is aan (Webgebaseerde) multimodellen. Zoals eerder

aangegeven, is het – per definitie – onzeker welke dataformaten een dergelijk

multimodel zal bevatten. Bijgevolg is menselijke interactie met zoveel hetero-

geniteit geen gemakkelijke taak: gebruikersinterfaces (GUI’s) zijn essentieel,

vooral in visueel georiënteerde industrieën zoals architectuur, constructie en

facilitair beheer. Als aanvulling op bestaande applicaties voor het creëren van

domeinspecifieke datasets, formuleert dit proefschrift dan ook de fundamenten

van een ecosysteem voor modulaire GUI’s, om deze heterogene datasets aan

elkaar te kunnen linken op een manier die steek houdt voor elk project afzon-

derlijk. Net zoals ConSolid is dit ecosysteem voor GUI’s eveneens gebaseerd

op gefedereerde modules, elk met een eigen specialisatie. Deze modules wor-

den in specifieke configuraties samengebracht om een goed gedefinieerde

GUI te vormen, afhankelijk van de ophanden zijnde activiteit en de datasets

waarmee de interactie zal plaatsvinden. Aangezien dit ecosysteem voor inter-

faces gebaseerd is op het relatief nieuwe concept van micro-frontends, en het

resultaat een gefedereerde catalogus (of ’store’) is, draagt het de naam Mifesto

(Micro-Frontend Store).

Hoewel ConSolid en Mifesto onafhankelijk van elkaar kunnen functioneren,

wordt het volle potentieel van beide pas bereikt in hun combinatie. ConSolid

laat toe om nagenoeg elk datatype op te slaan en te verbinden in een groter

project; met Mifesto kan een menselijke gebruiker op een grafische manier

bijdragen aan de inhoud van zo’n project.

x

Zusammenfassung
(Deutsch)

Informationen über die gebaute Umgebung werden von einer Vielzahl von

Akteuren produziert, von denen viele nur gelegentlich miteinander kommuni-

zieren. Neben einem Kernteam aus Bauherr, Architekt und Projektingenieuren

besteht ein Bauprojekt oft aus einem größeren Netzwerk von Auftragneh-

mern, Subauftragnehmern, Beratungsfirmen und weiteren. In einer späteren

Phase kommen Gebäudeverwalter, Eigentümer und Bewohner hinzu, sowie

externe Parteien, wie beispielsweise verschiedene Behörden, Forschungsin-

stitute, Vermessungsingenieure und Infrastrukturspezialisten. Jedes Projekt

hat also mehrere Partner, und jeder Partner kann auch an mehreren Projek-

ten gleichzeitig beteiligt sein. Dieses Netzwerk von Akteuren und Projekten

macht es weder möglich noch wünschenswert, alle verfügbaren Informationen

auf einer digitalen Plattform zu zentralisieren. Dennoch wird eine zentrali-

sierte ‘Common Data Environment’ (CDE) oft als die einzige Lösung für das

Informationsmanagement im Zusammenhang mit der gebauten Umgebung an-

gesehen: eine einzige Webplattform zur Integration von Projektinformationen.

Der Zugang zu Informationen in einer CDE erfolgt häufig über eine proprie-

täre Schnittstelle, die in der Regel von einem nicht am Projekt beteiligten

Softwareunternehmen bereitgestellt wird.

Eine CDE wird pro Projekt eingesetzt, was bedeutet, dass ein Büro mögli-

cherweise mehrere CDEs gleichzeitig unterhalten muss. Außerdem sind die

Projektdaten selbst (oft ein BIM-Modell) häufig in einem proprietären Format

beschrieben, so dass es nicht einfach ist, sie mit anderen Projektdaten (Fotos,

Punktwolken, Planung) zu verknüpfen und wiederverwendbare Informationen

aus anderen Phasen zu finden. Selbst bei offenen, standardisierten Formaten

wie IFC (Industry Foundation Classes) ist die Verknüpfung mit anderen Daten

aufgrund der bestehenden Hierarchie zwischen dem 3D-BIM-Modell auf der

einen Seite und den verknüpften Dokumenten auf der anderen Seite nicht

immer offensichtlich.

Diese Arbeit erforscht einen alternativen Weg, ausgehend von der dezentra-

len, multidisziplinären und heterogenen Natur der gebauten Umgebung. Die

Grundlage für eine ’föderierte CDE’ ist eine Infrastruktur, die das World Wide

Web als sicheren und skalierbaren Rahmen für die Speicherung sensibler, ver-

netzter Daten nutzt. Ein ’föderiertes Projekt’ ist dann eine Aggregation von

xi

projektspezifischen und kontextbezogenen Datensätzen, die je nach Aufgabe

spezifische Datensätze einbeziehen oder ausschließen können. Diese Aggre-

gationen werden häufig heterogen sein, z. B. bestehend aus BIM-Modellen,

Bildmaterial, Punktwolken, Tabellen, regulatorischen Datensätzen usw. Den-

noch müssen sie miteinander verbunden sein, um einen übergeordneten In-

formationskatalog zu bilden, unabhängig von den verwendeten Medientypen.

Die Voraussetzungen für eine solche Infrastruktur werden in dieser Arbeit

identifiziert, ebenso wie aktuelle Technologien, die diese Voraussetzungen

erfüllen können. Darüber hinaus wird eine technologische Implementierung

erarbeitet, die die Gesamtdurchführbarkeit des Ansatzes veranschaulicht und

zeigt, wie die Kompatibilität mit bestehenden BIM-Standards weitgehend durch

die strikte Trennung von Projektdaten und Metadaten erhalten werden kann.

Während Projektdatensätze die eigentlichen Informationen über die gebaute

Umgebung enthalten, bieten Metadatensätze den notwendigen Kontext, um

geeignete Werkzeuge für die Interaktion mit einem Datensatz zu identifizieren.

Die Grundlagen des Ökosystems werden domänenunabhängig sein. Das For-

mat oder Schema der Projektdaten spielt also keine Rolle, und die entwickelten

Datenmuster können für andere Zwecke als die Dokumentation der bebauten

Umgebung verwendet werden. Das bedeutet, dass Verbindungen zwischen

verschiedenen Dokumenten hergestellt werden können. Beispielsweise kann

ein Dokument eine 3D-Darstellung eines spezifischen Objekts enthalten, ein

anderes ein Foto und wieder ein anderes eine semantische Beschreibung. Das

Ergebnis ist ein interdisziplinärer Katalog von Gebäudedaten, der über das

Web skalierbar ist – ein föderiertes ’Multi-Modell’.

In dieser Arbeit wird das entwickelte Ökosystem für dezentrale Datenverwal-

tung im Web als ConSolid bezeichnet. ConSolid basiert auf dem semantischen

Web, dem Solid-Protokoll für dezentrale Datentresore (‘Pods’) und den FAIR-

Prinzipien (Findable, Accessible, Interoperable, Reusable) für die webbasierte

Datenverwaltung. Wo es als notwendig erachtet wird, werden Erweiterungen

vorgeschlagen, um das Solid-Ökosystem als Grundlage für ein föderiertes CDE

einzusetzen, wie z. B. ein SPARQL-Endpunkt über einen gesamten Datentresor

und eine erweiterbare Metadatenstruktur, die auf der Data Catalog (DCAT)

Ontologie basiert.

Diese erweiterte Infrastruktur ermöglicht verschiedene übergeordnete Daten-

verwaltungsprozesse. Erstens werden Datenmuster vorgeschlagen, um projekt-

spezifische Anforderungen an Metadatensätze zu erstellen, zuzuweisen und zu

validieren. Zweitens wird ein Ansatz für eine erweiterte Zugriffskontrollum-

gebung entwickelt, bei der semantische Eigenschaften sowohl von Besuchern

xii

als auch von Ressourcen validiert werden können, um zu bestimmen, ob der

Zugriff auf diese Ressource gewährt werden kann. Zum Beispiel: “Jeder, der

nachweisen kann, dass er für das Architekturbüro dieses Projekts arbeitet,

erhält Zugang zu den Datensätzen, denen ein ‘Gemeinsam’-Etikett zugewiesen

wurde”.

Um ConSolid jedoch effektiv als CDE nutzen zu können, ist zusätzlich zu

dieser allgemeinen Storagelayer eine Servicelayer erforderlich. Im Kern ermög-

licht diese Servicelayer, die vorgeschlagenen Datenmuster zu interpretieren,

die notwendigen Datenfragmente zu aggregieren und sie an eine Ausgabe

anzupassen, die mit bestehenden, standardisierten, domänenspezifischen For-

maten konform ist. Mit dieser Servicelayer kann eine föderierte Infrastruktur

dennoch in vertrauten Branchenumgebungen verwendet werden, die erwar-

ten, dass die Daten über zentralisierte Endpunkte verfügbar sind (z. B. BIM-

Autorentools).

Jedoch bieten solche Desktop-Umgebungen selten Zugang zur Ausdrucksfä-

higkeit von (Web-basierten) Multi-Modellen. Wie bereits erwähnt, ist es – per

Definition – ungewiss, welche Dateiformate ein solcher Katalog enthalten

wird. Folglich ist die menschliche Interaktion bei so viel Heterogenität keine

leichte Aufgabe: Benutzeroberflächen (GUIs) sind unerlässlich, besonders in

visuell orientierten Branchen wie Architektur, Bauwesen und Gebäudever-

waltung. Um bestehende Anwendungen für erstellende domänenspezifische

Datensätze zu ergänzen, formuliert diese Arbeit auch die Grundlagen eines

Ökosystems für modulare GUIs, um diese heterogenen Datensätze allmäh-

lich in einer projektspezifischen Abfolge miteinander zu verknüpfen. Wie das

ConSolid-Ökosystem basiert auch dieses Ökosystem für GUIs auf föderierten

Modulen, von denen jedes seine eigene Spezialisierung hat. Diese Module wer-

den in spezifischen Konfigurationen zusammengeführt, um eine gut definierte

GUI zu bilden, abhängig von der anstehenden Aktivität und den Datensätzen,

mit denen interagiert werden soll. Da dieses Schnittstellen-Ökosystem auf dem

relativ neuen Konzept der Micro-Frontends basiert und das Ergebnis ein föde-

rierter Katalog (oder ‘Store’) ist, trägt es den Namen Mifesto (Micro-Frontend

Store).

Obwohl ConSolid und Mifesto unabhängig voneinander funktionieren können,

wird das volle Potenzial beider erst in ihrer Kombination erreicht: In ConSolid

können beliebige Datentypen gespeichert und in ein größeres Projekt integriert

werden - in Mifesto kann ein menschlicher Benutzer auf grafische Weise zum

Inhalt eines solchen Projekts beitragen.

xiii

List of Acronyms
AAA Anyone can say Anything about Anything.

ABAC Attribute-Based Access Control.

ACL Access Control List.

ACP Access Control Policy.

AEC Architecture, Engineering and Construction.

AECO Architecture, Engineering, Construction and Operations.

API Application Programming Interface.

BCF BIM Collaboration Format.

BEO BuildingElement Ontology.

BIM Building Information Modelling.

BLC building life cycle.

BOT Building Topology Ontology.

CAD Computer Aided Design.

CAM Computer Aided Manufacturing.

CDE Common Data Environment.

CSS Community Solid Server.

DCAT Data CATalog vocabulary.

DEO DistributionElement Ontology.

DGFB Directie Gebouwen en Facilitair Beheer.

DID Decentralised Identifier.

DT Digital Twin.

FAIR Findable, Accessible, Interoperable and Reusable.

xiv

FM Facility Management.

FOG File Ontology for Geometry Formats.

GIS Geographic Information Systems.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HBIM Heritage Building Information Modelling.

HTTP HyperText Transfer Protocol.

IAI Industry Alliance for Interoperability.

ICDD Information Container for Linked Document Delivery.

IDP Identity Provider.

IFC Industry Foundation Classes.

IP Intellectual Property.

JSON JavaScript Object Notation.

JWT JSON Web Token.

KG Knowledge Graph.

LBD Linked Building Data.

LBD CG Linked Building Data Community Group.

LDN Linked Data Notification.

LDP Linked Data Platform.

LOD Level of Detail.

LTQP Link Traversal Query Processing.

NLP Natural Language Processing.

OIDC OpenID Connect.

xv

OMG Ontology for Managing Geometry.

OWL Web Ontology Language.

PBAC Pattern-based Access Control.

RBAC Role-Based Access Control.

RDF Resource Description Framework.

RDFS RDF Schema.

SHACL SHApes Constraint Language.

SPA Single-Page Web Application.

SPARQL SPARQL Protocol And RDF Query Language.

SSoI Single Source of Information.

SW Semantic Web.

TRL Technology Readiness Level.

Turtle Terse RDF Triple Language.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

VC Verifiable Credentials.

VDR Verifiable Data Registry.

W3C World Wide Web Consortium.

WAC Web Access Control.

WADM Web Annotation Data Model.

WAV Web Annotation Vocabulary.

xvi

Chapter 1

Introduction
1.1 Research Context

The built environment plays a fundamental role in shaping society. It is the

backdrop for all daily activities, and there are only few disciplines that are

not affected by their surroundings. Architects, urbanists and policy makers

have the task to carefully plan this physical ecosystem in which we spend

our lives; an ecosystem that acts on small- and medium-scale infrastructure

(rooms, buildings) as well as on large (cities) to very large scale (countries and

bigger). This influence is bidirectional: every design envisions a future for the

built environment to make a particular place more fit for one or more specific

purposes. In order to accomplish this, a design needs to integrate a multitude

of widely divergent visions and information streams.

In the current era of digitisation, many of these information streams will have

digital roots, and consequently they must be structured in a specific way,

according to the conventions used in their respective domains. For example,

there are other needs and agreements for geospatial data than for historical

or heritage documentation, governmental regulations, or building physics.

As in a modern society, these streams will be published by different actors

and organisations, the result can be seen as a federated, heterogeneous ‘web’

of context, indeed facilitated by the World Wide Web. In this information

structure, specific knowledge can be either contextual or principal ‘project’

information, depending on the task at hand.

So far the theory. In reality, if there are any connections between these dis-

parate information streams, they are all too often only present in a local,

semi-structured fashion – if not purely in the head of the designer. Hence,

these links are not reusable and do not support incremental data flow and

creation. Rather, information remains siloed both in terms of data structures

(e.g., because of proprietary formats) and in terms of data environments, which

will often impede information exchange with agents outside the ecosystem

(‘walled gardens’). However, there are few industries where information needs

to be exchanged so intensively with so many actors [25]: not only during

the design and construction phases (architects, commissioner, engineers, con-

tractors) but also during the eventual operation phase, which (in most cases –

1

luckily) constitutes the bulk of the building life cycle. This misalignment often

leads to information duplication and ambiguities, which can be costly – not

only because of the time spent in recreating information that already exists

somewhere, in some form, but also as they may lead to on-site issues that must

be resolved prior to proceeding the work. Therefore, an approach must be

devised to discover and connect these silos while leaving their publishers the

freedom to choose the dataset’s desired content, schema, location and access

rules. Such approach will not only increase economic gains by reducing these

ambiguities, but will also open up several opportunities for cross-disciplinary

knowledge exchange. Let us take the example of the renovation of a specific

heritage monument. During the design phase, the design can be checked

against regulations published by the local authorities. Naturally, a digital

model aids in planning and executing the renovation. Afterwards, the created

model and its geometry can be used as a basis for an ‘as-built’ model, serving

as an input for a Digital Twin (DT) or a virtual museum. More exotic cases can

be linked as well, such as combining the topology and program of the building

with very specific access control rules, or optimising rooms for the individual

preferences of a building’s inhabitants.

In this dissertation, a theoretical basis is laid out for a Web-based ecosystem

to discover, link, semantically enrich, validate and interact with such hetero-

geneous, interdisciplinary and federated knowledge. Although the design

patterns for this ecosystem will be general-purpose, their primary application

will be to digitally document the built environment. Therefore, the above can

also be phrased as follows: to use the Web as a federated Common Data Envi-
ronment (CDE). Taking well-established concepts such as CDEs and Building

Information Modelling (BIM) [52, 22] as starting points, the need to further

embed the Architecture, Engineering, Construction and Operations (AECO)

industries in the broader ‘digital economy’ [35] is discussed. This disserta-

tion will stepwise explore design principles and data patterns to provide a

comprehensive answer to the challenges that lie ahead, both theoretically and

practically, applying existing technologies. The resulting framework will sup-

port the federation federation of data vaults, open data repositories, services

and GUI modules (Figure 1.1).

To achieve this, the framework will strongly base upon general Web standards

and technologies, i.e., concepts for federated data management, aggregation,

domain-agnostic data modelling and interaction with a heterogeneous set of

documents. Three independent layers will be devised to structure the frame-

work. In the following paragraphs, these layers will be briefly discussed.

2

Figure 1.1: The modular ecosystem supports federation of data vaults,
GUI modules, functional services and open data repositories.

Before any existing information can be used, it must be clear where and how

to retrieve it. Access control policies must be in place to ensure protection

of sensitive data. The first layer therefore considers federated data storage,

authentication and authorisation, including the notion of secure data vaults

for project stakeholders. The meaning of these vaults for the AECO industries

and their potential to support a federated CDE are clarified in the disserta-

tion. Then, when a dataset can be discovered, it must be assessed whether

the dataset has any potential to support decision-making for said scenario.

3

When rich metadata structures are present, this assessment might be done

prior to loading the actual dataset(s), in a filtering phase. Guidelines for such

rich metadata structures will be inspired by the FAIR (Findable, Accessible,

Interoperable and Reusable) principles [200]. As a technological foundation

for the data ecosystem, this dissertation bases upon Semantic Web (SW) tech-

nologies and the specifications and standards that together form the Solid

ecosystem [111]. However, whenever deemed necessary, custom extensions to

the Solid ecosystem will be proposed, in order to achieve the desired function-

ality. Related to Figure 1.1, this layer deals with ‘data vaults’ and ‘open data

(repositories)’.

Simultaneously, it must be checked if there are any available services capa-

ble of interpreting the dataset’s schema. Naturally, these services must be

oriented towards executing (part of) the intended scenario – to know if any

interaction between the data and the end user is possible at all. The second

layer thus facilitates (1) high-level functional interaction with the data vaults,

(2) knowledge aggregation and (3) knowledge adaptation. This layer will also

facilitate the ecosystem’s compatibility with existing industry standards and

the organisational structures of present-day CDEs. Related to Figure 1.1, this

layer deals with ‘services’.

Finally, the third layer deals with the cross-linking of heterogeneous, federated

information sets by domain specialists, in addition to existing practices of data

creation. In frequently occurring, discipline-specific situations, common data

formats will be used, so a large part of the potential interactions can be covered

by existing practices for developing Web applications. For example, in a phase

where project data is restricted to BIM models using the open IFC-format, a

Single-Page Web Application (SPA) with a 3D viewer and some panels for

visualising properties will be well-suited for the task. However, a ‘project’ can

also be considered as a heterogeneous collection of interconnected datasets

which gradually develops throughout time – without any disciplinary bound-

aries applied. As a consequence, there are no restrictions to the mediatypes

of a project’s datasets. This will be the approach taken in this dissertation.

Although this is a powerful and versatile approach from the perspective of data

modelling, it is less clear how users can interact with such heterogeneity. After

all, the order of adding knowledge to such catalogue will vary depending on the

project. Maybe the starting point is formed by just a few images, a damage sur-

vey or a geospatial location, from which gradually the whole catalogue will be

built – only adding what is needed for a specific task, but always contributing

to the overall Web of data. The third layer therefore considers the build-up of

4

such a heterogeneous multi-model in a visual way, from any starting point and

project planning, using any initial sources or semantic knowledge. Its focus lies

on the interaction between a human end-user and the digital knowledge base.

To broaden the scope of available tools and interactions, the concept of SPAs

is extended with the dynamic aggregation of decentrally published, modular

end-user applications. The relatively novel concept of micro-frontends and,

again, Web federation technologies, will form the basis to achieve this. Using

modules as building blocks to interact with multi-models, domain experts will

be able to configure an interface based on the intended activity and the already

available data, without extensive programming knowledge. Related to Figure

1.1, this layer deals with ‘GUI modules’.

1.2 Assumptions and Research Questions

This dissertation contains an overview of current-day challenges and opportu-

nities for a digital, federated built environment, as an interconnected subset

of the global Web of data. Paradoxically, the sheer amount of related sub-

disciplines related to the built environment, combined with the decentral

nature of contributions made by companies and institutions of varying size

and trade, implies the need for a federated, modular, domain-agnostic approach
for organising interrelated data on the Web, and a flexible, user-friendly way

of interacting with such heterogeneous data. These topics will be further

elaborated in Chapter 2, which will provide the rationale for the following

assumptions:

• A 1: To determine a ‘complete’ data model for the built environment is
impossible, as the disciplinary boundaries are not clear. By gradually com-
bining different data models in an over-arching data catalogue, however,
the relevant domains can be nevertheless covered in a case-specific way.

• A 2: Considering the entire life cycle of a digital built asset with wide
usage scope, a federated approach provides a more comprehensive ‘Single
Source of Information’ [84] than common centralised solutions – as it is
not restricted to a single data provider. However, a higher effort is needed
to keep the knowledge base consistent.

• A 3: A federated CDE better guarantees the stakeholder’s ownership of
data than centralised solutions, since the location of the data can be freely
chosen and a separation of data and services is possible. Additionally, the
use of open data formats allows to bypass the need for proprietary APIs.

5

Based on these assumptions, the research questions for this dissertation can

now be defined. All research questions contribute to the larger goal of demon-

strating the feasibility, advantages and challenges of a federated CDE.

• RQ 1: What are the technology-agnostic characteristics for a scalable CDE
with high potential for discovery of related information, and integration
and reuse of existing data sources?

• RQ 2: How can these characteristics be addressed using current-day stan-
dards, Web engineering concepts and technology specifications?

• RQ 3: Using the technologies mentioned in RQ2, what are data patterns
for structuring, discovering and querying information in a federated envi-
ronment?

• RQ 4: What are data patterns for mediatype-agnostic, cross-resource link-
ing and annotation in a federated environment?

• RQ 5: Is such environment compatible with current-day information man-
agement practice in the AECO sector?

• RQ 6: How can a domain-specialist without extensive IT knowledge link
new datasets and their content to an existing federated project catalogue,
independent from the media type or present topics of both the new datasets
and the existing multi-model?

The scalability mentioned in RQ1 relates to the fact that the ecosystem’s

boundaries will be per definition unknown upon initialisation. A project must

be dynamically extensible both regarding the location of its constituent data

sources (federation) and their content-types (heterogeneity). This contrasts

with the classic use of a single BIM model or a centralised CDE solution with

fixed media types. In such federated context, maximising discovery potential of
the ecosystem should work in two ways. The first one is a top-down approach,

where a single access point for the project can be used to dynamically retrieve

the location and metadata of all (or a predefined subset) of its constituent

resources. The second one is ‘bottom-up’, i.e., to start from the content of

a particular data source (for example, through the selection of a specific 3D

element) and then traverse the project to find related project sources that also

contain information about the selected element.

It should be noted that, to the author’s knowledge, there is no agreed-upon

definition of a ‘federated CDE’. The argumentation that will lead to the identi-

fication of the characteristics an eventual technological solution must adhere

6

to (RQ1), therefore also explains how this concept is interpreted in this disser-

tation.

The term ‘data patterns’ (RQ3) will then be used to indicate a suggested map-

ping of specific (Linked Data) properties and classes to address a particular

characteristic of the ecosystem. Data patterns may then be chains of prop-

erties (‘property paths’) between two entities or more complex graph-like

structures that connect various information snippets. For example, in this

thesis’ interpretation and implementation of the characteristics (ConSolid),

the above-mentioned top-down and bottom-up approaches for data discovery

within a project will both make use of specific data patterns. Note that data

patterns are never exclusive solutions – there will always be alternative ap-

proaches to achieve the same goal of connecting multiple information snippets;

the patterns provided in this dissertation are thus to be considered exemplary,

rather than exclusive.

1.3 Dissertation Outline

Addressing the research questions will largely coincide with the structure of

this dissertation. Before handling them, however, a more in-depth introduction

and rationale is required, which is the topic of Chapter 2 (Background and
Rationale). This chapter will maintain a technology-agnostic narrative and

identify the built environment as a domain that incorporates many challenges

that are also present in other industries. Amongst these cross-industry chal-

lenges are the fact that the built environment is the result of contributions

from federated consortia of small- to medium-sized enterprises, the existence

of unique ‘end products’, the need for cross-discipline data exchange and

continuous monitoring of the asset long after its completion.

Subsequent chapters will each cover a particular part of the ecosystem, from

technology-agnostic characteristics over identification of suitable technologies

and proof-of-concept implementation to an AECO-related case study. The

reasoning behind themain requirements (RQ1) related to structuring, discovery

and filtering will be addressed in Chapter 3 (Storage and Discovery of Federated
Projects), as well as the necessary technologies (RQ2) and the data patterns

(RQ3) that base upon these technologies. The topics related to connecting

and annotating heterogeneous information will be discussed in Chapter 4

(Resource Linking and Annotation), addressing RQ1, RQ3 and RQ4. Chapter 5

(Data Validation) and Chapter 6 (Middleware Services) will respectively develop
validation methods and higher-level interfaces that allow the usage of the

7

ecosystem as a Common Data Environment, hence also relating to RQ1. Finally,

the layer of the ecosystem that facilitates domain-specific end user interaction

(with a focus on cross-dataset linking activities) with heterogeneous, federated

data catalogues (RQ6) is developed in Chapter 7 (Interfaces for Linking Federated
Multi-Models). The dissertation concludes with Chapter 8 (Evaluation) and
Chapter 9 (Conclusion).

Figure 1.2 shows how every chapter describes a different part of the ecosystem,

and their relationship to one another. When an introduction to a particu-

lar concept is deemed convenient, the reader will be referred to a dedicated

appendix.

Figure 1.2: Interaction between the different topics discussed in this
dissertation.

8

1.4 Research Approach and Limitations

Overall, this dissertation will take a modular approach to avoid too much

dependency on single technologies in a rapidly changing research and technol-

ogy landscape. To achieve such modularity, this research will be conducted as a

continuous interplay of reasoning about the (theoretical) characteristics of the

ecosystem, technological validation of those characteristics and data pattern

development, identification of exceptions that could not yet be addressed and

generalisation of the characteristics to make the ecosystem incorporate those

exceptions (Figure 1.3).

Figure 1.3: Research approach: iterations for increasing the applicabil-
ity of the framework.

Practically, each of the layers discussed in Section 1.1 will be devised as con-

ceptually independent from the others, although only in their combination

the full potential of the ecosystem will be reached. This means that (1) in-

teraction with the federated data ecosystem is possible in many ways (SPA’s,

micro-frontend configurations, desktop applications), and (2) that the front-

end ecosystem will be able to interact with both federated multi-models and

centralised multi-models (or even single model projects).

This finetuning of the ecosystem towards generally applicable and domain-

independent principles is per definition dictated by the topic of Web-based

documentation and linking of data about the built environment. In a Web

context, it would be very counterproductive to consider building data as a

separate island. On the contrary, if one ‘domain’ is to be chosen that can be

9

used in interdisciplinary contexts, it would probably be the built environment.

To allow such disciplinary cross-overs without pretending to know which

cross-overs will take and which ones do not, a continuous evaluation of the

ecosystem’s general applicability will be maintained from the early stages of

the research.

This dissertation targets a broad spectrum of topics and technologies. As a

consequence, the technological design choices for the setup of the federated

CDE ConSolid do not imply that there is only one technological possibility to

meet the requirements put forward in this dissertation. Similarly, the proof-

of-concept applications and services only serve the purpose of demonstrating

the feasibility of a particular module using existing technologies. In other

words, to prove that the design choices and data patterns can be implemented

in at least one way. Performance is not a key requirement here. However,

in particular cases an indicative test will be performed to check whether the

execution time lies within an acceptable order of magnitude. In a comparison

to typical human-computer interactions in a classical CDE environment, an

execution time around 1s is considered acceptable for core tasks of the CDE,

considering the size of the demo datasets (see Section 1.7).

The main topics of each chapter are clarified with examples originating from

the AECO industry. Where relevant, these examples will be related to the case

study introduced in Section 1.7. It should be clear that these examples are

not to be seen as ‘the primary goals’ of the ecosystem. Rather, they serve the

purpose of illustrating the (generic) considerations and technologies devised

in each chapter. Based on the practical example of damage documentation

of a federated building catalogue, the reader is then trusted to assess how

the ecosystem can support other specific cases as well. The different steps

taken can be generalised towards more vaults, resources and domains. In the

same way, it is clear that the explanatory cases for data validation (DCAT-AP,

OpenCDE), pattern-based access control (Chapter 5) and compatibility with

standards (ICDD and the BCF API) (Chapter 6) are illustrative, rather than

being rigid end goals of the research project.

Finally, several topics will be only briefly touched upon in this dissertation,

without being developed to the level of a working prototype. They remain

included in the text because of their potential for future research, or because

they offer alternative (non-technological) perspectives on the raised issues.

Whenever this is the case, such topics will be labeled as ‘out-of-scope’.

10

1.5 Main Contributions

The contributions of this research can be organised in different categories.

The first category encompasses the contributions to the field of ‘building

informatics’ or ‘the digital built environment’. A general vision is presented

for the ‘BIM level 3’ in the well-known BIM-levels of maturity [15]. This

concept will be extended beyond what is typically understood as BIM: the

dissertation will reflect on the benefits, challenges and characteristics of an

ecosystem for open (asset) data, based on the FAIR principles – to use the Web

as a CDE. Note that, in this case, ‘open’ means ‘using open formats’ rather

than ‘accessible to anyone’. This leads to the following concrete contributions

on the topic of federated multi-models:

1. Outline of the characteristics for a CDE for federated, heterogeneous

multi-models ;

2. Identification of existing technologies capable of addressing the charac-
teristics;

3. Outline of design choices and data patterns compatible with the identified

technologies;

4. Conceptual combination of micro-frontends with semantic, feder-
ated catalogues, and the identification of the benefits this offers.

Secondly, at the time of writing, many of the technologies and specifications

used in this dissertation are still undergoing active changes. This applies

in particular to the Solid ecosystem, which will be the domain-independent

foundation for the organisation of access-controlled, heterogeneous multi-

stakeholder projects. Whenever deemed necessary for the functionality of the

framework, particular desiderata will be indicated – sometimes accompanied by

a custom extension to the current stack of Solid specifications or technologies.

Although these custom extensions are not part of any standardisation process

at the time of writing, they are considered contributions because of the general

benefits they offer compared to the ‘vanilla’ approach, at least in the context

of a federated CDE. As a modular approach is maintained, it is expected that

replacing them with equivalent technologies and data patterns devised by

any future specifications, will be feasible without affecting other parts of the

ecosystem. This allows to prove the technological feasibility of the developed

ideas, while at the same time maintaining a bird’s-eye perspective on the

overall goals of the ecosystem.

11

The following contributions are considered in context of Solid:

1. Conceptual broadening (e.g. multi-pod collaborative environments);

2. Functional extensions (e.g. queryable union graph of a Solid data Pod,

pattern-based access control, RDF aggregators);

Because of the bird-eye perspective maintained in this dissertation, no new

domain ontologies will be proposed. However, by now, an extensive corpus

of modular domain ontologies has already been published by many talented

researchers, under the umbrella of the World Wide Web Consortium (W3C)

Linked Building Data Community Group (LBD CG). The work in this disserta-

tion aims to be complementary with those approaches, by primary focusing

on data discovery, alignment and interaction. Some vocabularies on a (domain-

agnostic) metadata and data management level will be devised to support

this:

1. The ConSolid vocabulary (https://w3id.org/consolid#);

2. The PBAC vocabulary (https://w3id.org/pbac#);

3. The Mifesto vocabulary (https://w3id.org/mifesto#);

Finally, several codebases were developed in context of this research. They

are to be considered mere prototypes, and are not suited for use in industrial

settings. The following codebases have been published:

1. Authenticated SPARQL endpoint to Solid Pod

(https://github.com/ConSolidProject/sparql-satellite/tree/dissertation);

2. Community Solid Server adaptation for mirroring RDF graphs to a

SPARQL endpoint (https://github.com/LBD-Hackers/SolidCommunity_Fuseki/

tree/dissertation);

3. ConSolid API and scripts (https://github.com/ConSolidProject/cde-satellite/

tree/dissertation);

4. Dataset Aggregation API

(https://github.com/LBD-Hackers/daapi/tree/dissertation);

5. Reference Aggregation API

(https://github.com/LBD-Hackers/raapi/tree/dissertation).

12

https://w3id.org/consolid#
https://w3id.org/pbac#
https://w3id.org/mifesto#
https://github.com/ConSolidProject/sparql-satellite/tree/dissertation
https://github.com/LBD-Hackers/SolidCommunity_Fuseki/tree/dissertation
https://github.com/LBD-Hackers/SolidCommunity_Fuseki/tree/dissertation
https://github.com/ConSolidProject/cde-satellite/tree/dissertation
https://github.com/ConSolidProject/cde-satellite/tree/dissertation
https://github.com/LBD-Hackers/daapi/tree/dissertation
https://github.com/LBD-Hackers/raapi/tree/dissertation

1.6 Audience

This dissertation is primarily aimed towards an audience that is familiar with

recent developments in building informatics and the use of Semantic Web tech-

nologies for the built environment. As the rationale starts from well-known

concepts and standards, BIM and Digital Twin specialists and CDE developers

are also part of its target audience – pointers will be given to more exotic

concepts related to Web technologies. On the other hand, computer scientists

who are dealing with Web decentralisation and knowledge aggregation will be

more acquainted with concepts such as the Solid ecosystem and the Data CAT-

alog vocabulary (DCAT) vocabulary, but might benefit from more context on

AECO-related concepts. At the beginning of each chapter, relevant appendices

will be indicated, providing basic context for both perspectives. For a more

in-depth coverage, the reader will be referred to external sources.

1.7 Case Study

During the text, concepts will be clarified with the case study of the iGent

tower of Ghent University, Zwijnaarde, Belgium (Figure 1.4). The available

data from the iGent tower originates from partial BIM models, produced by

two different stakeholders: Bureau Bouwtechniek (BE) and Arcadis (BE). Both

stakeholders agreed to the academic usage of the models. A third stakeholder

is introduced as well, namely the Department of Infrastructure and Facility

Management of UGent (Directie Gebouwen en Facilitair Beheer (DGFB)), as it

is a university building. Because the ecosystem is highly experimental, these

stakeholders did not use the ecosystem in a real-world project, which would

require a muchmore mature interface. However, the two stakeholders involved

in the eventual enrichment case (Chapter 4), namely the DGFB and Bureau

Bouwtechniek, were contacted to confirm the validity of the scenario, which

involves enriching the federated project with damage record data.

The infrastructure devised in this dissertation will be based on secure data

vaults, which are dereferenceable. The following (fictional) URLs will be used

to refer to the stakeholder vaults in the case study:

• Bureau Bouwtechniek: https://b-b.be/data

• Arcadis: https://arcadis.com/data

• DGFB: https://dgfb.ugent.be/data

13

The case study will be developed throughout different chapters. Chapter 3

will describe the setup of the storage ecosystem and the metadata that allows

discovery of information in the federated project. Chapter 4 will describe

a sub-document linking activity between heterogeneous datasets, using the

case of damage management. Damage enrichment is, being a frequently

occurring activity in the operational phase of a building or heritage object [104],

considered an exemplary scenario: it covers both the use of heterogeneous

data sources (RDF, imagery, geometry) and sources from multiple stakeholders

are involved in the process. Finally, Chapter 5 will use the stakeholder network

and the project data to illustrate advanced access control mechanisms.

Figure 1.4: The iGent tower (Zwijnaarde, Belgium) will function as a
case study to illustrate the topics of this dissertation.

14

1.8 Publications

During the 5 years of research in context of this PhD, I have authored and

co-authored several peer-reviewed papers and book chapters. This dissertation

aims to formulate an over-arching narrative that explains how these publi-

cations are related to one another. At the end of each chapter, the related

publications will be indicated. Not all papers are equally relevant for this dis-

sertation: some papers, especially the ones written in the early research stages,

can be considered excursions rather than full-fletched contributions to the

overall narrative. Others form a basis upon which subsequent papers iterate,

and not seldom do these subsequent papers overrule the data patterns and

conclusions of previous ones in favour of higher flexibility and robustness, or

in use of established ontologies rather than custom ones. In the same way, this

dissertation will revise some of the proposals in published papers into a form

that is more consistent with the other aspects of the ecosystem. A complete

list of accepted and peer-reviewed publications is given below.

Journal articles:

• Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Erik Mannens.

“ConSolid: a Federated Ecosystem for Heterogeneous Multi-Stakeholder

Projects”. In: Semantic Web Journal (2023). Accepted. url: https://biblio.
ugent.be/publication/8633673/file/8633674.pdf (accessed 2024-3-18).

• Jeroen Werbrouck, Pieter Pauwels, Mathias Bonduel, Jakob Beetz, and

WillemBekers. “Scan-to-graph: Semantic enrichment of existing building

geometry”. In: Automation in Construction 119 (2020), p. 103286. url:

https://doi.org/10.1016/j.autcon.2020.103286.

• Jeroen Werbrouck, Oliver Schulz, Jyrki Oraskari, Erik Mannens, Pieter

Pauwels, and Jakob Beetz. “A generic framework for federated CDEs

applied to Issue Management”. In: Advanced Engineering Informatics 58
(2023), p. 102136. url: https://doi.org/10.1016/j.aei.2023.102136 (accessed

2024-3-18).

Book chapters:

• JeroenWerbrouck, Madhumitha Senthilvel, and Mads Holten Rasmussen.

“Federated data storage for the AEC industry”. In: Buildings and Seman-
tics. CRC Press, 2022, pp. 139–164.

15

https://biblio.ugent.be/publication/8633673/file/8633674.pdf
https://biblio.ugent.be/publication/8633673/file/8633674.pdf
https://doi.org/10.1016/j.autcon.2020.103286
https://doi.org/10.1016/j.aei.2023.102136

• Anna Wagner, Mathias Bonduel, Jeroen Werbrouck, and Kris McGlinn.

“Geometry and geospatial data on the web”. In: Buildings and Semantics.
CRC Press, 2022, pp. 69–99.

Conference contributions:

• Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Léon van Berlo. “To-

wards a decentralised common data environment using linked building

data and the solid ecosystem”. In: 36th CIB W78 2019 Conference. 2019,
pp. 113–123. url: https://biblio.ugent.be/publication/8633673 (accessed

2024-3-18).

• JeroenWerbrouck, Pieter Pauwels, Jakob Beetz, and Erik Mannens. “Data

patterns for the organisation of federated linked building data”. In:

LDAC2021, the 9th Linked Data in Architecture and Construction Work-
shop. 2021, pp. 1–12. url: https://biblio.ugent.be/publication/8724183/file/
8750812.pdf (accessed 2024-3-18).

• Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Erik Mannens.

“Mapping Federated AEC projects to Industry Standards using dynamic

Views”. In: 10th Linked Data in Architecture and Construction Workshop.
CEUR-WS. org. 2022. url: https : / / ceur - ws .org /Vol - 3213 /paper06 .pdf

(accessed 2024-3-18).

• JeroenWerbrouck, Madhumitha Senthilvel, Jakob Beetz, Pierre Bourreau,

and Léon Van Berlo. “Semantic query languages for knowledge-based

web services in a construction context”. In: 26th International Workshop
on Intelligent Computing in Engineering, EG-ICE 2019. Vol. 2394. 2019.
url: https://ceur-ws.org/Vol-2394/paper03.pdf (accessed 2024-3-18).

• Jeroen Werbrouck, Madhumitha Senthilvel, Jakob Beetz, and Pieter

Pauwels. “A checking approach for distributed building data”. In: 31st fo-
rum bauinformatik, Berlin: Universitätsverlag der TU Berlin. 2019, pp. 173–
81. url: https://biblio.ugent.be/publication/8667508/file/8667516.pdf (accessed

2024-3-18).

• Jeroen Werbrouck, Madhumitha Senthilvel, Jakob Beetz, and Pieter

Pauwels. “Querying heterogeneous linked building datasets with context-

expanded graphql queries”. In: 7th Linked Data in Architecture and Con-
struction Workshop. Vol. 2389. 2019, pp. 21–34. url: https://biblio.ugent.be/
publication/8623179/file/8623180.pdf (accessed 2024-3-18).

16

https://biblio.ugent.be/publication/8633673
https://biblio.ugent.be/publication/8724183/file/8750812.pdf
https://biblio.ugent.be/publication/8724183/file/8750812.pdf
https://ceur-ws.org/Vol-3213/paper06.pdf
https://ceur-ws.org/Vol-2394/paper03.pdf
https://biblio.ugent.be/publication/8667508/file/8667516.pdf
https://biblio.ugent.be/publication/8623179/file/8623180.pdf
https://biblio.ugent.be/publication/8623179/file/8623180.pdf

• Jeroen Werbrouck, Ruben Taelman, Ruben Verborgh, Pieter Pauwels,

Jakob Beetz, and Erik Mannens. “Pattern-based access control in a de-

centralised collaboration environment”. In: Proceedings of the 8th Linked
Data in Architecture and Construction Workshop. CEUR-WS. org. 2020.

url: https://ceur-ws.org/Vol-2636/09paper.pdf (accessed 2024-3-18).

• Pierre Bourreau, Nathalie Charbel, Jeroen Werbrouck, Madhumitha

Senthilvel, Pieter Pauwels, and Jakob Beetz. “Multiple inheritance for

a modular BIM”. In: Le BIM et l’évolution des pratiques: Ingénierie et
architecture, enseignement et recherche (2020), pp. 63–82. url: https :

/ / community. osarch . org /uploads / editor / a0 / 1se97k6z8n3v.pdf (accessed

2024-3-18).

• Nuyts Emma, Jeroen Werbrouck, Ruben Verstraeten, and Louise Deprez.

“Validation of Building Models against Legislation using SHACL”. In:

LDAC2023, the 11th Linked Data in Architecture and Construction Work-
shop. 2023. url: https://linkedbuildingdata.net/ldac2023/files/papers/papers/
LDAC2023_paper_8284.pdf (accessed 2024-3-18).

• Andrew Malcolm, Jeroen Werbrouck, and Pieter Pauwels. “LBD server:

Visualising Building Graphs in web-based environments using semantic

graphs and glTF-models”. In: Formal Methods in Architecture: Proceedings
of the 5th International Symposium on Formal Methods in Architecture
(5FMA), Lisbon 2020. Springer. 2021. url: https://doi.org/10.1007/978-3-030-
57509-0_26 (accessed 2024-3-18).

• Jyrki Oraskari, Oliver Schulz, Jeroen Werbrouck, and Jakob Beetz. “En-

abling Interoperable Issue Management in a Federated Building and Con-

struction Sector”. In: EG-ICE 2022 Workshop on Intelligent Computing in
Engineering. 2022. url: https://api.semanticscholar.org/CorpusID:250108125

(accessed 2024-3-18).

• Oliver Schulz, JeroenWerbrouck, and Jakob Beetz. “Towards SceneGraph

Descriptions for Spatial Representations in the Built Environment”. In:

30th International Workshop on Intelligent Computing in Engineering,
EG-ICE 2023. 2023. url: https://www.ucl.ac.uk/bartlett/construction/sites/

bartlett_construction/files/towards_scene_graph_descriptions_for_spatial_

representations_in_the_built_environment.pdf (accessed 2024-3-18).

17

https://ceur-ws.org/Vol-2636/09paper.pdf
https://community.osarch.org/uploads/editor/a0/1se97k6z8n3v.pdf
https://community.osarch.org/uploads/editor/a0/1se97k6z8n3v.pdf
https://linkedbuildingdata.net/ldac2023/files/papers/papers/LDAC2023_paper_8284.pdf
https://linkedbuildingdata.net/ldac2023/files/papers/papers/LDAC2023_paper_8284.pdf
https://doi.org/10.1007/978-3-030-57509-0_26
https://doi.org/10.1007/978-3-030-57509-0_26
https://api.semanticscholar.org/CorpusID:250108125
https://www.ucl.ac.uk/bartlett/construction/sites/bartlett_construction/files/towards_scene_graph_descriptions_for_spatial_representations_in_the_built_environment.pdf
https://www.ucl.ac.uk/bartlett/construction/sites/bartlett_construction/files/towards_scene_graph_descriptions_for_spatial_representations_in_the_built_environment.pdf
https://www.ucl.ac.uk/bartlett/construction/sites/bartlett_construction/files/towards_scene_graph_descriptions_for_spatial_representations_in_the_built_environment.pdf

Chapter 2

Background and Rationale
This chapter sketches the background and rationale for this research. The topics

discussed in this chapter will remain largely technology-agnostic, although

sometimes specific technologies will be mentioned.

2.1 The Digital Built Environment

Just like in virtually any other domain, the production and consumption of

data and the usage of digital services related to construction and the built

environment increased significantly over the last years. However, this adoption

is taking place at a slower rate thanmost other industries [2]. Contrary to many

domains, most ‘products’ in the Architecture, Engineering, Construction and

Operations (AECO) industries
1
are unique: a building project lives in the real

world, is designed for or adapted to a specific programme, affected by its natural

surroundings and social and economic human infrastructure. From design to

demolition, people with divergent backgrounds interact with this asset, ranging

from direct contributors such as architects and engineers, commissioners,

facility managers and inhabitants, to indirect partners such as governmental

agencies and product manufacturers. As a consequence, information is stored

in a highly decentralised manner, and the amount of interactions with external

partners is very high compared with other industries [25]. Because most

stakeholders will be involved in multiple projects at the same time, one can

speak of a ‘double patchwork’: a many-to-many relation between industry

partners and collaborative projects (Figure 2.1). Intensive collaboration and

information exchange between those partners is thus crucial, and the benefits

of digital technologies as an aid in this process were recognised already in the

early years of digitisation.

The first commercial Computer Aided Manufacturing (CAM) software package,

Pronto, came out in 1957, quickly to be followed by the notion of Computer

Aided Design (CAD) (1959), in context of the MIT Computer-Aided Design

1
This dissertation will maintain a plural form when referring to the AECO industries. At the

time of writing the author does not deem it sufficient to speak of a single industry - although

further integration of these industries is an active field of research – to which this dissertation

wishes to contribute. Sometimes, the acronym AECwill be used, indicating a current industry state

where the operations sector is typically excluded from digital activities of the other disciplines.

18

Figure 2.1: Every project counts multiple offices amongst its stakehold-
ers, and every office participates in multiple projects simultaneously,
resulting in a ‘double patchwork’.

Project [147, 41]. In a visionary 1975 article, Charles Eastman notes that three-

dimensional (3D) computer models can be used to generate two-dimensional

(2D) drawings, theoretically eliminating design inconsistencies resulting from

unsynchronised drawings [51]. Proposing to connect these 3D models with

databases containing digital descriptions of elements, this vision is seen as the

direct predecessor of the current-day Building Information Modelling (BIM)

practice [52]. BIM has brought many benefits in information exchange and

19

project management for the AECO industries: its object-oriented approach

allows to attach detailed information to individual building elements, concern-

ing materials, physical properties, construction planning and more. This way,

a comprehensive and semantically rich building model comes into existence,

and information can be shared with whomever needs it for their respective

tasks in the project. This results in, amongst others, less mistakes, less on-site

collisions and better simulations – hence yielding financial, ecological, and

qualitative design benefits, from the design phase to retrofitting or demolition

activities [22].

Over the last decades, many CAD and BIM tools have been published, both com-

mercially and open-source. Co-evolving with ever-more-powerful processors

and Graphics Processing Units (GPU), these CAD, CAM and BIM authoring

tools have led to a revolution in designing and shaping the built environment.

Any CAD or BIM tool needs a geometric kernel to work with, and it will often

occur that different CAD and BIM programs base upon different geometric

kernels. For BIM, not only geometry, but also domain- and tool-specific data

schemas, which describe the non-geometric semantics in a digital model, need

to be taken into account. One can easily see that the entire software stack

used in a project quickly becomes an eclectic mix of packages, most of them

naturally favouring vendor- or tool-specific data-formats. Consequently, inter-

operability challenges will rise when information needs to be exchanged from

one solution to another one. To address the ever-expanding stack of adjacent

disciplines and corresponding tools, the Industry Alliance for Interoperability

(IAI) was founded in 1994, to be renamed in 1996 to International Alliance for
Interoperability. Within IAI, a non-proprietary data exchange schema for the

Architecture, Engineering and Construction (AEC) industry was developed

(note the absence of ‘Operations’): the Industry Foundation Classes (IFC) [83].

In a re-branding effort, IAI changed its name again in 2005 to buildingSMART

International. The development of IFC as an open, international standard has

continued ever since.

The use of open data exchange formats such as IFC is often denoted with

‘Open BIM’. The approach where many domain specialists can contribute to

a shared, enduring source of information throughout the building life cycle

(BLC), regardless of the software packages they use, is then labelled as ‘Big
Open BIM’ [134]. The Big Open BIM paradigm has been relatively successful in

facilitating the connection between specialised tools involved in the design and

construction phases of a built asset, centred around the IFC schema. However,

in collaborative environments based on one domain-specific schema, adjacent

20

domains and activities still have difficulties to integrate their own (external)

domain knowledge, although the ability to do so would offer multiple benefits

and allow reuse of data for more scenarios. Especially since the built envi-

ronment is one of the core tissues of society, cross-domain data alignment is

essential for embedding its constituent subdisciplines in the broader ‘digital

economy’. Although the IFC schema has been extended multiple times to

incorporate adjacent domains, and the standard also allows to define custom

extensions, the main procedure is to draw other domains into the schema

rather than allowing building-related information to be expressed in a neutral

way - and be drawn as contextual information into the activities of other disci-

plines. This need for scalability beyond the ‘design and construction’ domains

is acknowledged in the 2020 Technical Roadmap of buildingSMART [31], and

is also reflected in the rising interest into the application of Semantic Web

technologies for documenting the built environment [129].

In many cases, interdisciplinary data exchange may go far beyond the AEC do-

mains. Firstly, the concept of ‘BIM’ itself can be broadened, e.g., for retrofitting

purposes [91, 54], for the operational phase [138, 50, 112] or in context of

heritage [179, 6]. Why not using an HBIM (‘Heritage Building Information

Modelling’) model as a basis for a virtual museum, and connect historical events,

pictures and other media fragments to the overall (geometric) model [192, 19]?

Likewise, parallel to BIM, the concept of ‘digital twins’ [112] has been making

a furore in the last decade. Digital twins refer to virtual representations of the

physical building or system that allow to monitor interactions with the actual

asset, or make predictions for future scenarios. These interactions between a

digital infrastructure and real-world phenomena are, for example, established

via sensor streams (real-digital) and actuators (digital-real). Therefore, they are

mostly used during the operational phase, although the benefits of a Digital

Twin system during the construction phase are documented [17]. Benefits hold

on a bigger scale as well, regarding Geographic Information Systems (GIS) tech-

nologies [94, 108], city planning (smart cities) and infrastructure [178], circular

economy [117] and urban mining [3]. A final example is the integration of

building information with personal data such as user preferences [127].

Rather than a limited set of partial IFC models, the total information set for

a given scenario will thus most likely be a heterogeneous set of resources,

originating from a wide range of domains. Applied to the built environment,

this set might include (structured) semantics, semi-structured geometric object

descriptions and unstructured information such as imagery and point clouds.

The multi-model approach described in [152, 63] and the ISO standard ISO

21

21597 Information Container for Linked Document Delivery (ICDD) [89] rely

upon the idea that a collaborative construction project will always be a het-

erogeneous set of resources that can be interlinked, based on sub-document

identifiers (Figure 2.2). Heterogeneous then means that no assumptions can be

made on the media types of resources. In other words, whether a resource

is structured or unstructured, whether it has a proprietary encoding or not

and what tasks it was primarily intended for, should not influence the data

patterns for creating a multi-model.

Figure 2.2: A multi-model is a container with disparate resources that
can be linked on a sub-document level.

Originally, ICDD was intended for archival of project information, structured

as a zipped container. However, it has been identified as a useful data structure

for active interaction environments as well [157, 95]. Lately, multiple platforms

have been developed to allow interaction with multi-models for construction

based on ICDD, among which are the academic RUB-ICDD [64] initiative

and the commercial platform Wistor [201]. Both are modular, configurable

platforms which offer a number of Semantic Web tools to interact with a

central multi-model via a Graphical User Interface (GUI).

22

2.2 Common Data Environments

In the AECO industries, a shared access point for storing project data is often

called a Common Data Environment (CDE). According to ISO 19650 [84], the

current international standard for BIM-based project collaboration, a CDE is an

‘agreed single source of information for any given project or asset, for collecting,
managing and disseminating each information container to a managed process’.
CDE solutions (mostly just called CDEs) are then platforms that provide such

Single Source of Information (SSoI) [84] about an asset, used to exchange

plans, (BIM) models, and communication and providing tools for cloud-based

collaboration, both in multi-disciplinary context [148] and for domain-specific

purposes such as HVAC design [156]. In the ideal SSoI, data consistency is

preserved because it is only stored once, and each time information is used, it

points to exactly this piece of data [197]. A project CDE often revolves around a

single coordination model, which consists of domain-specific sub-models, often

called partial models. Before a domain-specific dataset can become part of the

coordination model, its quality and compliance to the project standards need to

be checked [140]. However, in practice, the alignment between partial models

is often limited to spatial co-location in a BIM authoring tool [162], which

allows for spatial coordination activities such as clash detection, but does not

involve creation and evaluation of semantic links between the constituent

sub-models. A coordination model is sometimes called ‘federated’, as it is the

union of multiple individual sub-models. Using this definition, a centralised

CDE can host a federated coordination model, but this has, in fact, nothing to

do with ‘Web federation’. In the remainder of this work, the term federation
will be reserved for the latter, i.e., situations where the constituent resources

of a larger whole can be spread over multiple Web servers [80], rather than for

describing the union of partial BIM models.

A CDE can be seen as a layered ecosystem streamlining many aspects of col-

laborative building projects, with at its core an access-controlled data storage

system. According to Preidel et al. [141], there are no real specifications regard-

ing the location of data or the technologies used for data storage. However, it is

essential that any of the involved stakeholders can access project data anytime,

from any location - which makes Web and Cloud technologies the evident

foundations for such platforms. Additional requirements apply to the storage

of resources in a CDE, to allow advanced data structuring and filtering, version

control and document retention policies. Keeping track of metadata records

on project resources is thus an essential feature of the data storage layer of a

CDE. As building data often contains sensitive information that should not

23

be made public on the Web, authentication and authorisation protocols play

an important role in governing access to project information on a CDE. This

information is often role-based (e.g., ‘employees of company X’, ‘residents of

building Y’) [124], but will eventually resolve to (human) agents.

Current-day CDEs are mostly proprietary ecosystems, managed by companies

which oversee the complete chain of data management, ranging from devel-

oping the (often proprietary) data models, hosting the building data and user

accounts on their servers and providing the authoring tools and Application

Programming Interfaces (API) used to interact with this encoded data. When

the data is encoded in a proprietary format, or when the possible interactions

with this data are controlled by a single company, the CDE may be considered

as de-facto centralised – although it may be duplicated on multiple servers to

ensure data availability. In a situation where the intended usage of the digital

building model is limited to a few fixed scenarios or project phases, or when all

project partners are subscribed to the same CDE solution, the use of centralised

platforms will provide certain benefits, among which are an integrated suite

of software tools, data availability guarantees and a single helpdesk in case

something goes wrong.

However, there are downsides to this dependency on project-external software

companies, too. Legally, there may be ambiguities about Intellectual Property

(IP) and data sovereignty (‘how do I remain in control of my data and how

can it be used legally’), which has led to legal disputes in the past [57]. From

a technological perspective, the risk of a vendor lock-in grows with a bigger

usage scope for the digital project [193]. The tight integration between project

data and current CDEs is one of the reasons for two widespread industry

misconceptions:

1. The (relatively) limited capabilities of a CDE, one of its tools or even a

data model define the limits of what can be digitally described.

2. A SSoI is only possible in a highly centralised ecosystem.

In the following paragraphs, both misconceptions will be discussed.

2.2.1 Tools and Data

The inability to conceptually separate data and tools, i.e., the first misconcep-

tion, is on the one hand related to the proprietary aspect of file-based BIM

data models, and on the other hand to the ‘siloed’ approach of domain-specific

data models. When people say ‘you cannot do that in BIM’, the concept of

24

information modelling is narrowed down to a specific data format or appli-

cation, or a small set of these. This ignores the fact that, ultimately, data can

be anything – the only necessity besides creation and storage is something

(a tool, service...) capable of making sense of the content of the data (i.e.,

turning data into knowledge). Ideally, the ecosystem and its GUIs thus only

serve as a specialised ‘window’ to the data. However, when there is only one

single data format, which might be proprietary and owned by a CDE vendor,

the GUI exposed by the CDE vendor becomes the only window to this data.

This eventually leads towards ‘walled garden’ ecosystems, which have been

documented numerous times in context of social media platforms [177, 53] –

but the term is applicable to CDEs as well. In such situation, the limits of the

platform set the limits of the digital project indeed.

To lesser extents, this also holds for domain-specific open data models, which

are not intended to link with domain-external information. Although the

boundaries of a domain model are set by domain specialists, their opinions

may differ. Contrasting with domain-specific schema’s, the Semantic Web

technology stack is often acknowledged as an enabler for domain-agnostic,

data-driven alignment of cross-domain information [9, 129].

2.2.2 Centralised vs. Federated SSoI

The second misconception relates to the fact that the central aspect of a CDE

is often deemed necessary to maintain a SSoI. This is, again, related to the

chain of faulty conversion processes that need to happen to exchange data

from one proprietary file format to another one: extracting information from

a document-based, proprietary model and exchanging it from one CDE to

another one results in significant information losses. The reasons for this are

manifold: the use of different geometric kernels, different Level of Detail (LOD),

encrypted data formats, incompatible data schemas, lack of specific domain

context etc. For example, during data handover phases or when archiving (i.e.,

‘forcing’ a data exchange between potentially disparate ecosystems), a walled-

garden situation does not only result in information losses, but also in the

creation of parallel, unlinked and unsynchronised duplicates of information.

In turn, this weakens the asset’s intended SSoI because the risk for ambiguities

and inconsistencies increases. This problem is not new: it has been around

since the very beginning of digital collaboration in AEC with the founding

of the IAI/buildingSMART (see Section 2.1). Almost 30 years later, upcoming

initiatives such as the OpenCDE Foundation API [79] aim to define a minimal

set of agreed-upon API standards to facilitate better communication between

25

CDEs, but do not yet facilitate CDE interoperability beyond basic document

exchange (Documents API) [30] and issue management (BCF API) [27].

The reliance on proprietary formats and centralised platforms thus impedes a

more mature data integration and reuse practice. The main requirement for a

SSoI is thus not that all data is maintained by the same CDE provider, but rather

that this data is expressed in a machine-readable way, with benefits rising as

the data becomes more structured, open and interoperable, conform with Tim

Berners-Lee’s 5 star deployment scheme for structured data on theWeb [13]. In

this way, data can be easily (and semantically) related to other data that is not

necessarily hosted by the same central platform, without the need to transfer

data from one CDE to another one. Using open formats, dedicated services

to check project consistency can focus on the data itself instead of being

dependent on the interactions that are allowed by CDE platforms. For example,

a network of CDE’s based on an open domain standard such as IFC would

facilitate easy exchange of data in a common format, thereby eliminating faulty

conversion processes. However, due to its domain dependency, the semantic

potential of the IFC schema remains limited. Therefore, methods are required

to interrelate ‘siloed’, domain-specific data with data from other domains (see

multi-models, Section 2.1). Inevitably, these relationships must be expressed

independently from the level of heterogeneous project data that describes the

actual product, i.e. on a metadata level.

2.3 Web-based BIM and FAIR data

The concept of Web-based BIM is often related to the ‘final’ level of BIM

maturity. The BIM maturity levels were first defined in the famous wedge

diagram by Bew and Richards [15], and describe a progression from 2D CAD

drawings (Level 0) towards 3D models (Level 1), the concept of BIM and CDEs

(Level 2), and the general notion of integrated, interoperable data and Big Open

BIM (Level 3 and beyond) (Figure 2.3). They influenced the development of

multiple international standards for digital collaboration in construction and

asset management, such as the well-known ISO 19650 series [84, 85].

To its full extents, a Web-based Big Open BIM environment would not only

allow seamless data integration between the ‘classic’ AEC disciplines but also

with adjacent domains (see Section 2.1). In order to give this multidisciplinarity

a place in the narrative, the industry-specific nomenclature ‘Big Open BIM’

and ‘BIM Stage 3’ is to be left behind in favour of a more domain-agnostic

terminology.

26

Figure 2.3: The BIM levels of maturity. Based on [15].

2.3.1 The FAIR-principles

From such broader perspective, the available data for a particular task in the

project will be a combination of building-specific and contextual datasets, all

of them located on the Web. In this light, the Big Open BIM philosophy shows

many common traits with the more domain-agnostic FAIR-principles (Findable,

Accessible, Interoperable and Reusable) [200], a set of recommendations for

data stewardship on the Web which is increasingly being adopted around the

globe, well beyond its initial scope of scientific data. This is, amongst others,

illustrated by the fact that in 2018, the European Commission devised an action

plan for FAIR data in the EU [39]. The FAIR principles are often associated

with Open Data [122], but they can be equally applied to access-restricted

data: the overlaps have less to do with data being ‘open for everyone’ than

with the need for the data being structured for maximal discovery and reuse

potential.

One of the main ideas behind FAIR and the 5-star deployment scheme of open

data is that data can be structured to allow unforeseen scenarios, carried out

by an unknown number of users [40]. Added value will rise from combining

different datasets (or collections of datasets) in order to answer a particular

question. In many scenarios, building information will not be the primary

input, but it will only provide contextual information for other activities during

the construction and operational phases. To cater for such activities, other

information streams needs to be integrated as well, such as user preferences,

real-time sensor measurements and room access control.

27

Although the FAIR principles themselves are essentially technology-agnostic,

there are only few technologies today that may fulfil the requirements for

FAIR-compliant data. The Semantic Web technology stack [14] is amongst

those technologies [116] and has, for similar reasons, also been identified

numerous times as a potential game-changer to achieve a more interoperable,

data-oriented AECO practice [8, 129]. An extensive stack of Semantic Web-

based data models (‘ontologies’) exists by now, capable of describing and

relating knowledge in an interdisciplinary and Web-wide manner.

2.3.2 Towards a Federated CDE

The semantic richness of a digital building catalogue determines whether it

can be used for multiple, diverging purposes. In an optimal scenario, informa-

tion duplication is avoided as much as possible, while existing information is

maximally reused. Since buildings and infrastructure are amongst the essential

fabrics of society, the number of scenarios that can make use of this data (be it

as primary input or only as an auxiliary) is virtually unlimited, extending the

existing scenarios that work on each domain individually. By linking asset data

to the broader context of the built environment, and of society in general, more

and richer usage scenarios emerge. This does not only relate to ‘pure’ AEC

disciplines, but also for adjacent domains for which buildings and the built

environment act as the main theater. Considering such widely-scoped multi-

models, it seems very impractical, maybe even impossible, to try to centralise

all this information and maintain a single point of access, managed by one

project-external company, i.e. the CDE provider. After all, such centralisation

would often mean duplication of information which already exists elsewhere

on the Web. When this data is not read-only, updates to one of these duplicates

will lead to ambiguities, weakening the concept of a SSoI.

On the contrary, a federated Web environment consisting of multiple nodes will

provide a much more scalable solution for multi-disciplinary data integration –

much like the Web itself. This indicates the inherently decentral and interdisci-

plinary nature of knowledge representation in the built environment, and the

impossibility to ever determine a ‘complete’ data model for digitally describing

an asset. However, what comes very close to such complete data model is an

extendable yet case-specific combination of data models, as embodied by the

concept of multi-models.

The above discussion illustrates that in such open data environment, the

boundaries between a (containerised) knowledge base of an individual building

and the broader knowledge base that is theWeb [169] start blurring. It becomes

28

difficult to speak of ‘a project’ as a fixed collection of datasets – which is the

case in current-day CDEs. Rather, it is important to be able to discover the
right subsets of the Web related to a given problem. Specific combinations can

be made to allow to formulate an answer to particular (chain of) (sub)problems.

This results in a freedom to create a multi-disciplinary, heterogeneous and

federated catalogue, recursively aggregating other catalogues and resources

in a Web-wide Knowledge Graph (KG) that is asynchronously enriched by

numerous people in context of specific interaction tasks. Contrasting with the

existence of a fixed ‘project container’, the data boundaries are defined by the

the set of resources required to answer a specific query. This set may be limited

to (a submodel of) an individual building or extended to a street, a city, a group

of buildings which have the same typology (schools, railway stations, churches)

or a collection of projects to which a particular office contributed.

Figure 2.4: The Cloud of Linked Open Data (LOD Cloud) in 2023 (source:
https://lod-cloud.net. Accessed 2023-06-16)

29

https://lod-cloud.net

A centralised CDE with well-defined internal project boundaries (e.g., the

coordination model or individual partial models), can be integrated in such

federated CDE as just one of potentially many nodes in this network of interop-

erable data, alongside nodes for governmental regulation services, geospatial

institutions and more (Figure 2.4). Centralised and federated CDEs are thus

not mutually exclusive. When this is recognised, it is only a small step to con-

sider project-specific data as an equally federated catalogue: stakeholders can

manage their own IP on an access-controlled server of their choice (a ‘vault’)
and just semantically reference the related data of other stakeholders, on their

respective data vaults. In this way, data is shared rather than exchanged.

To allow for the above-mentioned flexible project boundaries, a shared, Web-

wide authentication and authorisation system is necessary between the vaults.

Apart from improved data extensibility, this makes it possible to address the

double patchwork (Figure 2.1) in an elegant way, mirroring real-world organi-

sational structures. This does not necessarily conflict with the SSoI paradigm,

at least not more than centralised solutions. However, unambiguous (and

machine-readable) agreements are needed between the stakeholders to be able

to automatically validate a known set of published project datasets and identify

potential ambiguities or clashes. Given a stakeholder’s authority, expertise

and roles in the project, their contributions should then be included or rejected

for particular usage scenarios throughout the building life cycle.

Several research projects have focused on the usage of Semantic Web technolo-

gies for data-based information exchange for AECOpurposes. TheDRUMBEAT

platform [74], which finished in 2017, is an implementation of the Linked Data

concept for building information with a RESTful API to access the objects. The

platform is open and decentralised, meaning that any party can install it and

use it to publish its data. Objects published at different hosts and installations

of the platform can refer to each other, and the platform ensures that the

remote inverse links get updated appropriately. The ifcOWL ontology [128]

forms the core data model of the DRUMBEAT project. Since the completion of

the project, several new technologies and specifications have been developed,

many of which will be discussed in this dissertation (e.g., ICDD, Solid [111],

SHACL [101]).

Another initiative oriented towards Web-based BIM is the SCOPE (Semantic

Construction Project Engineering) project [75], which was finalised in 2021. In

SCOPE, a system architecture is proposed that allows micro-services to interact

with full RDF-based BIM models stored in a triple store. These micro-services

30

(e.g., a Revit-to-RDF exporter, a rendering service) are then bundled in a Docker

network and exposed via a dedicated API gateway, so users can access them

in a unified way, e.g., to be used for structural analysis in other tools. SCOPE

focuses on the connection of a project CDE with external product datasets,

using semantic Web technologies. Therefore, it takes a federated approach to

AECO data management.

2.4 User interaction with Multi-models

A project consortium is a changing network of domain specialists, who are

seldom IT experts. Specific interactions with digital asset data must thus

happen via dedicated, relatively low-threshold GUIs. Compared to lower-

level interactions with project information (e.g., by writing queries), auxiliary

resources such as geometry, imagery, point clouds and textual files are preferred

as a ‘proxy’ to interact with semantic information about a given object such

as qualitative and quantitative properties or classification. In any industry,

the presence of GUIs is essential to allow domain specialists to interact with

digital data structures.

Desktop-based applications such as BIM and CAD authoring tools have shaped

the way people think about computer-aided information creation and design.

As discussed earlier, many vendors of BIM authoring tools are shifting focus

towards entire Web ecosystems - CDEs. The status of the authoring tool

thereby changes from being the one-and-only way to interact with a BIM file
to being one of many possible windows to data in the cloud. In proprietary

CDEs, this data will be primarily exposed through a vendor-specific API, which

can be called by external services. Examples of such infrastructures are the

BIMserver [10] Javascript API [123], Autodesk Platform Services (APS) [5] and

the Trimble Connect API [171]. As such APIs and libraries will base upon a

published Javascript library, highly specialised, standalone ‘Single page’ Web

applications (SPA) [115] and headless services that interact with the CDE

can be easily created using plain Javascript or any frontend framework (e.g.,

React [113], Angular [61] or Vue [202]).

A distinction can be made between creation of resources in different formats

and linking these resources in a multi-model. While custom applications are

optimised to intuitively create BIM models, spreadsheets, construction details

etc., the heterogeneity of multi-models makes it much more difficult to find

the right tool for the activity of linking – building the multi-model. After all,

theoretically every possible combination of media types and ontologies may

31

be possible. A multi-model of limited usage scope contains a well-defined

set of data models, which implies that the development of a GUI can happen

in a rather straightforward way, and be supervised by a single organisation.

Such infrastructures are offered by the RUB-ICDD and Wistor projects, which

were discussed in Section 2.1. In a non-AECO context, Microsoft’s Power BI

[114] also offers a commercial visualisation framework to link heterogeneous

resources and gain new business intelligence insights. However, earlier in this

dissertation it was described that one of the primary reasons of existence for

the multi-model concept is that there needs to be a freedom of which data types

to include. A federated multi-model extends this promise in that any ‘relevant’

data can become part of a bigger, federated catalogue, whatever its datatype,

wherever it resides. One could see the scope of a federated multi-model as

potentially unlimited, following the Big Open BIM paradigm but contrasting

with those multi-models that are created based on a well-established set of

goals and boundaries.

In many cases, data that is already part of a federated multi-model will then

serve as a proxy to integrate new data. The example of damage documentation

in context of a heritage renovation was discussed in Chapter 1. In that case,

there might not be a 3D model yet, although interesting statements can already

be made and linked with other available (contextual) information. Damage

data can become part of a catalogue by linking it with images, with a draft

sketch of a floor plan, a graph representation of the building or just by textual

records. In other words, a framework that allows interaction with generic

multi-models in a systematic way, will not know their constituent file formats

beforehand. Hence, it must be able to dynamically adapt the user interface

based on the available datasets (e.g., imagery, geometry, semantics, text) and

the task at hand. Ideally, it should thus be possible to initiate and enrich a

maximally structured multi-model from whatever domain is required by the

current task (topology, damage, product information, user data ...), based on

whichever auxiliary resource (3D geometry, CAD plans, cityGML, point clouds,

imagery, textual documents, sensor data ...) is already available or needs to

be created or linked. Consequentially, an indefinite amount of interaction

interfaces may exist. Throughout this dissertation, the term ‘enrichment’ is

used to describe the process of connecting different sources to each other and

to the Web-based multi-model, with the aim of broadening the usage scope of

the (federated) multi-model. For example, classifying an instance as a ‘wall’,

adding physical properties to it, linking it to 3D geometry or pictures, would

all be considered ‘enrichment’.

32

Figure 2.5: Different modules can be combined using micro-frontend
federation, allowing a custom GUI for a specific linking activity in a
specific project.

When each of those enrichment activities can be seen as an independent,

modular part of a bigger configuration, these modules may be reused across

multiple scenarios, dynamically combined in a tailor-made GUI that is only

based on the available project data (e.g., images) and the current task (e.g.,

damage documentation) (Figure 2.5). When it is allowed for those indepen-

dent modules to be published in a federated manner [186, 135], a freedom

of innovation is introduced: third parties can create and publish a module

for new media types or ontologies allowing flexible linking of heterogeneous

multi-model data at a fraction of the development cost of ‘monolithic’ (Web)

applications and without the approval of a single authority. Modules may then

be published as libraries, to use while developing a dedicated application, or as

a module that can be wired together with other modules in a configuration, as

a ‘low code / no code’ [142] environment for non IT-specialists (i.e., the large

majority of domain experts).

Note that these federation arguments are independent from the arguments

put forward in Sections 2.3 and 2.3.2, which were related to project data

discovery and the notion of a SSoI. However, the arguments for applying the

FAIR principles can be used here as well. Consequently, semantic metadata

33

descriptions of these modules will allow discovery of federated modules and

their flexible combination into various GUI-configurations.

With this in mind, this dissertation will also consider an interface-oriented

framework that is as versatile as the federated multi-models it ought to interact

with. Just as the datasets in a federated multi-model must be discoverable and

queryable (Section 2.3.2), a federated UI framework must allow easy client-side

discovery (and consequently, decentral querying), aggregation and configura-

tion of dynamic interfaces.

2.5 Conclusion

This chapter covered the background and rationale against which the research

presented in the following chapters will be positioned. The decentral nature

of the industry was placed against the current centralised approach for CDEs.

Opening up the digital built environment to other disciplines will allow better

integration, and thus reuse of datasets for various purposes. However, this in-

terdisciplinarity requires a collaboration system other than current centralised

approaches for CDEs - instead, the entire Web is envisaged as an infrastructure

to discover, aggregate, link and publish heterogeneous information about the

built environment. In this light, the Web itself becomes a CDE. An alternative

mindset towards a modular configuration of graphical user interfaces, based

on semantic descriptions, will offer the handgrips to build such heterogeneous

catalogues by linking new information to the existing stack of datasets. In

the following chapter, this context will be used as a background to determine

high-level requirements for project data in a federated CDE.

2.6 Related Publications

This chapter contains edited fragments or concepts derived from the following

publications:

• Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Léon van Berlo. “To-

wards a decentralised common data environment using linked building

data and the solid ecosystem”. In: 36th CIB W78 2019 Conference. 2019,
pp. 113–123. url: https://biblio.ugent.be/publication/8633673 (accessed

2024-3-18).

• Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Erik Mannens.

“ConSolid: a Federated Ecosystem for Heterogeneous Multi-Stakeholder

34

https://biblio.ugent.be/publication/8633673

Projects”. In: Semantic Web Journal (2023). Accepted. url: https://biblio.
ugent.be/publication/8633673/file/8633674.pdf (accessed 2024-3-18).

• Jeroen Werbrouck, Pieter Pauwels, Mathias Bonduel, Jakob Beetz, and

WillemBekers. “Scan-to-graph: Semantic enrichment of existing building

geometry”. In: Automation in Construction 119 (2020), p. 103286. url:

https://doi.org/10.1016/j.autcon.2020.103286.

• Jeroen Werbrouck, Oliver Schulz, Jyrki Oraskari, Erik Mannens, Pieter

Pauwels, and Jakob Beetz. “A generic framework for federated CDEs

applied to Issue Management”. In: Advanced Engineering Informatics 58
(2023), p. 102136. url: https://doi.org/10.1016/j.aei.2023.102136 (accessed

2024-3-18).

• JeroenWerbrouck, Madhumitha Senthilvel, and Mads Holten Rasmussen.

“Federated data storage for the AEC industry”. In: Buildings and Seman-
tics. CRC Press, 2022, pp. 139–164.

• Jeroen Werbrouck, Ruben Taelman, Ruben Verborgh, Pieter Pauwels,

Jakob Beetz, and Erik Mannens. “Pattern-based access control in a de-

centralised collaboration environment”. In: Proceedings of the 8th Linked
Data in Architecture and Construction Workshop. CEUR-WS. org. 2020.

url: https://ceur-ws.org/Vol-2636/09paper.pdf (accessed 2024-3-18).

35

https://biblio.ugent.be/publication/8633673/file/8633674.pdf
https://biblio.ugent.be/publication/8633673/file/8633674.pdf
https://doi.org/10.1016/j.autcon.2020.103286
https://doi.org/10.1016/j.aei.2023.102136
https://ceur-ws.org/Vol-2636/09paper.pdf

Chapter 3

Storage and Discovery of
Federated Projects

Considering a project as a case-specific subset of resources on the Web allows

a very high degree of expressivity, as well as a high scalability and exploratory

potential. However, compared with centralised solutions based on known

file formats, this introduces additional complexities, which often require a

combination of technologies in order to be addressed. In this chapter, the

complexities related to the data storage part of the ConSolid ecosystem are

considered. The first topics of discussion are the generic data storage character-

istics for such ecosystem to function as intended. These will be formulated in

a technology-agnostic way (Section 3.1) to illustrate their general applicability,

independent from the solutions that will be proposed later in this dissertation.

Secondly, technologies for achieving these characteristics will be identified,

as well as design choices to make the ecosystem more robust (Section 3.2).

This includes a discussion on how the Solid specifications may provide the

foundations for such ecosystem of data, how data will be stored on a Solid data

vault and the role of metadata. Finally, this section describes the technological

consequences of these design choices, regarding discovery and querying of

data on a Pod. These consequences to an extent that they cannot longer be

addressed by the default Solid specifications. An approach for extending Solid

Pods by providing an access-controlled union graph of the stored RDF data will

be proposed and implemented as a Pod-external service, or a ‘satellite’.

With the basic technologies set, Section 3.3 describes the metadata patterns to

create a federated multi-model. This includes the basic setup of a project, a

discussion on multi-project catalogues, how ecosystem-external resources can

become part of the multi-model, and how query-based (virtual) views on the

project can be generated to present the data in a specific form. In Section 3.4,

it is discussed how these metadata patterns allow to configure a variety of

stakeholder network configurations.

The concepts developed in this chapter will be demonstrated in Section 3.5,

using the iGent tower case study (see Section 1.7). The chapter concludes with

an outline of the software deliverables related to storage in ConSolid 3.6.

36

The exact structure of ontologies and vocabularies will always be somewhat

arbitrary, since many alternative approaches can be devised. However, at

some point, specific data models need to be chosen in order to practically

implement the ecosystem. Whenever possible, reuse of existing, recommended

web vocabularies is desirable.

Background technologies for this chapter are introduced in the following

appendices:

• Appendix B (Semantic Web technologies (RDF, SPARQL, SHACL));

• Appendix C (Solid and federated authentication);

• Appendix D (The FAIR principles).

• Appendix E (Web-Based and Industry Containers);

• Appendix H (The ConSolid vocabulary).

3.1 Characteristics of the ecosystem

This section describes (technology-agnostic) characteristics for an ecosystem

capable of supporting storage and discovery of heterogeneous, federated data. In

this work, the following high-level characteristics, which will be argumented

in the next paragraphs, are identified:

• C 1: Decentral, Secure Storage: data is stored decentrally, in access-
controlled data vaults hosted by different storage providers.

• C 2: Decentral Authentication: a visitor’s identity is verifiable based
on protocols for decentral identity providers. This identity can be used for
both authentication and authorisation.

• C 3: Guaranteed Data Heterogeneity: multi-models consist of struc-
tured (e.g., semantics), semi-structured (e.g., geometry) and unstructured
datasets (e.g., images). The ecosystem safeguards this heterogeneity and
make no assumptions on the formats and schemas it will host.

• C 4: Uniform Metadata Descriptions: although datasets may differ in
schema or data type (R3), they have uniform metadata description patterns
as to allow general discoverability and filtering of datasets. These metadata
descriptions should allow FAIR data stewardship.

• C 5: Uniform Query Language: metadata is queryable with a general-
purpose query language.

37

In Section 2.2, access-controlled data storage was mentioned as the core func-

tionality of a CDE upon which all other (higher-level) functionality bases.

Characteristic C1 indicates that, if the environment is to be scalable across

the Web, a decentral storage infrastructure is necessary. As the Web itself is

a decentral storage system, this characteristic can easily be addressed when

considered standalone, in a context of openly published (read-only) knowl-

edge. However, additional complexities arise when considering confidential

project-specific data: project servers in a federated CDE cannot not be organ-

ised as if they were ‘open’ Web APIs, which implies that authentication and

authorisation will play a role. Numerous technologies exist to authenticate

and authorise clients who request data access, but in a Web-wide ecosystem,

their implementation is less evident than in a closed environment maintained

by a single CDE provider. Of course, this is not unique to the AECO industries.

Decentral authentication technologies (Characteristic C2) avoid dependency

on central identity providers (IDPs) and allow any actor to maintain a verifi-

able identity on the Web, either by themselves or by outsourcing to a trusted

provider. Effectively, a standardised identity management protocol is essen-

tial to verify identities between disparate identity providers and allow more

streamlined information exchange between CDEs.

Characteristic C3 (Heterogeneity) dictates that the ecosystem cannot impose

which data types to include in the project graph, so their degree of structured-

ness can vary heavily. This can be evaluated by checking whether there are

any dependencies between the ecosystem and the media types of the resources

it hosts. Avoiding such dependencies allows a more domain-independent and

time-resilient usage of the ecosystem. On the other hand, the potential for

data reuse increases with a higher degree of structure: there are benefits for

each incremental star on the 5-star deployment schema for open data pro-

posed by Tim Berners-Lee [13]. The more structured the data becomes, the

less difficult it becomes to extract the knowledge it describes; consequently

it is also easier to reconfigure or adapt this information to data structures

suitable for a particular scenario or conforming to an existing data standard

(Chapter 6). Although use of highly structured data is thus recommended, in
order to facilitate cross-domain data exchange and be resilient in supporting

current and future data formats, the ecosystem cannot enforce (or assume) any

degree of structure for project datasets.

Some resources will remain semantically ambiguous because of their inher-

ent unstructuredness or because a less structured form is preferred over the

highest possible degree of machine-readability (e.g., because they are more

38

standardised or have better tooling). Examples of the former are binary data

formats for storing imagery or point clouds; the latter could refer to geometric

serialisations. Note that it is possible to express geometry using Semantic

Web technologies, but doing so offers only limited benefits compared to the

increased complexity and processing cost [132, 182, 136].

In other words, datasets from any BIM maturity level may be part of the

multi-model (a multi-model containing exactly one Revit model could still be

considered a multi-model). Hence, the threshold for adopting the framework

is significantly lowered: the creators of building datasets can be fully unaware

of the over-arching federated CDE infrastructure.

The characteristic on heterogeneity (C3) also inherently means that resources

may be encoded using proprietary formats as well, although this will jeopardise

reusability and hence diminish compliance with the FAIR principles.

To allow uniform discovery of otherwise heterogeneous project datasets, it is

necessary tomaintainmetadata records (C4), i.e., data about the datasets. These

metadata records need to be structured in a uniform way acrossthe ecosystem.

Section 2.3 briefly discussed the FAIR principles as a set of recommendations

for data management, regarding findability, accessibility, interoperability and

reusability. The FAIR principles are heavily oriented towards machine-readable

metadata description. Hence, they offer a sound framework to organise the

metadata layer of the ecosystem, in tandem with the 5-star paradigm. A

uniformly structured metadata layer thus leaves room for safeguarding the

heterogeneity characteristic: via the metadata descriptions, actual project

datasets can be discovered and (pre)filtered for usage in a particular scenario,

independent from the internal schema’s used for the project data, using a single

query language that is compatible with the data structure used for expressing

metadata (Characteristic C5).

3.2 Technologies and Design Choices

Now that the characteristics are clear, they can be mapped to existing technolo-

gies that are capable of addressing them. It should be clear that the identified

technology stack is not the only possible one to fulfil the characteristics. In

many cases, alternative options will exist. Although an explicit comparison

between multiple technological options will not be made in this dissertation,

the choice for specific technologies will be motivated based on their intrin-

sic properties and capability to address the characteristics defined in Section

3.1.

39

3.2.1 Secure Storage of Heterogeneous Datasets

As for characteristics C1 (Decentral, secure storage) and C2 (Decentral au-

thentication), the Solid ecosystem [111] and the associated WebID-OIDC [37]

protocol are identified as suitable candidates. Solid consists of a set of standards

and specifications for decentral data management on the Web. At the core

of Solid lies a URL that can be used for authentication and authorisation: a

WebID (an unambiguous identity on the Web), accompanied by a personal

data vault (a ‘Pod’). A Solid Pod can be seen as a resource server with a de-

centralised authentication layer on top. The resources on a Pod can have any

file extension, which addresses C3 (Heterogeneity) to a sufficient degree in

context of this dissertation. Incorporating database-hosted knowledge as well

is considered out-of-scope for this dissertation, although a theoretical roadmap

will be proposed in Section 3.3.3.

The authentication layer allows a Solid server to communicate with the Iden-

tity Provider (IDP) of the visiting agent and check if they are allowed to

interact with resources on the Pod. At the core of the Solid ecosystem lies

the Solid Protocol [33], based on the Linked Data Platform (LDP) specifica-

tion (Appendix E). Access control to a Pod is regulated with WebID-OIDC

authentication, with WebID-based verification allowing to maintain a single

identity on the Web. This does not eliminate the business case of trusted

third-party identity providers (e.g., Google, Facebook, Autodesk), but in any

case a communication layer between them needs to be in place.

Existing CDE solutions implementing the WebID-OIDC protocol would make

a giant step towards enabling cross-CDE data access, functioning as one of

multiple nodes in a bigger, multi-project and multi-stakeholder ecosystem of

(both commercial and open) CDEs. For example, to allow cross-CDE infor-

mation exchange, current standards such as DIN SPEC 91391-2 still require

corresponding user accounts to be set up at both CDEs [49] – possibly resulting

in an overload of accounts with corresponding security issues. An independent

authentication protocol such as WebID-OIDC would avoid this.

3.2.2 Design of the Vault

Since Solid is based on the LDP specification, every resource on a Solid Pod is

retrievable via a URL, by concatenating the Pod root with the respective con-

tainment branches separated by slashes – much like a Web-based file system

indeed. While this container-based interface can essentially be seen as just

one of the many possible APIs on top of the Pod [44], its current application

40

hard-wires ‘implicit’ semantics in the URLs of resources and imposes a tree-like

folder structure. In this folder structure, every URL contains the URLs of their

parent directories up until the root of the Pod. This is a design choice embed-

ded in the Solid specifications, which enables quick inference of a resource’s

parent containers (a feature called ‘slash semantics’ [33]) and inheritance of

access control rules. However, at the same time it also imposes a quite rigid

structuring of resources, because it implies that there is only one possible

(direct) parent folder, and resource URLs inherit the (often arbitrary) tags of

all their parent folders. This while these parent directories may change over

time, thereby invalidating the resource URL. In this sense, this discussion is

related to the recommendations for ‘Cool URIs’ and URI design strategies [12].

Consider the following example, related to the stages of publication (Work-

in-progress, Shared, Published, Archived) as defined in ISO 19650 [84, 85].

Moving a resource from the folder ‘/work-in-progress’ to ‘/shared’ will change

its URL on the Pod from ‘https://jeroen.werbrouck.me/pod/work-in-progress/file1’
to ‘https://jeroen.werbrouck.me/pod/shared/file1’, thereby breaking any refer-

ence pointing to the original URL. Moreover, in a multi-purpose collaboration

platform, the containment of a resource in this specific parent container might

only be relevant in a specific situation but totally illogical in others: maybe

someone would like to aggregate their resources in a different container struc-

ture when addressing a different usage scenario (see Section 3.3.4). When the

container structure is embedded in the resource’s URL, this is not possible.

Hence, it makes sense to strip these implicit containment semantics from the

URL as much as possible, so the URL can be reduced to a string of the form ‘root

+ identifier’. Note that this approach – URLs composed of unique identifiers

instead of implicit, human-readable semantics – is already common in central

cloud storage providers (e.g. Google Drive or Microsoft OneDrive), but is not

part of the Solid ecosystem.

The ‘meaningless’ identifier of a resource can now, for example, be a GUID or

a cryptographic hash (e.g., using trusty URIs [103]) of the resource’s content.

In the latter case, the hash can be used to verify whether the content has been

changed since its creation. While this is a form of protection against data

tampering, it also makes it impossible to update document-based information

without invalidating the hash. Because a building project includes resources

that can be subject to changes (cf. the example on publication status explained

earlier), such as geometric models and metadata (see further), this dissertation

will opt for the GUID approach which bears no relation to the resource’s

content. This ‘form’ still follows the Solid Protocol and LDP, as it allows to

41

interact with resources via HTTP – there are just no slash semantics beyond

the root of the Pod, which essentially is a (very large) ldp:Container.

Because this approach eliminates implicit URL-based semantics, the ‘meaning’

that allows semantic containerisation and filtering on higher-level (domain-

specific) layers must now come from an explicit metadata record that ‘enriches’

the heterogeneous resource (instead of from the parent container). When the

metadata records are themselves dereferenceable with a URL of the form ‘root

+ identifier’, a metadata record will be handled in exactly the same way as

any other resource on a vault: it is just a regular resource which happens

to advertise itself as being the metadata record of another resource. This is

illustrated in Figure 3.1. In the next section, ConSolid metadata records will be

discussed in more detail.

Figure 3.1: A flat list of resources in a data vault. Metadata records
are regular resources that identify themselves as containing metadata
about another resource.

3.2.3 Metadata-based Resource Dicovery

In order to allow discovery and semantic filtering of relevant datasets in the

federated multi-model, a common syntax is needed for metadata (Characteris-

tic C4). To allow maximum expressivity and domain-independence, it must

be possible to add custom statements to metadata records – the ecosystem

should not impose what can or cannot be said about the project datasets it

contains.

42

To achieve the highest potential for the resource to be findable, accessable,

interoperable and reusable, this metadata syntax needs to comply with the FAIR

principles. In Section 2.3, the Semantic Web technology stack was mentioned

as one of the few that may fully address said principles [116]. The use of the

Resource Description Framework (RDF), the cornerstone of the Semantic Web,

therefore seems an apt choice. RDF is a domain-agnostic and expressive syntax

for graph-based data structures, with inherent Web federation functionality.

The choice for which technology to use for expressing metadata is inherently

related to Characteristic C5, which describes it is necessary to be able to

uniformly query the metadata. Because the SPARQL Protocol And RDF Query

Language (SPARQL) query language is the W3C standard for querying RDF-

based data, it is the evident choice to address C5.

RDF can be used to describe both metadata as domain-specific data, using

vocabularies (or ontologies). However, as per C3 (Heterogeneity), the ConSolid
ecosystem leaves the choice open to whether or not use RDF ontologies or

other for describing project data. Agreeing on the use of RDF on a metadata
level, however, already offers a lot of benefits without changing the nature of

the resources themselves. Non-RDF documents cannot be queried directly with

SPARQL – but a metadata record allows registration of queryable semantic

descriptions and therefore discovery and filtering of the dataset within the

larger federated multi-model. The form of a metadata record as a specific

type of document is still very much under discussion in the Solid ecosystem.

However, this does not introduce additional complexity in the ConSolid project:

Section 3.2.2 mentioned that, being regular RDF resources, metadata records

will be handled in exactly the sameway as any other resource on a vault.

The vocabulary chosen to structure this metadata network, is the DCAT vo-

cabulary (see Appendix E). This is because DCAT is the preferred metadata

vocabulary for data points compliant to the FAIR principles [119]. Furthermore,

DCAT allows to:

1. address ‘containerisation’ and expressive metadata descriptions with a

single, integrated vocabulary;

2. semantically decouple metadata records and actual resources, which

allows RDF-based discovery of heterogeneous datasets and semantic

indication of a distribution’s versions and content-type;

3. avoid conflicts with Solid’s default usage of containers via LDP.

43

Listing 3.1 gives an example of an RDF-based metadata record in the ecosystem,

aggregated in a larger catalogue, using DCAT.

1 # The catalogue resource, with URL pod:0d1ffe69

2 bb:0d1ffe69 a dcat:Catalog ;

3 dcat:dataset bb:1e19ed7c .

4

5 # The dataset resource, with URL pod:1e19ed7c

6 bb:1e19ed7c a dcat:Dataset , consolid:ProjectResource ;

7 ex:publicationStatus ex:workInProgress ;

8 dct:created "2022-07-29T14:13:28.167000"^^xsd:dateTime ;

9 dcat:distribution bb:90329a28 .

10

11 bb:90329a28 a dcat:Distribution ;

12 # Where to find the actual project file.

13 dcat:accessURL bb:90329a28 .

Listing 3.1: Catalog and metadata record of a resource, using the DCAT
vocabulary.

Note that metadata records can now be updated without changing the resource

or its URL, contrasting with the ‘implicit’ slash semantics used in the default

folder-based approach (Section 3.2.2). Revisiting the example on publication

statuses, changing a metadata tag from ‘work-in-progress’ to ‘shared’ allows

the original URL of the resource to remain intact. Datasets can now be filtered

based on fine-grained query parameters. However, for this to be possible, there

must be a queryable union graph of all metadata records on a vault, which

respects the access rights of individual resources. In this dissertation, this is

achieved via a custom extension to the Solid technology stack, which will be

discussed in the following section.

3.2.4 Extension: A SPARQL interface to the Data Vault

Two options will be considered to allow query-based resource discovery on

a Pod. The first one is based on link traversal [72, 167] technologies, while

the second one includes the usage of an access-controlled SPARQL interface.

Link Traversal Query Processing (LTQP) is possible because of the URL-based

nature of Linked Data: upon discovery, URLs can be followed to find additional

knowledge. As Taelman et al. [167] note, it is a theoretically interesting concept,

but its practical use has been limited so far due to performance considerations:

as query execution and source discovery happen simultaneously, pre-execution

optimisation is not possible. Feasibility and optimisation of LTQP strategies

in a Solid environment are actively researched [167], but are not included in

this dissertation. Therefore, the focus of this section lies on the creation of an

access-controlled SPARQL endpoint to the Pod.

44

A (private) SPARQL endpoint can be considered an apt interface to query

the union of knowledge graphs on a data vault. Such interface is already

implemented by the Enterprise Solid Server (ESS, Inrupt) [78]. However, it is

permissioned such that only the Pod owner can access it – external agents are

denied access to this functionality. In this section, a more fine-grained setup

will be described.

Access control on a Solid Pod currently works on the level of (RDF and non-

RDF) documents, bymeans of Access Control List (ACL) resources that mention

which actors are granted which access rights to which resources. In an ex-

clusively LDP-based environment, the applying ACL document is found by

searching for the ‘closest’ ACL resource: a feature allowed by the slash seman-

tics feature. This means that either the ACL is linked directly to the resource

to be found (as ‘{URL-of the-resource}.acl’) or a stepwise approach is taken

to find a general ACL document in one of the parent containers (the closest

one is the one that counts). In this framework, the hierarchical LDP folder

structure will be omitted in favour of a flattened list of resources (Section 3.2.2).

To maintain compatibility with the current Solid specifications it is necessary

that either (1) a single ACL resource governs all effective resources on the

Pod, or (2) that every effective resource has its own ACL resource. The first

option is immediately ruled out, as this would contradict the goal of having a

fine-grained access control mechanism. Therefore, the second option is cho-

sen. Although hierarchy-based ACL structures have the advantage of access

control inheritance, having an individual ACL graph per document has the

advantage of direct mapping. When not only metadata and project resources

are mirrored to a SPARQL endpoint, but also their ACL resources, the union

of these ACL graphs can be easily checked to construct the set of resources

a visitor is allowed to interact with: a combination of explicit authorisations

and the authorisations granted to the public (mostly acl:Read). A query to

retrieve this union from the SPARQL endpoint is given in Listing 3.2. This

query needs to be executed by an agent with full access to the endpoint, i.e.

the Pod owner or a delegate service. This indicates the need for a middleware

layer between the union graph and the requesting agent, in order to filter the

results before responding to the request.

45

1 SELECT DISTINCT ?resource

2 WHERE {

3 ?acl a acl:Authorization ;

4 # SELECT queries correspond with an acl:Read permission

5 acl:mode <http://www.w3.org/ns/auth/acl#Read> .

6

7 # the resources that will be injected in the eventual query

8 {?acl acl:accessTo ?resource } UNION {?acl acl:default ?resource }

9

10 # the actor to check access rights for

11 {?acl acl:agent <https://b-b.be/data/profile/card#me> }

12 UNION

13 # publicly accessible resources are to be included as well

14 {?acl acl:agentClass <http://xmlns.com/foaf/0.1/Agent> }

15 }

Listing 3.2: SPARQL query to retrieve the resources a given agent is
able to query. This query assumes that every resource on the Pod has
its own ACL. Richer descriptions of the ?resource variable are possible,
to yield a smaller but more detailed result set.

Multiple options are now possible to include only the resulting set of allowed

resources – which option to choose will depend on the purpose of the query.

The first and most general option is the creation of a permissioned union

graph through the injection of the allowed resources via a‘FROM <{resource}>‘

statement. A second option is querying the vault through injection of the

allowed resources via a ‘FROM NAMED <{resource}>‘. This is similar to the

first option, but triple patterns will need to be enclosed by a graph variable: if

the enclosed triple patterns are not present in the same named graph, the result

set will be empty. An example query modification comparing both options is

given in Listing 3.3. More information on the differences between ‘FROM’ and

‘FROM NAMED’ in SPARQL queries can be found in [99].

Considering that a typical SPARQL endpoint does not implement such access

control and query adaptation functionality, a proof-of-concept was developed

in context of this thesis, where all requests to the SPARQL endpoint pass

through a proxy service which has been granted full read permission, acting

on behalf of the Pod owner. This accounts for the middleware layer discussed

earlier in this section. This service extracts the WebID of the visitor, checks for

which resources they have access rights, and injects these in the query, which

is then executed. Optional arguments can be passed to instruct which of the

query options (FROM or FROM NAMED) should be used. In the remainder of

this dissertation, the proxy service and database service will be considered as

one, acting as a ‘satellite’ to the Pod. The SPARQL satellite should be easily

discoverable. Here, this is done by registering the triple pattern in Listing 3.4

46

in the WebID of the owner of the Pod. An alternative approach is to having

the Pod provider expose a fixed, reserved endpoint (e.g., {pod-url}/sparql),

eliminating the discovery step.

1 # The original SPARQL query

2 SELECT ?md ?durl ?mt

3 WHERE {

4 ?md a dcat:Dataset ;

5 dcat:distribution ?dist .

6 ?dist dcat:accessURL ?durl ;

7 dcat:mediaType ?mt .

8 }

9

10 # The modified SPARQL query (option 1: FROM)

11 # Reconstruct a "permitted union graph" of the Pod, but comes at the

expense of query execution time

12 SELECT ?element ?dam ?cause

13 FROM <https://b-b.be/data/0e12ae3b>

14 ...

15 FROM <https://b-b.be/data/2cb2e8a2>

16 WHERE {

17 ?md a dcat:Dataset ;

18 dcat:distribution ?dist .

19 ?dist dcat:accessURL ?durl ;

20 dcat:mediaType ?mt .

21 }

22

23 # The modified SPARQL query (option 2: FROM NAMED)

24 # Triple patterns must be enclosed in a named graph to query, i.e., all

wrapped triples must occur in this graph.

25 SELECT ?element ?dam ?cause

26 FROM NAMED <https://b-b.be/data/0e12ae3b>

27 ...

28 FROM NAMED <https://b-b.be/data/2cb2e8a2>

29 WHERE {

30 GRAPH ?g {

31 ?md a dcat:Dataset ;

32 dcat:distribution ?dist .

33 ?dist dcat:accessURL ?durl ;

34 dcat:mediaType ?mt .

35 }}

Listing 3.3: The SPARQL satellite dynamically updates any query to
only include those named graphs to which the visitor has read access.

1 <https://b-b.be/data/profile/card#me>

2 consolid:hasSparqlSatellite <https://satellite.b-b.be/sparql> .

Listing 3.4: Triple pattern to find the SPARQL satellite to a Pod, via the
WebID of the Pod’s owner.

47

The above-described approach can be considered an intermediary solution

between the current document-oriented focus of a Solid Pod, set by the Solid

specifications, and the Pod as a ‘hybrid knowledge graph’ as envisioned by

Dedecker et al. [44], which considers documents and their corresponding ACL

resources as just one view on the data in a Pod. At the moment of writing, the

latter is hypothetical, as there are no implementations yet.

The prototypical implementation of the SPARQL satellite is based on a stack

of existing, open source components. The Community Solid Server (v3.0.0)

codebase [173] was modified to forward any RDF-based information to a

SPARQL store, next to offering HTTP access to all resources via a root LDP

container in the Pod
2
. As a SPARQL store, Apache Jena Fuseki

3
is chosen. The

option tdb:unionDefaultGraph is set to true, which allows to query the

Pod as the union of its resources. The satellite is implemented as a NodeJS

(ExpressJS) server
4
. WebIDs are retrieved from authenticated requests (WebID-

OIDC and OAuth 2.0 [69]), after which the query in Listing 3.2 is executed

and its results injected in the original query, before sending it to the SPARQL

store.

Performance optimisation of this setup is out of the scope of this thesis. How-

ever, it is important to get at least a notion of the order of magnitude of query

execution time with the above-mentioned method for access control verifica-

tion. As a quick verification of this setup, a Pod was populated with 10 718

851 triples, spread over 1288 graphs, including ACL resources and metadata

descriptions. For each of these resources, the owner was given full access

rights, resulting in 644 permitted resources (as every resource has a corre-

sponding ACL resource). Two other accounts were created and were assigned

read permissions to a random subset of resources on the main Pod, respec-

tively resulting in 242 and 208 permitted resources. Execution of the original

(metadata) query in Listing 3.3 yields the results listed in Table 3.1, using a

machine for which the specifications are listed in Table 3.2. For each modifi-

cation, Table 3.1 includes the query execution time directly on the SPARQL

endpoint, the execution time from the perspective of the client (i.e. including

the creation of the set of allowed recources (Listing 3.2)). A bypass can be

created for the Pod owner, which would allow to query the full union graph

2
Solid Community Server + SPARQL store: https://github.com/LBD-Hackers/

SolidCommunity_Fuseki/tree/dissertation. Accessed 2023-10-23.

3
Apache Jena Fuseki: https://dlcdn.apache.org/jena/binaries/apache-jena-fuseki-4.10.

0.zip. Accessed 2023-01-27

4
SPARQL satellite prototype: https://github.com/ConSolidProject/auth-satellite/tree/

dissertation. Accessed 2023-02-23.

48

https://github.com/LBD-Hackers/SolidCommunity_Fuseki/tree/dissertation
https://github.com/LBD-Hackers/SolidCommunity_Fuseki/tree/dissertation
https://dlcdn.apache.org/jena/binaries/apache-jena-fuseki-4.10.0.zip
https://dlcdn.apache.org/jena/binaries/apache-jena-fuseki-4.10.0.zip
https://github.com/ConSolidProject/auth-satellite/tree/dissertation
https://github.com/ConSolidProject/auth-satellite/tree/dissertation

without restrictions (cf. the Enterprise Solid Server by Inrupt). In this case, the

original query is executed on the default graph without modification (column

‘Default’ in Table 3.1).

#permitted

resources

ACL query

(Listing 3.2) (ms)

FROM (ms) FROM NAMED (ms) Default

endpoint* client** endpoint* client**

owner 644 156.6 8979 9617 65 620 13

visitor 1 242 143.9 1163 1851 23 517

visitor 2 208 143.6 827 1270 21 755

Table 3.1: Query execution time for the query in listing 4.
* Query execution time directly on the SPARQL endpoint .
** Total query execution time for: "client > satellite > SPARQL store
(ACL) > satellite > SPARQL store (query) > satellite > client".

OS Linux – Ubuntu 20.04.3 LTS

CPU model name Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz

CPU count 4

Memory (RAM) 16 GB

Table 3.2: Specifications of the machine hosting the satellite implemen-
tation and the Fuseki SPARQL store.

In this minimal example, it can be observed that the execution time of ‘FROM

NAMED </resource/>’ queries directly on the SPARQL endpoint lies gener-

ally in the same order of magnitude as executing the query without access

control on the default graph. In the case of the queries injected with ‘FROM

</resource/>’, query execution time increases significantly, demonstrating its

limited applicability, notwithstanding its potential for generating a ‘permitted

union graph’. As mentioned before, one of the main purposes of the SPARQL

endpoint is discovery of relevant datasets on the Pod, i.e. metadata queries

where the triple patterns will reside in a single named metadata graph (‘dis-

joint graphs’). Therefore, within the boundaries of the ConSolid ecosystem,

we can in most cases rely on the first case. The results of this discovery can

then be used in a targeted follow-up query on project data. As execution time

will decrease with smaller amount of allowed graphs, application of ‘FROM

</resource/>’ will thus still have its applications. Note that reduction of the

set of queried resources can already be integrated in the access control query

(Listing 3.2), which can be refined with more precise queries on which graphs

to include, i.e. by imposing additional metadata queries on the ‘?resource’ vari-

able (e.g., regarding publication status, publication date or even the ontologies

49

that are used). Lastly, from the perspective of the client, performance would

increase when all functionality would be included directly in the SPARQL

endpoint, allowing to reduce the amount of requests from 6 (client > satellite >

SPARQL store (ACL) > satellite > SPARQL store > satellite > client) to 2 (client

> SPARQL store > client).

We can generally conclude that the permissioned SPARQL satellite is feasible

for query-based discovery of project datasets, using modified queries (‘FROM

NAMED <{resource}>’). Execution time for querying the entire project Pod

as a permitted union graph (‘FROM’) may only be acceptable for some appli-

cations. However, it is still a possibility when the list of targeted resources is

limited.

3.3 Data Patterns

Now that the basic infrastructure of resources (i.e., metadata and the SPARQL

satellite) has been set up, we can investigate how multiple datasets can be

grouped into larger catalogues: collections of pointers to relevant datasets on

the Web. As decided in Section 3.2.3, the DCAT vocabulary will provide the

means to do this. This section will explore how this allows to integrate multiple

local, vault-specific catalogues into larger aggregations that can be discovered

via single URLs – access points of the federated multi-model.

3.3.1 Dataset Collections

A main requirement for a stakeholder to be able to integrate their knowledge

into a larger federated project, is to be able to bundle their own contributions

into a local project catalogue. As shown in Listing 3.5, this boils down to

creating a dcat:Catalog instance and aggregating its constituent datasets

via dcat:dataset, alongside indicating metadata for the project to be easily

queryable. This is a local, vault-specific project definition which follows the

DCAT specification exactly.

1 # the catalogue resource, at URL bb:d07af06a

2 bb:d07af06a a dcat:Catalog, consolid:Project ;

3 rdfs:label "myFirstProject" ;

4 dct:identifier "d07af06a" ;

5 dcat:dataset bb:1e19ed7c , bb:32ad4402 ; # local aggregation

6

7 # 2nd level aggregation, including access points on other vaults

8 dcat:dataset dgfb:aa3c09de , arcadis:bd503663 .

Listing 3.5: A catalogue which is only one aggregation level away from
the aggregated dcat:Dataset instances on a Pod.

50

All stakeholders can thus create their own local catalogue for a collaborative

project, independently from the others, forming an access point on the vault to

find project data. An interesting feature of DCAT catalogues (dcat:Catalog)

is that they can aggregate other (lower-level) catalogues as well. This allows to

easily reference the catalogues of other stakeholders (on their vaults), making

it straightforward for a client to discover and query also the contributions of

these other stakeholders. Moreover, this aggregation is done with the same

dcat:dataset relationship that is used to aggregate dcat:Datasets into a

catalogue. No matter the depth level of a catalogue, it should eventually lead

to discovery of all resources in the catalogue. This ‘matryoshka’ principle,

which is possible because dcat:Catalog is a subclass of dcat:Dataset,

gives us a simple yet powerful way to discover collections of information in

a scalable way. A query that allows to discover the datasets of a federated

project, without knowing the aggregation depth from the access point to the

eventual datasets, is given in Listing 3.6. This query will work for both local

catalogues, single-project federated catalogues and multi-project federated

catalogues (see Section 3.3.2).

1 SELECT ?dataset WHERE {

2 <{access-point-URL}> dcat:dataset+ ?dataset .

3 }

Listing 3.6: Query to discover the metadata records of all datasets in a
catalogue, using SPARQL property paths of arbitrary length.

The term ‘partial project’ will be used to refer to the collection of project data

on a single vault. The total set of discoverable project data then consists of

the union of all partial projects that are discoverable via the used access point.

This is illustrated in Figure 3.2.

This approach of nesting partial projects also allows (but doesn’t oblige) a

project team to agree on having a single registry about who is part of the

team, e.g. on the Pod of the appointing party [84] or the project manager.

While every stakeholder should still maintain a local access point that groups

their contributions, to allow discovery of other project data, they can simply

point to this one catalogue to find the local access points of other stakeholders

(Figure 3.3). Especially in the design and construction phases, where almost

all information will be produced by a well-known group of stakeholders, such

shared catalogue will streamline information discovery and avoid ambiguity

about the vaults that contain project information.

51

Figure 3.2: Starting from one catalogue on a specific data vault, it is
possible to find all datasets in the federated project.

Figure 3.3: Via their own catalogue of the Project, a stakeholder can
discover a main catalogue listing other stakeholders. This main cata-
logue can be used to propagate and find the other project datasets.

Because bi-directional links will typically be present between access points

of different stakeholders (during well-coordinated phases of the building life

cycle), a mechanism that prevents infinite loops should be part of the querying

algorithm. Such mechanism is implemented in query engines powered by the

Comunica framework [166].

52

3.3.2 Multi-project Catalogues

Another feature enabled by the chained aggregation of catalogues are higher-

level aggregations, which allow for a discovery-based approach of nested

DCAT catalogues. This means that the boundaries of a ‘project‘ can be very

flexible, depending on the catalogue that is used as an access point: it may

range from single-building level over neighbourhoods or a geographically

scattered group of buildings from the same typology (‘all libraries in Flanders’,

‘all bridges in Germany’). Figure 3.4 illustrates that a federated project can be

part of (multiple) higher-level aggregations: starting from one higher-level

catalogue, the same query that is listed in Listing 3.6 allows to propagate

through the network and discover all project datasets.

Figure 3.4: Specific project data may be aggregated by multiple (exter-
nal) catalogues.

One option to do this, is to use a query engine that supports link traversal, such

as the Comunica [166] Link Traversal Engine [59] in combination with the

LDP interface to the vaults. This can be sped up by only using link traversal for

discovering the partial projects and their associated SPARQL endpoints, after

which regular queries can be sent to these SPARQL endpoints. Higher-level

aggregations will make use of this pattern to scale up the level of aggregation

without increasing the complexity of the queries.

3.3.3 Integrating external resources and databases

Until this point, datasets and their distributions were considered to be both

stored on a vault. However, this is not an absolute requirement: if datasets

(e.g. geospatial or governmental) are open and persistent, they can be easily

integrated in the federated multi-model by creating a DCAT metadata record

53

that is aggregated by the project access point, pointing to this external re-

source or database as a distribution (Listing 3.7). Client applications can now

discover this dataset and present its distributions to the end user as part of the

project.

1 @prefix archive: <https://beeld.ugent.be/media/photos/.63696/>

2

3 # The dataset resource on the Pod, with URL bb:1e19ed7c

4 dgfb:1e19ed7c a dcat:Dataset , consolid:ProjectResource ;

5 dcat:distribution dgfb:90329a28 .

6

7 dgfb:90329a28 a dcat:Distribution ;

8 # Where to find the actual resource (picture of iGent tower).

9 dcat:accessURL archive:w940q85_Z2016_012_029.jpg .

Listing 3.7: A metadata record on a vault can indicate a vault-external
resource as its distribution, integrating it into the overall catalogue.

In a similar way, metadata records can point to access-controlled data that is

not strictly document-based (e.g., sensor data or SQL tables), extending the

heterogeneity characteristic C3. A description on complete flow on how to do

this is out of scope for this dissertation. However, a few notes can be made on

the nature of such setup. Although the Solid Community Server [173] allows to

instantiate configurations with different storage options (file-based, in-memory

etc.), some questions remain unanswered at the time of writing. Firstly, in

order to be accessible via an LDP interface, a resource must be completely

identifiable with its URL, i.e. there can be no further specifications in the

request body. Naturally, a database API often expects a body, e.g. including a

specific query. Secondly, there is no specification on how access-control would

happen for such specialised databases.

As an example, let us consider the setup of a time-series database, based on

the InfluxDB 2.7 Open Source (OSS) server [77]. An InfluxDB database can

contain multiple ‘buckets’, which have specific access rights, retention policies

etc. Just like with the SPARQL satellite, ACL resources will not map directly

to the API of a specific database, but rather to specific endpoints on a satellite

service that negotiates between the Solid server and the external database

(Figure 3.5). In this example, these endpoints offer functionality to query a

specific bucket. An InfluxDB bucket has an identifier and a name, but is not

specifically queryable with a dedicated URL – instead, the bucket is normally

included in the query. Using this identifier, however, the satellite service can

easily expose a URL that does include this identifier. Additionally, the URL
can include query parameters, such as a specific query for the bucket. The

54

correct query can then be reconstructed internally by the satellite service. This

addresses the first question, namely to have a specific response for a specific

URL, that can be retrieved by a simple HTTP GET request.

Figure 3.5: Infrastructure for protecting project information in a
database that does not support WebID-OIDC.

The second question, namely how to map specific access control rules to

such URLs, depends on the link of the database and the proxy server with

the Solid Server. In this example (Figure 3.5), the satellite manages its own

integrated Solid Server, where ACL documents point to specific endpoints

using the default property acl:accessTo. The proxy service is then able

to reconstruct database-specific queries from URLs, and determine whether

the client has the correct access rights. This concludes the excursion towards

integration of external databases in the ConSolid ecosystem; further research

is needed to verify this approach, and check its compatibility with the Solid

specifications.

3.3.4 Virtual Containers

When a ConSolid project has been discovered, a union of all partial projects

and their aggregated resources forms the (hybrid) knowledge graph of the

project. This has been compared to a federated multi-model earlier; it was

discussed how multi-models base upon information containers for information

exchange. Furthermore, it was described how all project information on a data

vault can be aggregated in a catalogue, and how these catalogues recursively

aggregate similar catalogues on other vaults. As these catalogues only reference

their contained datasets – they don’t effectively contain them – they may be

seen as a global virtual container for project information. This is in line

55

with the SSoI paradigm, which implies that data snippets have one single

location; everything else will be a reference to this original location. Note

that the approach described above, where a resource may be aggregated by

multiple catalogues (i.e., as a graph), differs from the common definition of

information containers in the AECO industries, where resources can often

only be aggregated in a single parent container (i.e., as a tree). However, for

practical AECO scenarios, a tree-based view on the project can be more easily

generated based on a fundamental graph description than vice versa: the tree

is the set of resources that can be discovered downstream, starting from one

access point (see Listing 3.6).

Apart from defining the overall project access points, DCAT catalogues can also

be used for establishing more fine-grained information containers, or specific

‘views’ (filters) on project data. For example, based on the publication status of

the resource, on data type, topic or ownership. We can differentiate between

persistent containers and dynamically generated containers. The former relates

to semantic catalogue descriptions that are stored on the data vault as a named

graph; the latter are short-living as query response bodies in the form of RDF

documents, to be directly processed by the client application.

Revisiting the example of a resource’s publication status, a virtual catalogue

can be created, referencing all resources in the project that have a publication

status "Shared". A SPARQL CONSTRUCT query can immediately generate

such virtual container, which can now be the input for higher-level services.

For example, a GUI that presents the project as a tree-based folder structure.

An example CONSTRUCT query for a DCAT-based virtual container is given

in Listing 3.8.

1 CONSTRUCT {

2 ?virtualContainer a dcat:Catalog ;

3 dcat:dataset ?accessURL .

4 } WHERE {

5 ?ds ex:publicationStatus "Shared" ;

6 dcat:distribution/dcat:accessURL ?accessURL.

7

8 # dynamically generated container

9 BIND(UUID() as ?virtualContainer)

10 }

Listing 3.8: SPARQL query to filter project datasets that are ‘shared’
and return their distributions a (temporary) virtual container.

56

3.4 Project Configurations

There are several options to apply the above-described infrastructure of vault-

based, federated catalogues to organisational structures in the built environ-

ment, more specifically to the project phases of design and construction, in-

volving the AECO disciplines and a well-known project team. In this section,

the following configurations will be discussed:

1. ConSolid as a centralised CDE;

2. ConSolid as a federated CDE, involving office employees;

3. ConSolid as a federated CDE, involving subcontractors.

The first configuration, i.e., a single data vault for design and construction

data, most closely resembles current centralised CDE infrastructures. Specific

project partners still have their ownWebID, to allow provenance of project data

on the Pod. A Solid Pod does not impose any restrictions on data structures,

but for a project of this type, this might be necessary, for example to define

the minimal requirements for metadata in the project, such as its creator and

modification history. Therefore, direct access to data on the vault (via the LDP

URLs of resources or the SPARQL satellite) is to be limited; instead an external

proxy service can facilitate more specific interactions with project data (see

Chapter 5 and 6). Although this can be seen as a centralised storage approach,

it can be extended to other vaults from the moment that this is required:

as discussed in Chapter 2.3.2, a centralised CDE can easily be adopted as

part of a bigger, federated CDE. Since this option still bases upon decentral

authentication with WebIDs, it allows an office to avoid account management

for every CDE that would normally host their project information. In other

words, only data storage happens on a central vault, identity management is

still done by each office individually. However, this solution does not address

the double patchwork (Section 2.1), since information will not reside with the

individual stakeholders – instead the environment will be hosted by one of

the project partners, or a third party that is responsible for hosting.

A (slightly) more advanced setup is to allow every office to maintain their

own data vault. Throughout this chapter, this setup has been the default one.

It addresses the double patchwork, as every stakeholder can decide where

information is hosted: either locally or by a trusted party that offers specialised

hosting services. For illustrative purposes, the office’s WebID was repeatedly

used to interact with data in the federated project. However, in a practical

case, requests will be made not only by the authenticated office account, but

57

mostly by individual employees, resolving to their own WebIDs, or WebIDs

related to their roles in the project.

When a company in the project does not want to keep track of all the employees

of other companies, they can refer to groups (vcard:Group) ofWebIDs instead

of individuals, using the property acl:agentGroup instead of acl:agent.

An example group definition is given in Listing 3.9. As these groups can

be defined in dereferenceable resources, every office can maintain groups

and subgroups of their own employees, allowing company-external project

partners to point to these groups instead.

1 bb:members a vcard:Group ;

2 vcard:hasMember <https://b-b.be/jan/profile/card#me>,

3 <https://b-b.be/paulus/profile/card#me>,

4 <https://b-b.be/data/profile/card#me> .

Listing 3.9: Groups meant for access control can be defined outside the
data vault hosting the ACL resources, but must be publicly available to
allow other Solid Servers to fetch the resource.

Some risks occur, however, when agent groups are defined externally from

Pods that reference them: the owner of the Pod where the group is defined

will now control who has access to the protected resource on the other Pod.

Moreover, the Solid server hosting the ACL resource and the document it

protects should be able to access this group each time access rights need to be

checked. This requires quite some trust between the Pod owners. Therefore,

some alternatives can be identified:

1. a copy of the agent group is kept at the pod with the resource, and needs

approval for synchronisation whenever the original changes. This can

be done using a functional satellite (Chapter 6).

2. a trusted project partner (e.g. the project manager) maintains the lists of

trusted WebIDs of all stakeholders.

3. a certificate-based procedure for decentral pattern-based access control

is used. A primary workflow for this is outlined in Chapter 5.

Yet, further organisational breakdowns are still possible, and might offer more

benefits for data management within an organisation. For example, a company

vault can be maintained as an aggregator (see Chapter 6) and unified access

point for external collaborators, but project information is stored on the vaults

of responsible employees, or alternatively on vaults corresponding with tasks

or functions in the project.

58

Although the data patterns allow to federate project contributions to an arbi-

trary depth, a critical note should bemade on discovery performance: following

property paths of arbitrary length in a federated environment will likely make

use of LTQP – which will quickly meet performance limitations [167]. How-

ever, a differentiation can be made between tools that maymaintain application

state (such as browser applications) and stateless services (such as RESTful

servers). A browser application may propagate the network at startup and keep

a list of SPARQL satellites that should be queried. This will avoid execution of

costly link traversal queries for each request. However, RESTful servers do

not ‘remember’ information from previous requests by design, so either the

project discovery step must be re-executed with each request, or all requests

must contain a list of endpoints to query. An intermediary solution is to allow

the data from sub-company vaults (employees or roles) to be aggregated by a

higher-level service (see Chapter 6). This would expose a unified endpoint for

the entire office (or even the entire project), while internally maintaining the

more fine-grained data management benefits.

A final multi-vault configuration exists when offices appoint subcontractors

for specific tasks in the project. According to ISO 19650, a project counts a

an appointing party, a few lead appointed parties (e.g. an architect, structural

engineer, HVAC engineer, owner) and then appointed parties, i.e. parties

appointed by one of the lead appointed parties. Maintaining the federation

logic, appointed parties will not work on the lead appointed parties’ main data

vaults, but will have their own vaults to store their contributions to the project,

based on datasets provided by the lead appointing party. When combined with

the potential single access point mentioned in Section 3.3.1, an aggregation

structure can be set up of a project in its design and construction phases that

looks like the breakdown structure of parties in ISO 19650 (Figure 3.6): any of

the stakeholders can now just aggregate (1) the shared access point provided by

the appointing party (see Figure 3.3) and (2) their own appointed parties’ access

points. This establishes a chain between the different levels of stakeholders,

avoiding the need for every party to keep track of the access points of all other

parties.

59

Figure 3.6: The ISO 19650 standard specifies an organisational hierarchy
between parties and teams. Source: [85].

3.5 Case study: iGent Tower

In this section, the technologies and data patterns outlined in Sections 3.2

and 3.3 will be illustrated with the case of the iGent tower. As described in Sec-

tion 1.7, three stakeholders will be part of the project: Bureau Bouwtechniek,

Arcadis, and the DGFB (i.e., the Facility Management office of Ghent Univer-

sity), since it concerns a University Building. Every stakeholder maintains

their own Solid Pod and associated WebID and a SPARQL satellite. Bureau

Bouwtechniek will host the architectural model, Arcadis the three others. At

this starting point of the operational phase, the DGFB does not host any project

resources yet. The setup is visualised in Figure 3.7.

The steps described in this section can be reproduced by following the instruc-

tions published on the Github
5
. Since the datasets used in the iGent case study

are non-public, the open source datasets of the benchmark duplex project have

been included in the reproduceable demo. The configuration file for the duplex

project is available as an attachment to the case study reproduction guidelines,

and can be used as a general template to start using the ecosystem using any

set of existing partial models.

5
Case Study reproduction guidelines, https://github.com/ConSolidProject/cde-satellite/

tree/dissertation/demo. Accessed 2023-10-30.

60

https://github.com/ConSolidProject/cde-satellite/tree/dissertation/demo
https://github.com/ConSolidProject/cde-satellite/tree/dissertation/demo

Figure 3.7: Case study setup.

The project setup indicated in Figure 3.3 is chosen. In this setup, the central

catalogue is provided by the owner of the asset, i.e. Ghent University (here

acting through the DGFB). The initial step taken by the DGFB is to create a

new catalogue on their vault, and invite the other stakeholders to participate

via a Linked Data Notification (LDN) [34]. An example invitation is given in

Listing 3.10.

1 <> a as:Announce ;

2 as:actor <https://b-b.be/data/profile/card#me> ;

3 foaf:primaryTopic <http://w3id.org/conSolid/ProjectCreation> ;

4 dct:description "You are invited to join the project {projectURL}." ;

5 as:object <{projectURL}> ;

6 dct:created "2023-08-28T12:30:39.593Z"^^xsd:dateTime .

Listing 3.10: Linked Data Notification (LDN) [34] inviting a specific
actor to participate in a project.

61

The recipients of this invitation now need to (1) create a local catalogue on

their own vault, aggregating the remote catalogue mentioned in the invitation

and (2) confirm their involvement by sending a response notification including

their partial project, which can now be recursively aggregated by the main

project catalogue of the DGFB. This sequence is illustrated in Figure 3.8.

Figure 3.8: Sequence Diagram for project setup.

As the framework encourages the use of open data formats, the available origi-

nal Autodesk Revit partial BIM models for Architecture (modelled by Bureau

Bouwtechniek (BE)), Engineering, Electricity, and HVAC (Heating, Ventilation

and Air-Conditioning) (all three modelled by Arcadis (BE)) are converted to

a semantic model for RDF (Turtle) and a geometric model (glTF) [62], result-

ing in 8 separate resources. The conversion of a BIM model (IFC) to Linked

Building Data (LBD) ontologies can be done using the existing IFCtoLBD

converter [20], resulting in an LBD graph based on the Building Topology On-

tology (BOT) [146] and the BuildingElement Ontology (BEO) [130]. The partial

models with their respective amounts of triples are listed in Table 3.3.

62

Owner Model #triples
B-B Architecture 192178

Arcadis Electricity 101860

Arcadis HVAC 273649

Arcadis Structure 32892

Table 3.3: Amount of triples per partial BIM model after conversion to
an LBD graph (PROPS depth level [20]: 1).

All stakeholders now store each converted semantic RDF model and geometric

glTF model as a distribution with attached metadata (dataset) on their Pod.

Metadata records and RDF-based semantic conversions of the project mod-

els are mirrored as named graphs on the SPARQL satellite. Access control

to project data is regulated by giving the office that created and owns a cer-

tain model full access control rights (acl:Read, acl:Write, acl:Control).

Other project partners get reading rights (acl:Read). Only reading rights are

needed, as every contribution or comment they make will be stored on their

own Pods, even when referring to data on other servers in the project.

This concludes the setup of the stakeholder infrastructure for the iGent tower

case study. This case study will be further developed in Chapter 4 and Chap-

ter 5. Functionality to execute the above-described steps automatically will be

included in the ConSolid satellite, which is described in Chapter 6.

3.6 Implementation

A prototypical API to interact with the basic setup described in Section 3.3

using the above mentioned patterns for storage and discovery of data, was

created in context of this thesis. The API is available on Github
6
and NPM

7
as

the Dataset Aggregation API (‘Daapi’).

3.7 Conclusion

In this Chapter, the characteristics for a federated, access-controlled ecosystem

for heterogeneous data were identified, as well as technologies capable of

addressing them. Design choices were applied to data storage on Solid Pod, to

achieve the possibility of query-based views on a Pod. Using SPARQL as the

main query language, fine-grained filtering of project datasets then becomes

6
Daapi (Github): https://github.com/LBD-Hackers/daapi/tree/dissertation. Accessed

2023-10-31.

7
Daapi (NPM): https://www.npmjs.com/package/consolid-daapi. Accessed 2023-10-31.

63

https://github.com/LBD-Hackers/daapi/tree/dissertation
https://www.npmjs.com/package/consolid-daapi

possible, using a combination of Link-Traversal-based querying and SPARQL

satellites. A novel approach to query an access-controlled union graph of a

Solid Pod was proposed, using ‘FROM’ and ‘FROMNAMED’ queries. Although

query execution time increased in both situations compared to querying the

default graph, the query time for ‘FROM NAMED’ graphs stayed around the

same order of magnitude. Querying the Pod using ‘FROM’ queries resulted in

significantly higher execution time. However, for the case of discovery and

filtering, querying disjoint graphs (FROM NAMED) suffices. Opportunities

were identified to further decrease query execution time.

Using recursive DCAT catalogues, pointers can be set to relevant project

metadata, not only locally on the Pod of the client, but also on other Pods

and even to datasets that are not aware of the ecosystem. Several options

for multi-Pod collaborative environments were described, and although these

options differ in organisational structure, the query patterns remain the same,

illustrating the robustness of the framework and the freedom of a project

consortium to organise project data as preferred. Of course, a higher complexity

results in a higher discovery time to identify the actors in the network and

their vaults. However, caching project metadata structures client-side or using

a central middleware service (Chapter 6) will make abstraction of this and

hence allow a better performance of the ecosystem.

Table 3.4 gives a summary of the characteristics of a federated CDE (as defined

in this dissertation), focusing on this chapter’s topic of storage and discovery.

The characteristics are related to the technologies that were identified as

suitable for supporting them. When a technology is a ‘data technology’ (e.g.,

RDF), more details are provided regarding the data patterns that were developed

or adopted.

Characteristic Technology Data Patterns
C1 - Decentral, Secure Storage HTTP(S), Web servers n.a.

C2 - Decentral Authentication Solid, WebID-OIDC n.a.

C3 - Guaranteed Data Heterogeneity Decoupling ecosystem and project data dcat:Distribution / accessURL

C4 - Uniform Metadata Descriptions RDF (DCAT) dcat:Dataset / dcat:Distribution

C5 - Uniform Query Language SPARQL consolid:hasSPARQLsatellite

Table 3.4: Characteristics for a federated CDE (storage and discovery),
corresponding technologies and data patterns as implemented in the
ConSolid ecosystem.

64

3.8 Related Publications

This chapter contains edited fragments or concepts derived from the following

publications:

• Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Léon van Berlo. “To-

wards a decentralised common data environment using linked building

data and the solid ecosystem”. In: 36th CIB W78 2019 Conference. 2019,
pp. 113–123. url: https://biblio.ugent.be/publication/8633673 (accessed

2024-3-18).

• Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Erik Mannens.

“ConSolid: a Federated Ecosystem for Heterogeneous Multi-Stakeholder

Projects”. In: Semantic Web Journal (2023). Accepted. url: https://biblio.
ugent.be/publication/8633673/file/8633674.pdf (accessed 2024-3-18).

• Jeroen Werbrouck, Oliver Schulz, Jyrki Oraskari, Erik Mannens, Pieter

Pauwels, and Jakob Beetz. “A generic framework for federated CDEs

applied to Issue Management”. In: Advanced Engineering Informatics 58
(2023), p. 102136. url: https://doi.org/10.1016/j.aei.2023.102136 (accessed

2024-3-18).

65

https://biblio.ugent.be/publication/8633673
https://biblio.ugent.be/publication/8633673/file/8633674.pdf
https://biblio.ugent.be/publication/8633673/file/8633674.pdf
https://doi.org/10.1016/j.aei.2023.102136

Chapter 4

Resource Linking and
Annotation

With the technologies and data patterns described in Chapter 3, we can create

a catalogue of separate datasets in a federated environment. Starting from a

single access point, a client can discover the other vaults containing project

material, and filter relevant resources using expressive SPARQL queries on

their metadata. However, these datasets are not yet connected with one an-

other, unless they are Linked Data resources that are fully compliant up to the

5th star of Linked Data and internally refer to each other. This is an intrinsic

feature of RDF which is sometimes called deep linking. In this chapter, data pat-

terns are discussed for connecting heterogeneous resources in a sub-document

granularity.

In Section 4.1, two types of cross-document links are identified. The first type

of links involves document annotation using the Web Annotation Data Model

(WADM). The used data model will help in establishing the second type of links,

related to conceptual cross-document identifier alignment. Furthermore, this

section introduces the Reference Registry, a specific dataset in the ConSolid

ecosystem for registering both types of links. The first type is then discussed

in Section 4.2. Discussing the second type is the topic of Section 4.3. The data

patterns will be illustrated with the iGent case study in Section 4.4. The chapter

concludes with an outline of the software deliverables related to reference

management in ConSolid (Section 4.5).

Background technologies for this chapter are introduced in the following

appendices:

• Appendix B(Semantic Web technologies (RDF, SPARQL, SHACL));

• Appendix E (Industry Containers - ICDD);

• Appendix G (Sub-document identifiers for different document types);

• Appendix H (The ConSolid vocabulary).

66

4.1 Cross-document Links

In terms of the goals for the ConSolid ecosystem, it is not only necessary

to discover project information by filtering metadata, but also by traversing

related content in heterogeneous resources. In this thesis, two types of links are

identified that need to be supported by the ecosystem on a data level:

• C 6: Cross-document Annotation: this type of link describes relation-
ships between datasets, documents and sub-document references, in their
capacity of being digital documents. This is, for instance, of use to create
issues concerning modelling practice, to allow comments on due project
deliverables, etc.

• C 7: Cross-document Linking: this type of link is related to the fact
that many digital resources contain representations of the same real-world
entities. Linking these indirectly together via an ‘abstract concept’ al-
lows propagating from one representation to another, and use the best fit
representation for the intended interaction.

Naturally, solutions that address these characteristics must be compatible with

the requirements stated in Chapter 3 as well. In particular, C3 (Heterogeneity)

implies that media types cannot be assumed (or imposed). In other words:

sub-document linking and annotation must take place on a metadata level

rather than in the documents themselves, to ‘even the field’ between disparate

resources and open up the silos of unstructured and semi-structured datasets,

and make them be more permeable for external referencing. This approach

aligns with current standards for multi-models, as illustrated by the Linkset

specification in the ICDD standard [90]). Furthermore, maintaining a feder-

ated approach (C1) for cross-document linking is important to remain fully

compatible with the rationale of Chapter 2. Following the same reasoning as

Section 3.2.3, the RDF data model will be used for addressing both C6 and

C7.

Both types of cross-resource links will be registered in specific resources on

the vault, called Reference Registries. Using the storage patterns devised

in Section 3.3.1, this means that a metadata record is created describing a

dcat:Dataset that is also an instance of consolid:ReferenceRegistry,

pointing to an RDF-based distribution that contains the links. This way, the

SPARQL satellites can be used to quickly find the Reference Registries in a

specific project, and allow a client to reconstruct the cross-document links

throughout the project.

67

4.2 Annotation of digital documents

TheWeb Annotation Data Model (WADM)[149] and accompanyingWeb Anno-

tation Vocabulary (WAV) [150] provide the patterns and vocabulary for anno-

tation of resources on the Web. The data model describes a framework to anno-

tate heterogeneous information on the Web, connecting a body (oa:hasBody)

and a target (oa:hasTarget) via an annotation (oa:Annotation). The body

describes the content of the annotation, whilst the target identifies its topic.

Both body and target can have sub-document selectors and sources, although

other options exist for fine-grained selection. Sub-document identifiers, which

are called segments (of interest), can be registered in a metadata resource (such

as the Reference Registry introduced in Section 4.1) using selectors. Practically,
a metadata description of a segment (oa:ResourceSelection) refers to a

source document (oa:hasSource), and a selector (oa:hasSelector). The

registration of digital annotations conforming to the WADM will happen in a

Reference Registry on the vault.

Figure 4.1: An annotation refers to a body and a target instance. The
Web Annotation Data Model allows for fine-grained selection of sub-
document identifiers.

68

4.3 Reference Collections

The second cross-document relation describes digital resources that reference

the same real-world entity. Further in this dissertation, the set of all resources

that refer to a single concept will be called a ‘Reference Collection’. These

federated Reference Collections can be seen as proxies for all known informa-

tion about a specific entity, whose meaning comes entirely from the digital

descriptions they aggregate - without the context of their representations they

are just abstract concepts. This aligns with the notion of ‘Linksets’ in existing

multi-model approaches. It is important to differentiate these representations

from the real entities - a 3D element in a BIM model is not the real wall; neither

is a picture: both are proxies helping us to digitally represent knowledge and

make statements about a certain ‘thing’.

This stands in contrast to common industry interpretations of BIM, which

are often dominated by 3D models. Moreover, it also contrasts with some

other academic interpretations in the field of Linked Building Data: while the

multi-model approach handles all resources and identifiers alike, approaches

such as the ones devised in the Ontology for Managing Geometry (OMG) [182]

and the File Ontology for Geometry Formats (FOG) [21] considers the RDF

building model as the main entry point to retrieve information about the asset,

including referenced geometry and their metadata – making the existence of

an RDF graph of the building mandatory prior to further enrichment. Due

to the separation of cross-document links (which are considered a specific

type of metadata) and document content, the data patterns put forward when

using linksets are more generic. An RDF description will be one of many

potential representations of a specific concept, albeit one that can be very

flexibly enriched.

Using Reference Collections (Linksets), there is no hierarchy between resources:

a pixel zone in an image can as much be a proxy for semantic enrichment as

a 3D model; a semantic description can be equally complemented by a point

cloud, a textual reference or a spreadsheet. By traversing over the interlinked

selectors in a federated Reference Collection, one can discover an entity’s

relevant representations for a particular interaction scenario. This way, any

perceived ‘hierarchy’ between project resources will be virtual and flexible -

created by a thin UI layer that allows more intuitive interactions in a given

scenario (see Chapter 7).

There are some subtle differences between common multi-model Linksets

and Reference Collections as well. Current approaches are often oriented

69

towards archiving rather than providing the backbone of an actively used

CDE. However, in an active CDE, linking sub-document identifiers throughout

the life of a digital built asset will happen in an asynchronous and likely

error-prone way. As one cannot know when alignment will take place, it

is well possible that there will exist multiple ‘aliases’ of the same Linkset at

the same time. For example, one stakeholder creates a Linkset containing a

point cloud segment and an image representation of a specific door, while

another stakeholder has already linked a 3D representation of this door with a

semantic representation – in another Linkset. Over time, these Linksets should

be aligned, as all their representations refer to the same concept.

The existence of one single metadata-level identifier (cf. Linksets) is thus

fictitious anyway: at some point, these metadata-level identifiers will again

need alignment, and so on, resulting in an indefinite depth level. In a federated

CDE, this plays even more: as a project is not a fixed set of resources, the con-

tributions of individual stakeholders must be able to function in a standalone

way, and there will be no central repository to keep track of all identifiers

of abstract concepts. Instead of grouping these aggregations under a fixed

identifier, a symmetric data pattern is proposed to allow dynamic discovery

of relevant representations of this concept on other vaults, without the need

to define ever-more-abstract alignments between identifiers. Usage of these

dynamically reconstructed ‘aliases’ allows to access project-wide collections

starting from any Reference Registry on any data vault, similar to the sym-

metric aggregation in the DCAT catalogues introduced in Section 3.3.1. Note

that the reasoning behind the creation of aliases does not apply in the case of

annotations (Section 4.2): an annotation effectively connects only two parts,

which contrasts with Reference Collections that may connect an indefinite

number of references.

The following pattern, which will be based on the Resource Selection patterns

of the WADM, can be used to aggregate sub-document identifiers. It has a

four-part breakdown structure (Figure 4.2):

1. A Reference Collection (consolid:ReferenceCollection) at the

highest level, used for identifying the concept but not for directly en-

riching it. It aggregates (consolid:aggregates) other Reference Col-

lections or references (consolid:Reference). This allows discovery

of aliases of a concept on other data vaults, using a query similar to

the one in Listing 3.6, but using consolid:aggregates instead of

dcat:dataset (Listing 4.1).

70

2. A Reference level (consolid:Reference), which includes the source

(oa:hasSource) and the sub-document selector (oa:hasSelector).

Other metadata (e.g. creation date) can be linked to the reference as well.

A consolid:Reference will also be an instance of

oa:ResourceSelection, as this is the rdfs:domain of

oa:hasSource and oa:hasSelector.

3. A Selector level; a higher-level URI used to ‘even the field’ between RDF

and non-RDF resources. This higher-level URI relates the value of the

identifier to the Selector instance, as well as the specification to which

the identifier conforms (dct:conformsTo). A list with suggested URIs

for indicating conformance with specific file types is added to this thesis

as Appendix G.

4. An Identifier level. Although more options exist in WADM, in this

thesis, the identifier will take the form of a simple value, referring to a

Literal using rdf:value. To maintain a unified approach, this holds for

RDF resources as well - these are registered as Literals with datatype

xsd:anyURI. Example values for different media types are given in

Appendix G.

1 SELECT ?refOrAlias

2 WHERE {

3 <https://b-b.be/data#b4d0ceb1> consolid:aggregates+ ?refOrAlias .

4 }

Listing 4.1: Query to discover the references and aliases of a given
Reference Collection.

Selectors can be seen as higher-level identifiers, which even the field between

RDF and non-RDF resources, because they indicate a value which is gener-

ally only valid within the boundaries of a certain dataset. In other words,

identification of sub-document objects and their allocation is expressed in sep-

arate statements. In the case of RDF resources, deep links can still be present,

although a unified aggregation strategy requires them to be connected via Ref-

erence Collections as well. Thus: any identifier, whether RDF or not, is initially

only assumed valid within the document that mentions it. This separation is a

core aspect of the asynchronous enrichment, allowed by the combination of

the metadata-level Reference Collections and their ‘lower level’ occurrences

in actual resources - since registering references or removing them does not

impact the documents themselves, and aliases can be created and registered

freely. Consequently, changing the URL of a document (e.g. at a data handover

71

Figure 4.2: RDF patterns from federated Reference Collection to sub-
document identifier.

phase where information is transferred from one vault to another) does not

impact its sub-document identifiers, and it becomes possible to asynchronously

register the new location of the resource in the network. This also holds when

the identifier is URL-bound (e.g. IIIF, RDF). When the document is re-registered

on another data vault, a new alias is created, referencing the new location

and potential updated sub-document identifiers, resulting in a full equivalent

of the original resource. When this alias has been created in the Reference

Registry in the new data vault, the original alias may be removed from the

first vault.

72

As illustrated in Figure 4.2, the recursive property consolid:aggregates

allows a local Reference Collection to aggregate equivalent Reference Collec-

tions on other stakeholder vaults, i.e. its aliases. Since these representations

are meant to be generally applicable, they may lead to references in hetero-

geneous resources, from geometry and imagery over spreadsheets to textual

descriptions. For example, a bi-directional aggregation may exist between

the local Reference Collection in the Facility Management (FM) company’s

vault and the one on the vault of the architecture company. In this example,

the architecture company hosts a 3D model; the FM company can load this

model in a viewer and use a 3D element of a wall instance as a proxy to link

a picture of a damage on the real wall, as well as a semantic description of

the damage, both located on his own vault. In a dashboard GUI, a represen-

tation of interest can be selected, after which the distributions, datasets and

sub-document identifiers of its other (local and remote) representations can be

found with a federated query, yielding an overview of all that is known about

this concept, within the boundaries of the federated multi-model. The topic

of user interaction with federated multi-models will be further discussed in

Chapter 7.

4.4 Case Study: iGent Tower

In Section 3.5, a ConSolid project was initialised for the iGent tower, featuring 3

stakeholders. The partial models of the building were hosted by their creators,

i.e. the vault of B-B hosts the architectural models (geometry and semantics),

and Arcadis manages the Structural, HVAC and electrical models. Because

for each model, the semantics and the geometry originate from the same IFC

model, object identifiers can be maintained. Linking these as representations

of the same abstract concept can thus be done automatically, following the

method described in [109]. The resulting amount of Reference Collections is

indicated in Table 4.1, per data vault.

Owner #Reference Collections
B-B 19853

Arcadis 50779

Table 4.1: Amount of Reference Collections generated in the respective
reference registries, connecting the glTF geometric models and the
semantic resources (RDF).

In this case study, it will be described how a representative of the DGFB

documents a damage occurrence in the building. The case study involves

73

the creation of a semantic representation of the damage using the DOT on-

tology [68], and a visual representation of the damage in a picture. The

semantic description of the damage is linked to a representation of an actual

element.

When the damage is, for example, registered via a GUI which displays the

architectural model of B-B, this new representation can be immediately related

to all the other representations of this element that are reachable via this geo-

metric representation. The detailed flow of actions is illustrated in Figure 4.3;

the consecutive steps are explained in the following sections.

4.4.1 Creation of Damage Graph by the DGFB

After selecting the damaged element via an existing 3D representation hosted

by B-B (step 1-5), the Reference Collection associated with that element can be

retrieved, along with its aliases on other vaults and any other possible represen-

tations (step 6-9). Following the documentation of the damages in the GUI (step

10), a metadata record is created on the vault of the DGFB (damageMetaFM

in Listing 4.2), referencing an RDF-based distribution (damageDistFM in List-

ing 4.2), which is created simultaneously (step 11-12).

At the creation stage of the semantic damage record (step 12), two graph-

specific identifiers are created, namely one for the damaged element

(damageDistFM:inst_a003d5d4) and one for the damage area

(damageDistFM:inst_8aa5bc1b) (Listing 4.2). They only exist in this spe-

cific document and have not yet been linked to any other existing project

information.

1 # The RDF resource on the DGFB Pod that documents the damage

2 @prefix damageDistFM: <https://dgfb.ugent.be/data/cac6d088#> .

3 @prefix damageMetaFM: <https://dgfb.ugent.be/data/3c1c9a18#> .

4

5 damageDistFM:inst_a003d5d4

6 dot:hasDamageArea damageDistFM:inst_8aa5bc1b ;

7 a dot:ClassifiedDamage, cdo:SurfaceCrack ;

8 cdo:crackWidth "35" .

9

10 [...] # further domain-specific damage enrichment triples

Listing 4.2: Triples in the distribution of the Damage dataset,
maintained by the DGFB. The metadata graph will be similar to the
one listed in Listing 3.1.

74

Figure 4.3: Sequence of actions for the damage documentation via a
GUI.

4.4.2 Lifting local identifiers to project level

To be able to reference them in other resources in a later stage, both the dam-

aged element and the damage area need to be aggregated by a local Reference

Collection in the project’s Reference Registry on the Pod of the DGFB (step

13-16). In this example, this is done with respectively <#rc_bdb4526d> and

<#rc_c2427dd9> (Listing 4.3). These (relative) URIs represent the real-world

entities and form the primary points for enrichment via a federated ‘digital

75

twin’. Using the patterns described in Section 4.3, these abstract concepts are

mapped to the local identifiers created for documenting the damage.

1 # The Reference Registries of the DGFB and B-B

2 # the local Reference Registry of the DGFB (i.e., the location of this

snippet)

3 @prefix refFM: <https://dgfb.ugent.be/data/b677ce97#> .

4

5 # the (remote) Reference Registry of B-B

6 @prefix refArch: <https://b-b.be/data/f0c8cb37#> .

7

8 # The RDF resource on the DGFB Pod that documents the damage

9 @prefix damageDistFM: <https://dgfb.ugent.be/data/cac6d088#> .

10

11 # a Reference Collection is created for all references to the element

12 # local aggregation

13 refFM:rc_bdb4526d consolid:aggregates refFM:ref_a80854ae ,

14 # 2nd level aggregation of remote concept (related to the 3D element)

15 refArch:rc_3de17fbe .

16

17 # the damaged element as identified in the damage semantics graph

18 refFM:ref_a80854ae oa:hasSelector refFM:sel_c69531c5 ;

19 oa:hasSource damageDistFM: ;

20 refFM:sel_c69531c5 dct:conformsTo rdf: ;

21 rdf:value "https://dgfb.ugent.be/data/cac6d088#inst_a003d5d4"^^xsd:

anyURI .

22

23 # a concept is created for all references to the damage area

24 # the new reference is the only reference of this concept so far

25 refFM:rc_c2427dd9 consolid:aggregates refFM:ref_f1f2704e .

26 refFM:ref_f1f2704e oa:hasSelector refFM:sel_27801276 ;

27 oa:hasSource damageDistFM: ;

28 refFM:sel_27801276 dct:conformsTo rdf: ;

29 rdf:value "https://dgfb.ugent.be/data/cac6d088#inst_8aa5bc1b"^^xsd:

anyURI .

Listing 4.3: Linking the local identifiers in the damage documentation
graph to a ‘Reference Collection’, i.e. a neutral concept in the Reference
Registry of the stakeholder.

Because the element was selected via a 3D representation, the concept located

at B-B’s Pod (the owners of the 3D architectural model) is also known. Hence,

it can be immediately aggregated as an alias of the new concept in the DGFB’s

Reference Registry (Listing 4.3). A notification must now be sent to B-B,

allowing them to automatically or manually aggregate this new concept as

well. This makes bi-directional discovery possible (step 17-18).

76

4.4.3 Enrichment of sub-document identifiers: pixel region

The DGFB will now further document the damage with an image, and does so

by creating a new metadata description for this photograph (dcat:Dataset),

with the image (image/jpeg) as a distribution (step 19-21). As only a part of the

image shows the damage, the location of the damage on the image is indicated

with a pixel zone, as a sub-document identifier (step 22-24). This can be done

using the relationships listed in Listing 4.4, which uses the International Image

Interoperability Framework (IIIF) specification’s image API [161]. A similar

enrichment can be made for a pixel zone that represents the damaged object
(step 25-27). These relationships are expressed in the DGFB’s local Reference

Registry.

1 # The Reference Registries of the DGFB and the B-B

2 @prefix refFM: <https://dgfb.ugent.be/data/b677ce97#> .

3 @prefix refArch: <https://b-b.be/data/f0c8cb37#> .

4

5 # The image resource on the DGFB’s Pod showing the damage

6 @prefix pictureDistFM: <https://dgfb.ugent.be/data/9f9b1794> .

7

8 # this abstract concept links the image zone with the damage area.

9 # it is the same concept indicated in Listing 4.3

10 refFM:rc_c2427dd9 consolid:aggregates refFM:ref_ba0fe231 .

11

12 refFM:ref_ba0fe231 oa:hasSelector refFM:sel_1d2eee0e ;

13 oa:hasSource pictureDistFM: ;

14

15 # The identifier notation conforms to the IIIF specification

16 refFM:sel_1d2eee0e dct:conformsTo <https://iiif.io/api/image/3.0/> ;

17 rdf:value "https://dgfb.ugent.be/data/9f9b1794/pct:20,10,25,55/max/0/

default"^^xsd:string .

Listing 4.4: Defining an image’s pixel zone as a specific representation
of an abstract concept, identified by a Reference Collection.

This concludes the enrichment scenario. All stakeholders in the project can

now discover and query this information starting from their own project

access point. In Chapter 7, a method will be devised to dynamically gener-

ate user interfaces. An example interface for image annotation is given in

Figure 4.4.

77

Figure 4.4: An image region annotator helps in interacting with the
ecosystem in a more intuitive way.

4.4.4 Workflow: Querying the project graph

A client can now query the set of federated project resources to search for

product information of damaged elements. The semantic graphs are used for

querying project data; the Reference Registry delivers the corresponding Ref-

erence Collections and their identifiers, and the non-semantic resources (e.g.,

3D models, imagery) can be used to visualise the results and access knowledge

about an object documented in other resources via dedicated GUIs. In the case

described above, a GUI that offers a perspective of damage management would

allow an (authenticated) agent to perform the following steps:

1. Select the project (access point) of interest and discover the SPARQL

satellites (Section 3.2.4) of its aggregated catalogs in order to query the

permissioned union graphs containing these catalogs.

2. Query the project for damage assessments (Listing 4.5) and find the

damaged element. In Listing 4.5, this corresponds with the variables ‘?el’

and ‘?doc’. Results are included in Table 4.2. Optionally, other semantic

details, such as type and size can be retrieved with this query as well.

3. Discover the Reference Registries in each partial project.

4. Query the Reference Registries for Reference Collections that aggregate

a Reference with the correct source and identifier.

5. Find the aliases of the resulting Reference Collection and their References

(and corresponding source, identifier and conformance).

78

1 SELECT ?el ?doc WHERE {

2 GRAPH ?doc {

3 {?el dot:hasDamage ?dam .} UNION {?el dot:hasDamageArea ?dam .}

4 }

5 }

Listing 4.5: SPARQLQuery to find the elements that have been damaged.
Other references and aliases of this element can then be found by
querying the Reference Registries of the project.

?el damageDistFM:inst_a003d5d4

?doc https://dgfb.ugent.be/data/cac6d088

Table 4.2: Results of the query in Listing 4.5. The prefix damageDistFM
corresponds with the result of the ‘?doc’ variable.

Two strategies can be identified for retrieving the total set of federated Ref-

erences associated with the same concept. The first one makes use of a local

aggregation of the Reference Registries. After allocating the Reference Reg-

istries for each stakeholder via their SPARQL satellite, the Reference Registries

are fetched via the vault’s LDP interface and merged in a client-side triple store

that can be directly queried using a single SPARQL query (Listing 4.6). Some

post-processing of the results will be needed to combine aliases and selectors

into a single object that can be used for internal application logic.

1 SELECT * WHERE {

2 ?rc a consolid:ReferenceCollection ;

3 consolid:aggregates+ ?ref, ?otherRef .

4 ?ref oa:hasSource <{source}> ; # known source

5 oa:hasSelector/rdf:value "{value}". # known selector value

6 ?otherRef oa:hasSource ?otherSource ;

7 oa:hasSelector/rdf:value ?otherValue .

8

9 OPTIONAL {

10 ?rc consolid:aggregates ?alias .

11 ?alias a consolid:ReferenceCollection .

12 }}

Listing 4.6: Recursive query to find all representations, identifiers and
datasets for a given selected concept. The query is to be executed on a
triple store that aggregates all relevant Reference Registries.

Using the demo scripts available on Github
8
, it was found that a Reference

Collection retrieval using cached Reference Registries of the iGent case study

8
ConSolid demo; https://github.com/ConSolidProject/cde-satellite/tree/dissertation/

demo. Accessed 2023-11-30.

79

https://github.com/ConSolidProject/cde-satellite/tree/dissertation/demo
https://github.com/ConSolidProject/cde-satellite/tree/dissertation/demo

generally takes about 0.22s, on a machine with the specifications listed in

table 3.2 (Chapter 3) (100 iterations). Although optimisation of query time is out

of scope for this dissertation, this proves the feasibility of the approach.

Again, it is possible to differentiate between clients that can hold state (e.g.

browser applications) and clients that cannot (e.g. RESTful APIs): a browser

application can instantiate an in-memory triple store and allow all interactions

regarding reference discovery to be executed on this local store. Since a RESTful

server will not maintain a state, it needs to setup this in-memory store with

every request. Subsequent requests to SPARQL stores will in some cases be

more efficient. This option is explained in the following paragraphs.

The basic queries given in Listings 4.7, 4.8 and 4.9 allow to find the references

aggregated by the same Reference Collection. Consider an active project

document which has been opened in a viewer application, similar to the

situation depicted in Figure 4.3. The first query (Listing 4.7) is to be executed

whenever a sub-document identifier is selected in this active document. In the

case of non-discrete identifiers (such as pixel or voxel zones), existing identifiers

can be preloaded to allow selection. The query is executed on the Reference

Registry of the partial project in the vault where the metadata of the active
document is registered. To base upon the location of the metadata instead of

on the location of the actual document allows retrieval of references to project-

external resources on the Web. This query yields the Reference Collection’s

identifier and its aliases, which can now be used to find other representations

in the vaults of the other consortium members (Table 4.3).

1 SELECT ?refcol ?local ?alias

2 WHERE {

3 ?refcol a consolid:ReferenceCollection;

4 consolid:aggregates ?reference .

5 ?reference oa:hasSource <{document}> ; # known source

6 oa:hasSelector/rdf:value "{identifier}" . # known identifier

7 ?refcol consolid:aggregates ?local .

8

9 # local references include the URL of the queried data vault

10 FILTER CONTAINS(str(?local), ’{queried-data-vault}’)

11

12 OPTIONAL {

13 ?refcol consolid:aggregates ?alias .

14 # remote references do not include the URL of queried data vault

15 FILTER regex(str(?alias), ’^((?!{queried-data-vault}).)*$’)

16 }}

Listing 4.7: Query pattern to find the local references of a specific
Reference Collection (given a known reference), and its potential
remote aliases.

80

?refcol https://dgfb.ugent.be/data/b677ce97#rc_bdb4526d

?local https://dgfb.ugent.be/data/b677ce97#ref_a80854ae

?alias https://b-b.be/data/f0c8cb37#rc_3de17fbe

Table 4.3: Concept identifier and representation identifiers for the
results of the query in Listing 4.5.

This is illustrated in the query in Listing 4.8, which is executed on the same

vault as the first query (Listing 4.7) – the retrieved local references (?local) are
further resolved to find other documents (?doc) and identifiers (?value). When

metadata resources are included in the set of queryable resources, metadata

(?meta) of other local references can be included to further finetune the result

set (e.g. based on dcat:mediaType). Results for this query in context of the

iGent case study are given in Table 4.4. Additional metadata filters may be

applied to only retrieve specific references. This can be done by attaching a

metadata triple pattern to the query, an example of which is commented out

in Listings 4.8 and 4.9.

?rc
https://dgfb.ugent.be/data/b677ce97#ra_bdb4526d
(abstract concept (alias in DGFB pod))

?reference https://dgfb.ugent.be/data/b677ce97#ref_a80854ae

?value https://dgfb.ugent.be/data/cac6d088#inst_a003d5d4

?doc https://dgfb.ugent.be/data/cac6d088

?meta https://dgfb.ugent.be/data/3c1c9a18

Table 4.4: Results of the query in Listing 4.5. In this case, the prefix
damageDistFM corresponds with the result of the ‘?doc’ variable.

1 SELECT ?rc ?reference ?value ?doc ?meta

2 WHERE {

3 BIND(<{referenceCollection}> as ?rc) # known Reference Collection

4 BIND(<{reference}> as ?reference) # known reference

5

6 <{reference}> oa:hasSelector/rdf:value ?value ;

7 oa:hasSource ?doc .

8

9 # if the set of queryable resources includes metadata records

10 ?meta dcat:distribution/dcat:accessURL ?doc . # metadata filters

11 }

Listing 4.8: Recursive query to find all local representations, identifiers
and datasets for a given selected concept.

81

Finally, in the third query (Listing 4.9), the retrieved aliases are used to find

remote references (including documents, identifiers and metadata), thus exe-

cuted on the respective vaults where these aliases reside, which can be easily

derived from the alias’ URL (as it includes the vault URL). The results for this

query are given in Table 4.5.

?rc
https://dgfb.ugent.be/data/b677ce97#rc_bdb4526d

(Reference Collection (alias in DGFB pod))

?alias
<https://b-b.be/data/f0c8cb37#rc_3de17fbe

(Reference Collection (alias in b-b Pod))
?reference https://b-b.be/data/f0c8cb37#ref_8894fd07 *

?value
1uxwRB00H01B1i8VRQsVcL

(the geometric identifier in context of ?doc) *

?doc
https://b-b.be/data/12008088

(the URL of the glTF model) *

?meta
https://b-b.be/data/e7d45e01

(the metadata URL of the glTF model) *

?rc
https://dgfb.ugent.be/data/b677ce97#rc_bdb4526d

(Reference Collection (alias in DGFB pod)

?alias
<https://b-b.be/data/f0c8cb37#rc_3de17fbe

Reference Collection (alias in b-b Pod))
?reference https://b-b.be/data/f0c8cb37#ref_2ced93d3 *

?value
https://b-b.be/data/12008088#instance_6f8474e0

(the semantic identifier in context of ?doc) *

?doc
https://b-b.be/data/12008088

(the URL of the semantic model) *

?meta
https://b-b.be/data/6a4303c2

(the metadata URL of the semantic model) *

Table 4.5: Resulting concept alias and its two external references data
on the scale of the federated project.
* = identifiers not indicated in earlier listings, hosted in resources on
the Pod of B-B.

1 SELECT ?rc ?reference ?value ?doc ?meta ?alias

2 WHERE {

3 BIND(<{referenceCollection}> as ?rc) # known Reference Collection

4 BIND(<{alias}> as ?alias) # known alias

5 ?alias consolid:aggregates ?reference .

6 ?reference oa:hasSelector/rdf:value ?value ;

7 oa:hasSource ?doc .

8 }

Listing 4.9: Recursive query to find all remote representations,
identifiers and datasets for a given selected concept.

82

These steps are generally applicable for retrieving heterogeneous sub-document

identifiers in aggregated projects, based on a combination of domain-specific

queries (Listing 4.5) andConSolid data patterns (Listings 4.7 and 4.8 and 4.9).

This Reference Collection retrieval pattern avoids the need to cache a union

graph of the reference registries, and allows to further finetune the queries

with filters for metadata records. Using the demo scripts available on Github
9
,

it was found that a Reference Collection retrieval without caching Reference

Registries generally takes about 1s. However, this duration will vary with a

different number of project vaults hosting an alias of this Reference Collection.

The fact that in the prototype, all requests are being rerouted via the ExpressJS

middleware between the client and the SPARQL satellite also increases query

time. The queries used in this paper generally retrieve only one concept at the

time, although optimisations can be made to the algorithm when retrieving

multiple concepts at once. For example, when a document is opened, a single

query can already determine all concept URLs for its identifiers, avoiding the

need to execute the query in Listing 4.7 for every concept. Furthermore, a

dedicated endpoint can be set up in the SPARQL satellite to perform the access

control checking step only once for multiple queries to the same vault.

4.5 Implementation

A prototypical API was created to interact with Reference Aggregations and

Reference Registries. As it makes use of the data patterns described in Chap-

ter 3, this API depends on the lower-level implementation of Daapi. The

API is available on Github
10
and NPM

11
as the Reference Aggregation API

(‘Raapi’).

4.6 Conclusion

This chapter, described a set of data patterns that allow annotation and cross-

document linking in a federated ecosystem. The existing framework of the

Web Annotation Data Model formed the main input for the annotation part,

and offered the definitions for sub-document selection of identifiers. Reference

Collections show similarities with centralised linksets in existing multi-model

specifications. However, some adaptations were made to make this work in a

9
ConSolid demo; https://github.com/ConSolidProject/cde-satellite/tree/dissertation/

demo. Accessed 2023-10-31.

10
Raapi (Github): https://github.com/LBD-Hackers/raapi/tree/dissertation. Accessed

2023-10-30.

11
Raapi (NPM): https://www.npmjs.com/package/consolid-raapi. Accessed 2023-10-30.

83

https://github.com/ConSolidProject/cde-satellite/tree/dissertation/demo
https://github.com/ConSolidProject/cde-satellite/tree/dissertation/demo
https://github.com/LBD-Hackers/raapi/tree/dissertation
https://www.npmjs.com/package/consolid-raapi

federated environment as well. Allowing alignment of Reference Collections

with aliases in disparate Reference Registries, which can mutually aggregate

each other, each Reference Registry can function standalone as well as be part

of a federated project.

While multi-models address the linking of disparate project documents on

a sub-document level, they do not address the fact that this alignment is

still a human-driven process which sometimes requires intensive manual

mapping [129, 170]. The activity of linking references to an alias of the same

concept is not directly handled by the ecosystem, which only provides the data

patterns to do so. Depending on the goal and size of the project, this may either

be done manually or (semi-)automatically. A manual alignment makes sense if

a dedicated GUI is available, and documentation happens on-the-go – whilst

enriching existing project resources or setting up a project in the ecosystem

from its conception. In many cases, the fact that resources are linked will

go by unnoticed by the end user. For example, any assignment of element

properties and any classification activity can be categorised as a linking and

enrichment activity. Also, a case of damage enrichment as documented in

Section 4.4 can happen step-by-step by linking pictures to geometry, during

the operational phase. When large-scale projects are imported, however, a

manual concept alignment is unlikely, given the amount of existing concepts.

For identifying many aliases of the same concept, mapping algorithms such as

proposed in [109] can be used in certain situations. With the advances made

in the fields of Machine Learning and image recognition, third-party services

are expected to provide opportunities here as well. As semantic relationships

between elements do not happen at the level of references, but at the level

of documents and resources, this is considered within the realm of domain-

specific applications, and therefore outside the scope of this thesis.

Another critical note is that Reference Collections are most stable in situations

where bi-directional linking is possible. This stands in contrast with dataset

collections, which may be established with unidirectional links to create a sub-

vault hierarchy. Within the boundaries of a known project consortium, during

the early project phases, the creation of a new alias can propagate through the

known network, updating existing aliases to make the aggregation more robust.

Registering backlinks on the vaults of other people will likely require some

additional steps, as only the owners of a Reference Registry or their delegates

will have the necessary writing permissions. A publishing mechanism will

therefore be necessary to broadcast the alignment of an alias or the creation of

an annotation related to a resource on another vault. Several technologies exist

84

that enable this, such as Linked Data Notification (LDN) or a CDE satellite with

a dedicated endpoint. This topic will be further discussed in Chapter 6.

Table 4.6 gives a summary of the characteristics of a federated CDE (as defined

in this dissertation), focusing on this chapter’s topic of resource linking and

annotation. The characteristics are related to the technologies that were

identified as suitable for supporting them. When a technology is a ‘data

technology’ (e.g., RDF), more details are provided regarding the data patterns

that were developed or adopted.

Characteristic Technology Data Patterns
C6 - Cross-document Annotation RDF (WADM) WADM Annotations

C7 - Cross-document Linking RDF (ConSolid) Reference Collections / WADM Selectors

Table 4.6: Characteristics for a federated CDE (resource linking and
annotation), corresponding technologies and data patterns as imple-
mented in the ConSolid ecosystem.

4.7 Related Publications

This chapter contains edited fragments or concepts derived from the following

publications:

• Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Erik Mannens.

“ConSolid: a Federated Ecosystem for Heterogeneous Multi-Stakeholder

Projects”. In: Semantic Web Journal (2023). Accepted. url: https://biblio.
ugent.be/publication/8633673/file/8633674.pdf (accessed 2024-3-18).

85

https://biblio.ugent.be/publication/8633673/file/8633674.pdf
https://biblio.ugent.be/publication/8633673/file/8633674.pdf

Chapter 5

Data Validation
At this point, the data structures of the ConSolid ecosystem have been de-

scribed. However, checks and balances need to be in place at various levels, to

ensure the stability and trustworthiness of the ecosystem and the data that

circulates in it. Several standards exist for container-based data exchange

between stakeholders. In the ConSolid ecosystem data remains on a fixed

location on the Web, and can be discovered for specific usage scenarios –

hence, it is not really ‘exchanged’. Still, international data exchange standards

exist to ensure interoperability between applications and CDEs. Some of these

standards focus on structuring project data into multi-models, and mainly

target project metadata (e.g. ICDD [89]), while others are focused on project

information (e.g. BCF API [29]). In the first part of this chapter (Section 5.1),

the concept of Shape Collections is introduced. As an illustration, it will be

shown how Shape Collections can be used to validate project metadata (Section

5.2). This will be done using the W3C recommendation SHApes Constraint

Language (SHACL) [101].

Section 5.3 then deals with an entirely different type of validation, namely

validating requesting agent’s properties access control rights. In this section,

the default ACL mechanism used in Solid will be extended with a frame-

work for Pattern-based Access Control (PBAC), applicable to both visitors and

datasets.

Relevant appendices for this chapter are:

• Appendix B (Semantic Web technologies (RDF, SPARQL, SHACL));

• Appendix C (Solid and federated authentication);

• Appendix I (The PBAC vocabulary).

5.1 Shape Collections

A Validation Resource can be registered on the vault just like any other Con-

Solid resource, namely as the combination of a metadata record and a dis-

tribution. In this dissertation, the focus lies on validation with SHACL. Just

like a Reference Registry is an instance of consolid:ReferenceRegistry

86

(Section 4.1), a dataset with the purpose of validation will be an instance

of consolid:ValidationResource. However, similar to dcat:Datasets,

registering shapes on a vault is not enough to actually integrate them in

a project: they must be explicitly aggregated by the corresponding project

catalogue.

1 # the project catalogue

2 bb:73a16f30 a dcat:Catalog ;

3 dct:title "iGent-BB" ;

4 dct:description "Partial project of the iGent project, provided by

Bureau Bouwtechniek" ;

5 dct:publisher <https://b-b.be/data/profile/card#me> ;

6 dct:identifier "73a16f30" ;

7

8 # a regular project dataset (cf. Chapter 3)

9 dcat:dataset bb:c6a2a668 , dgfb:3c670851 .

10

11 # a Shape Collection (subproperty of dcat:dataset)

12 consolid:hasShapeCollection bb:ce07d756, # office-specific collection

13 dgfb:723ad1b4 . # project-wide collection

14

15 # Shape Collection dgfb:723ad1b4 (on the vault of the DGFB / client)

16 dgfb:723ad1b4 a dcat:Catalog, consolid:ShapeCollection ;

17 # contains specific Validation Resources (dataset and distribution)

18 dcat:dataset dgfb:9de26fa3, dgfb:41aee90b, dgfb:72f97754 .

19

20 # Shape Collection bb:ce07d756 (in a separate resource, but on the same

Pod)

21 bb:ce07d756 a dcat:Catalog, consolid:ShapeCollection ;

22 dcat:dataset bb:a72269b8 .

Listing 5.1: Registration of a Shape Collection in a ConSolid project
catalogue.

The concept of Shape Collections (consolid:ShapeCollection) is now in-

troduced as a subclass of dcat:Catalogs. This way, they can be easily em-

bedded in the existing ConSolid fabric, linking them to an existing ConSolid

project via the consolid:hasShapeCollection property, a subclass of

dcat:dataset. Starting from a Shape Collection catalogue, the same notion

of a ‘property path of arbitrary length’ (in SPARQL denoted with a ‘+’-sign) can

be used to discover the underlying shapes, both on the main vault of the Shape

Collection and elsewhere on the Web. This allows to re-use shapes (and Shape

Collections) provided by other project partners or regulatory instances (e.g.

standardisation bodies or governments), in the same way ecosystem-external

project datasets can be included by creating a metadata record pointing to a

distribution on the Web (Section 3.3.3). Listing 5.1 illustrates this with a Shape

Collection applied to a regular ConSolid project catalogue. Note that the only

87

required access right for a validation process is to have acl:Read permission:

a validation activity does not have any impact on the content of the checked

resources – it is only responsible for generating a report. This report can then

serve as input for a data validation activity by any agent with acl:Write

permissions.

Just like with the Dataset Collections (Section 3.3.1), especially in early project

phases, it is important to keep a unified approach between the multiple stake-

holders contributing to the project. Similar to the aggregation of a main project

catalogue maintained by the project manager (see Figure 3.3), the federated

aspect of DCAT catalogues allows each partial project to point to a common

Shape Collection (Figure 5.1). Such setup can be easily verified because the

partial projects of each stakeholder will be aggregated by the main project

catalogue anyway. This is a minimum set of shapes to which all project

datasets, hosted by anyone in the consortium must comply. Partial projects

can still indicate other Shape Collections, e.g. to make datasets conform to

company-specific requirements.

Figure 5.1: Different partial projects share the same common Shape
Collections: one provided by the consortium itself, one provided by
a standardisation body. Individual stakeholders can still extend this
agreed-upon minimum set with office-specific data policies.

5.2 Metadata Validation

A first case where it is important to apply validation is metadata. To illustrate

the validation of ConSolid metadata records on an upper-level, the DCAT-AP of

the EU will be used. The DCAT vocabulary has been adopted by governments

88

all over Europe to increase consistency in the metadata descriptions of public

datasets [98]. In this context, DCAT application profiles (AP) were developed,

both in a EU-wide context [45] and regionally [47]. SHACL shapes are available

to validate a metadata record against a DCAT-AP.

This means that for instances of dcat:Catalog, only four properties need to

be minimally included, namely dct:title, dct:description,

dct:publisher and dcat:dataset (i.e. ‘empty’ catalogues are not allowed).

Other properties, such as modification date (dct:modified) or homepage

(foaf:homepage) are optional. An instance of dcat:Dataset must mini-

mally have values for dct:title and dct:description, while a

dcat:Distribution only needs a value for the property dcat:accessURL.

This information can be included in the overall project by aggregating the

resource in Listing 5.2 in the shared Shape Collection (see Figure 5.1). This

is a metadata record that references the actual Shape Collection provided by

the European Commission – Joinup [56] as a project-external distribution (see

also Section 3.3.3).

1 dgfb:9de26fa3 a dcat:Dataset, consolid:ValidationResource ;

2 dct:description "DCAT-AP for DCAT data

3 dct:title "DCAT-AP" ;

4 dcat:distribution dgfb:c652cfe1 .

5

6 dgfb:c652cfe1 a dcat:Distribution ;

7 dct:conformsTo <https://www.w3.org/TR/shacl> ;

8 dcat:accessURL <https://raw.githubusercontent.com/SEMICeu/DCAT-AP/

cea5a96bb4a6f120c20b7a2b3fb4d86bcd725952/releases/2.0.0/Draft/dcat-

ap_2.0.0_shacl_shapes.ttl> .

Listing 5.2: Metadata record including the DCAT-AP (v2.0.0) as provided
by the European Commission - Joinup.

Furthermore, different shapes may be applied to different subtypes of metadata

records. For example, when the ConSolid infrastructure is to be used as a CDE,

it makes sense to align project datasets with the requirements for a container

in DIN SPEC 91391 [49]. A Shape can be created to ensure every dataset of

type consolid:ProjectResource has the right properties attached to be a

valid CDE container (Listing 5.3).

89

1 dgfb:OpenCDEShape

2 dct:description "This shape validates instances of consolid:

ProjectResources against the requirements for OpenCDE containers as

described in DIN SPEC 91391." ;

3 a sh:NodeShape ;

4 sh:targetClass consolid:ProjectResource ;

5 sh:property [

6 sh:path dct:identifier ;

7 sh:minCount 1 ;

8 sh:maxCount 1 ;

9 sh:severity sh:Violation ;

10 sh:resultMessage "OpenCDE containers require an ’Id’ field. In

ConSolid, this resolves to dct:identifier of a dcat:Dataset."@en ;

11] ;

12 sh:property [

13 sh:path rdfs:label ;

14 sh:minCount 1 ;

15 sh:severity sh:Violation ;

16 sh:resultMessage "OpenCDE containers require a ’Name’ field. In

ConSolid, this resolves to rdfs:label of a dcat:Dataset."@en ;

17] ;

18 sh:property [

19 sh:path rdf:type ;

20 sh:minCount 1 ;

21 sh:resultMessage "OpenCDE containers require a ’Type’ field. In

ConSolid, this resolves to rdf:type of a dcat:Dataset. The options

are provided by the CDC ontology (<https://w3id.org/cdc#>)."@en ;

22 sh:severity sh:Violation ;

23] ;

24 sh:property [

25 sh:path doap:revision ;

26 sh:minCount 1 ;

27 sh:maxCount 1 ;

28 sh:resultMessage "OpenCDE containers require a ’Revision’ field. In

ConSolid, this resolves to doap:revision of a dcat:Dataset."@en ;

29] ;

30 sh:property [

31 sh:path consolid:projectId ;

32 sh:minCount 1 ;

33 sh:maxCount 1 ;

34 a consolid:RuntimeProperty ;

35 sh:resultMessage "OpenCDE containers require a ’projectId’ field. In

ConSolid, this cannot be mapped to a specific property, as project

scalability dictates that a dataset may be part of many (aggregated)

projects. This property should be derived at runtime, before

validation."@en ;

36 sh:severity sh:Violation ;

37] .

Listing 5.3: SHACL shape for verifying consolid:ProjectResource
instancemust also be a valid OpenCDE container with given properties.

90

Another shape is included in Listing 5.4, stating that every Project Resource

must have an associated publication status (ex:publicationStatus), con-

form ISO 19650.

1 dgfb:PubStageShape

2 dct:description "This shape validates whether instances of consolid:

ProjectResources have a publication status attached, as described in

ISO 19650." ;

3 a sh:NodeShape ;

4 sh:targetClass consolid:ProjectResource ;

5 sh:property [

6 sh:path ex:publicationStatus ;

7 sh:minCount 1 ;

8 sh:maxCount 1 ;

9 sh:in ("WorkInProgress" "Published" "Archived" "Shared") ;

10 sh:resultMessage "Every resource must have an ISO19650 publication

status attached."@en ;

11] .

Listing 5.4: SHACL shape mandating that every
consolid:ProjectResource must also have a publication status, mapped
to instances of consolid:ProjectResource.

Both shapes can be included in the project with a metadata record similar

to the one in Listing 5.2. Some fields, however, conflict with the ConSolid

data patterns due to the graph-based, federated structure of ConSolid projects

and the centralisation aspect of information containers in the AEC domain.

For example, OpenCDE containers require a ‘projectId’ field. In ConSolid,

this cannot be mapped to a specific property, as the requirement for project

scalability dictates that a dataset may be part of many (aggregated) projects.

This property should be derived at runtime, before validation - in that case,

the project ID will be derived from the indicated project access point (see

Section 3.3.1).

In Chapter 6, it will be discussed how a high-level proxy service to the vault (the

ConSolid API) can fetch these shapes, on the one hand in order to inform the

client about the necessarymetadata fields when creating a project or registering

a dataset; on the other hand to effectively validate metadata structures during

a data validation process.

5.3 Extended Access Control Validation

As discussed in Chapter 3, the Solid ecosystem includes two access control

mechanisms, both of themmainly based on theWebID of a visitor. Compared to

theWeb Access Control (WAC), the upcoming Access Control Policy (ACP) [23]

91

specification includes the option to apply further restrictions or allowances,

based on client properties like the issuer of the identity and the client through

which the request is made. Furthermore, the working draft of ACP defines

properties that can be used to create policies applying to any resource with a

specific tag attached, although it does not define yet where this tag statement

happens. At the moment of writing, such tags are class-based, but in order to

flexibly address the double patchwork of projects, contractors, subcontractors,

employees etc. (Chapter 2), more expressive extensions are needed for access

control, such as sets of properties or even sub-graphs with more complex data

patterns. Furthermore, the ACP specification currently does not include the

notion of trusted authorities on specific (graph-based) statements, or a system

for access delegation. In this dissertation, an alternative approach is devised

which takes these topics into account. This approach does not necessary

conflict with the existing access control specifications, but may occur on a

higher level, i.e., applied by a satellite service. Future work must determine the

compatibility of PBAC with standardised specifications such as ACP.

As indicated in [124], a decentralised environment for hosting building data

benefits from more advanced access control mechanisms, such as a Role-

Based Access Control (RBAC) mechanism or a property-based one (also called

Attribute-Based Access Control (ABAC)), which includes the possibility to

express ‘arbitrary’ access rules, such as:

• All employees of company X working in project Y;

• Inhabitants of the respective building;

• The facility manager of Project Z.

An analogy to describe such context- or property-based approach in a general

sense is that one might not be able to name firefighters or paramedics before-

hand, but they can be given access if they are able to prove their function, e.g.

with valid certificates. In context of the construction industry, this could be

a (partial) delegation of access rights from contractors to subcontractors. Or,

before getting access to a certain resource, a client should prove she is involved

in the project as a ‘leading architect’ and at the same time demonstrate her

membership of a recognised association of architects.

Ideally, such patterns should be reusable by anyone in the ConSolid ecosystem.

In other words: implicit references should be used rather than explicit ones.

I.e. ‘all employees of B-B’ may already be expressed to some extent using

ACL agent groups; ‘all employees of the company that is responsible for

92

architectural design of the project this resource belongs to’ cannot. For such

scenario to happen, at least two certificates may be needed: one stating that

the employee works for B-B (signed by B-B or one of its ‘full’ delegates) and

another one indicating that B-B is indeed involved in the project (e.g., signed by

the commissioner). Although most of these patterns can be expressed using the

default ACL implementation in Solid (e.g. by hardcoding the WebIDs of these

people into agent groups), complex patterns that pose multiple requirements

to visitors will be expressed and verified with more ease using a pattern-based
approach.

In this framework for ‘Pattern-based Access Control’ (PBAC), two compo-

nents are needed. Firstly, a technology for making, exchanging and validating

assertions is required. Secondly, these assertions need to be related to access-

control policies: ‘if {client} can prove that they have {propertySetX} as asserted

by {trustedparty}, they get read access to resources with {propertySetY} as

asserted in the data vault where the resource resides’. In the following sections,

these two components will be discussed in greater detail. The resulting Access

Control framework is meant to extend beyond typical scenarios of the AECO

industry and be generally applicable, although regulating access to information

within construction projects remains the primary target. Any RDF definitions

in this context will be included in the PBAC vocabulary [187]. This dissertation

does not propose a full framework, but rather identifies high-level strategies

for achieving a pattern-based access control framework. These strategies are

intended as a basis for further research.

5.3.1 Requirements to the Requester

By default, the Web is an open framework, where people can express any-

thing they want. For a pattern-based access control to function properly, a

mechanism to prove the statements thus needs to exist: how to know that the

assigned properties are valid, without resolving to a centralised ecosystem?

Typically, four actors are needed there: an issuer, a holder, a verifier and a

Verifiable Data Registry (VDR) [163]. The issuer must be a trusted authority

on the topic of the assertion, so the verifier has good reasons for believing

the statements made in it. The holder can be the subject of the assertion, but

does not necessarily need to be. A VDR is used as a common registry to make

sure a common schema is used, improving data interoperability. Asymmetric

encryption using a public-private key pair allows verification that the assertion

was indeed made by the trusted authority.

93

Earlier work by the author of this thesis based upon the use of nanopublica-

tions [102] for establishing a PBAC framework [198]. However, an alternative

that has recently gained the status of a W3C recommendation is the concept

of Verifiable Credentials: digital, cryptographically signed assertions that rep-

resent a claim, qualification, or attribute about an individual, allowing these

individuals to share and prove specific information without disclosing unnec-

essary personal details. Authorship of a VC is stated using a Decentralised

Identifier (DID) [165]: a decentralised, self-sovereign and persistent identifier

on the Web. DID is a W3C recommendation since 2022, but has not been

implemented as part of the Solid project [203]. Full coverage of the details of

VCs is considered beyond the scope of this dissertation. As VCs evolved into

an official Web recommendation, they are considered a more robust choice

than nanopublications. This being said, after the assertion (stated in RDF) has

been verified, the technology that was used to make it verifiable does not play

a role anymore in the PBAC framework. For demonstration purposes, however,

this dissertation will just use basic graphs which are cryptographically signed

and verifyable as part of a JSON Web Token (JWT).

When considering PBAC independently from ConSolid, it is possible that an

agent has lots of credentials, and that it is unclear which credentials need to be

presented to a specific Solid server in order to be granted access to a specific

resource. To prevent a waste of precious bandwidth and server resources it

is undesirable to present them all along with the request. Applications may

therefore impose some negotiation steps [96]. Different strategies may be used

here, depending on the level of trust between visitor and owner of the resource.

The most open strategy here is to refer to a public shape, a more controlled one

could be a step-by-step release of requirements. Relating this to construction

projects, such step-by-step approach may balance the need to keep (access)

information internal to the project and the need to explain to stakeholders why

they cannot access certain information, and who they should contact if this is

to be changed. After a first requirement is met (‘the visitor is a stakeholder in

the project ...’), the server could choose to ‘release’ the other shapes, thereby

providing specific information about any other conditions that need to be

fulfilled (‘... with the task of performing a structural analysis’). As the SHACL

specification includes the possibility to generate detailed validation reports,

textual as well as machine-readable explanations may be sent to a stakeholder

whose request just got rejected, which is one of the challenges mentioned

in [96].

94

5.3.2 Requirements to Project Data

Similar to requirements made to the visitor, a rule can also apply to all resources

with specific metadata properties. For example: ‘all project resources that are

JPEG images’, or ‘all resources that have a publication status shared’. Combined

with the requirements for the requesting agent, this yields concise and powerful

rules: ‘any resource with publication status shared can be shared with anyone

who can prove they are part of the project, and edited by anyone who can

prove they are employed by office X.’ However, this approach inverts the access

control approach maintained in Solid, as access control rules are no longer

tied to specific resources, but become part of a query flow – coming at the cost

of response speed. To achieve this in an acceptable timeframe, a queryable

union graph of the vault needs to exist. Such functionality is offered by the

SPARQL satellite described in Chapter 3. Conceptually, SHACL shapes as well

as SPARQL queries may be used to verify whether a dataset conforms to a

requirement – where the strengths of SHACL will typically lie in expressing

cardinalities and restrictions to specific nodes, SPARQL will be more useful in

activities of pattern matching, especially when more complex graph patterns

are involved. SHACL-SPARQL [101] incorporates these advantages of SPARQL

to use in more complex validation scenarios.

Since the requirement to project data results in a boolean answer, either SHACL,

SHACL-SPARQL and SPARQL ASK can be used, depending on the imlementa-

tion. Since the SPARQL satellite does not implement SHACL validation, the

example rule will use a SPARQL ASK query (pbac:askQuery). In PBAC, the

resource URL can be dynamically injected in the query prior to execution,

replacing the ‘$resource$’ in the query string (see Listing 5.5).

5.3.3 Access control rules

Both project data requirements and visitor requirements can be integrated in

a pattern-based access control (PBAC) framework. The rules are registered on

the data vault as distributions of pbac:AccessResources (metadata records),

and are categorised as pbac:DynamicRules. Along with listings of the re-

quirements and the trusted authorities, a dynamic rule (pbac:DynamicRule)

contains information about the ACL modes it grants. If the requirements

put forward by a pattern-based access rule are met, ACL modes (Read, Write,

Append, Control) will be allowed for a given visitor.

Relating an access rule to the properties of the visitor is done via

pbac:visitorRequirement, which refers to one or multiple (local or re-

95

mote) SHACL shapes. For requirements to resources, the property

pbac:resourceRequirement is used. Both are subclasses of

pbac:Requirement. The difference between an ‘inclusive’ rule (a visitor

or resource needs to conform to only one of the mentioned shapes), or an

‘exclusive’ one (all shapes need to be met before the visitor is granted access),

may be established by linking pbac:visitorRequirements to a locally de-

fined shape, which can combine different (possibly remote) shapes through

various Boolean operators (sh:and or sh:or).

Section 5.3.1 mentions the need for trusted authorities to be indicated. The

trusted authorities can be included into specific shapes using

pbac:hasTrustedAuthority. This allows to indicate authority for certain

statements while not trusting them to say anything. A trusted authority may

be explicit, resolving to a WebID. Another option is to implicitly refer to a

trusted authority, i.e. to a SHACL shape to which the issuer must comply, in

combination with another trusted authority (pbac:issuerRequirement).

Ultimately, a chain of implicit mentions of trusted authorities must resolve

to an explicit authority. For instance, in Listing 5.5, the visitor requirement

(arcadis:fef427c3) can be signed by two explicitly mentioned authorities,

i.e., the owner of the vault (Arcadis) and the client (in our example this re-

solves to UGent, via the DGFB). The requirement may also be signed by every

authority that can prove they comply to a specific shape, i.e. an implicit au-
thority. In this case, the same shape is used for visitors and implicit issuers -

everyone who participates in the project can issue a certificate to employees

or subcontractors that they are part of the project, too.

A caveat for credentials that specifically refer to ConSolid projects (and is

thus not related to PBAC) is that there is no fixed identifier for ‘the project’

(see Chapter 3) – at this point only the partial projects have an identifier in

the form of a URL. This can be fixed by either issuing certificates for each

partial project (possibly combined into one larger certificate), or agreeing on a

common identifier for the project rules, that does not need to resolve to actual

resources but allows to identify the project (e.g. a GUID or URI). This allows

reuse of credentials and shapes within the consortium network.

96

1 # the metadata record of the dynamic rule

2 arcadis:432d2d04 a dcat:Dataset, pbac:AccessResource ;

3 dcat:distribution arcadis:1c421255 .

4

5 arcadis:1c421255 a dcat:Distribution ;

6 dcat:accessURL arcadis:1c421255 .

7

8 # the contents of the rule

9 arcadis:ReadRule a pbac:DynamicRule;

10 acl:mode acl:Read ;

11 rdfs:comment "Allows employees of offices that participate in the project

to READ the resources of interest.";

12 pbac:visitorRequirement arcadis:fef427c3 ;

13 pbac:resourceRequirement arcadis:d9bd0cb6 .

14

15 # a shape on the vault

16 arcadis:fef427c3 a sh:NodeShape, pbac:VisitorRequirement, pbac:

IssuerRequirement ;

17 sh:targetClass pbac:Visitor, pbac:Issuer ;

18 pbac:hasTrustedAuthority arcadis:authority1, arcadis:authority2, arcadis:

authority3 ;

19 sh:property [

20 sh:path consolid:participatesIn / dct:identifier ;

21 sh:hasValue "0d1ffe69" ; # project identifier

22] .

23

24 # a trusted authority can be registered in a separate resource

25 # the issuer is explicitly mentioned by their WebID

26 arcadis:authority1 a pbac:trustedAuthority ;

27 dct:identifier "https://arcadis.com/data/profile/card#me"^^xsd:anyURI .

28

29 # the issuer is explicitly mentioned by their WebID

30 arcadis:authority2 a pbac:trustedAuthority ;

31 dct:identifier "https://dgfb.ugent.be/data/profile/card#me"^^xsd:anyURI .

32

33 # any implicit issuer must conform to the original shape for participants

34 arcadis:authority3 a pbac:trustedAuthority ;

35 pbac:issuerRequirement arcadis:fef427c3 .

36

37 # the resource requirement is executed on the union graph of the vault

38 # to produce a valid SPARQL ASK query, the resource URL needs to be injected

at the place of $dataset$

39 arcadis:d9bd0cb6 pbac:ResourceRequirement ;

40 rdfs:comment "The resource must be a dataset or distribution in the

project with ProjectId arcadis:0d1ffe69 with publication status ’shared

’." ;

41 pbac:askQuery """ASK WHERE {{

42 arcadis:0d1ffe69 dct:identifier "0d1ffe69" ;

43 dcat:dataset+ $resource$.

44 $resource$ ex:publicationStatus "Shared" .

45 } UNION {

46 arcadis:0d1ffe69 dcat:dataset+/dcat:distribution ?distribution .

47 ?distribution dcat:downloadURL $resource$;

48 ex:publicationStatus "Shared" .

49 }} """ .

Listing 5.5: Example ACL file enhanced with a PBAC rule

97

5.3.4 Workflow

The following workflow is executed when an agent requests access to a specific

resource on a data vault. Firstly, the default ACL rules that apply to the resource

are checked. If these grant access to this resource, its content can be returned

immediately. This avoids unnecessary checking of complex PBAC rules. If

access is not granted, but PBAC certificates are sent along with the request,

a verification will take place using the technologies described above. A rule

can be retrieved using the query in Listing 5.6, which is sent to the SPARQL

satellite of the vault containing the requested resource.

1 SELECT * WHERE {

2 ?rule a pbac:DynamicRule ;

3 acl:mode <{mode}> ;

4 pbac:resourceRequirement ?rr ;

5 pbac:visitorRequirement ?vr .

6 ?rr pbac:askQuery ?askQuery .

7 ?vr pbac:hasTrustedAuthority ?authority .

8 ?authority ?p ?o .

9 VALUES ?p { dcterms:identifier pbac:issuerRequirement }

10 }

Listing 5.6: Query to the SPARQL satellite, retrieving any dynamic
rules for the requested access mode. A dynamic rule includes visitor
requirements and data requirements.

During the validation step, SHACL shapes in each relevant rule are validated
against the verifiable union of received credentials. A rule is relevant when

it yields an ACL mode that has not been granted already (e.g. because the

requester is already mentioned explicitly in the ACL graph for the requested

ACL mode). A union graph will be made of all valid certificates. This union

graph may vary per rule, since authorities may differ per rule. A certificate is

valid for a specific rule when:

1. The signature on the JWT can be verified with the public key of its

issuer;

2. The issuer is an authority (explicit or implicit) for the rule to be checked.

As the sh:TargetClass (i.e. the nodes against which the shape constraints

are checked) of the SHACL shape related to a pbac:VisitorRequirement

applies the rule to all instances of pbac:Visitor, a triple that classifies the

WebID of the visitor as an instance of pbac:Visitor is be added to the union

graph at runtime.

98

The PBAC endpoint implemented in the ConSolid satellite (Chapter 6) uses the

following checking procedure, based on certificates sent along with a custom

‘PBAC’ header:

1. Verify the signature on the certificates sent along with the request as a

JWT, using the public key exposed by the issuer of the certificate ;

2. Check whether there exist any pbac:DynamicRules that have the re-

quested mode as acl:mode, if this mode has not been granted in the

original ACL graph. With the same query (Listing 5.6), resource require-

ments, visitor requirements and their associated (explicit and implicit)

authorities can be retrieved.

3. Withhold only those rules that apply to the requested resource, using

SPARQL ASK query linked to the pbac:ResourceRequirement. Mul-

tiple rules can co-exist and be evaluated independently. A discussion on

conflicting rules is out of scope for this dissertation.

4. To validate the remaining rules:

(a) Check the issuers of each certificate. If the issuer is an explicit

trusted authority for the rule, the statements in the certificate may

be added to the eventual data graph that will be checked against

the shape of the rule.

(b) If the issuer is an implicit trusted authority, check if there are any

certificates about this issuer that were signed by an explicit author-
ity – as indicated in the pbac:issuerRequirements of the im-

plicit authority (see Listing 5.5). The pbac:issuerRequirements

may resolve to another pbac:Requirement, or to the original one.

The set of certificates about this authority must be joined and vali-

dated against the issuer requirement. If this validation is successful,

any certificates signed by this implicit authority can be added to

the eventual data graph.

(c) Validate the joint set of valid certificates against the

pbac:VisitorRequirement of the rule. Prior to checking, a

statement that the visiting agent is an instance of pbac:Visitor

needs to be added. If this validation succeeds, the access mode is

granted. Else, the next applicable rule can be checked.

This workflow is illustrated in Figure 5.2.

99

Figure 5.2: Sequence of actions to verify a client’s access rights using
PBAC. This is based on valid certificates, implicit and explicit trusted
authorities and dynamic rules.

Thisworkflow also implies that the higher the amount of pbac:DynamicRules,

the longer the request will take. The same holds for the amount of certificates,

and the amount of authorities to be checked. Performance optimisation for this

workflow is out of scope for this dissertation, as the goal is semantic flexibility

rather than quick response time. As an indication of the duration of a PBAC

request, the case study explained in the next paragraph was verified using the

ConSolid satellite (Chapter 6). The eventual PBAC request in this scenario

takes about 1s.

5.3.5 Case Study

As a tangible example of the above-described workflow, let us consider the

following situation, related to the actors of the iGent example used in Chapter 3

and 4. Alice, who works for Bureau Bouwtechniek (B-B), has two certificates.

The first one states that she is indeed employed by B-B and is signed by the

WebID associated with B-B. The second one is signed by the assigning party

in the project (DGFB) and states that B-B is a member of the project.

100

When loading her project interface, Alice wants to check whether there are

any clashes between the structural model provided by Arcadis and the archi-

tectural model provided by B-B. On the vault of B-B, a rule exists that indicates

that anyone who is employed by B-B (B-B acts as the trusted authority) can

read and edit any resources on the B-B Pod that have publication statuses

WorkInProgress or Shared, but only read those with status Published or

Archived. The vault of Arcadis, on their end, contains a rule which states

that people who can prove that they are part of the project have read access to

datasets that have a publication status Shared (see Listing 5.5).

The query in Listing 5.6 queries the vault for dynamic rules, which may com-

bine visitor requirements and resource requirements. The identity of the

authority is hardcoded as the WebID of the DGFB, which takes the role of the

client in the project consortium. This query returns the Visitor Requirement

and the Resource Requirement defined in Listing 5.5, including the ASK query.

Before executing the ASK query, the parameter $resource$ should be replaced

by the URL of the structural model (distribution). The metadata of the struc-

tural model indicates that it indeed has a publication status "Shared", so the

ASK query resolves to true; the Resource Requirement is met. As Alice is in

possession of the necessary credentials, the Visitor requirements are also met.

Alice can fetch the structural model and load it into the BIM authoring tool of

her choice.

This case study can be replicated by executing the steps described at https:

//github.com/ConSolidProject/cde-satellite/tree/dissertation/demo/PBAC, using the

ConSolid satellite described in Chapter 6.

5.4 Conclusion

In this chapter, the topic of validation was integrated into the ConSolid ecosys-

tem. A first case was the validation of project (meta)data, in order to plan its

use for specific scenarios. By integrating the concept of Shape Collections, a

project consortium can set its own requirements for internally published data.

At the same time, office-specific requirements can be included in the set of

requirements. Of course, the more requirements a dataset should adhere to,

the more stringent the data creation.

The validation framework in ConSolid allows services (such as the ConSolid

satellite which will be discussed in Chapter 6) to take project-specific require-

ments into account for data creation and adaptation activities. When specific

data usage or transformation scenarios are foreseen in the project planning,

101

https://github.com/ConSolidProject/cde-satellite/tree/dissertation/demo/PBAC
https://github.com/ConSolidProject/cde-satellite/tree/dissertation/demo/PBAC

Shape Collections and Validation Resources make sure the required properties

will be present upon creation. When new Validation Resources are added to a

project that is ongoing, non-compliant datasets can be identified and corrected

in a data sanitation process.

Independent from validating the presence of (meta)data properties, a proto-

typical framework was introduced for pattern-based access control (PBAC).

Also in this context, the SPARQL satellite (Chapter 3) proved its worth, as the

union graph of a data vault via the SPARQL satellite allows to establish rules

for visitors as well as the resources they request in a flexible, implicit way. The

PBAC framework does not yet cover the entire complexity of pattern-based

access control. For example, the topic of conflicting rules, or hierarchies of

rules is considered out-of-scope for this thesis, but may be covered in future

research. However, the framework introduces a novel approach to access

control which complements and extends existing access protocols in Solid.

Neither the validation of (meta)data and the PBAC framework are part of the

Solid Specifications, so a proxy service is required to interact with data on

the Pod. Chapter 6 will include the setup of a proxy service that includes this

functionality.

5.5 Related Publications

This chapter contains edited fragments or concepts derived from the following

publications:

• Jeroen Werbrouck, Madhumitha Senthilvel, Jakob Beetz, and Pieter

Pauwels. “A checking approach for distributed building data”. In: 31st fo-
rum bauinformatik, Berlin: Universitätsverlag der TU Berlin. 2019, pp. 173–
81. url: https://biblio.ugent.be/publication/8667508/file/8667516.pdf (accessed

2024-3-18).

• Jeroen Werbrouck, Ruben Taelman, Ruben Verborgh, Pieter Pauwels,

Jakob Beetz, and Erik Mannens. “Pattern-based access control in a de-

centralised collaboration environment”. In: Proceedings of the 8th Linked
Data in Architecture and Construction Workshop. CEUR-WS. org. 2020.

url: https://ceur-ws.org/Vol-2636/09paper.pdf (accessed 2024-3-18).

102

https://biblio.ugent.be/publication/8667508/file/8667516.pdf
https://ceur-ws.org/Vol-2636/09paper.pdf

Chapter 6

Middleware Services
The infrastructure discussed in Chapters 3 and 4 allows a multi-vault, heteroge-

neous and interconnected network of project resources to be formed. However,

all interactions currently take place via LDP or SPARQL. These technologies

are too low-level to enable appropriate usability as a CDE. In this chapter we

identify higher-level interfaces that are capable of interpreting the data in the

intended way, without blocking the potential for data expressivity at storage

level. First, the main components that enable this are identified, i.e., Aggrega-

tors and Adaptors (Section 6.1). Then, we take a look at the data exchange flow

between vaults, middleware and clients, which may serve as a template for

almost any specific interaction (Section 6.2). In Section 6.3, the ConSolid API is

discussed as an example of a functional satellite, which facilitates the high-level

interactions mentioned above. The topic of RDF Aggregators, which allow to

query the RDF data in a federated catalogue in an access-controlled manner, is

discussed in Section 6.4. Finally, the concept of Adaptors is illustrated with a

mapping of the ConSolid metadata structures to the industry standards ICDD

(ISO 21597) and the BCF API [27] (Section 6.5).

Background technologies for this chapter are introduced in the following

appendices:

• Appendix B (Semantic Web technologies (RDF, SPARQL, SHACL));

• Appendix E (Industry Containers - ICDD);

• Appendix G (Sub-document identifiers for different document types);

6.1 Components

The following components are essential for a federated ecosystem that is

effectively useful as a CDE, and are thus labelled as characteristics:

1. C 8: Aggregators: Our envisaged CDE does not include a single storage
point - instead the Web is considered to be the CDE. Thus, at some point, the
information needs to be aggregated (client-side or by a middleware service).
The ecosystem must allow temporary and synchronised aggregation of its
content into central access points intended for reading data.

103

2. C 9: Adaptors: Adaptors fulfil the task of reconfiguring generic (reusable)
data patterns in a format readable by external applications. These may be
application-specific or provide domain-specific standardised views on the
data, useful for multiple applications. Adaptors can be micro-services or
algorithms that are directly embedded in client application code.

A single data access point will often be expected, either again for compatibility

reasons, or for the sake of querying performance. This role is fulfilled by

Aggregators (C8), which aggregate federated data and expose it in a specific

way. Aggregators can host synchronised copies of project data in order to

speed up the retrieval and querying process, or fetch and serve the data dy-

namically. The concept of Aggregators as a network of query and reasoning

agents compatible with the Solid ecosystem is an active and complex field

of research [121, 175]. This dissertation only acknowledges the necessity of

an Aggregator component in the federated CDE; a proof-of-concept will be

included to illustrate the role of Aggregators in the ecosystem. Aggregators

may be included in middleware services, or directly integrated in client-side

applications.

Reusability is one of the main reasons to keep data in a generic and structured

way. However, existing tools and standards often expect a specific schema

or data format, which seldom aligns with generic structured data. Adaptor

services (C9) facilitate the conversion from structured, interconnected data to

the formats expected by client-side tools that, using ISO 19650 terminology

for CDEs, have a ‘lower maturity level’ (Chapter 2). In a federated ecosystem,

Adaptors will often be combined with Aggregators to dynamically expose the

data in the desired form. This way, they can offer a window to the federated

data, which complies with a standardised or proprietary API.

The Aggregator-Adaptor combination can serve multiple purposes, some of

which will be discussed in this chapter:

1. To facilitate a functional CDE layer on top of the existing infrastructure.

Such layer may take the form of a functional satellite, differing from stor-
age satellites as introduced in Chapter 3. A functional satellite will allow

more complex interactions with one or more data vaults, interactions

that go well beyond the ones offered by the LDP interface to a Pod. In the

case of the ConSolid ecosystem, this will, amongst others, include CRUD

interactions with project catalogues and datasets, Reference Collections

and Annotations.

104

2. To offer a synchronised SPARQL endpoint for the entire project, given

a specific project access point. This purpose only implements the Ag-

gregator functionality and is largely performance-oriented – although

providing data storage redundancy may be a reason as well.

3. To facilitate industry-specific APIs on top of the (filtered) resources on a

data vault, or even on the entire federated project – allowing interaction

with e.g. BIM authoring tools. This may be a standardised view on the

project or on specific files, but mappings into proprietary formats or

custom data structures and APIs are possible as well.

First, the general flow of requests and data between the data ecosystem, middle-

ware services and clients will be discussed. Then, the first purpose is illustrated

by describing the ConSolid Satellite, effectively rendering the ecosystem useful

as a basic CDE. The second purpose is implemented using an in-memory triple

store that synchronises with the (federated) project files it is allowed to see.

The third purpose will be illustrated with two cases: a mapping of a federated

ConSolid project to an ICDD-compatible dump archive and a demonstration

of interacting with federated projects through the BCF API.

Different services may be chained to facilitate a specific flow of information.

However, a longer chain of services often means more back-and-forth requests,

and consequently a negative impact on performance. For example, a BCF

API service may base upon ConSolid satellites for its discovery of project

data, which increases the number of requests with the amount of ConSolid

satellites. The impact on performance will not always be negative: when an

Aggregator SPARQL endpoint is available, a ConSolid API can use this to

speed up querying, instead of sending requests to individual SPARQL satellites.

Nothing prevents multiple purposes to be implemented in a single service as

well – especially if the implemented functionality is based on open standards.

For example, the above-mentioned chaining of a BCF API and a ConSolid API

can be avoided with the creation of a service that implements both.

Theoretically, the service layer may be extended with other services, such as

data cleaning and validation services, services for geometric computations,

notification services etc. However, apart from performance challenges, ser-

vices in the chain will likely require different data structures, requiring more

Adaptors, with increasing interoperability challenges and risks for incorrect

conversions. The experimental validation of such service networks based on

the ConSolid ecosystem is considered out of scope for this dissertation, but

should be considered in future research.

105

6.2 Interactions between vaults and middleware

Whether the Aggregator-Adaptor service is implemented client-side, as middle-

ware or as a satellite, does not really impact the flow of information exchange.

It does impact, however, authentication and trust. At the time of writing,

a fully specified delegation protocol implemented in the Solid ecosystem is

still work-in-progress. The Community Solid Server [173] supports OAuth

Token Exchange [93], but this feature is not included in the official Solid pro-

tocol [33]. This means that the current most secure options to authenticate to

a Solid Pod are setting up a dedicated satellite (e.g. at the side of the Identity

Provider (IDP)), or initialising a server which facilitates these interactions

(e.g. at office level). Depending on the intended permissions for the service,

either a dedicated WebID or the credentials of the vault owner may be used

for authentication. This immediately illustrates why it is better to keep your

satellites close (and why they are called satellites). The first option allows

to limit the resources the service has access to, but requires to adapt access

control rules for all affected files.

The interaction patterns where a client interacts with the federated ecosys-

tem using an Aggregator and Adaptor follow a systematic flow. As SPARQL

satellites (Section 3.2.4) offer the most complete views on metadata resources

in project Pods, they will serve as the primary interfaces to feed Aggregators

and Adaptors. The interaction flow consists of the following steps – ‘vault’

represents here the entire infrastructure of Pod, SPARQL satellite and ConSolid

satellite (section 6.3):

1. The client sends an authenticated request to the middleware.

2. The middleware service extracts the WebID from the authenticated

request.

3. The middleware service (Aggregator) queries the intended vault – e.g.

the vault associated with the client or the owner of the middleware, or a

satellite endpoint included in the request parameters to determine the

boundaries of the project.

4. The queried vault determines the authorised union graph for the client

and the middleware. If this includes the project access point, it yields

the other endpoints in the project catalogue. All queryable endpoints

are now known.

5. The middleware (Aggregator) can now execute the main query on the

106

partial projects of all stakeholders. Depending on the original request, it

may be necessary to execute multiple requests.

6. The middleware (Aggregator) can combine the partial results into a

single query result format.

7. (Optional) The results of the SPARQL queries serve as an input for the

Adaptor part of themiddleware service, which shapes them to the desired

output format.

8. The middleware service responds to the original request.

These steps are visualised in Figure 6.1.

Figure 6.1: Flow of requests that allow a client to interact with a feder-
ated CDE through a single endpoint.

The satellites of a vault can be registered on the vault as well, namely as

dcat:Services. As soon as the SPARQL satellite is known (see Listing 3.4), it

can be queried to discover other satellites, for instance, the ConSolid satellites

linked to project vaults (Section 6.3). By indicating to which standard the

service conforms (dct:conformsTo), a client that expects a certain API or

form can quickly check whether there is a satellite that offers this particular

view. An example RDF description is given in Listing 6.1, indicating an interface

that offers a view which is compliant to the BCF API, an industry specification

for issue management in AECO projects.

When a particular satellite is required by a specific application, but it cannot be

found at the side of the vault, a local instance of this satellite can be initiated

client-side, facilitating this communication – provided that the satellite code

is open sourced.

107

1 <> a dcat:DataService ;

2 # The BCF API is a standardised API to communicate issues related to

BIM models

3 dct:conformsTo <https://github.com/BuildingSMART/BCF-API> ;

4 dcat:endpointURL <https://example.org/bcf-satellite> ;

5 dct:description "Service for mapping ConSolid projects to the BCF (BIM

Collaboration Format) API" .

Listing 6.1: RDF description of a BCF API-compliant interface to the
Pod, registered as a dcat:Service.

6.3 Functional satellites: the ConSolid API

The ConSolid API is a primary example of how functional satellites are essential

for streamlining high-level interactions with data vaults. Since data vaults are

essentially just catering for the storage of data, external validation is required

to check whether the storage structure adheres to specific requirements, in

this case the requirements imposed by the ConSolid ecosystem outlined in

Chapters 3, 4 and 5, and the PBAC access control extension as outlined in

Chapter 5. In many cases, a client will only be aware of the higher-level API

offered by the satellite; the lower-level LDP interactions of a Solid server will

only be used by the satellite to communicate with the data vault.

To force all interactions with a data vault to take place via the satellite (e.g. to

avoid erroneous interactions), it is possible to only assign full editing rights

to the WebID with which the satellite authenticates. Other actors get read

access at most, even the (default) account of the vault owner. The satellite may

then allow the owner of the vault to create new resources on the Pod, such

as catalogues or Reference Collections, but only if the provided data complies

to specific requirements. For example, the shape for OpenCDE containers as

listed in Listing 5.3 (see Chapter 5).

A prototypical satellite is available on Github
12
, created in NodeJS using the Ex-

pressJS framework. In this prototype, the ConSolid satellite can be discovered

by linking the property consolid:hasConSolidSatellite to the WebID

of the vault owner. This is similar to the discovery pattern of the SPARQL

satellite (Listing 3.4, Chapter 3).

12
ConSolid API, https://github.com/ConSolidProject/cde-satellite. Accessed on

20/09/2023.

108

https://github.com/ConSolidProject/cde-satellite

6.4 RDF Aggregators

The design and construction phases of an asset are phases with a lot of infor-

mation production and exchange. At the same time, the project boundaries

are quite well-defined and hosted on well-known data vaults. This makes it

possible to create the equivalent of a SPARQL satellite for the entire project,

synchronising with all RDF resources that can be found starting from a specific

project access point, with given credentials. In the case of a central project

access point, which was illustrated in Figure 3.3, this is quite straightforward.

When a project access point has an RDF Aggregator attached, this is indicated

by linking the dcat:DataService to the access point using dcat:service

(Listing 6.2). The service maintains its own description. For example, the list of

project resources (i.e. the total dataset aggregation) then dynamically changes

as other partners change or update their project data. It is the responsibility

of the service to stay synchronised and update its metadata (in this case the

object of dcat:servesDataset) when necessary.

1 bb:d07af06a a dcat:Catalog, consolid:Project ;

2 dcat:service bb:56f11919 ;

3

4 dcat:dataset bb:1e19ed7c ,

5 bb:32ad4402 ,

6 otherPod1:aa3c09de ,

7 otherPod2:bd503663 .

8

9 bb:56f11919 dcat:endpointURL <https://b-b.be/aggregator/d07af06a> .

Listing 6.2: Linking a Project Access point to an RDF Aggregator that
mirrors its content.

Besides discovery of datasets, project-wide RDF Aggregators are specifically

of use for a more performant retrieval of Reference Collections. The default

discovery pattern for Reference Collections includes numerous requests back

and forth between client, initial Reference Registry and the Reference Registries

of the aggregated references (see Section 4.4.4). An RDF Aggregator can bundle

the Reference Registries into one RDF store, making their alignment, and

hence the retrieval of Reference Collections, much easier. Advanced RDF

Aggregators may even apply reasoning to further speed up the process. For

example, an owl:sameAs relation between the collection aliases (in parallel

with consolid:aggregates) will effectively allow to treat the aliases as one

dynamically aggregated concept.

109

A ConSolid RDF Aggregator as defined in this dissertation minimally has the

following functionality:

• Query: query the project with SPARQL. This is the main functionality

of the Aggregator.

• Get project access point: get the upper-level catalogue which resolves to

metadata and RDF resources of the project. This is necessary to define

the boundaries of the datasets to be included.

• Synchronisation: synchronise with the (remote) included datasets.

In the following paragraphs we will take a look at access control handling in

RDF Aggregators, which differs from the procedure used for access control on

individual data vaults. This is because some Aggregators will collect informa-

tion from multiple vaults, without knowing the access rights attached to the

original documents – which are mostly only accessible by the owner of this

document. Therefore, an obvious requirement is that the owner of the RDF

Aggregator must be trusted by the owners of the original dataset. This is partly

done by granting them read access rights to these resources. However, the

owner of the Aggregator must also be trusted to share resources according to

the original access rights – to which they may not even have full access. This

is both a legal challenge and a technical one. The legal part is considered out

of scope for this dissertation; an approach for the technical one will be devised

in the following paragraphs, more specifically related to granting access rights

without having access to the original ACL document.

Logically, an RDF Aggregator can only expose resources to which it has read

access itself. Different approaches will be devised for short-living RDF Ag-

gregators that are only used by one agent (e.g. a client-side Aggregator) and

persistent middleware services with RDF Aggregator functionality, to be used

by different agents that are unknown to the service. The first scenario is

straightforward: the set of aggregated resources coincides with the set of

resources the agent is allowed to query. A variation of this scenario occurs

when the Aggregator only mirrors in-office resources, i.e., the owner of the

Aggregator is also the owner of all aggregated resources. In that case, the ACL

resources can be mirrored along with the resources.

In the second scenario (the Aggregator can be queried by multiple agents), this

will not be the case: the client will only be able to query the intersection of the

resource set aggregated by the RDF Aggregator, and the resource set to which

they have read access themselves. Because access to ACL resources is typically

110

limited to only the vault owner, the RDF Aggregator will not be able to go to

the other project vaults and request a list of permitted resources for the client.

Such list must be provided by the client themselves, and its integrity must

be verified by the vault (or the ConSolid satellite on its behalf). To achieve

this, ConSolid satellites must allow clients to request a list of resources to

which they have read access (Listing 6.3). This list is to be signed digitally by

the satellite, and may expire at a given point in time. For this example, the

signature is created via asymmetric encryption [158], which also means that

the public key must be available to verify the integrity of the signature. The

subset of queryable resources can now be reconstructed by the RDF Aggregator,

as the intersection of (1) the signed (and verified) lists provided by the client

and (2) its own internal list of contained project resources.

1 {

2 "allowed": [

3 "https://b-b.be/data/b4b93478-2bc1-400e-acad-184a0ac208ad",

4 "https://b-b.be/data/2880af2b-9d1a-4601-8559-5c08c3ac5962",

5 "https://b-b.be/data/6d57703d-c4a7-4326-a657-8beec42e00e7",

6 "https://b-b.be/data/ba994822-db41-4da3-8154-508ae68e3c4a",

7 "https://b-b.be/data/aaff7fcc-3f9f-4840-9c4e-7666d71f54bc"

8],

9 "mode": "http://www.w3.org/ns/auth/acl#Read",

10 "publicKey": "https://b-b.be/data/profile/publicKey.pem",

11 "verifyUrl": "https://b-b.be/services/consolid/verify",

12 "issuer": "https://b-b.be/data/profile/card#me",

13 "actor": "https://b-b.be/data/profile/card#me"

14 }

Listing 6.3: A list of available resources (READ) on a specific data
vault, for a specific agent. The list is digitally signed using asymmetric
encryption, and can be send as a JSON web token (JWT).

A prototypical RDF Aggregator was developed for this dissertation, imple-

mented as a read-only, in-memory SPARQL store based on the Comunica

engine [166]. The satellite has a dedicated project access point, from where it

oversees the aggregated RDF resources, both metadata and RDF project data.

These resources can be loaded into the Aggregator via their LDP interface,

and cached to allow a more performant response time for future requests.

As the RDF Aggregator exposes a single, access-controlled endpoint for the

entire project, compatibility with clients that are developed to work on a

single SPARQL endpoint is possible. The prototype has been published on

Github
13
.

13
ConSolid RDF Aggregator, https://github.com/ConSolidProject/RDF-aggregator/tree/

dissertation. Accessed on 2023-10-30.

111

https://github.com/ConSolidProject/RDF-aggregator/tree/dissertation
https://github.com/ConSolidProject/RDF-aggregator/tree/dissertation

6.5 MappingConSolid Projects to industry standards

Although DCAT catalogues may serve as the main mechanism for container

exchange between ConSolid-compatible agents, another compatibility layer

is needed for those agents that are not directly built on top of ConSolid – in

fact, virtually all existing applications and services apart from those described

in this dissertation. This compatibility layer can be quite easily implemented

when the original data is structured using open standards. The reusability of

an Adaptor service will also increase when it exposes the data according to

open standards as well. When this is the case, end-user applications such as

BIM authoring tools will be able to communicate with the Adaptor, and hence

with the federated project.

Whether a mapping to an industry standard succeeds, depends on multiple

factors. Firstly, a higher degree of data structure will allow a more easy conver-

sion to other expected data schema’s and types. However, this is not sufficient,

as obviously even with a high degree of structured data, information must first

exist before it can be converted into a data structure that is compliant with a

particular standard. For example, in Chapter 5, a shape was constructed linking

mandatory metadata parameters for information containers conforming to the

DIN SPEC 91391 OpenCDE specification (Listing 5.3). Other standards will

require other fields to be present. Specific shapes can be set during project

setup, or in a later phase. However, addition of dataset requirements after the

creation of project datasets might result in non-valid datasets after a sanity

check, requiring further enrichment of these datasets.

As the ConSolid satellite is to be used for the creation of ConSolid-compatible

data on a vault, it can ask the user to provide all required (meta)data before

proceeding with the creation of the dataset. However, as the ConSolid API is

by design just one of multiple views on a vault, this can be bypassed by directly

accessing the resource via LDP interface. Unless the ConSolid satellite is the

only actor with editing rights to the data vault, regular sanity checks on existing

project data are thus necessary as well, as elaborated in Chapter 5.

In previous chapters, the ISO 19650 stages of publication have served as an

example for filtering datasets. In this chapter, twomore extensive examples will

be covered. The first example describes how to create a data dump of a federated

ConSolid project in the form of an ICDD container. This example will not take

into account the content of the datasets, but will be based purely on DCAT

catalogues and datasets, the Reference Registry, and the definitions provided

by the ICDD ontologies. In the second example, the content of the documents

112

will be taken into account by sketching how a service compatible with the BCF

API may query the project data for issues documented using bcfOWL [154], an

OWL ontology based on buildingSMART’s BIM Collaboration Format (BCF).

Depending on the original resource, one or more steps are needed to adapt the

resource’s content to the desired output. It is not the aim of this dissertation

to provide a complete implementation of these specifications, but rather to

conceptually outline how Aggregators and Adaptors can be combined with

the data patterns described in earlier chapters.

6.6 Case Study: ISO 21597 - ICDD

Referring to Appendix E.2, an ICDD container has a determined structure,

consisting of 3 folders (Ontology resources, Payload documents and Payload
triples) and an index file describing its content and basic metadata for contained

resources (e.g., format, creation date, label and original file name). The Payload
triples folder contains the linksets (if any) which describe the sub-document

links. For this example, it is assumed that an RDF Aggregator has been set up,

either standalone or integrated as part of the middleware service.

1 CONSTRUCT {

2 ?index a ct:ContainerDescription;

3 ct:containsDocument ?dUrl ;

4 ct:creationDate ?ctCreation ;

5 ct:publishedBy <http://icddservice.org/> ; # the service

6 ct:creator ?creator ;

7 ct:description ?projectDescription ;

8 ct:versionID "1" .

9 ?dist a ct:ExternalDocument ;

10 ct:creationDate ?creationDate ;

11 ct:name ?label ;

12 ct:description ?description ;

13 ct:format ?format ;

14 ct:filename ?filename .

15 } WHERE {

16 BIND("2023-07-12T16:10:55.671+02:00"^^xml:dateTime as ?ctCreation)

17 BIND(IRI(CONCAT("urn:uuid", STRUUID())) as ?index)

18 BIND(replace(str(?mt), str("https://www.iana.org/assignments/media-types

/"), str("")) as ?format)

19 ?ds dct:creator ?creator ;

20 dct:creationDate ?creationDate ;

21 rdfs:comment ?description ;

22 rdfs:label ?label ;

23 dcat:distribution ?dist .

24 ?dist dcat:mediaType ?mt ;

25 dcat:accessURL ?dUrl .

26 }

Listing 6.4: SPARQL query (partial) to generate index.rdf for the ICDD
container. Project ID and container creation date are known.

113

First, the index.rdf graph is to be constructed. This can be done by executing the
query in Listing 6.4. To keep the SSoI intact, this query references all documents

as being of type ct:ExternalDocument, referring to their location using

ct:url. A similar query can be created if a project dump is needed that effec-

tively contains all the documents, using respectively ct:InternalDocument

and ct:filename. In that case, the middleware service will fetch the docu-

ments and store them in the Payload documents folder before sending the ICDD
container as a ZIP archive to the client. To easily merge the results from the

different endpoints, an identifier for the container and the index document is

predefined and injected in the query, just like the creation time of the container.

A shape can be created that allows creation of the ICDD index, similar to the

shape that guarantees OpenCDE compatibility in Chapter 5.

1 CONSTRUCT {

2 ?collection1 a ls:Linkset ;

3 ls:hasLinkElement ?le .

4 ?le ct:creationDate ?creationDate ;

5 ls:hasDocument ?source ;

6 ls:hasIdentifier ?selector .

7 ?selector ls:identifier ?identifier .

8 }

9 WHERE {

10 # subquery to filter all aliases as duplicates of the same collection

11 {SELECT ?collection1

12 WHERE {

13 { # the collection has aliases, which should not be considered here

as they would result in duplicate linksets

14 ?collection1 consolid:aggregates+ ?collection2 .

15 ?collection2 consolid:aggregates+ ?collection1 .

16 FILTER(str(?collection1) < str(?collection2))

17 } UNION {

18 # the collection has no aliases

19 ?collection1 consolid:aggregates/oa:hasSelector ?selector .

20 FILTER NOT EXISTS {?collection1 consolid:aggregates/a consolid:

ReferenceCollection}

21 }}}

22

23 # propagate to find selectors, sources and identifiers for each

collection

24 ?collection1 a consolid:ReferenceCollection ;

25 consolid:aggregates+ ?le . # aggregation of arbitrary depth

26 ?le oa:hasSelector ?selector ;

27 oa:hasSource ?source ;

28 dct:created ?creationDate .

29 ?selector rdf:value ?identifier .

30 }

Listing 6.5: SPARQL query (partial) to generate links.rdf for the ICDD
container.

114

Next, the linksets are created. In this example, the Reference Aggregations are

mapped to generic ls:Links. A corresponding query is available in Listing 6.5.

To avoid duplicates, only one of the aliases that aggregate each other is consid-

ered. Due to the property-chain and recursive structure of federated Reference

Aggregations, the RDF Aggregator has a significant advantage compared to

querying each Reference Registry individually (see Section 4.4.4).

6.7 Case Study: BCF API

A regular Issue Management Workflow contains of a chain of communications

between different participants in a project. The open BIM format BCF is often

used for this kind of processes, since stakeholders use different BIM software in

many projects. Our example workflow will be based on the setup of the iGent

project. In this workflow a request is submitted by the owner of the HVAC

model, Arcadis, to inform the owner of the architectural model, B-B, that an

opening needs to be created in a certain area of the building, so that technical

equipment (for example, a pipe) can be routed through it – a procedure often

denoted as ‘Openings and Recesses’ (Figure 6.2).

Figure 6.2: Left-hand side: geometric clash related to ‘Openings and
Recesses’. Right-hand side: geometry after the issue is resolved.

6.7.1 Workflow

In our scenario, we consider the use of a BCF API which allows communication

with the ConSolid ecosystem. It is not the aim of the dissertation to provide a

full BCFAPI implementation, but rather demonstrate the information flow from

a federated ecosystem to the client via an existing BIM standard. The generic

framework described in Section 6.2 will be used. Therefore, the first layer

(the client) and the middleware layer, which combines the role of Aggregator

and Adaptor, use the buildingSMART communication standard BCF API. The

115

client uses BIM authoring software with BCF communication capabilities. The

identity associated with the client’s vault is used for communication with the

middleware and data layers.

In this example, the resources contain Issue Management data structured using

the bcfOWL ontology [154], in line with the 4th and 5th star of structured

data [13]. In the following paragraphs, the specific interaction patterns be-

tween the federated project and a micro-service that implements the BCF API

specification are discussed, referring to the corresponding HTTP flows in Fig-

ure 6.3. Since the BCF middleware does not store any data, alternatively each

stakeholder can initialise their own service without altering the results.

Figure 6.3: Sequence Diagram of the requests a client application (Appli-
cation Layer) makes to a BCFAPI (Middleware Layer), which aggregates
data from the project vaults (Storage Layer) and ‘adapts’ this data to
match the requirements of the BCF specification. Based on [193].

116

Let us consider the scenario where Arcadis creates a new Topic for reviewing

an opening in the building model (so that pipes can go through that wall),

and assigns it to B-B. The newly created resource contains all the essential

information for the approval request, such as the author, the creation date, the

type, the corresponding building elements, and a camera perspective looking at

the scenery, as well as a responsible partner. As discussed in Chapter 5, this can

be validated with a shape, either defined in-project, or provided externally. For

updating and describing the history of bcfOWL resources, the reader is referred

to the approach of [125], which discusses the use of Topic States.

Listing 6.6 contains an example of how this Topic could be stored in the

vault using RDF and bcfOWL, including an initial Topic State (Request #1).

The BCF API interpretes the request, which is compatible with the BCF API

specification, and takes care of the communication with the vaults. On the

vault of Arcadis, a metadata record for this Topic resource is created to make

it discoverable via the vault’s SPARQL interface, and indicate whether the

resource is structured using bcfOWL or regular BCF.

1 <https://arcadis.com/data/Topic1> a bcfowl:Topic ;

2 dct:identifier "a5bee913-f912-494a-9cde-e5ebddd17226" .

3

4 <https://arcadis.com/data/Topic1State1> a bcfowl:TopicState ;

5 bcfowl:hasTopic <https://arcadis.com/data/Topic1> ;

6 bcfowl:hasTitle "Please check this opening" ;

7 bcfowl:hasTopicType <https://dgfb.ugent.be/data/OpeningsAndRecesses> ;

8 bcfowl:hasCreationDate "2022-12-12T13:45:30" ;

9 bcfowl:hasCreationAuthor <https://arcadis.com/data/profile/card#me> ;

10 bcfowl:hasTopicStatus <https://dgfb.ugent.be/data/ExtensionStatusOpen> ;

11 bcfowl:hasLabel "Clash" ;

12 bcfowl:hasAssignedTo <https://b-b.be/data/profile/card#me> .

Listing 6.6: The original bcfowl:Topic and its bcfowl:TopicState are
stored on the vault of Arcadis.

At a later stage, B-B (i.e., the assigned party) checks via their BCF-compatible

GUI whether there are any new Topics (Request #2), notices the new Topic,

approves the issue assignment and updates the Topic (Request #3). Internally, a

new Topic State is created on their vault. All updated properties are now added

to this new bcfowl:TopicState, including a pointer back to the original

Topic on the vault of Arcadis (i.e., the assigning party) (bcfowl:hasTopic).

Listing 6.7 shows how this resource would now be stored in the vault of B-B.

When the topic is queried (Request #4), the Adaptor merges the topic states on

the different vaults into a single Topic that conforms to the BCF API specifica-

tion. This process will be further documented in the next section.

117

1 <https://b-b.be/data/Topic1State2> a bcfowl:TopicState ;

2 bcfowl:hasTopic <https://arcadis.com/data/Topic1> ;

3 bcfowl:hasCreationDate "2022-12-13T12:14:15" ;

4 bcfowl:hasCreationAuthor <https://b-b.be/data/profile/card#me> ;

5 bcfowl:hasStatus <https://dgfb.ugent.be/data/ExtensionStatusClosed> ;

6 bcfowl:hasAssignedTo <https://arcadis.com/data/profile/card#me> .

Listing 6.7: The updated bcfowl:TopicState is closed by B-B and
reassigned to Arcadis. The new state is stored on the vault of B-B.

6.7.2 Adaptation of federated bcfOWL data to a BCF Topic

The BCFAPI specifies the following endpoint for retrieving a specific topic:

𝐺𝐸𝑇/𝑏𝑐𝑓 /{𝑣𝑒𝑟𝑠𝑖𝑜𝑛}/𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠/{𝑝𝑟𝑜𝑗𝑒𝑐𝑡_𝑖𝑑}/𝑡𝑜𝑝𝑖𝑐𝑠/{𝑔𝑢𝑖𝑑}

This means that the project identifier must be known. In the case of ConSolid,

this resolves to the identifier of the project access point (project_id), and the

identifier of the Topic (guid). To construct its most recent view, the property

bcfowl:hasCreationDate can be used. According to [28], the following

properties are required:

1. guid

2. server_assigned_id: a project-unique identifier for the topic.

3. title

4. creation_date

5. creation_author

Additionally, the following optional parameters will be included:

1. assigned_to

2. modified_date

3. labels

Similar to the workflow discussed in Chapter 5 for creating DCAT datasets

compatible with the OpenCDE containers, it is possible to include a shape in

the project to validate whether all Topics have at least these required properties,

provided a mapping to RDF properties exists.

118

To get a current view of the entire Topic via the BCF API, the middleware

service (Adaptor and Aggregator) needs to query all bcfowl:TopicStates

referring to the original Topic, and then reconstruct the topic based on the

results. For example, the creation date, the labels and the author of the topic

will be respectively the creation date, the labels and the author of the earliest

topic state. The current status of the topic will be the status of the topic state

which was created last.

1 SELECT ?topic ?cdate ?author ?topicId ?status ?assignedTo ?topicType ?

label ?title WHERE {

2 ?catalog a consolid:Project ;

3 dct:identifier "46db9652-9d6b-4bd7-894b-462d3c807661" ; # the

project ID is known

4 dcat:dataset+ ?dataset .

5

6 ?dataset dcat:distribution ?dist .

7 ?dist dcat:accessURL ?topic ;

8 dct:conformsTo <http://lbd.arch.rwth-aachen.de/bcfOWL#> .

9

10 ?topic dct:hasIdentifier "a5bee913-f912-494a-9cde-e5ebddd17226". # the

topic guid is known

11

12 ?topicstate a bcfowl:TopicState ;

13 bcfowl:hasTopic ?topic ;

14 bcfowl:hasCreationDate ?cdate ;

15 bcfowl:hasCreationAuthor ?author ;

16 bcfowl:hasStatus ?status ;

17 bcfowl:hasAssignedTo ?assignedTo ;

18 bcfowl:hasTopicType ?topicType ;

19 bcfowl:hasLabel ?label ;

20 bcfowl:hasTitle ?title .

21 }

Listing 6.8: An exemplary query to retrieve all Topics of a project from
the vaults.

The results of this query are included in Table 6.1 which shows the results from

the different vaults after aggregation by the middleware service. Similarly, the

property bcfowl:hasCreationAuthor can be used to find the provenance

of data ownership.

?topic ?cdate ?author
<https://arcadis.com/data/Topic1> “2022-12-12T13:45:30” <https://arcadis.com/data/profile/card#me>

<https://arcadis.com/data/Topic1> “2022-12-13T12:14:15” <https://b-b.be/data/profile/card#me>

Table 6.1: Results of the query in Listing 6.8, based on the data in
Listings 6.6 and 6.7. Rows in the table represent found Topic States.

119

6.7.3 Alternative approach using RDF Aggregators

Now, an alternative approach will be discussed, featuring an RDF Aggregator

service as described in Section 6.4. Because this service will buffer datasets

from the entire project, it can be queried as if it were centralised, i.e., using a

single query. In addition, the usage of a CONSTRUCT query will be illustrated,

resulting in an RDF graph of the topic (Listing 6.9). The latter step is only

illustrative and does not depend on the use of an RDF Aggregator.

1 CONSTRUCT {

2 ?topic dct:identifier ?topicId ;

3 bcfowl:hasCreationAuthor ?author ;

4 bcfowl:hasCreationDate ?cdate1 ;

5 bcfowl:hasStatus ?status ;

6 bcfowl:hasAssignedTo ?assignedTo ;

7 bcfowl:hasTopicType ?topicType ;

8 bcfowl:hasLabel ?label ;

9 bcfowl:hasTitle ?title .

10 } WHERE {

11

12 BIND("a5bee913-f912-494a-9cde-e5ebddd17226" as ?topicId)

13

14 ?topic dct:identifier ?topicId .

15 ?initialTopicState a bcfowl:TopicState ;

16 bcfowl:hasTopic ?topic ;

17 bcfowl:hasCreationDate ?cdate1 ;

18 bcfowl:hasCreationAuthor ?author ;

19 bcfowl:hasAssignedTo ?assignedTo ;

20 bcfowl:hasTopicType ?topicType ;

21 bcfowl:hasLabel ?label ;

22 bcfowl:hasTitle ?title .

23

24 # there are no older topic states, so this is the initial state

25 FILTER NOT EXISTS {

26 ?otherState1 a bcfowl:TopicState ;

27 ex:hasCreationDate ?otherCDate1 .

28 FILTER (?otherCDate1 < ?cDate)

29 }

30

31 ?finalTopicState a bcfowl:TopicState ;

32 bcfowl:hasTopic ?topic ;

33 bcfowl:hasCreationDate ?cdate2 ;

34 bcfowl:hasStatus ?status .

35

36 # there are no more recent topic states, so this is the current state

37 FILTER NOT EXISTS {

38 ?otherState2 a bcfowl:TopicState ;

39 bcfowl:hasCreationDate ?otherCDate2 .

40 FILTER (?otherCDate2 > ?cDate2)

41 }}

Listing 6.9: An exemplary query to retrieve all Topics of a project from
the vaults.

120

As the BCF API relies on JSON (JavaScript Object Notation) for serving its

information, this graph can be converted to the JSON-based RDF format JSON-

LD – which attaches a context to a JSON object. If required, further alignment

can rely on JSON-LD framing and the JSON-LD framing API
14
. As the BCF

API does not include anything like Topic States, the CONSTRUCT query

directly maps the retrieved information to the topic itself. Using filters, the

right creation date, author and current status can be derived. Since the RDF

Aggregator is project-bound, the topics are automatically part of the project -

the dataset discovery pattern indicated in the query from Listing 6.8 can thus

be omitted.

Applying the context indicated in Listing 6.10, the JSON response in List-

ing 6.11 will be obtained. Using JSON-LD compaction [164], the BCF API

can send a response to the client containing the object related to the topic.

The URI of the topic as retrieved from the original vault is used as a value of

‘server_assigned_id’.

1 {"@context": {

2 "bcfowl": "http://lbd.arch.rwth-aachen.de/bcfOWL#",

3 "dcterms": "http://purl.org/dc/terms/",

4 "guid": "dct:identifier",

5 "title": "bcfowl:hasTitle",

6 "labels": "bcfowl:hasLabel",

7 "creation_date": "bcfowl:hasCreationDate",

8 "topic_status": "bcfowl:hasTopicStatus",

9 "server_assigned_id": "@id",

10 "assigned_to": {

11 "@id": "bcfowl:hasAssignedTo",

12 "@type": "@id"

13 },

14 "creation_author": {

15 "@id": "bcfowl:hasCreationAuthor",

16 "@type": "@id"

17 },

18 "topic_type": {

19 "@id": "bcfowl:hasTopicType",

20 "@type": "@id"

21 }}}

Listing 6.10: Context to make the results compatible with BCF API
response without losing semantics.

14
JSON-LD framing, https://w3c.github.io/json-ld-framing/, visited 07/03/2022

121

https://w3c.github.io/json-ld-framing/

1 {

2 {...context},

3 "guid": "a5bee913-f912-494a-9cde-e5ebddd17226",

4 "server_assigned_id": "https://arcadis.com/data/a5bee913-f912-494a-9

cde-e5ebddd17226",

5 "creation_author": "https://arcadis.com/data/profile/card#me",

6 "creation_date": ""2022-12-13T12:14:15"",

7 "topic_type": "https://dgfb.ugent.be/data/OpeningsAndRecesses",

8 "topic_status": "https://dgfb.ugent.be/data/ExtensionStatusClosed",

9 "title": "Please check this opening",

10 "labels": [

11 "Architecture",

12 "Openings and Recesses"

13]

14 }

Listing 6.11: JSON response generated by flattening the JSON-LD graph
constructed by flattening the query in Listing 6.9 with the context
provided in Listing 6.10

6.8 Conclusion

This Chapter introduced higher-level services which mediate between the raw

data structures present on the vaults, and the end user applications, which

mostly expect the data in a specific format (Adaptors), coming from a specific

endpoint (Aggregators). Furthermore, the fact that a data vault does not have

real functionality beyond storage and access control demands that higher-

level interactions that require a particular workflow are executed through a

dedicated service (or chain of services). When this service has some delegated

access rights, it is recommended to not use one service for interacting with

multiple vaults. Because of their close relationship to a data vault, in this

dissertation these services are called functional satellites.

Furthermore, it was recognised that some scenarios benefit from a central

access point for reading data, in contrast to sending queries to each of the par-

ticipating vaults and then combining them locally. The RDF Aggregator that

was introduced in this chapter uses an in-memory triple store to synchronise

with the project’s RDF resources. This includes at least the metadata resources

(catalogues and datasets), but project resources that follow RDF syntax may be

aggregated as well. In Chapter 4, two methods were conceptually described for

retrieving Reference Collections, namely using federated queries or a cached

union of the project’s Reference Registries. The performance of the second sce-

nario was significantly higher. A relevant application for the RDF Aggregator

is thus to provide such union of Reference Registries, as an aid in discovering

and aligning federated Reference Collections and their aliases.

122

Finally, it was shown how a subset of a ConSolid project can be the main input

for other views on the project. When these views are based on international

standards (e.g. ICDD or BCF), this means that the ecosystem can be made

compatible with existing BIM workflows, without impacting the workflows

themselves. In the example of ICDD, a container archive of the federated project

was created, as discovered from a single project access point. The example of

featuring the BCFAPI showed hownot only ConSolid’smetadata structures can

be adapted to match existing industry practice, but also how highly structured

project data can be stored in a federated way and nevertheless allow a central

application to interact with project data – without any knowledge of the

federated nature of the project.

Table 6.2 gives a summary of the characteristics of a federated CDE (as defined

in this dissertation), focusing on this chapter’s topic of aggregation and adap-

tation. The characteristics are related to the technologies that were identified

as suitable for supporting them.

Characteristic Technology Data Patterns
C8 - Aggregators HTTP(S), Web servers n.a.

C9 - Adaptors API mappings, Web servers n.a.

Table 6.2: Characteristics for a federated CDE (aggregation and adapta-
tion), corresponding technologies and data patterns as implemented in
the ConSolid ecosystem.

6.9 Related Publications

This chapter contains edited fragments or concepts derived from the following

publications:

• Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Erik Mannens.

“Mapping Federated AEC projects to Industry Standards using dynamic

Views”. In: 10th Linked Data in Architecture and Construction Workshop.
CEUR-WS. org. 2022. url: https : / / ceur - ws .org /Vol - 3213 /paper06 .pdf

(accessed 2024-3-18).

• Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Erik Mannens.

“ConSolid: a Federated Ecosystem for Heterogeneous Multi-Stakeholder

Projects”. In: Semantic Web Journal (2023). Accepted. url: https://biblio.
ugent.be/publication/8633673/file/8633674.pdf (accessed 2024-3-18).

123

https://ceur-ws.org/Vol-3213/paper06.pdf
https://biblio.ugent.be/publication/8633673/file/8633674.pdf
https://biblio.ugent.be/publication/8633673/file/8633674.pdf

• Jeroen Werbrouck, Oliver Schulz, Jyrki Oraskari, Erik Mannens, Pieter

Pauwels, and Jakob Beetz. “A generic framework for federated CDEs

applied to Issue Management”. In: Advanced Engineering Informatics 58
(2023), p. 102136. url: https://doi.org/10.1016/j.aei.2023.102136 (accessed

2024-3-18).

124

https://doi.org/10.1016/j.aei.2023.102136

Chapter 7

Interfaces for Linking
Federated Multi-Models

Some platforms already exist to interact with multi-models of limited scope,

i.e., multi-models which will only contain specific media types during their

lifetime (e.g., IFC, imagery, RDF) [201, 97]. However, the heterogeneity of

federated multi-models as described in the previous chapters (i.e. with poten-

tially unlimited scope) requires a more generic infrastructure. In this chapter, a

modular framework is developed that allows the end user to link data in such

federated multi-models, (largely) independent from their media types and in a

user-friendly way. This framework will be called ‘Mifesto’ (Micro-Frontend

Store). Conceptually, Mifesto functions independently from the data ecosys-

tem described in previous chapters; it is not a part of the ConSolid ecosystem.

Instead it forms a separate yet compatible ecosystem, with its own reasons to

consider a federated setup, and its own reasons to consider catalogue-based

data patterns. This means it will be applicable to multi-models in general,

federated (ConSolid) and centralised (ICDD) alike. While the role of desktop

BIM applications and, more recently, Web applications, will be to create project
information, the role of Mifesto lies in linking such information with other

sources on the Web via a GUI. Hence, it can co-exist in harmony with other

approaches for creating project information. The framework will be based on

domain-agnostic considerations, so its core patterns are not related to the topic

of the built environment. This is done for the same reasons that steered the

generic setup of ConSolid, namely to allow maximal extensibility to connect

to other domains.

First, the characteristics of such framework will be defined (Section 7.1), sim-

ilar to the earlier chapters of this dissertation. Then, the components for a

federated ‘application store’ for micro-frontend modules will be introduced

(Section 7.2). The RDF definitions that allow a semantic description of these

components are described in Section 7.3, showing how these definitions can

be combined to create the eventual ecosystem of federated store, module man-

ifests and configurations. Section 7.4 discusses the eventual structure of the

AECOstore, as an implementation of Mifesto; a store of applications related to

the built environment. Finally, a reproduceable proof-of-concept is described

125

in Section 7.5. In this proof-of-concept, the user may select ‘damage enrich-

ment’ from a set of potential interactions that are supported by modules in

the store. Based on the already available resources in the active multi-model, a

module can then be selected to provide a proxy for this semantic enrichment

(e.g. geometric model).

Background technologies for this chapter are introduced in the following

appendices:

• Appendix B (Semantic Web technologies (RDF, SPARQL, SHACL)) ;

• Appendix E (The DCAT vocabulary) ;

• Appendix G (Selectors for sub-document identifiers) ;

• Appendix J (the Mifesto Vocabulary).

7.1 Characteristics

From the perspective of linking heterogeneous datasets, the combinations

of ontologies and file formats are virtually endless. Moreover, the order in

which information is added to the multi-model is ideally defined based on

the individual needs, tasks and already present datasets within a project, not

by an external application developer. For example, if the activity involves

the documentation of damage records, one intuitive way would be to do so

by selecting a 3D element in a viewer and then inserting the details of the

damage, possibly accompanied by a picture. However, acting along the lines

of multi-models, which do not impose a hierarchy amongst their constituent

resources, the availability of a 3D model should not be a prerequisite for a

damage documentation activity. After all, the documentation process itself

does not even need any proxy: a single spreadsheet, for example, would

suffice in the first stage. To become part of a larger multi-model, however,

the content of this dataset should then be linked to other project resources

such as pictures or 3D geometry in a later stage – depending on the available

project information at that later stage. The core goals of such framework were

summarised in Section 2.4:

"[...] it should thus be possible to initiate and enrich a maximally
structured multi-model from whatever domain is required by the
current task (topology, damage, product information, user data ...),
based on whichever auxiliary resource (3D geometry, CAD plans,
cityGML, point clouds, imagery, textual documents, sensor data, RDF

126

data ...) is already available or needs to be created or linked. Conse-
quentially, an indefinite amount of semantic enrichment interfaces
may exist. [...] With this in mind, an interface-oriented framework
is needed that is as versatile as the multi-models it ought to interact
with."

This yields a challenge for interface development and management: how to

provide an industry specialist, mostly with little background in data models and

schemas, with the means to interact with such heterogeneous multi-model?

The concept of the ‘citizen developer’ [120, 106] and the upcoming of low-code

[142] environments bring inspiration here. Low-code platforms lower the

threshold for the configuration and use of organisation-specific IT solutions,

which can now be easier configured by people with less coding experience,

e.g., domain specialists. Often, they base upon visual programming interfaces

which hide the internal complexity of modules that are chained together to

achieve a particular outcome.

In this dissertation, the following (technology-agnostic) characteristics are iden-

tified for a flexible and future-proof ecosystem of federated frontends:

• C 10: Modularity: The frontend ecosystem consists of independent mod-
ules rather than being monolithic.

• C 11: Indirect Enrichment: Concept enrichment and linking happens
in an indirect way, to allow full functional independence of modules.

• C 12: Common I/O Interface: A minimal common I/O interface exists
between the modules to communicate during runtime. The I/O patterns
should be independent from the purpose of a module.

• C 13: Decentral Publishing: The ecosystem allows for the modules to be
published in a decentral way to allow (1) third parties to publish targeted
modules and (2) allow for on-the-fly module aggregations addressing new
interaction scenarios.

• C 14: Discoverability: The decentrally published modules are discov-
erable on the Web. A rich, machine-readable metadata description of a
module is necessary to allow identification and aggregation of the intended
modules. The same holds for machine-readable descriptions of a multi-
module configuration, which results in a GUI.

127

A semantic enrichment paradigm based on plugins for a monolithic authoring

tool is insufficient, as it has too great a dependency on one core model (IFC,

RVT, ...), which might not be available at the time data needs to be added

to the multi-model. It is therefore necessary that an enrichment interface is

composed of equivalent interaction modules (C10). This multifaceted nature

aligns with the vision of a ‘general’ CAD system as described by Ross and

Rodriguez in 1964 [147], namely that it is necessary [...]:

"[...] to recognize once and for all that it is completely impossible to
construct a system which will satisfy the requirements immediately
and without modification. In fact to postulate the existence of a closed
system for Computer-Aided Design as we mean it is completely and
absolutely contradictory to the very sense of the concept. [...] The
very nature of the system must be such that its area of application
is continuously extended by its users to provide new capabilities as
the need arises. [...] Thus we see that the basic thing to be provided
in the initial organisation and structure of the [CAD] system is a
capability for growth, expansion and modification. [...] If, in fact,
the system can be so organised that it can naturally be moulded to
suit the needs and interests of individual users, then the concept of
a general Computer-Aided-Design System not only begins to seem
possible, but practicable as well."

This vision for CAD systems holds evenmore for an environment where seman-

tics exist besides geometry (BIM, GIS ...). In an environment for multi-models,

other resources such as imagery, point clouds, spreadsheets and external APIs

also come into play. Practically, this means that one module (e.g. damage

enrichment) cannot expect that another module (e.g. geometric viewer) will

be part of the configuration as well. To allow these modules to nevertheless

communicate with one another, a higher-level, ‘abstract’ concept is needed,

of which the sole purpose is to aggregate all heterogeneous references to the

same ‘thing’. These references can be anything, for example, a geometric rep-

resentation, an HTTP URI for RDF representations, a mentioning in a text or a

pixel zone in an image. The overlaps with ConSolid’s Reference Collections or

the ICDD linksets, which were both introduced in Chapter 4, are immediately

clear. From the perspective of CAD and BIM authoring tools, parallels with

the ‘connectors’ in the Speckle ecosystem [1] can also be identified.

128

From a UI perspective, a Reference Collection or Linkset can thus be ‘selected’

via any of its representations, providing a proxy to all other representations as

well as their metadata and original source. Modules in the ecosystem will be

specialised in one or more types of selection, e.g., geometric selection or by

query. As they only need a connection to a linkset, they can be unaware of all

other modules in the configuration, and nevertheless enrich a concept that has

been selected through a representation in another module. This principle of

indirect enrichment, which allows a module to align with this abstract concept

instead of its representations, identified by C11 is illustrated in Figure 7.1. To

allow a module to broadcast and receive any linkset of interest and check if it

is able to interact with one of its representations, a common I/O interface is

necessary (C12).

Figure 7.1: Digital representations of the same concept are connected,
and can be related to representations of other concepts via compatible
UI modules.

As there is no single instance governing what media types and ontologies

may exist, let alone the interaction scenarios made possible by their combina-

tion, the development and publication of modules should also take place in a

decentral way (C13). This decentral development practice also makes sense

129

bearing the notorious AAA-slogan of theWeb (Anyone can say Anything about

Anything) in mind: if anyone thinks their module is worth publishing (e.g.

because they create a new ontology and they want it to be useful for semantic

enrichment), they should be able to. Whether the module is actually useful
will be determined by the end users. This does, however, not necessarily mean

that perfidious applications can wreak havoc and go unchecked: modules can

be aggregated in catalogues, and trustworthy catalogue providers may vouch

for the reliability of the modules they aggregate. Catalogue providers may be,

amongst others, academic institutions, CDE vendors or companies publishing

BIM authoring tools. As catalogues are mere pointers to URLs on the Web,

they can also be aggregated recursively in other catalogues. Likewise, earlier

created multi-module configurations can be published decentrally and describe

frequently occurring cases. This accounts for the discoverability mentioned in

C14. The characteristics for queryability and discoverability are only fulfilled

if a machine-readable description of modules and configurations is available,

alongside loadable code.

The Mifesto ecosystem combines the characteristics for decentral publishing

(C13 and C14) of independent modules (R10) that can indirectly communicate

with one another by communicating abstract selection sets (11) through a

common I/O interface (R12). The result is a decentral ‘application store’, which

can be used to find existing GUI configurations, fit for a particular topic, or to

create new ones from published modules. In such ecosystem, independently

developed modules may be reused across multiple scenarios, dynamically

combined in a tailor-made GUI that is only based on the available project data

(e.g. images) and the current task (e.g. damage documentation). Consequently,

the development effort to construct a GUI for linking multi-model data on the

Web is much lower than with ‘monolithic’ SPAs.

Let us consider the amount of combinations that can be made from the follow-

ing five modules:

1. 3D Viewer

2. Image Annotator

3. Point Cloud Annotator

4. Damage Data Enricher

5. Acoustic Data Enricher

130

Sometimes, the combination of two similar modules will be relevant, e.g. when

two images or two geometric models need to be linked. On other occasions,

this makes less sense, especially for semantic enrichment modules. However,

generally, we can see that there will always be a lesser amount of modules

than monolith interfaces for the same amount of scenarios. In the situation

illustrated in Figure 7.2, there are only five reusable modules that need to be

created to cover twelve relevant combinations - a monolithic environment

would require twelve interfaces.

Figure 7.2: When an interface intends to address a linking scenario
between various media types and/or ontologies, the development effort
will be less in a modular environment than when developing ‘mono-
lithic’ applications.

7.2 Components

The frontend ecosystem will include the following high-level components in

order to comply to the characteristics discussed in Section 7.1. This includes

both data-based components and service-based components. This section will

discuss these components in a technology-agnostic way.

1. Module manifests (data component)

2. Loadable module code (data component)

3. Interface configurations (data component)

4. Federated (nested) catalogues (The ‘store’) (data component)

5. Store querying service (service component)

6. Bundler application (service component)

131

Module Manifests are the main access points for retrieving information about

individual modules. A Manifest yields as much information as needed to be ag-

gregated in larger configurations and be (made) compatible with other modules

in a configuration and the data structures in a specific project. In Section 7.3,

semantic definitions needed to create such Manifest will be discussed.

A Manifest describes the intention and functionalities of a module, but is

separated from the actual loadable code. This code must be dereferenceable

on the Web via a URL. As the focus in this context is on the application code

as a specific resource, this component is labelled a ‘data component’. However,

after loading and parsing this resource in the Bundler application (see further),

it can be seen as a service component as well.

Similar to individual module manifests, Interface Configurations are semantic

descriptions of the combination of existing modules, which help in addressing

a particular interaction scenario. If, so to speak, the Module Manifests would

be the ingredients for creating a GUI, the Interface Configuration would be the

recipe – providing instructions on how the bundler must organise the modules

in pages, routes, components and widgets. They can be created dynamically,

before loading them in the Bundler, or stored as already addressed data appli-

cations, allowing discovery and reuse of existing configurations.

Interface Configurations and Modules can be contained in larger catalogues

by their URL. These catalogues can, in turn, be nested in multiple other cata-

logues, which allows the setup of a graph-like, decentral Micro-Frontend Store.
Independent developers can create and publish modules and configurations

without being aware of other branches in the tree, allowing new modules to be

embedded in larger configurations just by creating an over-arching store cata-

logue and setting this catalogue as the main store in the UI. Using link-traversal

technologies (see Section 3.2.4), the branches of this tree can be discovered

on-the-fly by a store querying service (Figure 7.3).

The Bundler is a container application, a broker responsible for wiring the

UIs dictated by a loaded Interface Configuration, checking the compatibility

of modules and facilitating information exchange. Based on the URL of an

Interface Configuration, the Bundler discovers whichmodules should be loaded,

how they should be displayed, whether there are any nested modules and

what global parameters they rely on. These definitions are structured using

a dedicated ontology, which is discussed in Section 7.3. The Bundler ensures

the retrieval of Reference Collections and broadcasting their selection to the

loaded modules.

132

Figure 7.3: A property chain of federated stores (DCAT catalogues)
starts from a main access point for the store and allows aggregation of
all lower-level modules in the federated store.

7.3 The Mifesto vocabulary

The following Sections introduces the Micro-Frontend Store (Mifesto) vocabu-

lary, which provides an ontological basis for federated frontend modules to be

combined in larger configurations, allowing users to communicate with hetero-

geneous, federated data in a user-friendly way (compared to API calls).

133

7.3.1 Manifest Definitions

Amanifest is a self-describingWeb resource, containing the necessary informa-

tion for the module to be loaded and made interoperable with other modules,

as well as metadata required to discover the module. The following core classes

and properties are identified:

• Class indicating that a resource is a manifest for declaring the module’s

properties (mifesto:Manifest) (subclass of dcat:Dataset).

• Object Property referencing the used distribution of the module

(dcat:distribution).

• Datatype Property referencing the revision number of the module

(doap:revision).

• Object Property referencing the URL where the injectable code of the

micro-frontend is published (mifesto:code) (subclass of

dcat:accessURL).

• Object Properties for indicating the compatibility of the module with

a particular type of sub-document identifiers; both regarding what the

module is able to interpret (mifesto:readsIdentifier) and what it

is able to register in the multi-model (mifesto:writesIdentifier).

This may be indicated with conformance (dct:conformsTo) to a par-

ticular standard, SHACL shape, GUID validator or other ways to pro-

grammatically validate an entry.

• Object Property indicating which mediatypes the module can interact

with, such as geometry formats (e.g., glTF, COLLADA), BIM models

(e.g., IFC, RVT...) imagery (e.g., JPEG, PNG), point clouds (e.g., E57,

XYZ) or any RDF serialisation. When available, the mediatypes listed by

iana.org [76] should be used (mifesto:compatibleMedia).

• Object property indicating which ontologies the module is compati-

ble with, both in terms of interpreting and semantic enrichment of the

project (mifesto:usesVocabulary). For example, a module for set-

ting the topological structure of a project may list the BOT ontology; a

damage enrichment module could reference the DOT ontology.

134

1 # setting the document as a mifesto:Manifest

2 <> a dcat:Dataset, mifesto:Manifest;

3 dcat:distribution <#v1> ;

4 rdfs:label "Geometry visualisation module" ;

5 rdfs:comment "This module allows to visualise glTF models present in

the federated multi-model" .

6

7 <#v1> a dcat:Distribution ;

8 doap:revision "v1" ;

9 mifesto:code <https://aecostore.github.io/viewer-module/index.js> ;

10 mifesto:compatibleMedia <https://www.iana.org/assignments/media-types/

model/gltf+json> ;

11 mifesto:readsIdentifier <#identifierDefinition1> ;

12 # conformance with ConSolid projects

13 dct:conformsTo <https://consolidproject.be/shapes/module> .

14

15 <#identifierDefinition1> a mifesto:IdentifierDefinition ;

16 dct:conformsTo <https://saref.etsi.org/saref4inma/UUID> .

Listing 7.1: An example of a Module Manifest, describing a module for
geometric visualisation.

1 # setting the document as a mifesto:Manifest

2 <> a mifesto:Manifest;

3 dcat:distribution <#v1> ;

4 rdfs:label "Damage annotation module" ;

5 rdfs:comment "This module allows to interact with damage records in a

ConSolid project, including retrieval of damaged elements and

creation of damage records." .

6

7 <#v1> a dcat:Distribution ;

8 doap:revision "v1" ;

9 mifesto:code <https://aecostore.github.io/damage-module/index.js> ;

10

11 # the module allows uploading and viewing imagery

12 mifesto:compatibleMedia <https://www.iana.org/assignments/media-types/

image/png>,

13 <https://www.iana.org/assignments/media-types/image/jpeg> ;

14 mifesto:readsIdentifier <#identifierDefinition1> ;

15 mifesto:writesIdentifier <#identifierDefinition1> ;

16

17 # indicates conformance with the ConSolid project definition of

Reference Registries, sub-document identifiers and Dataset

Collections

18 dct:conformsTo <https://consolidproject.be/shapes/module> ;

19

20 # indicates usage of the Damage Topology Ontology (DOT)

21 mifesto:usesVocabulary <https://w3id.org/dot#> .

Listing 7.2: An example of a Module Manifest, describing a module for
damage annotation.

135

7.3.2 Interface Configurations

An Interface Configuration contains the instructions for a Bundler application

to generate a UI. It references the manifests of the modules that should be

loaded and describes how modules are organised (standalone or nested in

pages or other modules) and their dimensions. When possible, definitions from

frequently occurring ontologies are reused. The following core classes and

properties for Interface Configurations are identified:

• Class indicating that a resource is an Interface Configuration

(mifesto:Configuration) (subclass of dcat:Catalog).

• Class indicating that a resource is a separate page in the interface

(mifesto:Page) (subclass of dcat:Catalog).

• Class indicating that a resource is a component in the interface

(mifesto:Component) (subclass of dcat:Catalog).

• Subclass of mifesto:Component indicating that a resource is an or-

ganisational component, i.e it does not have any content of its own, but

requires child components (mifesto:OrganisationalComponent).

• Object Property referencing the Module Manifest to be loaded by the

Component (mifesto:hasModule) (subclass of dcat:dataset).

• Object Property referencing the child modules of an organisational

component (mifesto:hosts) (subclass of dcat:dataset).

• Datatype Property indicating the route by which the Page will be acces-

sible (mifesto:hasRoute).

The following classess and properties can be seen as auxiliary, and are mainly

oriented towards generating the lay-out of the application:

• Class indicating that a resource is a dimension setting in the interface

(mifesto:DimensionSetting).

• Object Property referencing the Dimension Setting for a Component or

Page (mifesto:hasDimensionSetting).

• Subclass of mifesto:DimensionSetting indicating that a resource

is a grid dimension setting, i.e. there must be a row-column layout for

this Component or Page (mifesto:GridDimensionSetting).

136

• Object Property referencing the actual dimensions for a Component or

Page (mifesto:hasDimensions).

• Datatype Properties referencing the actual dimensions for a Component

or Page (mifesto:initialRows and mifesto:initialColumns).

Listing 7.3 shows an example of how these properties are used in an Interface

Configuration.

1 # setting the document as a mifesto:Configuration

2 <> a mifesto:Configuration, dcat:Catalog ;

3 mifesto:hosts <#p1>, <#p2> .

4

5 # The project interaction page, hosting the interaction modules

6 <#p1> a mifesto:Page, mifesto:OrganisationalComponent, dcat:Catalog ;

7 rdfs:comment "This is the project interaction page" ;

8 mifesto:hasDimensionSetting <#dimset1> ;

9 mifesto:hasModule <https://raw.githubusercontent.com/AECOstore/demo-

page/main/public/manifest.ttl> ; # the hosting (UI-less) module

10 mifesto:hosts <#m1>, <#m2>, <#m3> ; # the hosted modules

11 mifesto:hasRoute "/demo" . # the route associated with this page

12

13 # the authorisation page

14 <#p2> a mifesto:Page, mifesto:Component, dcat:Catalog ;

15 rdfs:comment "This is a Solid-compatible authentication page" ;

16 mifesto:hasRoute "/auth" ;

17 mifesto:hasModule <https://raw.githubusercontent.com/AECOstore/auth-

page/main/public/manifest.ttl> .

18

19 # a hosting (UI-less) module for tab-based hosting of modules

20 <#m1> a mifesto:Component, mifesto:OrganisationalComponent, dcat:Catalog ;

21 mifesto:hasModule <https://raw.githubusercontent.com/AECOstore/tabs-

module/main/public/manifest.ttl> ;

22 mifesto:hasDimensions

23 [mifesto:initialColumns 4 ; mifesto:initialRows 8 .];

24 mifesto:hosts <#m1_1>, <#m1_2> .

25

26 # module related to damage assessment.

27 <#m1_1> a mifesto:Component, dcat:Catalog ;

28 mifesto:hasModule <https://raw.githubusercontent.com/AECOstore/damage-

module/main/public/manifest.ttl> .

29

30 # module for querying the project (e.g. SPARQL, GraphQL)

31 <#m1_2> a mifesto:Component, dcat:Catalog ;

32 mifesto:hasModule <https://raw.githubusercontent.com/AECOstore/query-

module/main/public/manifest.ttl> .

33

34 # module for displaying 3D geometry and visual selection aid

35 <#m2> a mifesto:Component, dcat:Catalog ;

36 mifesto:hasModule <https://raw.githubusercontent.com/AECOstore/viewer-

module/main/public/manifest.ttl> ;

37 mifesto:hasDimensions

38 [mifesto:initialColumns 8 ; mifesto:initialRows 8 .] .

39

40 <#dimset1> a mifesto:GridDimensionSetting . # the dimension settings

Listing 7.3: An example of an Interface Configuration.

137

7.4 Mifesto Stores

The DCAT vocabulary is considered a fit foundation for defining stores and

referencing their content. The Mifesto Store class (mifesto:Store) is then

a subclass of dcat:Catalog. Stores can reference either Modules, Inter-

face Configurations or other dcat:Catalogs. As dcat:Catalogs can be

chained (a dcat:Catalog is a subclass of dcat:Dataset and references its

constituent sub-datasets with dcat:dataset), it is possible to create a union

of two or more existing resources to form a single point of access and create

a federated catalogue of configurations and modules, to address specific in-

teraction scenarios (see Figure 7.3). These configurations and modules may

be created independently by different organisations. A generic query for all

modules and configurations in a store is given in Listing 7.4. More refined

queries may be necessary to discover the modules needed for a specific inter-

action with the multi-model. A dcat:Catalog that is also a Mifesto Store

will be classified as mifesto:Store. In analogy with Dataset Collections and
Reference Collections in earlier chapters, another name for a mifesto:Store

could be Interface Collection.

1 SELECT * WHERE {

2 # a property chain of dcat:dataset links

3 ?store dcat:dataset+ ?module ;

4 a dcat:Catalog, mifesto:Store .

5

6 ?module a mifesto:Manifest ;

7 dcat:distribution ?dist .

8 ?dist mifesto:code ?code .

9

10 # optional further filters on ?module or ?dist

11 # ?module mifesto:usesVocabulary <https://w3id.org/dot#> .

12 }

Listing 7.4: SPARQL query to identify all modules in a federated
application store (DCAT). A query engine supporting link traversal
will be necessary.

A store can be dynamically queried using LTQP (see Section 3.2.4), or maintain

a local triple store which synchronises with the individual configurations and

manifests. As the data patterns of the store are based on the DCAT vocabulary,

the RDF Aggregator described in Chapter 6 can be used to aggregate the

federated modules of a Mifesto store, similar to the aggregation of ConSolid

projects: the URL of a catalogue is used as an access point to discover its

sub-catalogues and their datasets to an arbitrary depth and load them into a

local triple store.

138

7.5 Proof-of-Concept

This dissertation provides a prototype of the Bundler application and some

modules based on the Piral [160] framework. The default Piral infrastructure is

adapted to aggregate and interpret federated micro-frontends described with

the Mifesto vocabulary, and facilitate the interactions between the modules,

based on Solid authentication, ConSolid Projects and Consolid References and

Annotations. The micro-frontend modules are coded using ReactJS [113]. How-

ever, most micro-frontend infrastructures (including Piral) allow to combine

modules created in different Javascript frontend frameworks such as Angu-

lar [61] and Vue [202], giving more flexibility to developers and making the

framework more future-proof. The Bundler
15
and all modules are published

on the Github organisation page with URL https://github.com/aecostore.

7.5.1 Bundler-module interfaces

It is important that the Bundler and the modules share a common vocabulary

and internal data structure. The Bundler exposes this as a set of functions to

the modules, and it is up to the modules to indicate in their manifest what func-

tionality they rely upon. This way, compatibility issues can be checked before

loading the configuration. The terminology from the ConSolid project will

be reused. For example, to indicate the scale-independence of a ‘project’, the

term ‘catalogue’ will be used. Conform with the DCAT vocabulary, ‘datasets’

provide the metadata records, ‘distributions’ contain the eventual asset infor-

mation.

This is reflected in the data handling mechanisms as well. Information manage-

ment by the Bundler happens via an (in-memory) triple store. The overarching

data structure is a DCAT catalogue, which resolves to datasets, distributions

and lower level catalogues. Similar to the data storage logic in the ConSolid

ecoystem, this allows to load multi-project configurations (‘all libraries in

Flanders’) in exactly the same way as single-project configurations. The loaded

multi-model can be a direct mirror of a ConSolid project, or a reconfiguration

of a centralised multi-model. In the case of a federated multi-model, the in-

memory triple store takes the function of an RDF Aggregator (Chapter 6). This

application logic also allows to interact with a centralised model, for example,

an ICDD project. In this case, a SPARQL CONSTRUCT query can be used that

inverts the query in Listings 6.4 and 6.5 (Chapter 6). This will result in an

in-memory catalogue that is equivalent to a one-vault ConSolid project, i.e.

15
Bundler prototype, https://github.com/AECOstore/bundler. Accessed 2023-12-08.

139

https://github.com/aecostore
https://github.com/AECOstore/bundler

directly referring to its constituent datasets instead of intermediary catalogues

for individual stakeholders (partial projects).

To allow interaction between the Bundler and the loaded modules, the follow-

ing minimal set of functions is considered:

• getData (parameter): get information shared with other modules via the

Bundler I/O (e.g. catalogue, current selection, ...), either via a SPARQL

query or via predefined URLs that resolve to a SPARQL query ;

• setData (parameter, value): set information to share with other modules

via the Bundler I/O ;

• queryProject (query, sources): query the (cached) project catalogue en-

tirely or partially ;

• findCollectionBySelector (identifier, source): find the associated Refer-

ence Collection and its representations after a selection event ;

• (authenticated) fetch(url, options): fetch function which authenticates

with a valid token (OIDC or OAUTH 2.0).

7.5.2 Modules, Configurations and Store Catalogue

The following micro-frontend modules were published in context of this demo,

as pages:

1. Welcome Page
16
, containing information about the loaded multi-model.

2. Store Page
17
, allows to query a given catalogue and discover and load

specific configurations.

3. Authorisation Page
18
: allows the configuration to use a Solid-authenticated

access token for discovery and querying of Pod-based project data.

4. Project Page
19
: landing page for ConSolid projects, allows the creation

and retrieval of ConSolid Projects and gives an overview of pending

project invitations to join existing ConSolid projects.

16
Welcome Page, https://github.com/AECOstore/welcome-page/blob/main/public/

manifest.ttl. Accessed 2023-11-01.

17
Store Page, https://github.com/AECOstore/store-page/blob/main/public/manifest.ttl.

Accessed 2023-11-01.

18
Authorisation Page, https://github.com/AECOstore/auth-page/blob/main/public/

manifest.ttl. Accessed 2023-11-01.

19
Project Page, https://github.com/AECOstore/project-page/blob/main/public/

manifest.ttl. Accessed 2023-11-01.

140

https://github.com/AECOstore/welcome-page/blob/main/public/manifest.ttl
https://github.com/AECOstore/welcome-page/blob/main/public/manifest.ttl
https://github.com/AECOstore/store-page/blob/main/public/manifest.ttl
https://github.com/AECOstore/auth-page/blob/main/public/manifest.ttl
https://github.com/AECOstore/auth-page/blob/main/public/manifest.ttl
https://github.com/AECOstore/project-page/blob/main/public/manifest.ttl
https://github.com/AECOstore/project-page/blob/main/public/manifest.ttl

5. Interaction Page
20
: aggregates the modules for interacting with project

data.

In the demo configurations, the Interaction Page will host a combination of

the following modules:

1. SPARQL Query Module
21
: queries RDF resources (data and metadata) in

the federated project. Allows to interact with concepts via query results.

Query results are matched with their abstract concepts, the module

communicates these to the Bundler, which redistributes the selection

set to the other modules.

2. 3D Viewer Module
22
: discovery and visualisation of glTF geometric

models in the project. Allows to interact with concepts via selection

of 3D geometry. Selected geometries are matched with their abstract

concepts, the module communicates these to the Bundler, which re-

distributes the selection set to the other modules. The module receives

concepts selected by other modules - if these concepts have a glTF-based

representation, the viewer will highlight these representations for the

end-user.

3. Damage Enrichment Module
23
: allows the end user to semantically

enrich concepts selected via one of the aforementioned GUIs (i.e., by

geometry or query). Essentially, all modules for semantic enrichment

will follow the same procedure, i.e. create a representation of the selected

concept in an RDF document on the Pod and then allow enrichment

of this representation with the selected ontology, via a user-friendly

interface. In this example, the module bases upon the DOT ontology [68]

in the background.

4. Pixel Selector Module
24
: discovery and visualisation of imagery in the

project. Allows to identify pixel regions and link them to existing or

new Reference Collections.

20
Demo Page, https://github.com/AECOstore/demo-page/blob/main/public/manifest.

ttl. Accessed 2023-11-01.

21
Query Module, https://github.com/AECOstore/query-module/blob/main/public/

manifest.ttl. Accessed 2023-11-01.

22
3D Viewer Module, https://github.com/AECOstore/viewer-module/blob/main/public/

manifest.ttl. Accessed 2023-11-01.

23
Damage Enrichment Module, https://github.com/AECOstore/damage-module/blob/

main/public/manifest.ttl. Accessed 2023-11-01.

24
Pixel Selector Module, https://github.com/AECOstore/image-module/blob/main/

public/manifest.ttl. Accessed 2023-11-01.

141

https://github.com/AECOstore/demo-page/blob/main/public/manifest.ttl
https://github.com/AECOstore/demo-page/blob/main/public/manifest.ttl
https://github.com/AECOstore/query-module/blob/main/public/manifest.ttl
https://github.com/AECOstore/query-module/blob/main/public/manifest.ttl
https://github.com/AECOstore/viewer-module/blob/main/public/manifest.ttl
https://github.com/AECOstore/viewer-module/blob/main/public/manifest.ttl
https://github.com/AECOstore/damage-module/blob/main/public/manifest.ttl
https://github.com/AECOstore/damage-module/blob/main/public/manifest.ttl
https://github.com/AECOstore/image-module/blob/main/public/manifest.ttl
https://github.com/AECOstore/image-module/blob/main/public/manifest.ttl

5. Tabs Module
25
: auxiliary GUI module to host other modules in a tab-

based organisation.

While these modules are specifically developed to be compatible with Con-

Solid projects, similar modules can be developed for centralised multi-models.

Configurations
26
and their modules

27
are discoverable via a public catalogue.

The pages are published separately
28
, as they can be considered more infras-

tructural and less related to facilitating the interaction with project data. The

module catalogue and the page catalogue are, in turn, aggregated into the

main store catalogue that will be queried by the Bundler
29
. The content of the

access point of the AECOstore is given in Listing 7.5.

1 <> a dcat:Catalog, mifesto:Store ;

2 dcat:dataset <https://raw.githubusercontent.com/AECOstore/RESOURCES/

main/stores/configstore.ttl> ,

3 <https://raw.githubusercontent.com/AECOstore/RESOURCES/main/stores/

modulestore.ttl> ,

4 <https://raw.githubusercontent.com/AECOstore/RESOURCES/main/stores/

infrastructure.ttl> .

Listing 7.5: Content of the AECOstore catalogue.

In the next sections, the Mifesto framework will be demonstrated with a case

study related to damage enrichment.

7.5.3 Demonstration

The default landing page of the Bundler implementation is itself a Mifesto

Configuration
30
, aggregating a Welcome module and a Store module. The

Store module allows to indicate a Store Catalogue, which can be used as a

starting point to initiate discovery and loading of existing configurations. In

the store used in this demonstration, a query visualisation configuration and a

damage enrichment configuration are aggregated (Figure 7.4).

25
Tabs Module, https://github.com/AECOstore/tabs-module/blob/main/public/

manifest.ttl. Accessed 2023-11-01.

26
Configuration Store, https://github.com/AECOstore/RESOURCES/blob/main/stores/

configstore.ttl

27
Module Store, https://github.com/AECOstore/RESOURCES/blob/main/stores/

modulestore.ttl

28
Pages Store, https://github.com/AECOstore/RESOURCES/blob/main/stores/

infrastructure.ttl

29
AECOstore, https://github.com/AECOstore/RESOURCES/blob/main/stores/root.ttl

30
Default Configuration, https://github.com/AECOstore/RESOURCES/blob/main/

configurations/welcome.ttl. Accessed 15/11/2023.

142

https://github.com/AECOstore/tabs-module/blob/main/public/manifest.ttl
https://github.com/AECOstore/tabs-module/blob/main/public/manifest.ttl
https://github.com/AECOstore/RESOURCES/blob/main/stores/configstore.ttl
https://github.com/AECOstore/RESOURCES/blob/main/stores/configstore.ttl
https://github.com/AECOstore/RESOURCES/blob/main/stores/modulestore.ttl
https://github.com/AECOstore/RESOURCES/blob/main/stores/modulestore.ttl
https://github.com/AECOstore/RESOURCES/blob/main/stores/infrastructure.ttl
https://github.com/AECOstore/RESOURCES/blob/main/stores/infrastructure.ttl
https://github.com/AECOstore/RESOURCES/blob/main/stores/root.ttl
https://github.com/AECOstore/RESOURCES/blob/main/configurations/welcome.ttl
https://github.com/AECOstore/RESOURCES/blob/main/configurations/welcome.ttl

Figure 7.4: The default configuration of the bundler prototype allows
to select an existing Mifesto configuration on the "Store" page.

Both configurations consist of the same basic infrastructure, namely the Auth

module (as a page, ‘/auth’), the Project module (as a page, ‘/’) and the Interaction

module (as a page, ‘/project’). The Authmodule allows to authenticate to a Solid

Server. The project module gives an overview of the projects a user participates

in. The Interaction module will host the child modules that are necessary for

each specific interaction scenario. The initial sequence of requests to load this

configuration is illustrated in Figure 7.5.

The first configuration is intended for querying and visualisation. In this

configuration, the SPARQL query module is hosted as a child module by an

organisational component, namely the Tabs Module. The query module allows

to query RDF-based project resources, and propagate the results corresponding

with certain variables to find their associated Reference Collections. The

bundler then broadcasts the selection set to the other modules, in this case the

3D viewer. If the selected Reference Collections have a representation in the

currently displayed 3D model, this representation is highlighted in the viewer.

The semantic description of this configuration is available at theMifesto Github

Organisation
31
. The resulting interface is shown in Figure 7.6.

31
Query-Visualisation Configuration, https://github.com/AECOstore/RESOURCES/blob/

main/configurations/viz_query.ttl. Accessed 16/11/2023.

143

https://github.com/AECOstore/RESOURCES/blob/main/configurations/viz_query.ttl
https://github.com/AECOstore/RESOURCES/blob/main/configurations/viz_query.ttl

Figure 7.5: Steps for the Bundler to fetch the initial interface, containing
a Welcome Page and a Store Page.

Figure 7.6: The first configuration loads a SPARQL query module com-
bined with a 3D visualiser.

144

The second configuration considers the case of damage enrichment via hetero-

geneous resources (Figure 7.7). The main module of this configuration is the

Damage Enrichment Module, which bases upon the DOT ontology [68]. The

other interaction modules (e.g. imagery or geometry visualisation) can either

be an explicit part of the configuration, or dynamically loaded based on the

available project resources, using an auxiliary module that first queries the

active project for the used media types and then queries the store for modules

that are capable of interacting with these media types (e.g. glTF). If such a

module is found, it is loaded, allowing the user to create damage records and

immediately link them to building elements in the multi-model, through the

geometry. This sequence is illustrated in Figure 7.8

Figure 7.7: Dynamic interface prototype for registering damage records
in a federated project. The interface includes a Damage Registration
module, and dynamically loads an interface for visual interaction via
auxiliary resources, depending on the project content.

Similarly, if the project would only contain IFC files, an IFC visualiser can be

loaded instead of a glTF module. When no auxiliaries are available in the exist-

ing project, the Damage Enrichment Module may just add the damage records

to the multi-model without linking them to other resources – something that

can still happen in a later phase. The semantic configuration for this GUI is

available at the Mifesto Github Organisation
32
.

32
Damage Configuration, https://github.com/AECOstore/RESOURCES/blob/main/

configurations/damage-enrichment.ttl. Accessed 16/11/2023.

145

https://github.com/AECOstore/RESOURCES/blob/main/configurations/damage-enrichment.ttl
https://github.com/AECOstore/RESOURCES/blob/main/configurations/damage-enrichment.ttl

Figure 7.8: Steps for dynamically retrieving modules capable of inter-
acting with project data.

7.6 Conclusion

In this chapter, a novel framework was defined for linking heterogeneous

datasets in federated multi-models, called Mifesto. True to the FAIR principles

and the reuse potential of data structured in open formats, federated multi-

models hold the promise of usability in multiple usage scenarios, some of which

are unknown at the time the project is initiated. From a UI perspective, this

genericness may seem too big to tackle. However, by applying a minimal set of

core design principles, the Mifesto framework allows to link new information

to the already existing stack of datasets in a multi-model, using federated GUI

modules. Of course, before interaction with a specific media type or semantic

enrichment with a certain ontology is possible, a compatible UI module must

be present. It was argued logically (but not quantitatively proven) that the

effort needed to create a federated module that can be reused again and again,

146

in combination with other modules, is smaller than repeatedly hard-coding

the same interactions in ‘monolithic’ GUIs (Figure 7.2).

In this conceptual phase of Mifesto, the creation of configurations and mani-

fests happens by manually creating the semantic (Turtle) descriptions. Future

implementation work may focus on the creation of GUIs for configuring these

in a more user-friendly way.

The framework is compatible with the ConSolid ecosystem, but can be used

using other multi-model specifications such as ICDD as well, as these can be

reconfigured to a single-vault ConSolid project by the Bundler application.

Mifesto is discipline-agnostic, but a proof-of-concept implementation (AE-

COstore) was created for the built environment. As the AECOstore is just

a catalogue, it can be nested into larger catalogues; the same holds for its

aggregated sub-catalogues and the eventual modules they refer to.

Mifesto complements existing authoring tools for digitising information about

the built environment. Authoring tools are thereby responsible for creating the
data, whichmay vary in granularity and scope. For example, one authoring tool

may allow creation of a BIM model which already includes both semantics and

geometry, or two others can be specialised in creating respectively geometry

and semantics. Mifesto allows to link diverse datasets in a visual way. In a

context of BIMmaturity level 3, creation and linking activities may also happen

simultaneously within the same configuration. This was illustrated with the

case study of damage enrichment.

Table 7.1 gives a summary of the characteristics of a federated micro-frontend

ecosystem (as defined in this dissertation). The characteristics are related to

the technologies that were identified as suitable for supporting them. When

a technology is a ‘data technology’ (e.g., RDF), more details are provided

regarding the data patterns that were developed or adopted.

Characteristic Technology Data Patterns
C10 - Modularity Micro-frontends (Piral.io) n.a.

C11 - Decentral Publishing RDF (MIFESTO) Mifesto Manifests

C12 - Discoverability RDF (DCAT) Mifesto Store

C13 - Indirect Enrichment RDF (ConSolid) Reference Collections / WADM Selectors

C14 - Common I/O interface ReactJS (Piral.io Bundler) Bundler-module interfaces

Table 7.1: Characteristics for a federated ecosystem of micro-frontends,
corresponding technologies and data patterns as implemented in
Mifesto.

147

Chapter 8

Evaluation
In the previous chapters, two conceptual, modular frameworks were devised for

handling different aspects of a Web-wide CDE. The first ecosystem, ConSolid,

deals with the data storage part: how can we aggregate and link knowledge in

heterogeneous resources on the Web? The second ecosystem, Mifesto, allows

flexible linking and enrichment of heterogeneous, federated multi-models with

a wide usage scope.

In this chapter, both ecosystems will be evaluated against multiple evaluation

sets. First, the research questions that were formulated in Chapter 1 will be

revisited in Section 8.1, evaluating whether this thesis has addressed them to a

sufficient degree. Section 8.2 then weighs both ConSolid and Mifesto against

the FAIR principles, giving an indication of howwell the ecosystems succeed in

a providing an infrastructure for general ‘federated data management’. Finally,

limitations of this research and its outcomes are identified and discussed in

Section 8.3.

8.1 Research Results

This section will evaluate whether this dissertation has sufficiently addressed

the following research questions, which were introduced in Chapter 1:

• RQ1What are the technology-agnostic characteristics for a scalable CDE

with high potential for discovery of related information, and integration

and reuse of existing data sources?

• RQ2 How can these requirements be addressed using current-day stan-

dards, Web engineering concepts and technology specifications?

• RQ3 Using the technologies mentioned in RQ2, what are data patterns

for structuring, discovering and querying information in a federated

environment?

• RQ4 What are data patterns for mediatype-agnostic, cross-resource

linking and annotation in a federated environment?

• RQ5 Is such environment compatible with current-day information man-

agement practice in the AECO sector?

148

• RQ6 How can a domain-specialist without extensive IT knowledge link

new datasets and their content to an existing federated project catalogue,

independent from the media type or present topics of both the new

datasets and the existing multi-model?

The order of the research questions indicates a resolution that goes from very

abstract considerations into high-level characteristics that were addressed

using specific technological solutions, which were extended when necessary,

and the data patterns developed throughout the different chapters of this thesis.

Regarding RQ1, RQ2, RQ3 and RQ4, separate characteristics for the ecosystem

were introduced in each chapter dedicated to data modelling (Chapters 3

and 4), after which technologies were identified that are capable of addressing

them. However, these data modelling patterns alone are not sufficient to

speak of a CDE. Therefore, additional layers were added in Chapter 5: Data
Validation and Chapter 6: Middleware Services. These chapters make use of

specific examples to develop the setup of a generic ecosystem, which provides

the basis for addressing more CDE-specific challenges in further research

projects. Chapter 6 also argues that a federated multi-model is not necessarily

incompatible with existing information management practices in the AECO

sector, which often relies on data centralisation. This relates to RQ5.

The evaluation of the data ecosystem (i.e., ConSolid) can be done by checking

whether the abstract requirements identified in this dissertationwere addressed

by corresponding technologies. In the conclusion section of every chapter, an

overview was given of the identified characteristics, the technologies used to

address them in this dissertation and, if more information was required, their

corresponding data patterns, which were either developed in context of this

dissertation or adopted from other work. Table 8.1 provides an overview of all

characteristics related to the data ecosystem and their interpretation for the

ConSolid ecosystem.

Characteristic Technology Data Patterns
C1 - Decentral, Secure Storage HTTP(S), Web servers n.a.

C2 - Decentral Authentication Solid, WebID-OIDC n.a.

C3 - Guaranteed Data Heterogeneity Decoupling ecosystem and project data dcat:Distribution / accessURL

C4 - Uniform Metadata Descriptions RDF (DCAT) dcat:Dataset / dcat:Distribution

C5 - Uniform Query Language SPARQL consolid:hasSPARQLsatellite

C6 - Cross-document Annotation RDF (WADM) WADM Annotations

C7 - Cross-document Linking RDF (ConSolid) Reference Collections / WADM Selectors

C8 - Aggregators HTTP(S), Web servers n.a.

C9 - Adaptors API mappings, Web servers n.a.

Table 8.1: Requirements, corresponding technologies and data patterns
in ConSolid.

149

Additionally, a conceptual framework to make interaction with such federated

multi-models of wide usage scope more convenient for domain specialists

(RQ6) has been introduced in Chapter 7 as Mifesto. This framework bases upon

modular GUIs consisting of federated micro-frontend aggregations. Table 8.2

revisits abstract requirements, technologies and data patterns, this time applied

to Mifesto.

Characteristic Technology Data Patterns
C10 - Modularity Micro-frontends (Piral.io) n.a.

C11 - Decentral Publishing RDF (MIFESTO) Mifesto Manifests

C12 - Discoverability RDF (DCAT) Mifesto Store

C13 - Indirect Enrichment RDF (ConSolid) Reference Collections / WADM Selectors

C14 - Common I/O interface ReactJS (Piral.io Bundler) Bundler-module interfaces

Table 8.2: Characteristics, corresponding technologies and data pat-
terns in Mifesto.

The above-mentioned characteristics make an explicit distinction between data

storage, metadata patterns, resource data types and interaction patterns. Since

most of the technologies applied in this dissertation are still relatively novel at

the time of writing, such separation will render the over-arching ecosystem

more resilient. Although the combination of these different components of the

ecosystemwill render themost powerful environment in terms of compatibility,

subsequent research may thus well base upon one single aspect without the

need to adopt the entire ecosystem. Thus, neither ConSolid or Mifesto is to be

seen as an ‘all-or-nothing’ environment.

8.2 FAIR evaluation

The FAIR principles are considered apt evaluation criteria, given the intended

general applicability of the ecosystem. The FAIR principles are subdivided into

sub-requirements for each principle [60].

8.2.1 ConSolid

This section lists the FAIR sub-requirements and explains them from the

perspective of the ConSolid ecosystem:

• F1. (Meta)data are assigned a globally unique and persistent iden-
tifier: Every resource is identified with a URL, which is made as stable

as possible by eliminating implicit semantics. URLs may change in

a data handover process, but in this case, sub-document links can be

maintained.

150

• F2. Data are described with rich metadata (defined by R1 below):
All project resources are described in metadata records. Because these

records are RDF-based, they can be used for fine-grained filtering and

discovery of project resources.

• F3. Metadata clearly and explicitly include the identifier of the
data they describe: Metadata records indicate the data they describe

via DCAT distributions and access URLs.

• F4. (Meta)data are registered or indexed in a searchable resource:
The ecosystem is based on recursive catalogues to allow clients to index

relevant (meta)data on-the-go and cache this index for future usage. The

SPARQL interface to the data vault offers a union of its RDF resources,

allowing quick querying of project (meta)data. An RDF Aggregator can

offer a searchable and access-controlled graph of metadata and RDF-

based project resources.

• A1. (Meta)data are retrievable by their identifier using a standard-
ised communications protocol: All resources on a data vault can be

retrieved via an HTTP URL.

– A1.1. The protocol is open, free, and universally imple-
mentable: The HTTP(S) protocol adheres to this requirement.

– A1.2. The protocol allows for an authentication and au-
thorisation procedure, where necessary: authentication and

authorisation is possible with HTTP(S).

• A2. Metadata are accessible, even when the data are no longer
available: At this moment this is not ensured by the ecosystem. As data

can be self-hosted, the archival of (meta)data and retention policies can

not (yet) be controlled in a technical way. In multi-stakeholder consortia,

however, legal ways may enforce this.

• I1. (Meta)data use a formal, accessible, shared, and broadly ap-
plicable language for knowledge representation: Metadata are

recorded using RDF, which is the main W3C framework for knowledge

representation.

• I2. (Meta)data use vocabularies that follow FAIR principles: In the

FAIR data points specification [119], the DCAT vocabulary is indicated

as the basis for metadata content. Dataset Collections in ConSolid are

based on DCAT data patterns.

151

• I3. (Meta)data include qualified references33 to other (meta)data:
In the ConSolid ecosystem, metadata is formed by a union of the data

catalogues on a vault and the Reference Registry. This union can be

queried via the SPARQL satellite, to retrieve dataset aggregations and

complementary information for project resources. Indication the reliance

of (meta)data on other (meta)data is possible, but cannot be enforced.

• R1. (Meta)data are richly described with a plurality of accurate
and relevant attributes: According to [60], this relates to metadata

describing the context under which the metadata was generated to

determine the usefulness of a particular dataset. This usefulness will, of

course, depend on the purpose of the service requesting the data. As

DCATmetadata is graph-based, it can be combined with domain-specific

vocabularies in a straightforward way, in order to allow interdisciplinary

purposes.

1. R1.1. (Meta)data are released with a clear and accessible data
usage license: Although not explicitly discussed in this disserta-

tion, a license document can be linked to datasets and distributions,

e.g., using cc:license [46]. Machine-readable license informa-

tion (RDF) is provided by Creative Commons
34
.

2. R1.2. (Meta)data are associated with detailed provenance:
Although not explicitly discussed in this dissertation, provenance

information on can be linked to RDF-based metadata, e.g., using

the PROV-O ontology [107].

3. R1.3. (Meta)data meet domain-relevant community stan-
dards: In Chapter 5, it was shown how metadata conformity to

specific shapes can be checked. This means that relevant meta-

data statements can be agreed upon on a project-specific (and thus

domain-relevant) basis. In the context of construction data, the

CDC ontology was mentioned. Note that the same procedure can

be used to validate whether license (R1.1) and provenance (R1.2)

data is present. However, the application of such shapes is not

enforced in this dissertation’s implementation of the characteristics,

i.e., ConSolid.

33
In [60], qualified references indicate that (1) it is specified if one dataset builds on other datasets,

(2) if additional datasets are needed to complete the data or (3) if complementary information is

stored in different datasets.

34
CC License RDF: https://wiki.creativecommons.org/wiki/License_RDF. Accessed 2024-

03-21.

152

https://wiki.creativecommons.org/wiki/License_RDF

8.2.2 Mifesto

This section lists the FAIR sub-requirements and explains them from the

perspective of Mifesto:

• F1. (Meta)data are assigned a globally unique and persistent iden-
tifier: Every Mifesto manifest, code, configuration and store is identified

with a URL.

• F2. Data are described with rich metadata (defined by R1 below):
All resources (manifests, configurations, stores) are described in meta-

data records. Because these records are RDF-based, they can be used for

fine-grained filtering and discovery of these resources.

• F3. Metadata clearly and explicitly include the identifier of the
data they describe: Metadata records indicate the data they describe

via DCAT distributions and access URLs.

• F4. (Meta)data are registered or indexed in a searchable resource:
TheMifesto ecosystem is based on recursive catalogues to allow clients to

index relevant (meta)data on-the-go and cache this index for future usage.

Link-traversal-based queries can search a federated store catalogue on-

the-go. An RDF Aggregator can be used to provide a faster querying

service.

• A1. (Meta)data are retrievable by their identifier using a stan-
dardised communications protocol: Both the metadata records (the

manifests) and their distributions (the code) can be retrieved via a HTTP

URL.

– A1.1. The protocol is open, free, and universally imple-
mentable: The HTTP(S) protocol adheres to this requirement.

– A1.2. The protocol allows for an authentication and au-
thorisation procedure, where necessary: authentication and

authorisation is possible with HTTP(S).

• A2. Metadata are accessible, even when the data are no longer
available: At this moment this is not ensured by the ecosystem. As data

can be self-hosted by the publishers of Mifesto modules, the archival

of (meta)data and retention policies can not (yet) be controlled in a

technical way.

153

• I1. (Meta)data use a formal, accessible, shared, and broadly ap-
plicable language for knowledge representation: Metadata are

recorded using RDF, which is the main W3C framework for knowledge

representation.

• I2. (Meta)data use vocabularies that follow FAIR principles: in the

FAIR data points specification [119], the DCAT vocabulary is indicated

as the basis for metadata content. The structure of a Mifesto Store is

based on DCAT data patterns.

• I3. (Meta)data include qualified references to other (meta)data:
In Mifesto, a store is formed by the aggregation of its constituent sub-

catalogues and datasets. As for the metadata descriptions, we can say

that aggregation can only take place when there are qualified references

to such other catalogues. Regarding the code of the individual modules

(mifesto:code), we can say that their functional decoupling from other

modules is what gives them their flexibility.

• R1. (Meta)data are richly described with a plurality of accurate
and relevant attributes: the Mifesto vocabulary includes attributes

that allow fine-grained filtering of Mifesto manifests. Other vocabularies

can be used to provide further semantic details, such as licensing (R1.1),

provenance (R1.2) and domain-specific information (R1.3).

8.3 Limitations

In this section, limitations of this research will be identified. A differentiation

will be made between conceptual limitations, technological limitations and

limitations of the overall research.

8.3.1 Conceptual Limitations

One may wonder whether the concept of a ‘pure’ SSoI is compatible with the

notion of multi-models and FAIR data stewardship. In an ‘only IFC’ or ‘only

Revit’ environment, ambiguities and clashes can be discovered relatively easily,

making automatic maintenance of an SSoI in the form of a coordination model

possible [151]. However, as argued in this thesis, when only a single domain-

specific data model is to be used, the potential for interdisciplinary data reuse

is quite limited. This holds for both proprietary and open data models. Multi-

model containers were introduced because not all relevant information can be

expressed using the same data formats. In this sense, a supervised co-existence

154

of several data formats will be accepted as a basis for an SSoI, but information

may still be duplicated in resources that follow different schema’s. Hence,

the risk for ambiguities persists. However, the metadata-based registration of

sub-document links allows to identify similarities and formulate annotations to

clarify the relationship. In this sense, the gist of an SSoI (especially a federated

one) is less about not having any ambiguities than about being able to discover

them, and deal with them in a way that is optimal for the project.

8.3.2 Technological limitations

A first technological limitation is the expected decrease in performance of

the ecosystem in larger configurations, with more vaults and stakeholders.

Although performance was explicitly not a part of this dissertation, it is an

important criterion for valorisation. The iGent building, which served as the

input for this dissertation’s case study, is a medium-to-large building, resulting

in a basic input set of around 350 000 triples, and around 70 000 more for the

Reference Collections. When more disciplines and actors become involved,

this may increase to 1-10 million or even more. However, present-day triple

stores are capable of efficiently handling these amounts of triples, so no major

problems are expected regarding this aspect.

Another factor is the granularity of project data. In ConSolid, resources are

still largely considered as ‘permeable silo’s, but on the other hand everything

that can be fetched by an HTTP request may be considered as a dedicated

resource (LDP). The granularity of project data can theoretically increase

indefinitely, but this comes with a significant overload in metadata statements.

For example, one could consider a 3D model where all elements are stored in

separate resources with separate access rights. While this enables powerful

data management tools, every resource will have its own metadata record and

ACL listing. The metadata record will also have its ACL listing. This means

that there will always be a pay-off between granularity, storage capacity and

performance of the ecosystem. The same holds for the reliance on Reference

Collections: the more ‘abstract concepts’ (elements, damages, persons...), the

more Reference Collections, accompanied by a significant amount of additional

triples per representation and per sub-document selector. In brief: the approach

in ConSolid is not the most efficient one in terms of storage space. In terms of

access control, the queryable union graph presented by the SPARQL satellite

was evaluated for a few hundreds of resources in Chapter 3, and some strategies

were devised for decreasing query time by more precise querying, and better

integration of the partial services involved.

155

Finally, the degree of federation presents another limitation. While from a

data storage perspective, the ecosystem can be scaled indefinitely, in practice,

performance issues are likely to play a significant role in multi-building con-

figurations, which were only theoretically described in this dissertation. The

same limitation can be identified for single-building catalogues with a large

number of data vaults – for example, when the vaults of inhabitants (e.g., their

preferences and (physical) access control rights) become part of the catalogue.

The setup of dedicated RDF aggregators may offer solace here, but further

research is required to prove their viability in such context.

8.3.3 Research Limitations

This dissertation has the intention to give a broad overview of the topic of data

federation in AEC, while offering concrete solutions for achieving a generally

applicable approach. Inevitably, because of the limited scope of a PhD research

project, some of the topics were only discussed theoretically (e.g., timeseries

satellites), or implemented only until a certain level of complexity (PBAC and

Mifesto Ontology), or only touched for illustrative purposeswithout developing

a ready-to-use solution (e.g. ICDD and BCF). These limitations are largely

influenced by time constraints, and can hence certainly be further developed

and evaluated in future research.

In terms of dissemination, the genericness of the topics described in this re-

search may make it difficult to imagine what can be done with the devised

frameworks, inhibiting its adoption. The limited scope of this research did not

allow to at the same time devise the abstract requirements and take a deep dive

regarding specific applications. However, the question ‘what can we do with

such generic ecosystem’ is actually similar to the question ‘what can we do

with FAIR (or open) data’: its main value lies in the ability to connect formerly

unconnected, federated and access-controlled datasets, in order to gain new in-

sights to use in professional practice. Practical applications of the frameworks,

and their valorisation potential, will be discussed in Chapter 9.

156

Chapter 9

Conclusion
This dissertation has made a case for a Web environment where resources of

diverse media types and schemas may be aggregated in a federated manner

and linked to one another on a sub-document level. The different aspects of

such environment were described in 7 chapters, which subsequently addressed

a general rationale (Chapter 2) data storage (Chapter 3), cross-resource linking

(Chapter 4), validation and access control (Chapter 5), aggregation and adapta-

tion (Chapter 6), visual linking and enrichment by end-users (Chapter 7) and

an evaluation of the initial goals and research questions (Chapter 8).

Section 9.1 lists the contributions of this dissertation to the field and the in-

dustry. The research has led to a number of findings, which can be found in

Section 9.2. In Section 9.3, key limitations are outlined that can be considered

for future work. Finally, Section 9.4 offers a non-exhaustive overview of valori-

sation scenarios based on the findings of this dissertation. Sections 9.3 and 9.4

will be structured referencing the Technology Readiness Levels (TRL) [172], a

measurement scale for the maturity and viability of new technologies.

9.1 Contributions

The contributions of this thesis can be grouped under a number of higher-level

categories:

1. Multi-model federation:

(a) Outline of the characteristics for a CDE for federated, heteroge-

neous multi-models;

(b) Identification of existing technologies capable of addressing the

characteristics;

(c) Outline of design choices and data patterns compatible with the

identified technologies;

(d) The conceptual combination of micro-frontends with semantic,

federated catalogues, and the identification of the benefits this

offers;

157

2. The Solid ecosystem (research towards multi-pod environments):

(a) Access-controlled union graph of a Pod (SPARQL satellite);

(b) Pattern-based access control (PBAC);

(c) Access-controlled RDF aggregators;

This resulted in numerous external deliverables beyond this dissertation text,

amongst which a proof-of-concept implementation. These deliverables (i.e., vo-

cabularies and codebases) were published online with an open license.

In the following sections, the contributions listed above will be further elabo-

rated, including an additional section on dissemination.

9.1.1 Multi-model Federation and Enrichment

The idea to organise as much information as possible using RDF has long

prevailed in the field of Linked Building Data. The result is a hierarchical

approach to data structures: RDF representations are made almost mandatory

in order to link other heterogeneous datasets. Moreover, in these RDF graphs,

metadata and actual project semantics are often intertwined. The concept

of multi-models and the corresponding standards, which were established in

other research projects, allows to take a more neutral stance: by separating

metadata and project resources, building data can (but should not necessarily)

be RDF, but other datasets (imagery, geometry) can be part of the overall project

catalogue as well. In this dissertation, this core idea of multi-models, which

are currently largely applied as ‘information containers’, was extended to a

federated, dynamic approach. Applying a federation logic from the beginning,

it was shown that by imposing a recursive structure on simple data patterns, a

powerful infrastructure enables query-based discovery and filtering of relevant

project datasets, which may be hosted anywhere on the internet. To create

these data patterns, standardised, domain-agnostic data patterns such as DCAT

were used whenever possible (Chapter 3).

Centralised solutions for interacting with heterogeneous multi-models will be

able to cover most interactions that stay within the disciplinary boundaries of

the AECO industries. In a common BIM authoring tool, assigning properties to

a building element is typically done by selecting a 3D representation and then

entering the values of the property – semantic enrichment happens almost

exclusively using 3D geometry as a proxy. However, for multi-disciplinary

tasks that do not occur very frequently or involve specific data formats or

novel ontologies, the chances decrease to have a 3D model at your disposal.

158

This dissertation identified the presence of linksets in common multi-model

approaches as a key enabler for a modular GUI framework that allows many-
to-many enrichment. Namely, through the linkset (or Reference Collection),

several digital representations can be connected to one another with zero

knowledge about the other representations. The freedom of granularity of

documents in a multi-model allows project topics to be described in separate

data pools without impacting the connections with other project data. As

a consequence, the most fit data types can be chosen for specific topics. In

this sense, the concept of ‘enrichment’ applies to almost any activity where

information is added to the overall catalogue.

By applying a semantic layer to the existing concept of micro-frontends, sev-

eral benefits were achieved compared to ‘monolithic’ solutions. Firstly, a

catalogue of interfaces based on Semantic Web technologies allows to publish

these interfaces in a federated way, allowing ‘permissionless innovation’ [176],

and query them to discover the modules necessary for a specific interaction

(e.g., damage documentation, image linking, ...). The reasons for federating

interface modules are thus similar to data federation, although they are driven

by different concerns. Secondly, with a given ‘module configuration GUI’,

end-users are able to address their case by querying a micro-frontend store,

configuring new interfaces configurations or loading existing ones, without

extensive programming knowledge (‘low-code’). Each module thus only needs

to be specialised in one data format or ontology (Chapter 7). An activity of

damage documentation may be carried out either independently from other

modules, or linked to available pictures, a 3D model, a combination of both

or any other available project dataset. Furthermore, on-the-fly configurations

may be generated based on the available data types, thus shaping the user

interface according to the needs of the project.

9.1.2 The Solid Ecosystem

This dissertation did not actively contribute to further development of the Solid

specification. However, it became clear that, in order for it to be useful as the

basis for a federated CDE, conceptual extensions and a higher-level data man-

agement practice were necessary. After identifying these extensions, potential

technological approaches were proposed to address them. For example, the

extension of Solid Pods for query-based resource discovery, the usage of rich

metadata structures and the handling of these metadata records as ‘normal’

resources on a Pod (being a metadata record or not just depends on whether

the resource describes itself as such) (Chapter 3). As Solid Servers by design

159

do not consider the content of data, higher-level interfaces (‘satellites’) were

used to facilitate more complex interactions with data vaults. In concreto, a

SPARQL satellite was designed and implemented as a prototype. The SPARQL

satellite allows to query a permitted union graph of a data vault, which is a

novelty in the Solid ecosystem.

With the use of the Solid ecosystem comes the advantage of a single authen-

tication system in an entire network of CDEs, using the WebID-OIDC [37]

protocol or alternatives such as an OAuth 2.0 token [69]. It was mentioned

that mere compatibility with this protocol would already mean an important

step towards cross-CDE document exchange and interoperability. The default

WebID-based authentication mechanisms in Solid also provide the basis for

federated authorisation using ACL [32] or ACP [23] access control rules. This

dissertation extended these mechanisms using a ‘Pattern-based Access Control’

approach, so both resources and visitors can be checked against specific re-

quirements, before access is granted (Chapter 5, Section 5.3). Using encryption

public keys, it can be verified whether a statement was issued by a trusted

authority on a specific topic. This way, the expressivity of RDF ontologies

can be fully used for access control purposes. This directly contributes to the

granularity and flexibility of access control in the ecosystem. The compatibil-

ity of PBAC with the ACP protocol was not validated in this dissertation and

remains to be done.

Furthermore, a methodology was devised for aggregated SPARQL endpoints

of project data, using signed tokens which include the allowed resources

(Chapter 6, Section 6.4). In this way, a well-performing (read-only) mirror of

project data can be used to interact with project information.

9.1.3 Dissemination: Federation in the Built Environment

A final contribution of this research is less quantifiable, and relates to stimu-

lating the discussion on the topic of data federation in the built environment.

Throughout the years, the findings of this research have sparked the debate on

centralisation versus federation, more specifically in context of federated CDEs.

Research on Linked Data in architecture and construction has been carried

out for almost two decades, but in most cases this data remained centralised

in a single triple store, or required an ad-hoc setup of numerous accounts on

various platforms. This dissertation supported the case to no longer consider

centralisation the only option for a CDE, but instead consider centralised

environments as nodes within a larger, federated environment. The starting

point, namely the high degree of decentralisation in the industry (the ‘double

160

patchwork’), lead to an extensive rationale in Chapter 2. The core arguments

of this rationale were disseminated on many an international occasion, and

have been well-received by the community.

9.2 Findings

9.2.1 Federation: the Web as a CDE?

One of the core ideas behind this research was to define technology-agnostic

requirements to ‘use the Web as a CDE’, and then devise a technological

solution for addressing those requirements. Whether ConSolid describes an

infrastructure that succeeds in this goal, depends on the interpretation of what

a CDE is. In this dissertation, the term ‘CDE’ has been used in a very broad

way, as a collaborative environment for interacting with heterogeneous data,

primarily about the built environment. The federated aspect implies that some

combinations of services will lie closer to providing a CDE than others. In this

sense, ConSolid itself cannot be considered ‘a CDE’. Rather, it is a general set

of data patterns and concepts that can be applied in a layered way: vaults and

satellites provide data storage and validation, (chains of) middleware services

facilitate views on this data that allow standardised (BCF, ICDD, ISO 19650) or

customised interactions with project data. Specific combinations of services

and vaults can then be created and labelled as a CDE.

The same holds for the interpretation of the term ‘multi-model’, which has

been stretched beyond the typical AECO-related examples. From a data storage

perspective, the framework effectively allows to aggregate data on the Web

into a project catalogue, which becomes a synonym for a federated multi-

model that contains both sensitive data and open data. In the first case, i.e.,

sensitive data, a metadata description and a resource are both stored on an

access-restricted vault. In the second case, i.e., openly accessible data, only the

metadata is stored on a vault. This metadata describes the role of the external

resource in the project, and allows to aggregate it in the bigger catalogue. The

inherent federated and domain-agnostic structure of the data catalogues used

in this dissertation, and their extensibility across the Web, allows them to be

labelled as multi-models with potentially unlimited size and scope.

On a larger scale, catalogues can be aggregated in higher-level ‘matryoshka’

catalogues, creating multi-asset aggregations. Such flexible upscaling of the

size of a ‘catalogue of interest’ is only possible in a federated Web environ-

ment. Hence, this is an example of using the Web as a CDE. In contrast with

aggregations managed by a dedicated consortium (where project access points

161

recursively refer to one another), such high-level catalogues will be largely

unidirectional and read-only. Furthermore, this dissertation only discussed the

data patterns that allow such higher-level catalogues, and does not dwell on

who should create them. Their main application is expected to be in the fields

of data analysis, for instance related to typology or geographic location. As

these topics relate to actual datasets and not to the ecosystem’s data patterns,

they were not covered in this dissertation. However, they are expected to be

useful for individual offices (e.g., learning from previous projects), research

purposes (e.g., urban analysis), multi-dwelling residencies or governmental

institutions (e.g., facility management and operations). The performance of

data gathering for multi-project catalogues was not tested.

9.2.2 Heterogeneity of Data and Documents

Because ConSolid relies on the FAIR principles applied to metadata, resources
can use any (domain-specific) schema or RDF ontology, aligning with the

concept of heterogeneous multi-models. The ability to connect identifiers on a

sub-document level is thereby essential. When resources use open standards,

sub-document linking is rather straightforward, as identifiers are often embed-

ded in a publicly documented JSON or XML structure, or use a standardised

media type. In the case of resources encoded in proprietary, encrypted data

schemas, sub-document linking may not be possible out-of-the-box, unless

the company that owns the data format offers an API that is able to parse

the resource. For example, the Autodesk Platform Services (APS) (formerly

Autodesk Forge) [5] allow to read an (encrypted) Revit BIM model and hence

to link its sub-document identifiers with the abstract concepts of the ConSolid

ecosystem, in a Reference Registry. In the case of unstructured data formats,

sub-document linking needs to happen entirely decoupled from the original

resource. This was demonstrated with a registration of a damage record, based

on semantic statements, imagery and geometry. A similar approach may be

identified for other unstructured dataset types such as point clouds. Safeguard-

ing heterogeneity in the ecosystem by separating metadata and project data is

essential to ensure the ecosystem’s future-proofness. In this way, the whole

spectrum between ‘full Linked Data’ configurations and ‘non-Linked Data’

configurations can be covered – it is not influenced by the architecture of

the platform but can be a project-specific choice. This is reinforced by the

Mifesto front-end ecosystem, which allows to gradually broaden the scope of

a multi-model by looking at the already available resources and the intended

‘enrichment’ task.

162

The BIM maturity level 3 envisages a data-oriented practice, as opposed to

the other maturity levels, which are labelled as ‘document-oriented’. The

interpretation of this dissertation, however, allows documents and databases

to co-exist. In other words, documents are less thought of as ‘data silos’ and

more as permeable collections that can reference each other’s contents and

can likewise be referenced in other datasets living on the Web. Reference

Collections (or Linksets in centralised multi-models) thereby allow an indepen-

dence of the data storage strategy. In turn, this allows to arbitrarily subdivide

individual resources into smaller subsets, i.e., increasing the granularity of the

multi-model without altering the interaction options. From the over-arching

perspective of a multi-model, there are no differences between storing a 3D

building model as one single file or storing it as hundreds of files (e.g., one per

object), with possibly each one having its own specific access control rules.

Similarly, whether semantic properties are stored together with the geometry

in a single BIM model, or separated in multiple documents (e.g., an RDF graph

or a spreadsheet) has no real impact on the fact that data in these documents

can be nevertheless interlinked. Note that this only considers the data patterns

– data discovery and retrieval will logically take longer in situations with

higher granularity. Furthermore, the possibilities to efficiently interpret the

interlinked resources will be higher when common formats are used.

9.2.3 Collections

One of the recurring principles in this dissertation is the principle of collec-

tions, applying recursivity and aggregation chains. This makes it possible

to find the same results, independent from the original access point. These

principles could be seen in action in almost all chapters of this dissertation.

The Dataset Collections of Chapter 3 make use of a recursive pattern to identify

partial projects, and an aggregation chain to traverse the catalogue until the

project data is found. Both patterns base on the property dcat:dataset.

The Reference Collections of Chapter 4 recursively aggregate other Reference

Collections (‘aliases’) to inform the user which representations can be used as

a proxy to enrich a specific concept with new sources or knowledge. Shape

Collections (Chapter 5) are a subtype of Dataset Collections. Therefore, they

can make use of the same aggregation chains. Finally, the Micro-Frontend

Store can be federated and queried due to nested aggregations of UI modules,

and hence functions as a ‘Micro-Frontend Collection’ (Chapter 7).

163

9.2.4 Resource Stability

The ecosystem fully works on metadata level, both for describing project re-

sources and discovering them via an expressive, query-based procedure. The

application of query-based filters instead of the fixed hierarchy (as used in

Solid’s implementation of LDP containers), eliminates the need for implicit

semantics in the URL and allows a more flexible aggregation of project re-

sources, depending on the task at hand. To make such filtering sufficiently

well-performing, however, the setup of an access-controlled SPARQL satellite

to a Solid Pod is required.

Changes in document statuses or other metadata tags will not break the re-

source’s URL, guaranteeing stability during the resource’s publication life cycle.

After all, aggregations of resources can happen flexibly based on queries on

metadata and existing dcat:Catalogs. However, when the ownership of data
changes, the domain name and hence the root of a URL is likely to change as

well - breaking potential semantic links in project resources. One scenario is

the shift from a project’s construction phase to the operational phase, which

is often accompanied by a data handover between stakeholders in a so-called

‘soft landing’ [137]. The existence of concept aliases and the separation of

heterogeneous identifiers and their allocation (or validity) in a specific resource,

discussed in Chapter 4, allow such data handover: when a project document

is allocated on a new Pod, on a resource level its sub-document identifiers

will remain valid within the resource; and on a metadata level Reference Col-

lections can be created on the new Pod. Asynchronously, they can then be

re-aligned with existing aliases in Reference Registries by other stakeholders

of the project(s) it is part of. When this has happened, the references to this

document in the ‘old’ Reference Registry can be safely removed. A prerequisite

is, of course, that this change of ownership propagates through the network,

so other stakeholders can add the new aliases of the concepts referenced in the

document that changed owner. While this dissertation describes the logical

steps to achieve such a handover, this was not tested in the case study. There

are several options to do this, which can be combined to make the process

more robust (see Section 9.3.

9.2.5 Compatibility with Existing Industry Practice

The full separation of metadata and resources in ConSolid has as a side effect

that the content of a resource is not affected by the membership of one or

more ConSolid projects. For example, a BIM model can still be opened in

the authoring tool that was used to create it. In this sense, the ecosystem

164

can be present as an invisible layer, opening up new possibilities for data

sharing and linking, without disrupting existing industry practices. In the

same way, structured metadata information can be aggregated and adapted

to fit international standards such as ICDD (Section 6.6). Project data, if

present in a highly structured form (cf. the 5 stars of data structure), can

also be reconfigured by middleware services to allow information exchange

between the federated ecosystem and existing tools. This was illustrated with

an example related to the BCF API (Section 6.7).

9.3 Future Research

The infrastructure devised in this research significantly differs from existing

BIM and CDE platforms. Although multiple steps were taken to allow integra-

tion of the federated infrastructure with existing standards and practices, a

rocky road still lies ahead before the infrastructure can effectively be used in a

real-world setting. The Technology Readiness Levels (TRL) [110] define 9 levels

for technological maturity. It is estimated that both ConSolid and Mifesto have

reached TRL3-4. TRL3 corresponds with ‘Experimental proof of concept’ [172].
TRL4 corresponds with ‘Technology validated in lab’. Although the concept of

‘laboratory experiments’ does not directly map to the technologies discussed

in this dissertation, it can be argued that a modular approach was devised from

the start of the research, the critical function of the modules of the ecosystems

was tested and their mutual interactions were illustrated with an example

using BIM models from an existing medium-sized building. However, nei-

ther ConSolid nor Mifesto were tested in a real-life environment with AEC

stakeholders. Instead, for ConSolid, an exemplary case of damage enrichment

was used for demonstrative purposes, as this case embodies multiple of the

core goals of the ecosystem, namely interdisciplinarity beyond the typical

AEC domains, interaction between multiple stakeholders and management of

heterogeneous data sources. For Mifesto, conceptual examples were developed

to illustrate the design patterns of the ecosystem.

TRL5 and TRL6 respectively validate and demonstrate a technology in an

industrially relevant environment. For these (and further) TRLs to become

within reach, and thus for the ecosystems to become effectively useful for the

AECO (and other) industries, numerous topics are still to be researched as

future work.

165

9.3.1 Data Redundancy

A first consideration relates to data redundancy. When a data vault can be

maintained by project partners instead of a specialised data storage provider,

a certain degree of data redundancy needs to be present in order for the

consortium to keep functioning when the data of one of the partners becomes

unavailable. An in-depth discussion of such infrastructure was not considered

in this dissertation and remains to be done in future work. However, a few

key points can be made. As the LDP interface to a vault directly maps the

availability of a resource to a particular domain, the uptime of the servers

related to this domain determine whether the resource can be fetched. In the

case of RDF Aggregators, the (LDP) URL of a resource is used as a named graph,

so even if the URL is not available, an RDF Aggregator can still be queried. In

the case of non-RDF data, the option exists for the metadata (RDF) to point to

a secondary access URL in case the first is not available.

9.3.2 Data Handover

In Section 9.2.4, an approach for data handover was briefly sketched. However,

this was not explicitly validated. Also, this dissertation lacks a discussion on the

meaning of a handover activity in a federated environment. Existing standards

such as ICDD can facilitate transmission of numeric data (no geometry) for

the purpose of operations. However, a main idea in a federated environment is

that information remains available throughout the asset life cycle (following

the FAIR principles), so a data transmission to another Pod triggers multiple

questions. For example, who is the owner of the data, does data extraction

from a BIM model for operations result in information duplication, and is data

extraction even necessary when a middleware service exists that offers an

‘operations-oriented’ view on the – already existing – generic project data?

Another question is whether the URLs of project data must be related to the

actors that created the data, which would reduce data handover to a transfer

of domains, or even of just access rules.

9.3.3 Versioning

Versioning of project data was largely omitted in the scope of this dissertation.

From the perspective of the ecosystem, project resources are heterogeneous.

Hence, it cannot enforce a specific versioning mechanism, as different formats

will have different versioning mechanisms. However, in the case of meta-

data, which is uniformly structured as RDF, a versioning mechanism can be

used to indicate both the most recent version of the metadata record and the

166

most recent distribution. The DCAT 3 specification introduces a versioning

mechanism which can be used to trace the history of a particular dataset or

distribution. In order for this to be part of the ConSolid ecosystem, the query

templates used for resource discovery should include these patterns.

9.3.4 Data Access

The PBAC framework introduced in Chapter 5 set the lines for a flexible,

pattern-based access control system on Solid Pods. However, some complexi-

ties were not addressed in this dissertation, such as how to deal with conflicting

rules or how the framework scales with an increasing amount of rules. Com-

patibility with the official ACP protocol needs to be checked. The example of

access delegation was briefly covered in the use case, based on the statements

of an explicit and an implicit authority. However, more complex cases should

be investigated, both regarding the chaining of certificates and the validation

procedure. Finally, the current procedure is based upon JWT tokens [92]. Al-

lowing the PBAC certificates to be created and signed conform upcoming Web

recommendations such as the Verifiable Credentials (VC) specification [163],

will make the framework more interoperable and future-proof. This being

said, such replacement will only affect the extraction of the statements and

validation of the signature, and does not influence the procedure for checking

the joint graph of valid certificates against the established PBAC rules.

9.3.5 Authority and Responsibility

Currently, the ecosystem fully supports the AAA slogan of the Web: Anyone

can say Anything about Anything. The data patterns in the project allow any-

one in the consortium to contribute to the project, but there are no validation

mechanisms to check whether an actor has the authority to make specific

contributions. For example, no one but the structural engineer should commit

datasets related to the structural integrity of the building. Although a resource

topic can be indicated in its metadata record, the resource may of course still

contain other data. The complexity of checking this increases because of the

ensured heterogeneity of project documents in the ecosystem. In this regard,

the use of RDF-based semantics may offer certain advantages compared with

other solutions. In this dissertation, a workflow was outlined where authori-

ties can be defined and allowed to make trustworthy statements on particular

topics. This workflow was primarily applied to access control. Future research

should determine whether the same processes and data patterns can be used

regarding the trustworthiness of (RDF-based) project data as well.

167

9.3.6 Automating the Ecosystem

In Chapter 6, a service layer was described, based on the concepts of Aggre-

gators and Adaptors. Theoretically, larger (headless) service networks could

be build. This is not a hard requirement to achieve TRL5-6, but may be seen

as a suggestion for more thorough research regarding the service layer of

the ecosystem. This dissertation did not include experimental validation of

the performance and interoperability challenges that arise with the setup of

complex networks of chained services.

Extended automation scenarios become possible with a machine-readable

project schedule, which can be hosted on one of the project vaults. Apart from

an automated initialisation of the project infrastructure (catalogues, reference

registries ...), a schedule can describe different tasks in the project, which

can in turn be linked to known services that follow a certain standard or

require an application-specific data structure. When the services document

their requirements on project data or metadata, these requirements can be used

to structure project data from the early beginnings of the project. The Shape

Collections devised in Chapter 5 can provide a foundation for this, although

currently these only consider validation of RDF data using SHACL.

9.4 Valorisation

Once the above-mentioned topics (Section 9.3) have been addressed or further

refined, the feasibility of the ecosystems in an industry environment has been

proved. However, to reach TRL7, an actual ‘system prototype must be demon-
strated in an operational environment‘. This means the codebases developed in

this dissertation as prototypes must be integrated and professionally imple-

mented following best practices. A TRL8 and TRL9 means that the technology

is complete and qualified, opening possibilities for further valorisation of this

research.

This dissertation discussed the requirements for a federated CDE of heteroge-

neous multi-models, in the context of the many-headed monster called ‘the

built environment’. Only an abstracted, discipline-agnostic approach to all

discussed topics allowed to address them in an integrated way. Consequently,

the diverging nature of the discussed topics allows to apply its findings to

entirely different domains than the built environment, giving the research a

strong long-term valorisation potential. The domain-independence of Con-

solid and Mifesto was set as an explicit research goal, but since the AECO

industries have provided the main context for this dissertation, the following

168

(non-exhaustive) list of valorisation scenarios will be limited to topics relevant

for the built environment:

1. Relating building data and GIS datasets from different data owners:

(a) Infrastructure and asset information (e.g. energy grids);

(b) As-built models and user preferences;

2. Relating building data and historical datasets:

(a) Heritage objects and historical events (‘virtual museums’);

(b) Renovation of heritage objects;

(c) Catalogue setup of archived asset sources;

3. Relating building data and external product datasets:

(a) HVAC maintenance;

(b) Interior planning;

4. Building data and governmental regulations:

(a) Accessibility regulation;

(b) Fire safety regulation;

5. Multi-asset aggregations for urban or typological analysis:

(a) Social analysis (asset data and personal data on a vault) ;

(b) Typological design commonalities (e.g., school design) ;

6. Learning from earlier projects by the same office:

(a) Project planning helper ;

(b) Ecological impact estimation ;

Whether these cases can be actually further developed depends, of course, on

multiple factors, which can only be marginally influenced by the ecosystem,

independent from their TRL. A first factor is privacy. Depending on who per-

forms the action, data may or may not be available. For example, relating asset

data and personal data will be a sensitive topic. On the other hand, these cases

only become possible in a privacy-sensitive way because the Solid protocol,

on which ConSolid relies, allows fine-grained access control by the owners

of data. A user can give explicit consent to use specific information snippets.

169

The implications of this privacy-enabled data sharing and further technical

challenges are an active field of research within the Solid Community. A sec-

ond factor is interoperability between datasets, which will depend on their

respective formats. Due to the principle of heterogeneity, on an infrastructural

level ConSolid cannot really influence how ecosystem-internal data is organ-

ised, let alone external datasets. However, the benefits of highly structured

(5 star) data were emphasised numerous times throughout the dissertation.

With the FAIR principles becoming more widely adopted, as well as the rising

usage of Semantic Web technologies for documenting public datasets, we can

assume that more and more of the above-mentioned valorisation cases will

come within reach.

The valorisation potential of theMifesto framework is more difficult to estimate.

The generic applicability of the framework will allow continuous development

of new modules, which gives rise to novel combinations of media types and

ontologies, thereby supporting novel cases of graphically supported ‘many-to-

many’ enrichment. Therefore, the valorisation scenarios that were listed from

the data storage perspective of ConSolid can be considered equally relevant

from the user interaction perspective of Mifesto. After all, Mifesto just provides

the means to graphically interact with multi-models. Therefore, any real

valorisation scenario of ConSolid can always make use of Mifesto, although

this is not a necessity when the project’s default media types are set, e.g.

using (inter)national standards (cf. ‘Little Open BIM’ [134]). Thus, many

practical implementation scenarios can just be based on common development

practices for GUIs. Micro-frontends can be thought of as an extension of these

practices.

In this sense, neither Mifesto and ConSolid are ‘all-or-nothing’ solutions: they

can be gradually adopted and extended when the need rises – facilitating

tailor-made data management on the World Wide Web.

170

References
[1] Aec Systems Ltd. Speckle: The Platform For 3D Data. 2021. url: https:

//speckle.guide/ (accessed 2023-10-24).

[2] Rajat Agarwal, Shankar Chandrasekaran, and Mukund Sridhar. Imag-
ining construction’s digital future. Tech. rep. 2016. url: https://www.

mckinsey.com/capabilities/operations/our-insights/imagining-constructions-

digital-future (accessed 2023-11-30).

[3] Arghavan Akbarieh, FN Teferle, and J O’Donnell. “Semantic Material

Bank: A web-based linked data approach for building decommissioning

andmaterial reuse”. In: ECPPM 2022-eWork and eBusiness in Architecture,
Engineering and Construction 2022. CRC Press, 2023, pp. 69–76. isbn:

9781003354222. url: https://doi.org/10.1201/9781003354222-9.

[4] Riccardo Albertoni, David Browning, Simon Cox, Alejandra Gonzales

Beltran, Andrea Perego, and PeterWinstanley.Data Catalog Vocabulary
(DCAT) - Version 3. W3C Recommendation. W3C, 2023. url: https :

//www.w3.org/TR/vocab-dcat-3 (accessed 2023-11-30).

[5] Autodesk Inc. Autodesk Platform Services. 2023. url: https://aps.autodesk.
com/ (accessed 2023-11-30).

[6] M.J. Barbosa, P. Pauwels, V. Ferreira, and L. Mateus. “Towards Increased

BIM Usage for Existing Building Interventions”. In: Structural Survey
34 (2016), pp. 168–190. url: https://doi.org/10.1108/SS-01-2015-0002.

[7] David Becket, TimBerners-Lee, Prud’hommeaux Erix, andGavin Carothers.

RDF 1.1 Turtle - Terse RDF Triple Language. W3C Recommendation.

W3C, 2014. url: https://www.w3.org/TR/turtle/ (accessed 2023-11-30).

[8] J. Beetz, J.P. Leeuwen, van, and B. Vries, de. “An Ontology Web Lan-

guage Notation of the Industry Foundation Classes”. In: Proceedings of
the 22nd CIB W78 Conference on Information Technology in Construc-
tion. Technische Universität Dresden, 2005, pp. 193–198. url: https:

//alexandria.tue.nl/openaccess/Metis209539.pdf (accessed 2023-11-30).

[9] Jakob Beetz. “Facilitating distributed collaboration in the AEC/FM

sector using Semantic Web Technologies”. PhD thesis. TU Eindhoven,

2009. url: https://pure.tue.nl/ws/files/2966330/200911977.pdf (accessed

2023-11-30).

171

https://speckle.guide/
https://speckle.guide/
https://www.mckinsey.com/capabilities/operations/our-insights/imagining-constructions-digital-future
https://www.mckinsey.com/capabilities/operations/our-insights/imagining-constructions-digital-future
https://www.mckinsey.com/capabilities/operations/our-insights/imagining-constructions-digital-future
https://doi.org/10.1201/9781003354222-9
https://www.w3.org/TR/vocab-dcat-3
https://www.w3.org/TR/vocab-dcat-3
https://aps.autodesk.com/
https://aps.autodesk.com/
https://doi.org/10.1108/SS-01-2015-0002
https://www.w3.org/TR/turtle/
https://alexandria.tue.nl/openaccess/Metis209539.pdf
https://alexandria.tue.nl/openaccess/Metis209539.pdf
https://pure.tue.nl/ws/files/2966330/200911977.pdf

[10] Jakob Beetz, Léon van Berlo, Ruben de Laat, and Pim van den Helm.

“BIMserver.org–An open source IFC model server”. In: Proceedings of
the 27th CIB W78 conference on Information Technology in Construction.
Cairo, Egypt, 2010. url: https://d1wqtxts1xzle7.cloudfront.net/5351671/

beetz_berlo-cib-w78_cairo-libre.pdf (accessed 2023-11-30).

[11] Jakob Beetz, Jos Van Leeuwen, and Bauke De Vries. “IfcOWL: A case

of transforming EXPRESS schemas into ontologies”. In: Artificial Intel-
ligence for Engineering Design, Analysis and Manufacturing: AI EDAM
23 (2009), p. 89. url: https://doi.org/10.1017/S0890060409000122.

[12] Tim Berners-Lee. Cool URIs don’t change. W3C Style Guide. W3C, 1998.

url: https://www.w3.org/Provider/Style/URI (accessed 2024-2-12).

[13] Tim Berners-Lee. Design Issues: Linked Data. 2006. url: https://www.w3.

org/DesignIssues/LinkedData.html (accessed 2022-11-17).

[14] Tim Berners-Lee, James Hendler, Ora Lassila, et al. “The Semantic

Web”. In: Scientific American 284 (2001), pp. 28–37. url: https://doi.org/

10.1038/scientificamerican0501-34.

[15] Mark Bew and Richards M. “Bew-Richards BIM maturity model”. In:

Construct IT Autumn Members Meeting. Brighton, UK, 2008.

[16] Bart Bogaerts, Bas Ketsman, Younes Zeboudj, Heba Aamer, Ruben Tael-

man, and Ruben Verborgh. “Link Traversal with Distributed Subweb

Specifications”. In: Proceedings of the 5th International Joint Conference
on Rules and Reasoning. Vol. 12851. Lecture Notes in Computer Science.

Springer, 2021, pp. 62–79. url: https://doi.org/10.1007/978-3-030-91167-

6_5.

[17] Calin Boje, Annie Guerriero, Sylvain Kubicki, and Yacine Rezgui. “To-

wards a semantic Construction Digital Twin: Directions for future

research”. In: Automation in construction 114 (2020), p. 103179. url:

https://doi.org/10.1016/j.autcon.2020.103179.

[18] Mathias Bonduel. Construction Dataset Context Ontology. 2020. url:
https://mathib.github.io/cdc-ontology/ (accessed 2023-11-30).

[19] Mathias Bonduel. “A Framework for a Linked Data-based Heritage

BIM”. eng. PhD thesis. KU Leuven, 2021. url: https://lirias.kuleuven.be/

retrieve/618662 (accessed 2023-11-30).

172

https://d1wqtxts1xzle7.cloudfront.net/5351671/beetz_berlo-cib-w78_cairo-libre.pdf
https://d1wqtxts1xzle7.cloudfront.net/5351671/beetz_berlo-cib-w78_cairo-libre.pdf
https://doi.org/10.1017/S0890060409000122
https://www.w3.org/Provider/Style/URI
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.1038/scientificamerican0501-34
https://doi.org/10.1038/scientificamerican0501-34
https://doi.org/10.1007/978-3-030-91167-6_5
https://doi.org/10.1007/978-3-030-91167-6_5
https://doi.org/10.1016/j.autcon.2020.103179
https://mathib.github.io/cdc-ontology/
https://lirias.kuleuven.be/retrieve/618662
https://lirias.kuleuven.be/retrieve/618662

[20] Mathias Bonduel, Jyrki Oraskari, Pieter Pauwels, Maarten Vergauwen,

and Ralf Klein. “The IFC to Linked Building Data Converter - Cur-

rent Status”. In: Proceedings of the 6th Linked Data in Architecture and
Construction Workshop (LDAC). Vol. 2159. London, United Kingdom,

2018, pp. 34–43. url: http://ceur-ws.org/Vol-2159/04paper.pdf (accessed

2023-11-30).

[21] Mathias Bonduel, Anna Wagner, Pieter Pauwels, Maarten Vergauwen,

and Ralf Klein. “Including Widespread Geometry Formats in Semantic

Graphs using RDF Literals”. In: Proceedings of the European Conference
on Computing in Construction (EC3 2019). Chania, Greece, 2019, pp. 341–
350. url: https://doi.org/10.35490/EC3.2019.166.

[22] André Borrmann, Markus König, Christian Koch, and Jakob Beetz.

“Building Information Modeling: Why? What? How?” In: Building
Information Modeling: Technology Foundations and Industry Practice.
Springer International Publishing, 2018, pp. 1–24. isbn: 978-3-319-

92862-3.

[23] Matthieu Bosquet. Access Control Policy. Protocol. W3C Solid Commu-

nity Group, 2022. url: https://solid.github.io/authorization-panel/acp-

specification/ (accessed 2023-11-30).

[24] Pierre Bourreau, Nathalie Charbel, Jeroen Werbrouck, Madhumitha

Senthilvel, Pieter Pauwels, and Jakob Beetz. “Multiple inheritance for

a modular BIM”. In: Le BIM et l’évolution des pratiques: Ingénierie et
architecture, enseignement et recherche (2020), pp. 63–82. url: https:
//community.osarch.org/uploads/editor/a0/1se97k6z8n3v.pdf (accessed

2024-3-18).

[25] Box, Inc. The Information Economy: A Study of Five Industries. Tech.
rep. Box, Inc., 2014. url: https://img.forconstructionpros.com/files/base/

acbm/fcp/document/2014/06/box- cloud- study_11535206.pdf (accessed

2023-11-30).

[26] Dan Brickley and R. V. Guha. RDF Schema 1.1. W3C Recommendation.

W3C, 2014. url: https://www.w3.org/TR/rdf-schema/ (accessed 2023-11-

30).

[27] buildingSMART International. BCF API. 2022. url: https://github.com/

buildingSMART/BCF-API (accessed 2023-5-17).

[28] buildingSMART International. BCF API - topic GET.json. 2022. url:
https://raw.githubusercontent.com/buildingSMART/BCF-API/release_3_0/

Schemas/Collaboration/Topic/topic_GET.json (accessed 2023-11-30).

173

http://ceur-ws.org/Vol-2159/04paper.pdf
https://doi.org/10.35490/EC3.2019.166
https://solid.github.io/authorization-panel/acp-specification/
https://solid.github.io/authorization-panel/acp-specification/
https://community.osarch.org/uploads/editor/a0/1se97k6z8n3v.pdf
https://community.osarch.org/uploads/editor/a0/1se97k6z8n3v.pdf
https://img.forconstructionpros.com/files/base/acbm/fcp/document/2014/06/box-cloud-study_11535206.pdf
https://img.forconstructionpros.com/files/base/acbm/fcp/document/2014/06/box-cloud-study_11535206.pdf
https://www.w3.org/TR/rdf-schema/
https://github.com/buildingSMART/BCF-API
https://github.com/buildingSMART/BCF-API
https://raw.githubusercontent.com/buildingSMART/BCF-API/release_3_0/Schemas/Collaboration/Topic/topic_GET.json
https://raw.githubusercontent.com/buildingSMART/BCF-API/release_3_0/Schemas/Collaboration/Topic/topic_GET.json

[29] buildingSMART International. BIM Collaboration Format (BCF). 2022.
url: https : / /github.com/BuildingSMART/BCF-XML/tree/release_3_0/

Documentation (accessed 2022-10-27).

[30] buildingSMART International. Documents API. 2022. url: https://github.
com/buildingSMART/documents-API (accessed 2023-11-30).

[31] buildingSMART International Ltd. Technical Roadmap buildingSMART
- Getting ready for the future. Tech. rep. buildingSMART International

Ltd., 2020. url: https://f3h3w7a5.rocketcdn.me/wp-content/uploads/2020/09/

20200430_buildingSMART_Technical_Roadmap.pdf (accessed 2023-11-30).

[32] Sarven Capadisli and Tim Berners-Lee.Web Access Control. Protocol.
W3C Solid Community Group, 2022. url: https://solid.github.io/web-

access-control-spec/ (accessed 2023-11-30).

[33] SarvenCapadisli, TimBerners-Lee, RubenVerborgh, and Kjetil Kjernsmo.

Solid Protocol. Protocol. W3C Solid Community Group, 2022. url: https:

//solidproject.org/TR/protocol (accessed 2023-11-30).

[34] Sarven Capadisli and Amy Guy. Linked Data Platform 1.0. W3C Rec-

ommendation. W3C, 2017. url: https://www.w3.org/TR/ldn/ (accessed

2023-11-30).

[35] Bo Carlsson. “The Digital Economy: what is new and what is not?” In:

Structural change and economic dynamics 15.3 (2004), pp. 245–264. url:
https://doi.org/10.1016/j.strueco.2004.02.001.

[36] David Churcher, Sarah Davidson, and Anne Kemp. UK BIM Framework
Guidance. 2022. url: https://ukbimframeworkguidance.notion.site/UK-

BIM-Framework-Guidance-20a045d01cfb42fea2fef35a7b988dbc (accessed

2023-11-24).

[37] Aaron Coburn, Elf Pavlik, and Dmitri Zagidulin. Solid-OIDC. Speci-
fication. Solid, 2022. url: https : / / solidproject . org /TR/oidc (accessed

2023-11-30).

[38] Cocycles Ltd. Bit - Build anything in components. 2019. url: https :
//bit.dev/ (accessed 2023-1-11).

[39] Sandra Collins, Francoise Genova, Natalie Harrower, Simon Hodson,

Sarah Jones, Leif Laaksonen, Daniel Mietchen, Rūta Petrauskaitė, and

Peter Wittenburg. “Turning FAIR into reality: Final report and action

plan from the European Commission expert group on FAIR data”. In:

(2018). url: https://data.europa.eu/doi/10.2777/1524.

174

https://github.com/BuildingSMART/BCF-XML/tree/release_3_0/Documentation
https://github.com/BuildingSMART/BCF-XML/tree/release_3_0/Documentation
https://github.com/buildingSMART/documents-API
https://github.com/buildingSMART/documents-API
https://f3h3w7a5.rocketcdn.me/wp-content/uploads/2020/09/20200430_buildingSMART_Technical_Roadmap.pdf
https://f3h3w7a5.rocketcdn.me/wp-content/uploads/2020/09/20200430_buildingSMART_Technical_Roadmap.pdf
https://solid.github.io/web-access-control-spec/
https://solid.github.io/web-access-control-spec/
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://www.w3.org/TR/ldn/
https://doi.org/10.1016/j.strueco.2004.02.001
https://ukbimframeworkguidance.notion.site/UK-BIM-Framework-Guidance-20a045d01cfb42fea2fef35a7b988dbc
https://ukbimframeworkguidance.notion.site/UK-BIM-Framework-Guidance-20a045d01cfb42fea2fef35a7b988dbc
https://solidproject.org/TR/oidc
https://bit.dev/
https://bit.dev/
https://data.europa.eu/doi/10.2777/1524

[40] Pieter Colpaert. “Publishing transport data for maximum reuse”. PhD

thesis. Ghent University, 2017. url: https://phd.pietercolpaert.be (accessed

2023-11-30).

[41] Aaron Costin, Jeffrey W. Ouellette, and Jakob Beetz. “Building product

models, terminologies, and object type libraries”. In: Buildings and
Semantics. CRC Press, 2022, pp. 3–24.

[42] Laura Daniele, Raul Garcia-Castro, Maxime Lefrançois, and Maria

Poveda-Villalon. Smart Applications REFerence Ontology. 2020. url:
https://saref.etsi.org/core (accessed 2023-11-30).

[43] Laura Daniele, Frank den Hartog, and Jasper Roes. “Created in close

interaction with the industry: the smart appliances reference (SAREF)

ontology”. In: International Workshop Formal Ontologies Meet Industries.
Springer, 2015, pp. 100–112. url: https://link.springer.com/chapter/10.

1007/978-3-319-21545-7_9 (accessed 2023-11-30).

[44] Ruben Dedecker, Wout Slabbinck, Jesse Wright, Patrick Hochstenbach,

Pieter Colpaert, and Ruben Verborgh. “What’s in a Pod? – A knowledge

graph interpretation for the Solid ecosystem”. In: Proceedings of the 6th
Workshop on Storing, Querying and Benchmarking Knowledge Graphs.
2022. url: https : / / solidlabresearch . github . io /WhatsInAPod/ (accessed

2023-11-30).

[45] Makx Dekkers, Pavlina Fragkou, Natasa Sofou, and Bert Van Nuffelen.

DCAT-AP 3.0. EU standard. SEMIC EU, 2023. url: https://semiceu.github.

io/DCAT-AP/releases/3.0.0/ (accessed 2023-11-30).

[46] CC Developers. Creative Commons Rights Expression Language. 2006.
url: https://creativecommons.org/ns# (accessed 2024-3-21).

[47] Digitaal Vlaanderen. DCAT-AP Vlaanderen profiel en validator. 2022.
url: https://www.vlaanderen.be/digitaal-vlaanderen/onze-oplossingen/open-

data/dcat-ap-vlaanderen-profiel-en-validator (accessed 2023-8-22).

[48] DIN SPEC 91391-1:2019 Common Data Environments (CDE) for BIM
projects - Function sets and open data exchange between platforms of
different vendors - Part 1: Components and function sets of a CDE. DIN
SPEC. Deutsches Institut für Normung (DIN), 2019.

[49] DIN SPEC 91391-2:2019 Common Data Environments (CDE) for BIM
projects –Function sets and open data exchange between platforms Part 2:
Open data exchange with Common Data Environments. DIN SPEC.

Deutsches Institut für Normung (DIN), 2019.

175

https://phd.pietercolpaert.be
https://saref.etsi.org/core
https://link.springer.com/chapter/10.1007/978-3-319-21545-7_9
https://link.springer.com/chapter/10.1007/978-3-319-21545-7_9
https://solidlabresearch.github.io/WhatsInAPod/
https://semiceu.github.io/DCAT-AP/releases/3.0.0/
https://semiceu.github.io/DCAT-AP/releases/3.0.0/
https://creativecommons.org/ns#
https://www.vlaanderen.be/digitaal-vlaanderen/onze-oplossingen/open-data/dcat-ap-vlaanderen-profiel-en-validator
https://www.vlaanderen.be/digitaal-vlaanderen/onze-oplossingen/open-data/dcat-ap-vlaanderen-profiel-en-validator

[50] Manish K Dixit, Varusha Venkatraj, Mohammadreza Ostadalimakhmal-

baf, Fatemeh Pariafsai, and Sarel Lavy. “Integration of facility manage-

ment and building information modeling (BIM)”. In: Facilities Vol. 37
(2019), pp. 455–483. url: https://doi.org/10.1108/F-03-2018-0043.

[51] Charles Eastman. “The use of computers instead of drawings in build-

ing design”. In: AIA journal 63 (1975), pp. 46–50. url: https://www.

researchgate .net /profile /Charles - Eastman/publication/234643558_The_

Use_of _Computers _ Instead_of _Drawings_ in_Building_Design / links /

54aff5690cf2431d3531c7a7/The-Use-of-Computers-Instead-of-Drawings-in-

Building-Design.pdf (accessed 2023-11-30).

[52] Chuck Eastman, Paul Teicholz, Rafael Sacks, and Kathleen Liston. BIM
handbook: A Guide to Building Information Modeling for Owners, Man-
agers, Designers, Engineers and Contractors. 2nd. Hoboken, New York,

United States: John Wiley & Sons, 2011, p. 650. isbn: 978-0-470-54137-1.

[53] The Economist. Break down these walls. 2008. url: https://www.economist.

com/leaders/2008/03/19/break-down-these-walls (accessed 2023-11-30).

[54] Mohamed Elagiry, Valentina Marino, Natalia Lasarte, Peru Elguezabal,

and Thomas Messervey. “BIM4Ren: Barriers to BIM implementation

in renovation processes in the Italian market”. In: Buildings 9 (2019),
pp. 200–217. url: https://doi.org/10.3390/buildings9090200.

[55] Nuyts Emma, Jeroen Werbrouck, Ruben Verstraeten, and Louise De-

prez. “Validation of Building Models against Legislation using SHACL”.

In: LDAC2023, the 11th Linked Data in Architecture and Construction
Workshop. 2023. url: https://linkedbuildingdata.net/ldac2023/files/papers/
papers/LDAC2023_paper_8284.pdf (accessed 2024-3-18).

[56] European Commission - Joinup. DCAT-AP SHACL shapes. 2019. url:
https://github.com/SEMICeu/dcat-ap_shacl (accessed 2023-10-13).

[57] Stephen Eyre.Mott Macdonald Ltd v Trant Engineering Ltd [2021] EWHC
754 (TCC). Mar. 30, 2021. url: https://www.bailii.org/ew/cases/EWHC/

TCC/2021/754.html (accessed 2022-11-16).

[58] Getty Research Institute. Art & Architecture Thesaurus. 2014. url: http:
//vocab.getty.edu/aat/ (accessed 2023-11-30).

[59] Ghent University – imec. comunica-feature-link-traversal. 2021. url:
https://github.com/comunica/comunica- feature- link- traversal (accessed

2023-10-30).

[60] GO FAIR. FAIR principles. 2016. url: https : / /www.go - fair. org / fair -

principles/ (accessed 2023-11-30).

176

https://doi.org/10.1108/F-03-2018-0043
https://www.researchgate.net/profile/Charles-Eastman/publication/234643558_The_Use_of_Computers_Instead_of_Drawings_in_Building_Design/links/54aff5690cf2431d3531c7a7/The-Use-of-Computers-Instead-of-Drawings-in-Building-Design.pdf
https://www.researchgate.net/profile/Charles-Eastman/publication/234643558_The_Use_of_Computers_Instead_of_Drawings_in_Building_Design/links/54aff5690cf2431d3531c7a7/The-Use-of-Computers-Instead-of-Drawings-in-Building-Design.pdf
https://www.researchgate.net/profile/Charles-Eastman/publication/234643558_The_Use_of_Computers_Instead_of_Drawings_in_Building_Design/links/54aff5690cf2431d3531c7a7/The-Use-of-Computers-Instead-of-Drawings-in-Building-Design.pdf
https://www.researchgate.net/profile/Charles-Eastman/publication/234643558_The_Use_of_Computers_Instead_of_Drawings_in_Building_Design/links/54aff5690cf2431d3531c7a7/The-Use-of-Computers-Instead-of-Drawings-in-Building-Design.pdf
https://www.researchgate.net/profile/Charles-Eastman/publication/234643558_The_Use_of_Computers_Instead_of_Drawings_in_Building_Design/links/54aff5690cf2431d3531c7a7/The-Use-of-Computers-Instead-of-Drawings-in-Building-Design.pdf
https://www.economist.com/leaders/2008/03/19/break-down-these-walls
https://www.economist.com/leaders/2008/03/19/break-down-these-walls
https://doi.org/10.3390/buildings9090200
https://linkedbuildingdata.net/ldac2023/files/papers/papers/LDAC2023_paper_8284.pdf
https://linkedbuildingdata.net/ldac2023/files/papers/papers/LDAC2023_paper_8284.pdf
https://github.com/SEMICeu/dcat-ap_shacl
https://www.bailii.org/ew/cases/EWHC/TCC/2021/754.html
https://www.bailii.org/ew/cases/EWHC/TCC/2021/754.html
http://vocab.getty.edu/aat/
http://vocab.getty.edu/aat/
https://github.com/comunica/comunica-feature-link-traversal
https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/

[61] Google. Angular - Deliver Web Apps with Confidence. 2015. url: https:
//angular.io/ (accessed 2023-1-11).

[62] Khronos 3D Formats Working Group. glTF 2.0 Specification. 2021. url:
https : / / registry.khronos .org /glTF/ specs /2 . 0 /glTF- 2 . 0 .html (accessed

2023-11-30).

[63] Mario Gürtler, Ken Baumgärtel, and Raimar J Scherer. “Towards a

workflow-driven multi-model bim collaboration platform”. In:Working
Conference on Virtual Enterprises. Springer, 2015, pp. 235–242. url:
https://doi.org/10.1007/978-3-319-24141-8_21.

[64] Philipp Hagedorn, Liu Liu, Markus König, Rade Hajdin, Tim Blumen-

feld, Markus Stöckner, Maximilian Billmaier, Karl Grossauer, and Ken-

neth Gavin. “BIM-Enabled Infrastructure Asset Management Using

Information Containers and Semantic Web”. In: Journal of Computing
in Civil Engineering 37.1 (2023), p. 04022041. url: https://doi.org/10.1061/

(ASCE)CP.1943-5487.0001051.

[65] Philipp Hagedorn, Madhumitha Senthilvel, Hans Schevers, and Lucas

Verhelst. “Towards usable ICDD containers for ontology-driven data

linking and link validation”. In: Proceedings of the 11th Linked Data in
Architecture and Construction Workshop (LDAC). Matera, Italy, 2023.

url: https://linkedbuildingdata.net/ldac2023/files/papers/papers/LDAC2023_

paper_2079.pdf (accessed 2023-11-30).

[66] Armin Haller, Krzysztof Janowicz, Simon JD Cox, Maxime Lefrançois,

Kerry Taylor, Danh Le Phuoc, Joshua Lieberman, Raúl Garcıéa-Castro,

Rob Atkinson, and Claus Stadler. “The modular SSN ontology: A joint

W3C and OGC standard specifying the semantics of sensors, observa-

tions, sampling, and actuation”. In: Semantic Web 10 (2019), pp. 9–32.
url: https://hal.science/hal-01885335/document (accessed 2023-11-30).

[67] Al-Hakam Hamdan and Mathias Bonduel. Damage Topology Ontology.
2019. url: https://w3id.org/dot# (accessed 2023-11-30).

[68] Al-Hakam Hamdan, Mathias Bonduel, and Raimar J. Scherer. “An

ontological model for the representation of damage to constructions”.

In: Proceedings of the 7th Linked Data in Architecture and Construction
Workshop (LDAC). Lisbon, Portugal, 2019, pp. 64–77. url: http://ceur-
ws.org/Vol-2389/05paper.pdf (accessed 2019-12-5).

[69] Dick Hardt. The OAuth 2.0 authorization framework. Tech. rep. 2012.
url: https://www.rfc-editor.org/rfc/rfc6749 (accessed 2023-11-30).

177

https://angular.io/
https://angular.io/
https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
https://doi.org/10.1007/978-3-319-24141-8_21
https://doi.org/10.1061/(ASCE)CP.1943-5487.0001051
https://doi.org/10.1061/(ASCE)CP.1943-5487.0001051
https://linkedbuildingdata.net/ldac2023/files/papers/papers/LDAC2023_paper_2079.pdf
https://linkedbuildingdata.net/ldac2023/files/papers/papers/LDAC2023_paper_2079.pdf
https://hal.science/hal-01885335/document
https://w3id.org/dot#
http://ceur-ws.org/Vol-2389/05paper.pdf
http://ceur-ws.org/Vol-2389/05paper.pdf
https://www.rfc-editor.org/rfc/rfc6749

[70] Steve Harris, Andy Seaborne, and Eric Prudhéommeaux. SPARQL 1.1
Query Language. W3C Recommendation. W3C, 2013. url: https://www.

w3.org/TR/sparql11-query/ (accessed 2023-11-30).

[71] Olaf Hartig. “An overview on execution strategies for Linked Data

queries”. In: Datenbank-Spektrum 13 (2013), pp. 89–99. url: https://link.

springer.com/article/10.1007/s13222-013-0122-1.

[72] Olaf Hartig. “SQUIN: a traversal based query execution system for

the web of linked data”. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. 2013, pp. 1081–1084.
url: https : / / dl . acm . org / doi / pdf / 10 . 1145 / 2463676 . 2465231 (accessed

2023-11-30).

[73] James Hendler, Fabien Gandon, and Dean Allemang. Semantic Web for
the Working Ontologist: Effective Modeling for Linked Data, RDFS, and
OWL. Morgan & Claypool, 2020. isbn: 978-1-4503-7617-4.

[74] N. Vu Hoang and Seppo Törmä. “Drumbeat platform–a web of building

data implementation with backlinking”. In: eWork and eBusiness in
Architecture, Engineering and Construction. CRC Press, 2017, pp. 155–

163.

[75] Tim-Jonathan Huyeng, Christian-Dominik Thiele, Anna Wagner, Meil-

ing Shi, André Hoffmann, Wendelin Sprenger, and Uwe Rüppel. “An

approach to process geometric and semantic information as open graph-

based description using a microservice architecture on the example of

structural data”. In: Proceedings of the EG-ICE 2020 Workshop on Intelli-
gent Computing in Engineering. Berlin, Germany: Universitätsverlag

der TU Berlin, 2020. (accessed 2023-11-30).

[76] iana.org. Internet Assigned Numbers Authority. 1997. url: https://www.

iana.org/ (accessed 2023-11-3).

[77] InfluxData, Inc. Get started with InfluxDB v2. 2023. url: https://docs.
influxdata.com/influxdb/v2/ (accessed 2023-10-20).

[78] Inc. Inrupt. Enterprise Solid Server (ESS). 2020. url: https://www.inrupt.

com/products/enterprise-solid-server (accessed 2023-2-23).

[79] buildingSMART International. OpenCDE API standards. 2018. url: https:
//github.com/buildingSMART/OpenCDE-API (accessed 2023-4-12).

[80] Dama International. DAMA-DMBOK: data management body of knowl-
edge. Technics Publications, LLC, 2017.

178

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://link.springer.com/article/10.1007/s13222-013-0122-1
https://link.springer.com/article/10.1007/s13222-013-0122-1
https://dl.acm.org/doi/pdf/10.1145/2463676.2465231
https://www.iana.org/
https://www.iana.org/
https://docs.influxdata.com/influxdb/v2/
https://docs.influxdata.com/influxdb/v2/
https://www.inrupt.com/products/enterprise-solid-server
https://www.inrupt.com/products/enterprise-solid-server
https://github.com/buildingSMART/OpenCDE-API
https://github.com/buildingSMART/OpenCDE-API

[81] International Organization for Standardization (ISO). The ISO 21597
ICDD Part 1 Container ontology. 2020. url: https://standards.iso.org/iso/
21597/-1/ed-1/en/Container.rdf (accessed 2023-11-30).

[82] International Organization for Standardization (ISO). The ISO 21597
ICDD Part 1 Linkset ontology. 2020. url: https://standards.iso.org/iso/
21597/-1/ed-1/en/Linkset.rdf (accessed 2023-11-30).

[83] ISO 16739-1:2018 Industry Foundation Classes (IFC) for data sharing
in the construction and facility management industries. ISO Standard.

International Organization for Standardization (ISO), 2018.

[84] ISO 19650-1:2018 Organization and digitization of information about
buildings and civil engineering works, including building information
modelling (BIM) – Information management using building information
modelling – Part 1: Concepts and principles. ISO Standard. International

Organization for Standardization (ISO), 2018.

[85] ISO 19650-2:2018 Organization and digitization of information about
buildings and civil engineering works, including building information
modelling (BIM) – Information management using building information
modelling – Part 2: Delivery phase of the assets. ISO Standard. Interna-

tional Organization for Standardization (ISO), 2018.

[86] ISO 19650-3:2020 Organization and digitization of information about
buildings and civil engineering works, including building information
modelling (BIM) - Information management using building informa-
tion modelling - Part 3: Operational phase of the assets. ISO Standard.

International Organization for Standardization (ISO), 2020.

[87] ISO 19650-4:2022 Organization and digitization of information about
buildings and civil engineering works, including building information
modelling (BIM) - Information management using building information
modelling - Part 4: Information exchange. ISO Standard. International

Organization for Standardization (ISO), 2022.

[88] ISO 19650-5:2020 Organization and digitization of information about
buildings and civil engineering works, including building information
modelling (BIM) - Information management using building information
modelling - Part 5: Security-minded approach to information manage-
ment. ISO Standard. International Organization for Standardization

(ISO), 2020.

179

https://standards.iso.org/iso/21597/-1/ed-1/en/Container.rdf
https://standards.iso.org/iso/21597/-1/ed-1/en/Container.rdf
https://standards.iso.org/iso/21597/-1/ed-1/en/Linkset.rdf
https://standards.iso.org/iso/21597/-1/ed-1/en/Linkset.rdf

[89] Information container for linked document delivery - Exchange specifica-
tion - Part 1: Container (ISO 21597-1:2020). ISO Standard. International

Organization for Standardization (ISO), 2020.

[90] Information container for linked document delivery - Exchange specifica-
tion - Part 2: Link types (ISO 21597-2:2020). ISO Standard. International

Organization for Standardization (ISO), 2020.

[91] Laurent Joblot, Thomas Paviot, Dominique Deneux, and Samir Lamouri.

“Literature review of Building InformationModeling (BIM) intended for

the purpose of renovation projects”. In: IFAC-PapersOnLine 50 (2017),
pp. 10518–10525. url: https://doi.org/10.1016/j.ifacol.2017.08.1298.

[92] M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). 2015.
url: https://doi.org/10.17487/rfc7519.

[93] Michael B. Jones, Anthony Nadalin, Brian Campbell, John Bradley,

and Chuck Mortimore. OAuth 2.0 Token Exchange. 2020. url: https :
//doi.org/10.17487/RFC8693.

[94] Ebrahim P Karan, Javier Irizarry, and John Haymaker. “BIM and GIS

integration and interoperability based on semantic web technology”.

In: Journal of Computing in Civil Engineering 30 (2016). url: https :

//doi.org/10.1061/(ASCE)CP.1943-5487.0000519.

[95] Janakiram Karlapudi, Prathap Valluru, and Karsten Menzel. “An ex-

planatory use case for the implementation of Information Container

for linked Document Delivery in Common Data Environments”. In:

Proceedings of the EG-ICE 2021 Workshop on Intelligent Computing in
Engineering. Berlin, Germany: Universitätsverlag der TU Berlin, 2021,

pp. 76–86.

[96] Sabrina Kirrane, Alessandra Mileo, and Stefan Decker. “Access control

and the resource description framework: A survey”. In: Semantic Web
8.2 (2017), pp. 311–352. url: https://doi.org/10.3233/SW-160236.

[97] M. Kirschstein, L. Liu, and L Höltgen. ICDD Platform Documentation.
2022. url: https : / / icdd . vm . rub . de /ui /Page /Documentation (accessed

2023-11-30).

[98] Fabian Kirstein, Benjamin Dittwald, Simon Dutkowski, Yury Glikman,

Sonja Schimmler, and Manfred Hauswirth. “Linked data in the euro-

pean data portal: A comprehensive platform for applying dcat-ap”. In:

Electronic Government: 18th IFIP WG 8.5 International Conference, EGOV
2019. San Benedette Del Tronto, Italy: Springer, 2019, pp. 192–204. url:

https://doi.org/10.1007/978-3-030-27325-5_15.

180

https://doi.org/10.1016/j.ifacol.2017.08.1298
https://doi.org/10.17487/rfc7519
https://doi.org/10.17487/RFC8693
https://doi.org/10.17487/RFC8693
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000519
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000519
https://doi.org/10.3233/SW-160236
https://icdd.vm.rub.de/ui/Page/Documentation
https://doi.org/10.1007/978-3-030-27325-5_15

[99] Pavel Klinov. FROM vs FROM NAMED in SPARQL. 2021. url: https:
//www.stardog.com/labs/blog/from-vs-from-named-in-sparql/ (accessed

2023-11-30).

[100] Graham Klyne, Jeremy J. Carroll, and Brian McBride. RDF 1.1 Concepts
and Abstract Syntax. W3C Recommendation. W3C, 2014. url: https:

//www.w3.org/TR/rdf11-concepts/ (accessed 2023-11-30).

[101] Dimitris Kontokostas and Holger Knublauch. Shapes Constraint Lan-
guage (SHACL). W3C Recommendation. W3C, 2017. url: https://www.

w3.org/TR/shacl/ (accessed 2023-11-30).

[102] Tobias Kuhn, Paolo Emilio Barbano, Mate Levente Nagy, and Michael

Krauthammer. “Broadening the scope of nanopublications”. In: Ex-
tended Semantic Web Conference. Springer, 2013, pp. 487–501. url:
https://arxiv.org/pdf/1303.2446.pdf (accessed 2023-11-30).

[103] Tobias Kuhn andMichel Dumontier. “Trusty URIs: Verifiable, immutable,

and permanent digital artifacts for linked data”. In: The Semantic Web:
Trends and Challenges: 11th International Conference, ESWC 2014, Anis-
saras, Crete, Greece, May 25-29, 2014. Proceedings 11. Springer, 2014,
pp. 395–410. url: https://arxiv.org/pdf/1401.5775.pdf (accessed 2023-11-

30).

[104] Birgit van Laar. “Vernieuwde inspectieverslagen vanMonumentenwacht

helpen eigenaars om hun gebouwd erfgoed beter te onderhouden en

te beheren”. In: Preventieve Conservatie van Klimaat- en Schademoni-
toring naar een Geïntegreerde Systeembenadering. Vol. 35. Leuven, Bel-
gium: WTA-NL-VL, 2019, pp. 1–9. url: https://www.wta-international.

org/fileadmin/user_upload/Nederland-Vlaanderen/syllabi /2019- 04- 05_

Preventieve_Conservatie.pdf (accessed 2023-11-30).

[105] Jose Emilio Labra Gayo, Eric Prud’hommeaux, Iovka Boneva, and Dim-

itris Kontokostas. Validating RDF Data. Vol. 7. 1. Morgan & Claypool

Publishers LLC, 2017, pp. 1–328. isbn: 978-3-031-79478-0. url: https:

//doi.org/10.2200/s00786ed1v01y201707wbe016.

[106] Mary Lebens, Roger J Finnegan, Steven C Sorsen, and Jinal Shah. “Rise

of the Citizen Developer”. In: Muma Business Review 5 (2022), pp. 101–

111. url: https://doi.org/10.28945/4885.

[107] Timothy Lebo, Satya Sahoo, Deborah McGuinness, Khalid Belhaj-

jame, James Cheney, David Corsar, Daniel Garijo, Stian Soiland-Reyes,

Stephan Zednik, and Jun Zhao. Prov-o: The prov ontology. 2013. url:
https://www.w3.org/TR/prov-o/ (accessed 2024-3-21).

181

https://www.stardog.com/labs/blog/from-vs-from-named-in-sparql/
https://www.stardog.com/labs/blog/from-vs-from-named-in-sparql/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://arxiv.org/pdf/1303.2446.pdf
https://arxiv.org/pdf/1401.5775.pdf
https://www.wta-international.org/fileadmin/user_upload/Nederland-Vlaanderen/syllabi/2019-04-05_Preventieve_Conservatie.pdf
https://www.wta-international.org/fileadmin/user_upload/Nederland-Vlaanderen/syllabi/2019-04-05_Preventieve_Conservatie.pdf
https://www.wta-international.org/fileadmin/user_upload/Nederland-Vlaanderen/syllabi/2019-04-05_Preventieve_Conservatie.pdf
https://doi.org/10.2200/s00786ed1v01y201707wbe016
https://doi.org/10.2200/s00786ed1v01y201707wbe016
https://doi.org/10.28945/4885
https://www.w3.org/TR/prov-o/

[108] Zhiliang Ma and Yuan Ren. “Integrated application of BIM and GIS:

an overview”. In: Procedia Engineering 196 (2017), pp. 1072–1079. url:

https://doi.org/10.1016/j.proeng.2017.08.064.

[109] Andrew Malcolm, Jeroen Werbrouck, and Pieter Pauwels. “LBD server:

Visualising Building Graphs in web-based environments using seman-

tic graphs and glTF-models”. In: Formal Methods in Architecture: Pro-
ceedings of the 5th International Symposium on Formal Methods in Ar-
chitecture (5FMA), Lisbon 2020. Springer. 2021. url: https://doi.org/10.
1007/978-3-030-57509-0_26 (accessed 2024-3-18).

[110] John C Mankins et al. “Technology readiness levels”. In:White Paper,
April 6 (1995). url: https://aiaa.kavi.com/apps/group_public/download.php/

2212/TRLs_MankinsPaper_1995.pdf (accessed 2023-11-30).

[111] Essam Mansour, Andrei Vlad Sambra, Sandro Hawke, Maged Zereba,

Sarven Capadisli, Abdurrahman Ghanem, Ashraf Aboulnaga, and Tim

Berners-Lee. “A demonstration of the solid platform for social web

applications”. In: Proceedings of the 25th International Conference Com-
panion on World Wide Web. 2016, pp. 223–226. url: https://doi.org/10.
1145/2872518.2890529.

[112] Carol C Menassa. “From BIM to digital twins: A systematic review of

the evolution of intelligent building representations in the AEC-FM

industry”. In: Journal of Information Technology in Construction (ITcon)
26.5 (2021), pp. 58–83. url: https://doi.org/10.36680/j.itcon.2021.005.

[113] Meta Platforms. React - A JavaScript library for building user interfaces.
2013. url: https://reactjs.org/ (accessed 2023-1-11).

[114] Microsoft.What is Power BI? 2015. url: https://powerbi.microsoft.com/en-

au/what-is-power-bi/ (accessed 2023-10-29).

[115] MichaelMikowski and Josh Powell. Single page web applications: JavaScript
end-to-end. Simon and Schuster, 2013. isbn: 9781617290756.

[116] Barend Mons, Cameron Neylon, Jan Velterop, Michel Dumontier, Luiz

Olavo Bonino da Silva Santos, and Mark D Wilkinson. “Cloudy, in-

creasingly FAIR; revisiting the FAIR Data guiding principles for the

European Open Science Cloud”. In: Information services & use 37.1

(2017), pp. 49–56. url: http://doi.org/10.3233/ISU-170824.

182

https://doi.org/10.1016/j.proeng.2017.08.064
https://doi.org/10.1007/978-3-030-57509-0_26
https://doi.org/10.1007/978-3-030-57509-0_26
https://aiaa.kavi.com/apps/group_public/download.php/2212/TRLs_MankinsPaper_1995.pdf
https://aiaa.kavi.com/apps/group_public/download.php/2212/TRLs_MankinsPaper_1995.pdf
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.36680/j.itcon.2021.005
https://reactjs.org/
https://powerbi.microsoft.com/en-au/what-is-power-bi/
https://powerbi.microsoft.com/en-au/what-is-power-bi/
http://doi.org/10.3233/ISU-170824

[117] Lina Morkunaite, Fayes Haitham Al-Naber, Ekaterina Petrova, and

Kjeld Svidt. “An Open Data Platform for Early-Stage Building Circular-

ity Assessment”. In: Proceedings of the 38th CIB W78 Conference on In-
formation Technology in Construction. Luxembourg: University of Ljubl-

jana, 2021, pp. 813–822. url: https://vbn.aau.dk/ws/files/466232044/An_

Open_Data_Platform_for_Early_Stage_Building_Circularity_Assessment.

pdf .

[118] van Nederveen. “Building Information Modelling in the Netherlands:

A Status Report”. In: 18th CIB World Building Congress. Vol. 361. Salford
Quays, United Kingdom: CIB, 2010, p. 13. url: https://site.cibworld.nl/dl/

publications/w078_pub361.pdf (accessed 2023-11-30).

[119] Luiz Olavo Bonino, Kees Burger, and Rajaram Kaliyaperumal. FAIR
Data Point - working draft. 2022. url: https://specs.fairdatapoint.org/
(accessed 2023-11-30).

[120] Marten Oltrogge, Erik Derr, Christian Stransky, Yasemin Acar, Sascha

Fahl, Christian Rossow, Giancarlo Pellegrino, Sven Bugiel, and Michael

Backes. “The rise of the citizen developer: Assessing the security impact

of online app generators”. In: 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 634–647. url: https://doi.org/10.1109/SP.2018.
00005 (accessed 2023-11-30).

[121] Femke Ongenae and Pieter Bonte. Aggregators to realize Scalable Query-
ing across Decentralized Solid pods. 2023. url: https://knows.idlab.ugent.
be/education/master-thesis/2023/aggregators-to-realize-scalable-querying-

across-decentralized-solid-pods/ (accessed 2023-11-30).

[122] Open Knowledge Foundation. The Open Definition. 2007. url: https:
//opendefinition.org/ (accessed 2023-1-11).

[123] OpenSource BIM. BIMserver Javascript API. 2020. url: https://github.
com/opensourceBIM/BIMserver-JavaScript-API (accessed 2023-11-30).

[124] J Oraskari and S Törmä. “Access control for web of building data:

Challenges and directions”. In: eWork and eBusiness in Architecture,
Engineering and Construction (2017), pp. 45–53.

[125] Jyrki Oraskari, Oliver Schulz, and Jakob Beetz. “Towards describing

version history of BCF data in the Semantic Web”. In: Proceedings of the
10th Linked Data in Architecture and Construction Workshop (LDAC).
Hersonissos, Greece, 2022.

183

https://vbn.aau.dk/ws/files/466232044/An_Open_Data_Platform_for_Early_Stage_Building_Circularity_Assessment.pdf
https://vbn.aau.dk/ws/files/466232044/An_Open_Data_Platform_for_Early_Stage_Building_Circularity_Assessment.pdf
https://vbn.aau.dk/ws/files/466232044/An_Open_Data_Platform_for_Early_Stage_Building_Circularity_Assessment.pdf
https://site.cibworld.nl/dl/publications/w078_pub361.pdf
https://site.cibworld.nl/dl/publications/w078_pub361.pdf
https://specs.fairdatapoint.org/
https://doi.org/10.1109/SP.2018.00005
https://doi.org/10.1109/SP.2018.00005
https://knows.idlab.ugent.be/education/master-thesis/2023/aggregators-to-realize-scalable-querying-across-decentralized-solid-pods/
https://knows.idlab.ugent.be/education/master-thesis/2023/aggregators-to-realize-scalable-querying-across-decentralized-solid-pods/
https://knows.idlab.ugent.be/education/master-thesis/2023/aggregators-to-realize-scalable-querying-across-decentralized-solid-pods/
https://opendefinition.org/
https://opendefinition.org/
https://github.com/opensourceBIM/BIMserver-JavaScript-API
https://github.com/opensourceBIM/BIMserver-JavaScript-API

[126] Jyrki Oraskari, Oliver Schulz, Jeroen Werbrouck, and Jakob Beetz. “En-

abling Interoperable Issue Management in a Federated Building and

Construction Sector”. In: EG-ICE 2022 Workshop on Intelligent Comput-
ing in Engineering. 2022. url: https://api.semanticscholar.org/CorpusID:

250108125 (accessed 2024-3-18).

[127] Daniela Pasini. “Connecting BIM and IoT for addressing user aware-

ness toward energy savings”. In: Journal of Structural Integrity and
Maintenance 3.4 (2018), pp. 243–253.

[128] P. Pauwels and W. Terkaj. “EXPRESS to OWL for Construction In-

dustry: Towards a Recommendable and Usable ifcOWL Ontology”. In:

Automation in Construction 63 (2016), pp. 100–133. url: https://doi.org/

10.1016/j.autcon.2015.12.003.

[129] P. Pauwels, S. Zhang, and Y.-C. Lee. “Semantic Web Technologies in

AEC industry: A Literature Overview”. In: Automation in Construction
73 (2017), pp. 145–165. url: https://doi.org/10.1016/j.autcon.2016.10.003.

[130] Pieter Pauwels. BuildingElement Ontology. 2018. url: https://pi.pauwel.
be/voc/buildingelement/index-en.html (accessed 2023-11-30).

[131] Pieter Pauwels. DistributionElement Ontology. 2018. url: https : / /pi .
pauwel.be/voc/distributionelement/index-en.html (accessed 2023-11-30).

[132] Pieter Pauwels, Thomas Krijnen, Walter Terkaj, and Jakob Beetz. “En-

hancing the ifcOWL ontology with an alternative representation for

geometric data”. In: Automation in Construction 80 (2017), pp. 77–94.

url: https://doi.org/10.1016/j.autcon.2017.03.001.

[133] Pieter Pauwels and Kris McGlinn. Buildings and Semantics: Data Models
and Web Technologies for the Built Environment. CRC Press, 2022. isbn:

9781032023120.

[134] Pieter Pauwels and Ekaterina Petrova. Information in Construction. 2018.
url: https://vbn.aau.dk/ws/files/525394301/InformationInConstruction_

PauwelsPetrova.pdf (accessed 2023-11-30).

[135] Severi Peltonen, Luca Mezzalira, and Davide Taibi. “Motivations, bene-

fits, and issues for adopting Micro-Frontends: A Multivocal Literature

Review”. In: Information and Software Technology 136 (2021), p. 106571.

url: https://doi.org/10.1016/j.infsof.2021.106571.

[136] M Perry and J Herring. GeoSPARQL-A Geographic Query Language for
RDF Data OGC. 2011. url: https://www.opengeospatial.org/standards/

geosparql (accessed 2019-12-4).

184

https://api.semanticscholar.org/CorpusID:250108125
https://api.semanticscholar.org/CorpusID:250108125
https://doi.org/10.1016/j.autcon.2015.12.003
https://doi.org/10.1016/j.autcon.2015.12.003
https://doi.org/10.1016/j.autcon.2016.10.003
https://pi.pauwel.be/voc/buildingelement/index-en.html
https://pi.pauwel.be/voc/buildingelement/index-en.html
https://pi.pauwel.be/voc/distributionelement/index-en.html
https://pi.pauwel.be/voc/distributionelement/index-en.html
https://doi.org/10.1016/j.autcon.2017.03.001
https://vbn.aau.dk/ws/files/525394301/InformationInConstruction_PauwelsPetrova.pdf
https://vbn.aau.dk/ws/files/525394301/InformationInConstruction_PauwelsPetrova.pdf
https://doi.org/10.1016/j.infsof.2021.106571
https://www.opengeospatial.org/standards/geosparql
https://www.opengeospatial.org/standards/geosparql

[137] David Philp, David Churcher, and Sarah Davidson. “Government Soft

Landings”. In: (2019). url: https://doi.org/10.17863/CAM.45315.

[138] Pardis Pishdad-Bozorgi, Xinghua Gao, Charles Eastman, and Alonzo

Patrick Self. “Planning and developing facility management-enabled

building information model (FM-enabled BIM)”. In: Automation in
Construction 87 (2018), pp. 22–38. url: https://doi.org/10.1016/j.autcon.

2017.12.004.

[139] Marıa Poveda-Villalón and Raúl Garcıa-Castro. “Extending the SAREF

ontology for building devices and topology”. In: Proceedings of the 6th
Linked Data in Architecture and Construction Workshop (LDAC 2018).
Vol. 2159. 2018, pp. 16–23. url: https://ceur-ws.org/Vol-2159/02paper.pdf

(accessed 2023-11-30).

[140] C Preidel, A Borrmann, C Oberender, and M Tretheway. “Seamless inte-

gration of common data environment access into BIM authoring appli-

cations: The BIM integration framework”. In: eWork and eBusiness in Ar-
chitecture, Engineering and Construction. CRC Press, 2017, pp. 119–128.

url: https://mediatum.ub.tum.de/doc/1306961/654ocv4bit32uh73pjj1z1vjs.pdf

(accessed 2023-11-30).

[141] Cornelius Preidel, André Borrmann, Hannah Mattern, Markus König,

and Sven-Eric Schapke. “Common Data Environment”. In: Springer,

2018, pp. 279–291. isbn: 978-3-319-92862-3.

[142] Niculin Prinz, Christopher Rentrop, and Melanie Huber. “Low-Code

Development Platforms-A Literature Review.” In: AMCIS. 2021. url:
https://web.archive.org/web/20220801212143id_/https://aisel.aisnet.org/cgi/

viewcontent.cgi?article=1079&context=amcis2021 (accessed 2023-11-30).

[143] Eric Prud’hommeaux, Iovka Boneva, Jose Emilio Labra Gayo, and Greg

Kellogg. Shape Expressions Language 2.1. Report. Shape Expressions
Community Group, 2019. url: https://shex.io/shex-semantics/index.html

(accessed 2023-11-30).

[144] Mads Holten Rasmussen, Maxime Lefrançois, Georg Ferdinand Schnei-

der, and Pieter Pauwels. “BOT: the building topology ontology of the

W3C linked building data group”. In: Semantic Web 12.1 (2021), pp. 143–
161. url: https://doi.org/10.3233/SW-200385.

[145] Mads Holten Rasmussen, Pieter Pauwels, Maxime Lefrançois, and

Georg Ferdinand Schneider. Building Topology Ontology. 2021. url:
https://w3c-lbd-cg.github.io/bot/ (accessed 2023-11-30).

185

https://doi.org/10.17863/CAM.45315
https://doi.org/10.1016/j.autcon.2017.12.004
https://doi.org/10.1016/j.autcon.2017.12.004
https://ceur-ws.org/Vol-2159/02paper.pdf
https://mediatum.ub.tum.de/doc/1306961/654ocv4bit32uh73pjj1z1vjs.pdf
https://web.archive.org/web/20220801212143id_/https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1079&context=amcis2021
https://web.archive.org/web/20220801212143id_/https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1079&context=amcis2021
https://shex.io/shex-semantics/index.html
https://doi.org/10.3233/SW-200385
https://w3c-lbd-cg.github.io/bot/

[146] Mads Holten Rasmussen, Pieter Pauwels, Maxime Lefrançois, Georg

Ferdinand Schneider, Christian Anker Hviid, and Jan Karlshøj. “Recent

changes in the Building Topology Ontology”. In: Proceedings of the 5th
Linked Data in Architecture and Construction Workshop (LDAC). Dijon,
France, 2017. url: https://doi.org/10.13140/RG.2.2.32365.28647.

[147] Douglas T Ross and Jorge E Rodriguez. “Theoretical foundations for

the computer-aided design system”. In: Proceedings of the May 21-23,
1963, spring joint computer conference. 1963, pp. 305–322. url: https:
//doi.org/10.1145/1461551.1461589.

[148] Rafael Sacks, Zijian Wang, Boyuan Ouyang, Duygu Utkucu, and Siyu

Chen. “Toward artificially intelligent cloud-based building information

modelling for collaborative multidisciplinary design”. In: Advanced
Engineering Informatics 53 (2022), p. 101711. url: https://doi.org/10.1016/
j.aei.2022.101711.

[149] Robert Sanderson, Paolo Ciccarese, and Benjamin Young. Web An-
notation Data Model. W3C Recommendation. W3C, 2017. url: https:

//www.w3.org/TR/annotation-model/ (accessed 2023-11-30).

[150] Robert Sanderson, Paolo Ciccarese, and Benjamin Young. Web An-
notation Vocabulary. W3C Recommendation. W3C, 2017. url: https:

//www.w3.org/TR/annotation-vocab (accessed 2023-11-30).

[151] Sven-Eric Schapke, Jakob Beetz, Markus König, Christian Koch, and An-

dré Borrmann. “Collaborative data management”. In: Building Informa-
tion Modeling: Technology Foundations and Industry Practice. Springer,
2018, pp. 251–277. isbn: 978-3-319-92862-3.

[152] Raimar J Scherer and S-E Schapke. “A distributed multi-model-based

management information system for simulation and decision-making

on construction projects”. In: Advanced Engineering Informatics 25
(2011), pp. 582–599. url: https://doi.org/10.1016/j.aei.2011.08.007.

[153] Raimar J Scherer, Sven-Eric Schapke, and Helga Tauscher. Mefisto:
Management - Leadership - Information - Simulation in Construction.
Technische Universitaet Dresden, 2010. isbn: 978-3-86780-187-4.

[154] Oliver Schulz, Jyrki Oraskari, and Jakob Beetz. “bcfOWL: A BIM collab-

oration ontology”. In: Proceedings of the 9th Linked Data in Architecture
and Construction Workshop. Luxembourg, 2021, pp. 1–12. url: https:

//ceur-ws.org/Vol-3081/12paper.pdf (accessed 2023-11-30).

186

https://doi.org/10.13140/RG.2.2.32365.28647
https://doi.org/10.1145/1461551.1461589
https://doi.org/10.1145/1461551.1461589
https://doi.org/10.1016/j.aei.2022.101711
https://doi.org/10.1016/j.aei.2022.101711
https://www.w3.org/TR/annotation-model/
https://www.w3.org/TR/annotation-model/
https://www.w3.org/TR/annotation-vocab
https://www.w3.org/TR/annotation-vocab
https://doi.org/10.1016/j.aei.2011.08.007
https://ceur-ws.org/Vol-3081/12paper.pdf
https://ceur-ws.org/Vol-3081/12paper.pdf

[155] Oliver Schulz, Jeroen Werbrouck, and Jakob Beetz. “Towards Scene

Graph Descriptions for Spatial Representations in the Built Environ-

ment”. In: 30th International Workshop on Intelligent Computing in
Engineering, EG-ICE 2023. 2023. url: https://www.ucl .ac.uk/bartlett/

construction / sites / bartlett _ construction / files / towards _ scene _ graph _

descriptions_for_spatial_representations_in_the_built_environment.pdf

(accessed 2024-3-18).

[156] Mikki Seidenschnur, Ali Kücükavci, EsbenVisby Fjerbæk, KevinMichael

Smith, Pieter Pauwels, and Christian Anker Hviid. “A common data

environment for HVAC design and engineering”. In: Automation in
Construction 142 (2022), p. 104500. url: https://doi.org/10.1016/j.autcon.

2022.104500.

[157] Madhumitha Senthilvel, Jyrki Oraskari, and Jakob Beetz. “Common

Data Environments for the Information Container for linked Document

Delivery”. In: Proceedings of the 8th Linked Data in Architecture and
Construction Workshop. 2020. url: https://ceur-ws.org/Vol-2636/10paper.
pdf (accessed 2023-11-30).

[158] Gustavus J Simmons. “Symmetric and asymmetric encryption”. In:

ACM Computing Surveys (CSUR) 11.4 (1979), pp. 305–330. url: https:
//doi.org/10.1145/356789.356793.

[159] Single-spa. Single-spa - A javascript router for front-end microservices.
2018. url: https://single-spa.js.org/ (accessed 2023-1-11).

[160] Smapiot GmbH. Piral - Breaking the Frontend Monolith! 2019. url: https:
//piral.io/ (accessed 2023-1-11).

[161] Stuart Snydman, Robert Sanderson, and Tom Cramer. “The Inter-

national Image Interoperability Framework (IIIF): A community &

technology approach for web-based images”. In: Archiving conference.
Vol. 2015. 1. Society for Imaging Science and Technology, 2015, pp. 16–

21. url: https://stacks.stanford.edu/file/druid:df650pk4327/2015ARCHIVING_

IIIF.pdf (accessed 2023-11-30).

[162] Wawan Solihin, Charles Eastman, and Yong Cheol Lee. “A framework

for fully integrated building information models in a federated environ-

ment”. In: Advanced Engineering Informatics 30.2 (2016), pp. 168–189.
url: https://doi.org/10.1016/j.aei.2016.02.007.

[163] Manu Sporny, Dave Longley, and David Chadwick. Verifiable Creden-
tials Data Model v1.1. W3C Recommendation. W3C, 2022. url: https:

//www.w3.org/TR/vc-data-model/ (accessed 2023-11-30).

187

https://www.ucl.ac.uk/bartlett/construction/sites/bartlett_construction/files/towards_scene_graph_descriptions_for_spatial_representations_in_the_built_environment.pdf
https://www.ucl.ac.uk/bartlett/construction/sites/bartlett_construction/files/towards_scene_graph_descriptions_for_spatial_representations_in_the_built_environment.pdf
https://www.ucl.ac.uk/bartlett/construction/sites/bartlett_construction/files/towards_scene_graph_descriptions_for_spatial_representations_in_the_built_environment.pdf
https://doi.org/10.1016/j.autcon.2022.104500
https://doi.org/10.1016/j.autcon.2022.104500
https://ceur-ws.org/Vol-2636/10paper.pdf
https://ceur-ws.org/Vol-2636/10paper.pdf
https://doi.org/10.1145/356789.356793
https://doi.org/10.1145/356789.356793
https://single-spa.js.org/
https://piral.io/
https://piral.io/
https://stacks.stanford.edu/file/druid:df650pk4327/2015ARCHIVING_IIIF.pdf
https://stacks.stanford.edu/file/druid:df650pk4327/2015ARCHIVING_IIIF.pdf
https://doi.org/10.1016/j.aei.2016.02.007
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/

[164] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, Pierre-

Antoine Champin, and Niklas Lindström. JSON-LD: JSON for Linking
Data. 2020. url: https://www.w3.org/TR/json-ld/ (accessed 2023-10-16).

[165] Manu Sporny, Dave Longley, Markus Sabadello, Reed Drummond, Orie

Steele, and Christopher Allen.Decentralized Identifiers (DIDs) v1.0. W3C

Recommendation. W3C, 2022. url: https://www.w3.org/TR/did-core/

(accessed 2023-11-30).

[166] Ruben Taelman, JoachimVanHerwegen,Miel Vander Sande, and Ruben

Verborgh. “Comunica: a modular SPARQL query engine for the web”.

In: International Semantic Web Conference. Springer, 2018, pp. 239–255.
url: https://doi.org/10.1007/978-3-030-00668-6_15.

[167] Ruben Taelman and Ruben Verborgh. “Evaluation of Link Traversal

Query Execution over Decentralized Environments with Structural

Assumptions”. In: (2023). url: https://arxiv.org/ftp/arxiv/papers/2302/2302.

06933.pdf (accessed 2023-11-30).

[168] Davide Taibi and Luca Mezzalira. “Micro-Frontends”. In: ACM SIGSOFT
Software Engineering Notes 47.4 (2022), pp. 25–29. url: https://doi.org/10.
1145/3561846.3561853.

[169] Alon Talmor and Jonathan Berant. “The web as a knowledge-base for

answering complex questions”. In: CoRR abs/1803.06643 (2018). url:

https://doi.org/10.48550/arXiv.1803.06643.

[170] Seppo Törmä. “Semantic Linking of Building Information Models”. In:

2013 IEEE Seventh International Conference on Semantic Computing.
2013, pp. 412–419. url: https://doi.org/10.1109/ICSC.2013.80.

[171] Trimble Inc. Trimble Connect API. 2021. url: https://connect.trimble.com/

(accessed 2023-11-30).

[172] Irene Tzinis. Technology Readiness Level. 2012. url: https://www.nasa.gov/

directorates/heo/scan/engineering/technology/technology_readiness_level

(accessed 2023-11-30).

[173] Joachim Van Herreweghe, Ruben Verborgh, Ruben Taelman, and et al.

Community Solid Server. 2023. url: https://github.com/CommunitySolidServer/

CommunitySolidServer (accessed 2023-11-30).

[174] Theo Van Veen. “Wikidata: From ‘an’ identifier to ‘the’ identifier”.

In: Information technology and libraries 38.2 (2019), pp. 72–81. url:

https://doi.org/10.6017/ital.v38i2.10886.

188

https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/did-core/
https://doi.org/10.1007/978-3-030-00668-6_15
https://arxiv.org/ftp/arxiv/papers/2302/2302.06933.pdf
https://arxiv.org/ftp/arxiv/papers/2302/2302.06933.pdf
https://doi.org/10.1145/3561846.3561853
https://doi.org/10.1145/3561846.3561853
https://doi.org/10.48550/arXiv.1803.06643
https://doi.org/10.1109/ICSC.2013.80
https://connect.trimble.com/
https://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level
https://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level
https://github.com/CommunitySolidServer/CommunitySolidServer
https://github.com/CommunitySolidServer/CommunitySolidServer
https://doi.org/10.6017/ital.v38i2.10886

[175] Maarten Vandenbrande. “Aggregators to realize Scalable Querying

across Decentralized Data Sources”. In: Doctoral Consortium at ISWC
(ISWC-DC 2023), 08.11.2023, Athens, Greece. Athens, Greece, 2023, p. 4.
url: https://biblio.ugent.be/publication/01HFXXKQ51BYBEMG4Z01EK4CH1/

file/01HFXXN3ZQNVKX0M4J5MFHP2RH (accessed 2023-11-30).

[176] Ruben Verborgh. Solid: innovation through personal data control. 2021.
url: https://rubenverborgh.github.io/ECA-2021/#title (accessed 2021-3-10).

[177] Sofie Verbrugge, Frederic Vannieuwenborg, Marlies Van der Wee, Di-

dier Colle, Ruben Taelman, and Ruben Verborgh. “Towards a personal

data vault society: an interplay between technological and business per-

spectives”. In: 2021 60th FITCE Communication Days Congress for ICT
Professionals: Industrial Data – Cloud, Low Latency and Privacy (FITCE).
2021, pp. 1–6. url: https://doi.org/10.1109/FITCE53297.2021.9588540.

[178] S Vilgertshofer et al. “TwinGen: Advanced technologies to automati-

cally generate digital twins for operation and maintenance of existing

bridges”. In: ECPPM 2022. 2022. url: https://mediatum.ub.tum.de/doc/

1687936/document.pdf (accessed 2023-11-30).

[179] R. Volk, J. Stengel, and F. Schultmann. “Building Information Modeling

(BIM) for Existing Buildings - Literature Review and Future Needs”. In:

Automation in Construction 38 (2014), pp. 109–127. url: https://doi.org/

10.1016/j.autcon.2013.10.023.

[180] W3C OWL Working Group. OWL 2 Web Ontology Language Document
Overview (Second Edition). W3C Recommendation. W3C, 2012. url:

https://www.w3.org/TR/2012/REC-owl2-overview-20121211/ (accessed

2023-11-30).

[181] W3C/OGC Spatial Data on the Web Working Group. Semantic Sensor
Network Ontology. 2017. url: http : / /www.w3 .org/ns /ssn/ (accessed

2023-11-30).

[182] AnnaWagner, Mathias Bonduel, Pieter Pauwels, and Uwe Rüppel. “Rep-

resenting construction-related geometry in a semantic web context: A

review of approaches”. In: Automation in Construction 115 (2020). url:

https://doi.org/10.1016/j.autcon.2020.103130.

[183] Anna Wagner, Mathias Bonduel, Jeroen Werbrouck, and Kris McGlinn.

“Geometry and geospatial data on the web”. In: Buildings and Semantics.
CRC Press, 2022, pp. 69–99.

189

https://biblio.ugent.be/publication/01HFXXKQ51BYBEMG4Z01EK4CH1/file/01HFXXN3ZQNVKX0M4J5MFHP2RH
https://biblio.ugent.be/publication/01HFXXKQ51BYBEMG4Z01EK4CH1/file/01HFXXN3ZQNVKX0M4J5MFHP2RH
https://rubenverborgh.github.io/ECA-2021/#title
https://doi.org/10.1109/FITCE53297.2021.9588540
https://mediatum.ub.tum.de/doc/1687936/document.pdf
https://mediatum.ub.tum.de/doc/1687936/document.pdf
https://doi.org/10.1016/j.autcon.2013.10.023
https://doi.org/10.1016/j.autcon.2013.10.023
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/ns/ssn/
https://doi.org/10.1016/j.autcon.2020.103130

[184] Anna Wagner, Laura Kristina Moeller, Christian Leifgen, and Chris-

tian Eller. Building Product Ontology. 2019. url: https://w3id.org/bpo#
(accessed 2023-11-30).

[185] Anna Wagner and Uwe Rüppel. “BPO: The Building Product Ontology

for Assembled Products”. In: Proceedings of the 7th Linked Data in
Architecture and Construction Workshop (LDAC). Lisbon, Portugal, 2019,
pp. 106–119. url: http://ceur-ws.org/Vol- 2389/08paper.pdf (accessed

2019-12-5).

[186] Webpack. Module Federation. 2020. url: https://webpack.js.org/concepts/
module-federation/ (accessed 2023-1-11).

[187] JeroenWerbrouck. Pattern-based Access Control (Vocabulary). url: https:
//w3id.org/pbac# (accessed 2024-3-18).

[188] Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Léon van Berlo.

“Towards a decentralised common data environment using linked build-

ing data and the solid ecosystem”. In: 36th CIB W78 2019 Conference.
2019, pp. 113–123. url: https://biblio.ugent.be/publication/8633673 (ac-

cessed 2024-3-18).

[189] Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Erik Mannens.

“Data patterns for the organisation of federated linked building data”.

In: LDAC2021, the 9th Linked Data in Architecture and Construction
Workshop. 2021, pp. 1–12. url: https://biblio.ugent.be/publication/8724183/
file/8750812.pdf (accessed 2024-3-18).

[190] Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Erik Mannens.

“Mapping Federated AEC projects to Industry Standards using dynamic

Views”. In: 10th Linked Data in Architecture and Construction Workshop.
CEUR-WS. org. 2022. url: https://ceur-ws.org/Vol- 3213/paper06.pdf

(accessed 2024-3-18).

[191] Jeroen Werbrouck, Pieter Pauwels, Jakob Beetz, and Erik Mannens.

“ConSolid: a Federated Ecosystem forHeterogeneousMulti-Stakeholder

Projects”. In: Semantic Web Journal (2023). Accepted. url: https://biblio.
ugent.be/publication/8633673/file/8633674.pdf (accessed 2024-3-18).

[192] Jeroen Werbrouck, Pieter Pauwels, Mathias Bonduel, Jakob Beetz, and

Willem Bekers. “Scan-to-graph: Semantic enrichment of existing build-

ing geometry”. In: Automation in Construction 119 (2020), p. 103286.

url: https://doi.org/10.1016/j.autcon.2020.103286.

190

https://w3id.org/bpo#
http://ceur-ws.org/Vol-2389/08paper.pdf
https://webpack.js.org/concepts/module-federation/
https://webpack.js.org/concepts/module-federation/
https://w3id.org/pbac#
https://w3id.org/pbac#
https://biblio.ugent.be/publication/8633673
https://biblio.ugent.be/publication/8724183/file/8750812.pdf
https://biblio.ugent.be/publication/8724183/file/8750812.pdf
https://ceur-ws.org/Vol-3213/paper06.pdf
https://biblio.ugent.be/publication/8633673/file/8633674.pdf
https://biblio.ugent.be/publication/8633673/file/8633674.pdf
https://doi.org/10.1016/j.autcon.2020.103286

[193] Jeroen Werbrouck, Oliver Schulz, Jyrki Oraskari, Erik Mannens, Pieter

Pauwels, and Jakob Beetz. “A generic framework for federated CDEs

applied to Issue Management”. In: Advanced Engineering Informatics 58
(2023), p. 102136. url: https://doi.org/10.1016/j.aei.2023.102136 (accessed

2024-3-18).

[194] Jeroen Werbrouck, Madhumitha Senthilvel, Jakob Beetz, Pierre Bour-

reau, and Léon Van Berlo. “Semantic query languages for knowledge-

based web services in a construction context”. In: 26th International
Workshop on Intelligent Computing in Engineering, EG-ICE 2019. Vol. 2394.
2019. url: https://ceur-ws.org/Vol-2394/paper03.pdf (accessed 2024-3-18).

[195] Jeroen Werbrouck, Madhumitha Senthilvel, Jakob Beetz, and Pieter

Pauwels. “A checking approach for distributed building data”. In: 31st
forum bauinformatik, Berlin: Universitätsverlag der TU Berlin. 2019,
pp. 173–81. url: https://biblio.ugent.be/publication/8667508/file/8667516.pdf

(accessed 2024-3-18).

[196] Jeroen Werbrouck, Madhumitha Senthilvel, Jakob Beetz, and Pieter

Pauwels. “Querying heterogeneous linked building datasets with context-

expanded graphql queries”. In: 7th Linked Data in Architecture and
Construction Workshop. Vol. 2389. 2019, pp. 21–34. url: https://biblio.
ugent.be/publication/8623179/file/8623180.pdf (accessed 2024-3-18).

[197] Jeroen Werbrouck, Madhumitha Senthilvel, and Mads Holten Ras-

mussen. “Federated data storage for the AEC industry”. In: Buildings
and Semantics. CRC Press, 2022, pp. 139–164.

[198] Jeroen Werbrouck, Ruben Taelman, Ruben Verborgh, Pieter Pauwels,

Jakob Beetz, and Erik Mannens. “Pattern-based access control in a

decentralised collaboration environment”. In: Proceedings of the 8th
Linked Data in Architecture and Construction Workshop. CEUR-WS. org.

2020. url: https://ceur-ws.org/Vol-2636/09paper.pdf (accessed 2024-3-18).

[199] Wikimedia Foundation.Wikidata. 2011. url: https://www.wikidata.org

(accessed 2023-11-30).

[200] MarkDWilkinson,Michel Dumontier, IJsbrand JanAalbersberg, Gabrielle

Appleton,Myles Axton, Arie Baak, Niklas Blomberg, Jan-WillemBoiten,

Luiz Bonino da Silva Santos, Philip E Bourne, et al. “The FAIR Guid-

ing Principles for scientific data management and stewardship”. In:

Scientific data 3.1 (2016), pp. 1–9. url: https://doi.org/10.1038/sdata.2016.18.

[201] Wistor. Data-centric working made easy. 2021. url: https://wistor.nl
(accessed 2023-3-13).

191

https://doi.org/10.1016/j.aei.2023.102136
https://ceur-ws.org/Vol-2394/paper03.pdf
https://biblio.ugent.be/publication/8667508/file/8667516.pdf
https://biblio.ugent.be/publication/8623179/file/8623180.pdf
https://biblio.ugent.be/publication/8623179/file/8623180.pdf
https://ceur-ws.org/Vol-2636/09paper.pdf
https://www.wikidata.org
https://doi.org/10.1038/sdata.2016.18
https://wistor.nl

[202] Evan Yue. Vue - The Progressive JavaScript Framework. 2013. url: https:
//vuejs.org/ (accessed 2023-1-11).

[203] Dmitri Zagidulin. Proposal: Support Decentralized Identifiers (DIDs) in
addition to Web IDs. 2019. url: https://github.com/solid/specification/

issues/217 (accessed 2023-11-30).

192

https://vuejs.org/
https://vuejs.org/
https://github.com/solid/specification/issues/217
https://github.com/solid/specification/issues/217

Appendix A

Prefixes and Namespaces

1 # v o c a b u l a r i e s d e v i s e d in t h i s d i s s e r t a t i o n

2 c o n s o l i d : < h t t p s : / / w3id . org / c o n s o l i d #>

3 pbac : < h t t p s : / / w3id . org / pbac #>

4 mi f e s t o : < h t t p s : / / w3id . org / m i f e s t o #>

5

6 # da t a v a u l t s used in the case − s tudy

7 a r c a d i s : < h t t p s : / / a r c a d i s . com / da t a / >

8 bb : < h t t p s : / / b−b . be / da t a / >

9 dgfb : < h t t p s : / / dg fb . ugent . be / da t a / >

10

11 # t h i r d − pa r t y v o c a b u l a r i e s used in t h i s d i s s e r t a t i o n

12 a c l : < h t t p : / /www. w3 . org / ns / auth / a c l #>

13 as : < h t t p s : / /www. w3 . org / ns / a c t i v i t y s t r e am s #>

14 bc fowl : < h t t p : / / l bd . a rch . rwth −aachen . de / bcfOWL#>

15 bot : < h t t p s : / / w3id . org / bo t #>

16 cdo : < h t t p s : / / w3id . org / cdo#>

17 c t : < h t t p s : / / s t a nd a r d s . i s o . org / i s o / 2 1 5 9 7 / − 1 / ed −1/ en / Con ta ine r . rd f >

18 dca t : < h t t p : / /www. w3 . org / ns / d c a t #>

19 dc t : < h t t p : / / pu r l . org / dc / terms / >

20 doap : < h t t p : / / u s e f u l i n c . com / ns / doap#>

21 dot : < h t t p s : / / w3id . org / dot #>

22 ex : < h t t p : / / example . org / >

23 f o a f : < h t t p : / / xmlns . com / f o a f / 0 . 1 / >

24 l dp : < h t t p : / /www. w3 . org / ns / l dp #>

25 l s : < h t t p s : / / s t a nd a r d s . i s o . org / i s o / 2 1 5 9 7 / − 1 / ed −1/ en / L i n k s e t . rd f >

26 oa : < h t t p : / /www. w3 . org / ns / oa#>

27 pim : < h t t p : / /www. w3 . org / ns / pim / space #>

28 r d f : < h t t p : / /www. w3 . org / 1 9 9 9 / 0 2 / 2 2 − rd f − syntax −ns#>

29 r d f s : < h t t p : / /www. w3 . org / 2 0 0 0 / 0 1 / rd f −schema#>

30 schema : < h t t p s : / / schema . org / >

31 sh : < h t t p : / /www. w3 . org / ns / s h a c l #>

32 s o l i d : < h t t p : / /www. w3 . org / ns / s o l i d / terms #>

33 vcard : < h t t p : / /www. w3 . org / 2 0 0 6 / vca rd / ns #>

34 xsd : < h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema#>

Listing A.1: Namespaces used in this thesis and their corresponding
prefixes.

193

Appendix B

The Semantic Web
B.1 The Semantic Web and Linked Data

The cornerstone of the Semantic Web is the Resource Description Framework

(RDF) standard [100]. In RDF, individual data snippets (‘Resources’) are identi-

fied via Uniform Resource Identifiers (URI), which can be connected to one

another using a subject-predicate-object format, thereby forming basic sentences

(so-called ‘triples’). Because a resource can be part of many triples, either as

subject or object, a set of overlapping triples will result in a directed graph,

where the predicate labels the edge between two nodes (Figure B.1).

Figure B.1: RDF statements visualised as a directed graph.

Full URIs can be notated in a more concise way using prefixed names [7],
consisting of a prefix and a local part, which are separated by a colon. The

original URI can be easily reconstructed by concatenating both parts of the

prefixed name. Prefixes used in this dissertation are listed in Appendix A.

When a URI is not only an identifier for a data snippet, but also allows to

retrieve the corresponding data, it is called a Uniform Resource Locator (URL).

Using URLs, it is thus possible to unambiguously identify a concept, enrich it

and retrieve additional information about this resource on the Web. Essentially,

the use of HTTP URLs allows to treat the Web as a unified database and create

federated knowledge graphs that integrate data from multiple independent

disciplines.

194

When several resources together form a conceptual schema related to a specific

domain, an ‘ontology’ or ‘vocabulary’ is defined. This can be done using RDF

Schema (RDFS) [26] or the Web Ontology Language (OWL) [180]. Ontologies

do not only organise concepts on a specific domain using formal logics, but

also aid in negotiating between contradictory information on the web and

making implicit information explicit through analysis of existing relation-

ships and definitions in a graph, a process called ‘inferencing’. A distinction

can be made between resources that refer to concepts and are defined in on-

tologies, and resources that represent specific instances or data. The terms

TBox and ABox refer to this dichotomy: TBox (‘Terminological’) refers to

the group of triples defining classes and properties, while ABox (‘Assertion’)

refers to the group of triples containing nodes that are instances of domain

specific classes. The definitions in an ontology are identified with unique URIs

and typically share a common namespace. For example, all the definitions

in the Building Topology Ontology [146] are defined in the BOT namespace

https://w3id.org/bot#, which allows easy notation of an ontology’s con-

cepts into prefixed names.

Listing B.1 lists an RDF graph based on the Terse RDF Triple Language [7], one

of the most known serialisations of RDF. Turtle is used throughout this disser-

tation as the preferred serialisation for RDF examples. Prefixes for frequently

occurring namespaces are omitted but can be consulted in Appendix A.

1 @pref ix i n s t : <https://b-b.be/data / f9deed78 > .

2

3 bb : DTU116 r d f : type bo t : B u i l d i n g .

4 bb : DTU116 bo t : hasSpace bb : Audi tor ium81 .

5 bb : DTU116 bo t : hasSpace bb : Audi tor ium82 .

6

7 bb : Audi tor ium81 r d f : type bo t : Space .

8 bb : Audi tor ium82 r d f : type bo t : Space .

9

10 bb : Audi tor ium81 bot : c on t a i n sE l emen t bb : Cha i r1 .

11 bb : Cha i r1 r d f : type bo t : Element .

Listing B.1: Example RDF graph (Turtle)

Querying RDF graph patterns happens using the SPARQL Protocol And RDF

Query Language (SPARQL) standard [70]. Although SPARQL can be used for

querying graphs locally, it can also be used to query federated RDF resources,

e.g., using the concept of link-traversal [71, 16]. Listing B.2 illustrates the basic

syntax of a SPARQL query.

195

1 SELECT DISTINCT ? prop

2 WHERE {

3 ? sp a bo t : Space ;

4 ? prop ? v a l .

5 }

Listing B.2: Example SPARQL query

For a more in-depth introduction and practical guide to SemanticWeb technolo-

gies such as RDF and SPARQL, the reader is referred toHendler et al. [73].

B.2 Semantic Web Technologies for the Built Environ-
ment

The application of Semantic Web technologies for the built environment effec-

tively allows to kill two birds with one stone. Firstly, it enables the integration

of modular, domain-specific data models (‘ontologies’) in a domain-agnostic

fashion: all disciplines are considered equal. Ontologies may contain complex

data patterns and allow to ‘infer’ explicit knowledge from implicit statements.

The structured, domain-agnostic nature of a knowledge graph also allows data

validation, rule checking and proof [129]. Secondly, since the building blocks

of RDF graphs are URIs (or URLs), this data can be decentrally maintained on

the Web, a basic requirement for the envisaged ecosystem. This offers a very

high scalability compared to the assumption that all data should be present in

a single CDE framework.

Research in the field of Linked Data for architecture and construction has

maintained a direct link with international standards such as IFC, eventu-

ally resulting in a BuildingSMART-approved IFC schema ‘ifcOWL’ [11, 128].

However, because IfcOWL is designed to be as compatible with ‘standard’

IFC as possible, the complexity commonly associated with IFC persists with

ifcOWL [20]. Therefore, focus for developing domain ontologies has recently

shifted towards small, modular ontologies, as advocated by the Linked Building

Data Community Group (LBD CG). The cornerstone of this modular approach

is the Building Topology Ontology (BOT) [144, 145], containing only the

definitions to describe topological relationship of a building: a bot:Site

contains (bot:hasBuilding) one or more bot:Buildings, which can be

further destructured into bot:Storeys and bot:Spaces, eventually contain-

ing bot:Elements. With the topological description as the spine of the model,

other vocabularies can then be used to further enrich it. For example, regarding

element classification there are the BuildingElement Ontology (BEO) [130] and

196

the DistributionElement Ontology (DEO) [131], respectively based upon the

IfcBuildingElement and IfcDistributionElement subtrees in the IFC specifica-

tion. Other classification systems can be used in parallel, such as the Getty

Art and Architecture Thesaurus (AAT) [58] or Wikidata [174, 199]. Building

component description can be done using the Building Product Ontology [185,

184], while damage classification is covered by the Damage Topology Ontology
(DOT) [68, 67] and sensordata can be linked to the project using SSN [66, 181]

and SAREF [43, 139, 42].

It is clear that this approach of combining modular ontologies is much less

bound to the limits of a single ‘monolithic’ data model - because the data model

can be extended when required by the situation. As the number of modular

vocabularies grows, it becomes possible to combine their defined classes and

properties in a meaningful way.

Research towards the use of Semantic Web and Linked Data technologies

in the AEC domain has been carried out for several years. By now, it has

resulted in several ready to use domain models of varying levels of complexity.

However, with the abundance of stakeholders and their tools in the AEC

market, as well as the high number of changes in design models and the

diversity of classification systems and data sets used, the domain struggles

with scaling up this linked data paradigm and leveraging the acknowledged

potential of Linked Building Data outside academic contexts. Furthermore, as

discussed in section 2.3, unstructured datasets (e.g. imagery, point clouds) and

semi-structured datasets will continue to play a role. This means that even

when all semantic data would be organised according to 5-star Linked Data,

data structures for extendible, federated multi-models still need to support a

heterogeneous (i.e., not only RDF) set of information.

For a more in-depth introduction to Semantic Web technologies applied to the

built environment, the reader is referred to [133].

197

B.3 Validating Linked Data

In a Web-wide, data-driven environment such as ConSolid, a tug-of-war takes

place between applications and data: data, expressed in open formats, exists

independently from applications - however, applications are needed to make

sense of the data and present it to end-users in a meaningful way. Applications

are considered windows on data, but to take that role, they will demand a

certain data quality.

RDF is an extremely expressive language for representing and connecting data

on the Web. However, for ensuring the quality and consistency of this data, a

higher-level layer is necessary. Throughout the years, various specifications

have been devised for validating RDF. Two notable approaches are ShEx (Shape

Expressions) [143] and SHACL (SHApes Constraint Language) [101]. While

these two existed long in parallel, in 2017 SHACL became an official W3C

recommendation. With SHACL, RDF data can be validated against a set of pre-

defined constraints or shapes – which are expressed in RDF themselves.

For example, a tool giving information about a project’s topology exposes a

compatibility shape stating that every bot:Site instance must have at least

one bot:Building, which in turn needs at least one bot:Storey that contains

a minimum of one bot:Space. Also, the service can only work when a bot:Site

is linked to a geolocation, using the bot:hasZeroPoint predicate. An example

for such shape is given in Listing B.3.

For a more in-depth introduction and practical guide to Semantic Web tech-

nologies SHACL and ShEx, the reader is referred to Gayo et al. [105].

198

1 @pref ix app : < h t t p s : / /www.my−app . com / shapes #> .

2

3 app : S i t e Sh ap e a sh : NodeShape ;

4 sh : t a r g e t C l a s s bo t : S i t e ;

5 sh : p r ope r t y [

6 sh : path bo t : h a sBu i l d i n g ;

7 sh : c l a s s bo t : Bu i l d i n g ;

8 sh : minCount 1 ;

9 sh : message "A S i t e must have a t l e a s t one Bu i l d i n g " ;

10] , [

11 sh : path bo t : ha sZe roPo in t ;

12 sh : minCount 1 ;

13 sh : maxCount 1 ;

14 sh : message "A S i t e must have e x a c t l y one ze ro Po in t " ;

15] .

16

17 app : Bu i l d i ngShape

18 a sh : NodeShape ;

19 sh : t a r g e t C l a s s bo t : Bu i l d i n g ;

20 sh : p r ope r t y [

21 sh : path bo t : h a s S t o r ey ;

22 sh : c l a s s bo t : S t o r ey ;

23 sh : minCount 1 ;

24 sh : message "A Bu i l d i n g must have a t l e a s t one S t o r ey " ;

25] .

26

27 app : S to reyShape

28 a sh : NodeShape ;

29 sh : t a r g e t C l a s s bo t : S t o r ey ;

30 sh : p r ope r t y [

31 sh : path bo t : hasSpace ;

32 sh : c l a s s bo t : Space ;

33 sh : minCount 1 ;

34 sh : message "A S to r ey must have a t l e a s t one Space " ;

35] .

Listing B.3: SHACL shape for checking the topological structure of a
built asset through the BOT ontology.

199

Appendix C

Solid
When datasets are not openly accessible on the Web, but only available to

selected agents, an authentication mechanism needs to be in place. Most

common implementations rely on authentication mechanisms that are added

to the middleware and/or backend of a web service implementation. These

authentication mechanisms shield and secure the databases (SQL, NoSQL,

triple stores, etc.) from random access, while only allowing authenticated users

(e.g. via tokens (2-way handshake)). Different is the Solid project for Web

decentralisation [111, 176]. The Solid Protocol [33] defines how a decentralised

authentication layer can be added on top of a heterogeneous LDP-compliant

resource server.

Protocols for decentral identity verification and authentication are quite com-

mon already in many Web APIs with varying scope and functionality. For

instance, the OpenID Connect (OIDC) [37] standard allows for user authenti-

cation and identity checking without the need to create a local account. An

external Identity Provider (IDP) can confirm the identity of a client to other

applications on the Web, provided that the client has an account on the servers

of the identity provider . This is the background mechanism behind the well-

known procedure to ‘log in with X’, which allows you to identify yourself

without creating an account. Often, CDE solutions base upon this protocol to

allow platform services to be deployed externally and communicate with the

central database.

While OIDC implementations are mostly provided by large IT companies, Solid

eliminates the need to rely on those large enterprises for hosting and sharing

data. The authentication layer of Solid is based upon the concept of a WebID;

a URL that uniquely identifies an agent on the Web. Consequently, this WebID

can be used as a decentral ‘username’. Most commonly, a WebID dereferences

to a self-descriptive, public RDF document (the ‘card’), which enriches the

WebID with basic information about the represented agent (Listing C.1). Solid’s

combines the decentral flexibility of the WebID concept with the field-proven

security of OIDC in the WebID-OIDC specification [37].

200

1 @pref ix ca rd : < h t t p s : / / pod . werbrouck . me / j e r o en / p r o f i l e / c a rd #> .

2

3 ca rd :me

4 f o a f : name " J e r o en Werbrouck " ;

5 r d f : type schema : Person , f o a f : Person ;

6 s o l i d : o i d c I s s u e r < h t t p s : / / pod . werbrouck . me/ > .

7

8 ca rd :

9 f o a f : p r imaryTop ic ca rd :me ;

10 f o a f : maker ca rd :me ;

11 r d f : type f o a f : P e r s ona l P r o f i l eDocumen t .

Listing C.1: Example solid card (Turtle) enriching the WebID.

WebIDs are often accompanied by a dedicated personal data vault, or in Solid

terms, a ‘Pod’. Using implementations of the Solid Specifications like the

Community Solid Server (CSS) [173], anyone can thus set up a Solid-based IDP,

which means thatWebIDs can be self-hosted. Figure C.1 shows the relationship

between the different components in Solid. In the context of this dissertation,

this means that enterprises can maintain their ownWebIDs and Pods, allowing

them to be in control of their data. When participating in multi-stakeholder

collaborative projects, an office server that implements WebID-OIDC can thus

be set up to allow specific external accounts to have access to a specific project

dataset. A company (or its employees) can authenticate in a standardised

way to the vaults of other project participants to access their (filtered) project

contributions.

Figure C.1: Relationship between a Solid Pod, a WebID and an Identity
Provider

201

Appendix D

FAIR Data Principles
The FAIR principles are a set of guidelines to enhance the findability, accessi-

bility, interoperability and reusability of digital resources. The main focus lies

on improving machine-readability, so information exchange can take place

with minimal human intervention.

Although the FAIR principles are technology-agnostic, the Semantic Web tech-

nology stack has been identified as one of the few that is able to address them

to their full extents [116]. In context of this dissertation, this mainly applies to

the metadata layer of the ecosystem, while leaving room for heterogeneity of

actual project datasets. Each letter of the FAIR acronym corresponds with a

set of sub-requirements:

• Findable

– F1. (Meta)data are assigned a globally unique and persistent identi-

fier;

– F2. Data are described with rich metadata (defined by R1 below);

– F3. Metadata clearly and explicitly include the identifier of the data

they describe;

– F4. (Meta)data are registered or indexed in a searchable resource;

• Accessible

– A1. (Meta)data are retrievable by their identifier using a standard-

ised communications protocol;

– A2. Metadata are accessible, even when the data are no longer

available;

• Interoperable

– I1. (Meta)data use a formal, accessible, shared, and broadly appli-

cable language for knowledge representation;

– I2. (Meta)data use vocabularies that follow FAIR principles;

202

– I3. (Meta)data include qualified references to other (meta)data.

Qualified references mean that (1) it is specified if one dataset

builds on other datasets, (2) if additional datasets are needed to

complete the data or (3) if complementary information is stored in

different datasets [60];

• Reusable

– R1. (Meta)data are richly described with a plurality of accurate and

relevant attributes.

More details about the FAIR principles and how they can be implemented are

described in [60].

203

Appendix E

Containers
E.1 Containers - Semantic Web

Linked Data Platform

The Linked Data Platform specification (LDP) presents guidelines for stor-

age of and interaction with heterogeneous Web resources, and presents a

basis for a read-write Web of data using HTTP. Based on the type of con-

tainer, membership of resources and containers can be either predefined

(ldp:BasicContainer) or left to the implementer (ldp:DirectContainer

and ldp:IndirectContainer) to offer more (domain-specific) flexibility in

defining custom relationships (Listing E.1). LDP can be compared with a

graph-based file system, where folders contain pointers to where the datasets

are stored rather than containing the datasets themselves. LDP is currently

the main interface to discover and retrieve information on a Solid Pod (Ap-

pendix C).

1 <> a pim : S to rage ,

2 l dp : Conta iner ,

3 l dp : Ba s i cCon t a i n e r ,

4 l dp : Resource ;

5 l dp : c o n t a i n s < p i c t u r e 1 > ,

6 <mode lA r ch i t e c t u r e . g l t f > ,

7 <myPro jec t s > ,

8 < p r o f i l e / > ,

9 < s eman t i c sA r c h i t e c t u r e . t t l > ;

10 dc t : mod i f i e d "2023 −06 −14 T10 : 5 1 : 2 2 . 0 0 0 Z"^^ xsd : dateTime .

11

12 # LDP r e s o u r c e s

13 < p i c t u r e 1 > a ldp : Resource .

14 <mode lA r ch i t e c t u r e . g l t f > a ldp : Resource .

15 <myPro jec t s > a ldp : Resource .

16 < s eman t i c sA r c h i t e c t u r e . t t l > a ldp : Resource .

17

18 # ne s t ed LDP c on t a i n e r

19 < p r o f i l e / > a ldp : Conta iner ,

20 l dp : Ba s i cCon t a i n e r ,

21 l dp : Resource .

Listing E.1: Example LBD container definition

204

Data Catalog Vocabulary (DCAT)

The Data Catalog Vocabulary (DCAT) is an RDF vocabulary designed to facili-
tate interoperability between data catalogues published on the Web [4]. DCAT
defines a domain-agnostic way of aggregating federated datasets in a cata-

logue (dcat:Catalog). A catalogue aggregates ‘datasets’ (dcat:Dataset). A

dcat:Dataset instance defines the metadata about a dataset and may in turn

either contain other datasets aswell (a dcat:Catalog is an rdfs:subClassOf

dcat:Dataset) or point to one ormore ‘distributions’ (dcat:Distribution).

Distributions essentially represent the actual content of the dataset. Distribu-

tions of the same dataset can differ from one another, e.g., concerning their

data type or version. Once a dcat:Distribution is identified, the actual

data may be retrieved by dereferencing either the dcat:downloadURL (to

retrieve a dump of the dataset) or the dcat:accessURL. Access URLs allow

to access the dataset via a database endpoint. Such endpoints can be further

described via dcat:Service instances, e.g., to indicate whether the service

conforms to a specific standard such as SPARQL (dct:conformsTo) or list

the datasets provided by the service (dcat:servesDataset).

An example RDF description of a DCAT catalogue is given in Listing E.2.

1 <> a dc a t : Cata log , d c a t : Da t a s e t ;

2 dca t : d a t a s e t a rch : 1 a801545 ,

3 arch : ec7d582b ,

4 eng : 3 0 6 1 3 9 9 8 .

Listing E.2: Example DCAT Catalog and Dataset descriptions

Ontological extensions for using the DCAT vocabulary to describe metadata of

AECO project resources have been proposed in [19], such as the Construction

Dataset Context (CDC) ontology [18]. DCAT is the preferred vocabulary for

metadata complying to the FAIR principles [119] (Appendix D).

E.2 Containers - Industry

ISO 19650

ISO 19650 [84], which is the present main international standard on CDEs,

defines the BIM maturity stage 2 as ‘BIM according to the ISO 19650 series’.

The standard considers a CDE as a technical solution and process workflow,

and provides guidelines and requirements for managing information related

to the construction and operation of built assets, focusing on BIM and the

205

use of information containers. This includes categorisation of actors in a

collaborative project team as either ‘appointing party’, ‘lead appointed party’

and ‘appointed party’. Cross-organisational ‘task teams’ are then identified for

the different tasks in the project. In Chapter 3, it is noted that this structure

aligns quite well with a federated network of vaults.

ISO 19650 currently consists of five approved parts:

1. ISO 19650-1:2018 [84] - Concepts and Principles: This part of the stan-

dard sets out the fundamental concepts and principles for managing

information over the whole life cycle of a built asset. It covers topics

like the importance of information management, the roles and responsi-

bilities of various parties, and the use of CDEs.

2. ISO 19650-2:2018 [85] - Delivery Phase of the Assets: This part of the

standard focuses on the delivery phase of a built asset and provides

specific guidance on how information should be managed during the de-

sign and construction stages. It covers aspects like the organisation and

formatting of information, information exchanges, and documentation.

3. ISO 19650-3:2020 [86] - Operational phase of the assets: This part of

the standard is mainly oriented towards appointing parties (e.g., owner

or operator), and helps them to set information requirements during

the operational phase of the asset. That is, the transfer of relevant

information from a Product Information Model (PIM) (delivery phase) to

an Asset Information Model (AIM) (operational phase). This includes the

appointment of actors and organisations with specific responsibilities in

this regard.

4. ISO 19650-4:2022 [87] - Information exchange: This part of the standard

describes the decision-making process regarding the exchange of infor-

mation between the parties involved in a collaborative AECO project.

In particular, the transition of the publication stages defined in Part I is

further documented, i.e., the steps to take to shift from a resource with

status ‘WIP’ to a status ‘shared’ and ‘published’.

5. ISO 19650-5:2020 [88] - Security-minded approach to information man-

agement: This part of the standard focuses on information security work-

flows in cross-organisation collaborations. These workflows contain the

steps to cultivate an overall security mindset across organisations that

deal with information about the built environment. It is not explicitly

targeting CDEs.

206

A sixth part, ‘Health and Safety’ is still under development at the time of

writing. It will be concerned with health and safety information in projects

related to the built environment.

More information and guidance on the ISO 19650 series can be found in [36].

DIN SPEC 91391

The German DIN SPEC 91391 standard [48] is based on the ISO 19650 series

and currently one of the few that further specifies these concepts into a practi-

cal setup of components and functionalities. The specification describes the

functional requirements for a CDE, with a focus on the planning and con-

struction phases. A CDE then ‘realises the requirement of a redundancy-free

availability of all project information and is the project-wide single source
of information for all project participants’ [48]. The standard acknowledges

that there are no standards for BIM level 3 yet, but indicates that any BIM

level 3 ecosystem should also fully cover the requirements for BIM level 1 and

2. A ‘CDE conforming to the DIN SPEC 91391’ is a modular infrastructure

minimally including the following components:

1. a workflow management component (including user management)

2. a data management component

3. an administration component

4. technical facilities and digital infrastructure

The specification emphasises the role of metadata in these various components

and has thereby similar metadata requirements as the FAIR principles: unique

metadata that allows an information container to be addressed, retrieved and

categorised based on specific parameters. Part 2 of the DIN SPEC 91391 [49]

defines the OpenCDE interface for lossless and mutual data exchange between

CDEs. This includes a set of predefined (obligatory) metadata parameters

for the container as well as for its content, such as ID, name, container type,

description, creation details etc. The OpenCDE specification comes with an

API specified in the OpenAPI 3.0 format. The DIN SPEC 91391 OpenCDE is

not to be confused with the OpenCDE initiative set up by buildingSMART [79],

which is a ‘portfolio of API standards’, including the BCF API [29]and the

Documents API [30].

207

ISO 21597 - InformationContainer for LinkedDocumentDelivery

The Information Container for LinkedDocument Delivery (ICDD) is an industry-

initiated standard (ISO 21597) for exchanging heterogeneous asset data during

its life cycle, in the form of multi-models. Multi-model containers for the

AECO industries were devised in context of the German Mefisto project [153],

to facilitate cross-domain resource applicability and storage of resources in

a persistent way, without changing the original media types [152]. A par-

allel predecessor project of ICDD using multi-models is the Dutch COINS

project [118].

ICDD can be situated on the edge of BIM Level 2 and 3, as it makes use of

Linked Data, but at the same time recognises the fact that the industry is still

largely file-oriented. However, making this balance, it cannot fully exploit all

benefits of Linked Data, such as deep linking of identifiers at a data level [65].

The specification is published in two parts, namely Part 1: Containers [89] and
Part 2: Link types [90]:

1. ISO 21597-1:2020 [89] - Container: This part defines the basic structure

of an information container for multi-models.

2. ISO 21597-2:2020 [89] - Link Types: This part specialises the generic

link type defined in Part 1, providing more semantic accuracy on how

resources can be interrelated in a sub-document way.

Data is structured in a ZIP-compressed folder structure (.icdd), containing the

following minimal structure:

• a header file (index.rdf) in the top-level folder, describing the contained

documents (minimally including a local file path (ct:InternalDocument

or URL (ct:ExternalDocument) using the Container ontology [81];

• Linkset file(s) (RDF) describing the links between sub-document identi-

fiers in the containers using the Linkset ontology [82];

• a payload triples folder containing the linkset files;

• a payload documents folder containing the documents in the container;

• an Ontology resources folder, optionally containing RDF documents de-

scribing the Linkset and Container ontologies. Instead of being em-

bedded in the ICDD container, these can be referenced externally as

well.

208

Besides defining a structure for container-based information exchange, the

ICDD standard describes how to link objects together on a sub-document

level (e.g., relating an IFC element to a spreadsheet cell) via GUIDs (Fig-

ure E.1).

Figure E.1: Link between two documents in an ICDD container, con-
nected through an ls:LinkSet

ICDD is essentially a collection of project data, it is not a database itself.

Therefore, reliable querying and linking operations can only happen after

uploading it to a database, exposing the data through an API to be used by

micro-services etc. Example initiatives to create a (centralised) CDE based on

ICDD are documented in Senthilvel et al. [157] and Hagedorn et al. [65].

209

Appendix F

User Interfaces
End-user applications exist in many forms. Some interfaces allow to ‘directly’

interact with data (e.g. a SPARQL or SQL query pane), while other interfaces

allow more indirect interaction, hiding all complexities behind proxy com-

ponents (e.g. 3d viewer, buttons, sliders, Natural Language Processing (NLP)

input etc.). Some interfaces are hybrid as well, e.g. allowing fine-grained

selection of elements with SPARQL, at the same time visualising them in a 3D

viewer. Direct interaction interfaces give full expressivity to the client, but the

end user must be acquainted with the used data model. Indirect interaction

interfaces can optimise the experience for a broader audience, but the expres-

sivity will be hard-coded (e.g. a click on a button will trigger a predefined

query to run under-the-hood).

F.1 Standalone Applications

BIM and CAD authoring tools are desktop-based applications which have

shaped the way people think about computer-aided information creation and

design. Lately, many vendors of BIM authoring tools have shifted focus towards

entire Web ecosystems - CDEs. The status of the authoring tool thereby

changes from being the one-and-only way to interact with a BIM file to being

one of many possible windows to project data in the cloud. In proprietary

CDEs, this data will be primarily exposed through a vendor-specific API, which

can be called by external services. Examples of such infrastructures are the

BIMserver Javascript API [123], Autodesk Platform Services (APS) [5] and the

Trimble Connect API [171]. As such APIs and libraries will have a published

Javascript library, highly specialised, standaloneWeb applications and headless

services that interact with the CDE can be easily created using plain Javascript

or any frontend framework. When higher modularity and reuse of components

is necessary, the concept of micro-frontends will offer a solution.

F.2 Micro-Frontends

In the field of Web interfaces, the concept of micro-frontends has recently

gained traction. Micro-frontends can be considered the frontend equivalent of

micro-services that have been powering the Web for a long time now: a loose-

210

coupled network of small, semi-independent, specialised modules, capable of

addressing larger usage scenarios. Because they are isolated components, they

can be programmed by independent teams in any framework that can be com-

piled to HTML, JavaScript and CSS (e.g. React [113], Angular [61], Vue [202]

or even frameworks that are yet to be launched), and be independently de-

ployed and updated. In this sense, a micro-frontend-based approach is more

future-proof than solutions which rely upon a single front-end framework. Of

course, modules that need to exchange information with one another need

an agreed-upon I/O interface, which can be provided by an ‘application shell’.

This ‘application shell’ then loads remote micro-frontend modules and inte-

grates them into a single Web interface. Micro-frontends have been adopted by

major companies such as Springer, SAP and Ikea [168]. An overview of moti-

vations, benefits and issues of a micro-frontend based architecture is provided

in [135].

One long existing type of micro-frontends are Iframes (Inline Frames) are

HTML elements used to embed another HTML document within the current

document. Each module is encapsulated within its own iframe, meaning that

they operate in separate isolated contexts. Iframes provide strong isolation

between separate modules, making it easier to manage and update individual

modules independently. However, communication and integration between

different iframe modules often require explicit message passing or event-based

mechanisms. The iframes can load independent applications or components

and communicate with each other through defined APIs or message passing

mechanisms.

However, iframes are mainly used for embedding external content. Some-

times a tighter integration between independent micro-frontend modules is

necessary, allowing more direct communication and interaction, and code

sharing. Existing frameworks that allow this are, amongst others, Piral [160],

Webpack Module Federation [186], single-SPA [159] and Bit [38]. Contrasting

with iFrames, these frameworks do not provide a nested browser window to

another HTML page; instead the components code is shared as a module and

‘injected’ in the final interface.

The standard approach for client-side composition of web pages is nowadays

to code local modules and bundle these at buildtime (‘buildtime integration’)

into a set of Javascript, HTML and CSS files. This results in a static integration

of code into a single bundle with predefined dependencies. An advantage of

this way of working is that (syntax) errors are located before the application

211

is running, that the end result is consistent and predictable, and that perfor-

mance optimisation is possible before bundling. On the other hand, ‘run-time

integration’ happens when modules are loaded while the application is already

running, i.e., remote modules can be fetched in an asynchronous way and

then integrated in the overall framework. This approach requires more robust

error-handling procedures, but allows full separation of the modules, which

can be developed and deployed individually on separate servers.

The choice between iframes and a more integrated approach for code-sharing,

as well as the choice between runtime and buildtime integration, depends on

factors such as the specific requirements, architectural preferences, communica-

tion needs, and deployment workflows of the envisaged micro-frontend-based

interface.

Currently, micro-frontends are mostly associated with reducing the workload

for frontend development within companies, due to their independence. To the

author’s knowledge, they have not been applied to address the heterogeneity

of multi-models from the perspective of end user interfaces in a Web-wide

context (see Chapter 7).

212

Appendix G

Identifier Conformance
for Selectors

This appendix lists some frequently occurring resources and their internal sub-

document identifiers. This list is based on the‘fragment selectors’ mentioned

in WADM [149] (Table G.1). Some extensions proposed by the author of

this dissertation with selectors for AECO-related media types are listed in

Table G.2.

Name Fragment Specification (dct:conformsTo) Description (rdf:value)
HTML http://tools.ietf.org/rfc/rfc3236 Example: namedSection

PDF http://tools.ietf.org/rfc/rfc3778 Example: page=10&viewrect=50,50,640,480

Plain Text http://tools.ietf.org/rfc/rfc5147 Example: char=0,10

XML http://tools.ietf.org/rfc/rfc3023 Example: xpointer(/a/b/c)

RDF/XML http://tools.ietf.org/rfc/rfc3870 Example: namedResource

CSV http://tools.ietf.org/rfc/rfc7111 Example: row=5-7

Media http://www.w3.org/TR/media-frags/ Example: xywh=50,50,640,480

SVG http://www.w3.org/TR/SVG/ Example: svgView(viewBox(50,50,640,480))

Table G.1: Fragment Selector specifications for various file types.
Source: [149].

Name Fragment Specification (dct:conformsTo) Description (rdf:value)

IFC

https://technical.buildingsmart.org/

resources/ifcimplementationguidance/ifc-guid/

Example: 1xS3BCk291UvhgP2dvNMQJ

RDF http://www.w3.org/1999/02/22-rdf-syntax-ns# Example: http://example.org/building#room1

Images https://iiif.io/api/image/3.0/ Example: {image-URL}/pct:20,10,25,55/max/0/default

Table G.2: Fragment Selector details for various file types as proposed
in this dissertation.

213

Appendix H

Vocabulary: ConSolid
The namespace of the ConSolid vocabulary is https://w3id.org/consolid#.

1 # Ontology publication details

2 <https://w3id.org/consolid#> rdf:type owl:Ontology ;

3 owl:versionIRI <urn:absolute:0.0.1> ;

4 <http://purl.org/dc/terms/contributor> "Erik Mannens" , "Jakob Beetz"

, "Pieter Pauwels" ;

5 <http://purl.org/dc/terms/creator> "Jeroen Werbrouck" ;

6 <http://purl.org/dc/terms/issued> "2022-02-01T12:00:00"^^xsd:dateTime

;

7 <http://purl.org/dc/terms/license> <https://creativecommons.org/

licenses/by/1.0/> ;

8 <http://purl.org/dc/terms/title> "consolid vocabulary" .

9

10 # Object Properties

11 :aggregates rdf:type owl:ObjectProperty ;

12 rdfs:comment "The consolid:Reference-s or other consolid:

ReferenceCollection-s aggregated by this consolid:ReferenceCollection

." ;

13 rdfs:domain :ReferenceCollection ;

14 rdfs:label "aggregates" .

15

16 :hasSatellite rdf:type owl:ObjectProperty ;

17 rdfs:domain <http://www.w3.org/ns/dcat#Dataset> ;

18 rdfs:range :Satellite ;

19 rdfs:label "has Satellite"@en .

20

21 :hasServiceRegistry rdf:type owl:ObjectProperty ;

22 rdfs:subPropertyOf :hasRegistry ;

23 rdfs:domain :PartialProject ;

24 rdfs:range :ServiceRegistry ;

25 rdfs:label "has service registry"@en .

26

27 :hasSparqlSatellite rdf:type owl:ObjectProperty ;

28 rdfs:subPropertyOf :hasSatellite ;

29 rdfs:range :SparqlSatellite ;

30 rdfs:label "has SPARQL satellite"@en .

31

32 :hasShapeCollection rdf:type owl:ObjectProperty ;

33 rdfs:domain dcat:Catalog ;

34 rdfs:range :ShapeCollection ;

35 rdfs:subPropertyOf dcat:dataset ;

36 rdfs:label "has rule collection"@en ;

37 rdfs:comment "The rule collection of a catalog in the ConSolid

ecosystem."@en .

38

39 # Classes

40 :Project rdf:type owl:Class ;

41 rdfs:subClassOf <http://www.w3.org/ns/dcat#Catalog> ;

214

https://w3id.org/consolid#

42 rdfs:comment "A ConSolid Project is a DCAT Catalog that resolves to a

federated multi-model. It may be recursive, i.e. ConSolid Projects

may ’aggregate’ each other via dcat:dataset" ;

43 rdfs:label "Project" .

44

45 :ProjectResource rdf:type owl:Class ;

46 rdfs:subClassOf <http://www.w3.org/ns/dcat#Dataset> ;

47 rdfs:comment "A Project Resource is a dcat:Dataset describing project

information such as BIM models, project plans, etc." ;

48 rdfs:label "Project Resource" .

49

50 :ValidationResource rdf:type owl:Class ;

51 rdfs:subClassOf <http://www.w3.org/ns/dcat#Dataset> ;

52 rdfs:comment "A Validation Resource is a dcat:Dataset describing a

resource with the purpose of validation." ;

53 rdfs:label "Validation Resource" .

54

55 :ReferenceRegistry rdf:type owl:Class ;

56 rdfs:subClassOf <http://www.w3.org/ns/dcat#Dataset> ;

57 rdfs:comment "A Reference Registry is a dcat:Dataset describing a

resource containing Reference Collections (i.e. ’ConSolid linksets’)

." ;

58 rdfs:label "Reference Registry" .

59

60 :ReferenceCollection rdf:type owl:Class ;

61 rdfs:comment "A Reference Collection collects digital references of

the same ’abstract’ concept. It may be seen as the top-level

identifier of this concept as well." ;

62 rdfs:label "Reference Collection" .

63

64 :Reference rdf:type owl:Class ;

65 rdfs:comment "A Reference is the digital manifestation of an abstract

concept." ;

66 rdfs:label "Reference" .

67

68 :ShapeCollection rdf:type owl:Class ;

69 rdfs:subClassOf dcat:Catalog ;

70 rdfs:comment "A Shape Collection is a DCAT Catalog exclusively

containing shapes." ;

71 rdfs:label "Shape Collection" .

72

73 :Satellite rdf:type owl:Class ;

74 rdfs:subClassOf <http://www.w3.org/ns/dcat#DataService> ;

75 rdfs:comment "A consolid:Satellite is a highly trusted service,

connected to a limited set of Solid Pods, mostly just one. It may

function as an alternative storage mechanism, providing specific

access to (nested) ldp:Containers, dcat:Datasets, dcat:Catalogs or

dcat:Distributions. Satellites can also be thought of as ’digital

assistents’ to a Pod, aiding in synchronisation, data management etc.

When working on a Solid Pod, it must be able to check access rights

." ;

76 rdfs:label "Satellite" .

77

78 :SparqlSatellite rdf:type owl:Class ;

79 rdfs:subClassOf :Satellite ;

80 rdfs:comment "A SPARQL Satellite is a specifiic sort of satellite,

mirroring RDF resources on the Pod and allowing to query their union

with SPARQL. The satellite should check the access rights for every

215

result it acquires." ;

81 rdfs:label "SPARQL satellite" .

82

83 :RuntimeProperty rdf:type owl:Class ;

84 rdfs:comment "A Runtime Property is a property that cannot be

explicitly present in the data, but needs to be generated dynamically

. E.g. when in order to conform to a specific shape, a dataset must

refer to a project ID, but in ConSolid a dataset may be part of

multiple projects. In this case, the project ID must be generated

dynamically." ;

85 rdfs:label "Runtime Property" .

Listing H.1: The ConSolid Vocabulary. https://w3id.org/consolid#.

216

https://w3id.org/consolid#

Appendix I

Vocabulary: PBAC
The namespace of the PBAC vocabulary is https://w3id.org/pbac#.

1 # Ontology publication details

2 <https://w3id.org/pbac#> rdf:type owl:Ontology ;

3 owl:versionIRI <urn:absolute:0.0.1> ;

4 <http://purl.org/dc/terms/contributor> "Erik Mannens" , "Jakob Beetz" ,

"Pieter Pauwels" ;

5 <http://purl.org/dc/terms/creator> "Jeroen Werbrouck" ;

6 <http://purl.org/dc/terms/issued> "2023-09-29T12:00:00"^^xsd:dateTime ;

7 <http://purl.org/dc/terms/license> <https://creativecommons.org/licenses

/by/1.0/> ;

8 <http://purl.org/dc/terms/title> "PBAC vocabulary" .

9

10 # Object Properties

11 :visitorRequirement rdf:type owl:ObjectProperty ;

12 rdfs:domain :DynamicRule ;

13 rdfs:range :Requirement ;

14 rdfs:label "visitor requirement"@en ;

15 rdfs:comment "The visitor requirement of a dynamic rule."@en .

16

17 :dataRequirement rdf:type owl:ObjectProperty ;

18 rdfs:domain :DynamicRule ;

19 rdfs:range :Requirement ;

20 rdfs:label "data requirement"@en ;

21 rdfs:comment "The data requirement of a dynamic rule."@en .

22

23 :hasTrustedAuthority rdf:type owl:ObjectProperty ;

24 rdfs:domain :Requirement ;

25 rdfs:range :TrustedAuthority ;

26 rdfs:label "has trusted authority"@en ;

27 rdfs:comment "The trusted authority of a ."@en .

28

29 # Classes

30 :RuleCollection rdf:type owl:Class ;

31 rdfs:subClassOf dcat:Catalog ;

32 rdfs:label "Rule collection"@en ;

33 rdfs:comment "A collection of rules."@en .

34

35 :CredentialResource rdf:type owl:Class ;

36 rdfs:label "Credential resource"@en ;

37 rdfs:subClassOf dcat:Dataset ;

38 rdfs:comment "A DCAT dataset containing the metadata about a set of

signed statements that can be used for access control."@en .

39

40 :AccessResource rdf:type owl:Class ;

41 rdfs:label "Access resource"@en ;

42 rdfs:subClassOf dcat:Dataset ;

43 rdfs:comment "A DCAT dataset containing the metadata of a PBAC dynamic

rule."@en .

217

https://w3id.org/pbac#

44

45 :TrustedAuthority rdf:type owl:Class ;

46 rdfs:label "Trusted authority"@en ;

47 rdfs:comment "A trusted authority for making statements about another

entity."@en .

48

49 :Requirement rdf:type owl:Class ;

50 rdfs:label "Requirement"@en ;

51 rdfs:comment "A requirement for accessing a resource."@en .

52

53 :DynamicRule rdf:type owl:Class ;

54 rdfs:label "Dynamic rule"@en ;

55 rdfs:comment "An access constrol rule in the PBAC framework, which can

check the properties of both the requester and the requested

resource."@en .

56

57 :Visitor rdf:type owl:Class ;

58 rdfs:label "Visitor"@en ;

59 rdfs:comment "An agent requesting access to a resource."@en .

60

61 :Issuer rdf:type owl:Class ;

62 rdfs:label "Issuer"@en ;

63 rdfs:comment "An agent issuing a statement about another entity."@en .

Listing I.1: The PBAC Vocabulary. https://w3id.org/pbac#.

218

https://w3id.org/pbac#

Appendix J

Vocabulary: Mifesto
The namespace of the Mifesto vocabulary is https://w3id.org/mifesto#.

1 # Ontology publication details

2 <https://w3id.org/mifesto#> rdf:type owl:Ontology ;

3 owl:versionIRI <urn:absolute:0.0.1> ;

4 <http://purl.org/dc/terms/contributor> "Erik Mannens" , "Jakob Beetz"

, "Pieter Pauwels" ;

5 <http://purl.org/dc/terms/creator> "Jeroen Werbrouck" ;

6 <http://purl.org/dc/terms/issued> "2023-09-29T12:00:00"^^xsd:dateTime

;

7 <http://purl.org/dc/terms/license> <https://creativecommons.org/

licenses/by/1.0/> ;

8 <http://purl.org/dc/terms/title> "Mifesto vocabulary" .

9

10 # Object Properties

11 :code rdf:type owl:ObjectProperty ;

12 rdfs:subClassOf dcat:accessURL ;

13 rdfs:comment "The URL of the loadable code of a micro frontend module

." ;

14 rdfs:domain dcat:Distribution ;

15 rdfs:label "code" .

16

17 :readsIdentifier rdf:type owl:ObjectProperty ;

18 rdfs:comment "What kind of identifier the module can interpret." ;

19 rdfs:label "reads identifier" .

20

21 :writesIdentifier rdf:type owl:ObjectProperty ;

22 rdfs:comment "What kind of identifier the module can write." ;

23 rdfs:range :IdentifierDefinition ;

24 rdfs:domain dcat:Distribution ;

25 rdfs:label "writes identifier" .

26

27 :compatibleMedia rdf:type owl:ObjectProperty ;

28 rdfs:comment "The media type that the module can handle." ;

29 rdfs:range :IdentifierDefinition ;

30 rdfs:domain dcat:Distribution ;

31 rdfs:label "compatible media" .

32

33 :usesVocabulary rdf:type owl:ObjectProperty ;

34 rdfs:comment "The vocabulary that the module uses for semantic

enrichment." ;

35 rdfs:domain dcat:Distribution ;

36 rdfs:range owl:Ontology ;

37 rdfs:label "uses vocabulary" .

38

39 :hasModule rdf:type owl:ObjectProperty ;

40 rdfs:comment "The module that is used in the interface." ;

41 rdfs:domain :Component ;

42 rdfs:range :Manifest ;

219

https://w3id.org/mifesto#

43 rdfs:label "has module" .

44

45 :hosts rdf:type owl:ObjectProperty ;

46 rdfs:comment "The module that is used in the interface." ;

47 rdfs:domain :OrganisationalComponent ;

48 rdfs:range :Component ;

49 rdfs:label "hosts" .

50

51 :hasRoute rdf:type owl:DatatypeProperty ;

52 rdfs:comment "The route resolving to a mifesto:Page instance." ;

53 rdfs:domain :Page ;

54 rdfs:label "has route" .

55

56 :hasSPARQL rdf:type owl:DatatypeProperty ;

57 rdfs:comment "Links a Bundler variable to a SPARQL query that is used

to retrieve the data from the local RDF store." ;

58 rdfs:label "has SPARQL" .

59

60 :hasDimensionSetting rdf:type owl:ObjectProperty ;

61 rdfs:comment "The dimension setting that is used for a Page." ;

62 rdfs:domain :Component ;

63 rdfs:range :DimensionSetting ;

64 rdfs:label "has dimension setting" .

65

66 :hasDimension rdf:type owl:ObjectProperty ;

67 rdfs:comment "The dimension that is used for a module hosted by a Page

." ;

68 rdfs:domain :Dimension ;

69 rdfs:range owl:DatatypeProperty ;

70 rdfs:label "has dimension" .

71

72 :initialColumns rdf:type owl:DatatypeProperty ;

73 rdfs:comment "The initial number of columns for a grid dimension." ;

74 rdfs:domain :GridDimension ;

75 rdfs:label "initial columns" .

76

77 :initialRows rdf:type owl:DatatypeProperty ;

78 rdfs:comment "The initial number of rows for a grid dimension." ;

79 rdfs:domain :GridDimension ;

80 rdfs:label "initial rows" .

81

82 :isActive rdf:type owl:DatatypeProperty ;

83 rdfs:comment "Indicates whether a resource is currently activated in

the interface or not." ;

84 rdfs:label "is active" .

85

86 # Classes

87 :Store rdf:type owl:Class ;

88 rdfs:subClassOf dcat:Catalog ;

89 rdfs:comment "A store is a dereferenceable, federated catalog pointing

to other stores, configurations and manifests of Mifesto modules." ;

90 rdfs:label "Store" .

91

92 :Configuration rdf:type owl:Class ;

93 rdfs:subClassOf dcat:Catalog ;

94 rdfs:comment "A Configuration is a semantic description of a GUI

consisting of federated micro frontend modules." ;

95 rdfs:label "Configuration" .

220

96

97 :Manifest rdf:type owl:Class ;

98 rdfs:comment "A Manifest is the semantic description of a micro

frontend module.";

99 rdfs:subClassOf dcat:Dataset ;

100 rdfs:label "Manifest" .

101

102 :Component rdf:type owl:Class ;

103 rdfs:comment "A Component indicates that something is to be loaded in

the interface of a particular configuration." ;

104 rdfs:label "Component" .

105

106 :Page rdf:type owl:Class ;

107 rdfs:subClassOf dcat:Catalog ;

108 rdfs:comment "Class indicating that something is to be a separate page

in the interface of a particular configuration." ;

109 rdfs:label "Page" .

110

111 :IdentifierDefinition rdf:type owl:Class ;

112 rdfs:label "Identifier Definition" .

113

114 :OrganisationalComponent rdf:type owl:Class ;

115 rdfs:subClassOf :Component ;

116 rdfs:comment "Class indicating that a resource is an organisational

component, i.e it does not have any content of its own, but requires

child components" ;

117 rdfs:label "Organisational Component" .

118

119 :DimensionSetting rdf:type owl:Class ;

120 rdfs:comment "Class indicating that a resource is a dimension setting

in the interface" ;

121 rdfs:label "Dimension Setting" .

122

123 :GridDimensionSetting rdf:type owl:Class ;

124 rdfs:comment "Class indicating that a resource is a grid dimension

setting, i.e. there must be a row-column layout for this Component or

Page " ;

125 rdfs:subClassOf :DimensionSetting ;

126 rdfs:label "Grid Dimension Setting" .

127

128 :Dimension rdf:type owl:Class ;

129 rdfs:comment "A Dimension contains a semantic description of the

dimensions of an module." ;

130 rdfs:label "Dimension" .

131

132 :GridDimension rdf:type owl:Class ;

133 rdfs:comment "A Grid Dimension contains a semantic description of the

dimensions of an module, as a grid definition with rows and columns."

;

134 rdfs:subClassOf :Dimension ;

135 rdfs:label "Grid Dimension" .

Listing J.1: The Mifesto Vocabulary. https://w3id.org/mifesto#.

221

https://w3id.org/mifesto#

	Summary (English)
	Samenvatting (Dutch)
	Zusammenfassung (German)
	List of Acronyms
	Introduction
	Research Context
	Assumptions and Research Questions
	Dissertation Outline
	Research Approach and Limitations
	Main Contributions
	Audience
	Case Study
	Publications

	Background and Rationale
	The Digital Built Environment
	Common Data Environments
	Web-based BIM and FAIR data
	User interaction with Multi-models
	Conclusion
	Related Publications

	Storage and Discovery of Federated Projects
	Characteristics of the ecosystem
	Technologies and Design Choices
	Data Patterns
	Project Configurations
	Case study: iGent Tower
	Implementation
	Conclusion
	Related Publications

	Resource Linking and Annotation
	Cross-document Links
	Annotation of digital documents
	Reference Collections
	Case Study: iGent Tower
	Implementation
	Conclusion
	Related Publications

	Data Validation
	Shape Collections
	Metadata Validation
	Extended Access Control Validation
	Conclusion
	Related Publications

	Middleware Services
	Components
	Interactions between vaults and middleware
	Functional satellites: the ConSolid API
	RDF Aggregators
	Mapping ConSolid Projects to industry standards
	Case Study: ISO 21597 - ICDD
	Case Study: BCF API
	Conclusion
	Related Publications

	Interfaces for Linking Federated Multi-Models
	Characteristics
	Components
	The Mifesto vocabulary
	Mifesto Stores
	Proof-of-Concept
	Conclusion

	Evaluation
	Research Results
	FAIR evaluation
	Limitations

	Conclusion
	Contributions
	Findings
	Future Research
	Valorisation

	References
	Prefixes and Namespaces
	The Semantic Web
	The Semantic Web and Linked Data
	Semantic Web Technologies for the Built Environment
	Validating Linked Data

	Solid
	FAIR Data Principles
	Containers
	Containers - Semantic Web
	Containers - Industry

	User Interfaces
	Standalone Applications
	Micro-Frontends

	Identifier Conformance for Selectors
	Vocabulary: ConSolid
	Vocabulary: PBAC
	Vocabulary: Mifesto

