
The Tale of HORTON: Lessons Learned in a Decade of Scientific Software

Development

Matthew Chan,1, a) Toon Verstraelen,2, b) Alireza Tehrani,3 Michelle Richer,1 Xiaotian

Derrick Yang,1 Taewon David Kim,1 Esteban Vöhringer-Martinez,4, c) Farnaz

Heidar-Zadeh,3, d) and Paul W. Ayers1, e)

1)Department of Chemistry and Chemical Biology, McMaster University, Hamilton,

Ontario, L8S-4L8, Canada
2)Center for Molecular Modeling (CMM), Ghent University,

Technologiepark-Zwijnaarde 46, B-9052, Zwijnaarde, Belgium
3)Department of Chemistry, Queen’s University, Kingston, Ontario, K7L-3N6,

Canada
4)Departamento de Físico Química, Facultad de Ciencias Químicas,

Universidad de Concepción, 4070371 Concepción, Chile

1

Abstract: HORTON is a free and open-source electronic-structure package written

primarily in Python 3 with some underlying C++ components. While HORTON’s

development has been mainly directed by the research interests of its leading con-

tributing groups, it is designed to be easily modified, extended, and used by other

developers of quantum chemistry methods or post-processing techniques. Most im-

portantly, HORTON adheres to modern principles of software development, including

modularity, readability, flexibility, comprehensive documentation, automatic testing,

version control, and quality-assurance protocols. This article explains how the prin-

ciples and structure of HORTON have evolved since we started developing it more than

a decade ago. We review the features and functionality of the latest HORTON re-

lease (version 2.3) and discuss how HORTON is evolving to support electronic structure

theory research for the next decade.

Keywords: quantum chemistry software, computational chemistry, Hartree-Fock

method, model hamiltonians, Density Functional Theory (DFT) methods, numer-

ical integration grids, periodic boundary conditions, Gaussian integrals, atoms-in-

molecules partitioning schemes, Hirshfeld partitioning, population analysis, electro-

static potential fitting, parsing and converting computational chemistry file formats,

theoretical chemistry Python library

a)Co-first authors.
b)Co-first authors.; Toon Verstraelen: Toon.Verstraelen@ugent.be
c)Esteban Vöhringer-Martinez: evohringer@udec.cl
d)Farnaz Heidar-Zadeh: farnaz.heidarzadeh@queensu.ca
e)Paul W. Ayers: ayers@mcmaster.ca

2

mailto:Toon.Verstraelen@ugent.be
mailto:evohringer@udec.cl
mailto:farnaz.heidarzadeh@queensu.ca
mailto:ayers@mcmaster.ca

I. INTRODUCTION

HORTON is a Helpful Open-source Research TOol for N-fermion systems, written pri-

marily in Python to ensure the readability, flexibility, and ease-of-use of the code. HORTON

provides a platform for 1) testing new ideas for the quantum many-body problem at a rea-

sonable computational cost and 2) accessing state-of-the-art quantum chemistry methods

which have not yet entered the mainstream. HORTON is primarily focused on molecular elec-

tronic structure theory, but it has limited support for periodic boundary conditions and

post-processing calculations, and it is being extended to include model Hamiltonians and

nucleons.1–3

While there are many quantum chemistry packages, there are relatively few packages that

adopt the free and open-source software development model. Examples include Erkale4,

Psi45, OpenMolcas6, NWChem7, Dalton8, GQCP9, Fermi.jl10, Serenity11, and JuliaChem12.

Among these, only HORTON, PyQuante, UquanteChem, Slowquant, PySCF13, and PyBEST14,15

(a spin-off of an earlier version of HORTON) are primarily written in Python. While some of

these packages (especially PySCF) have superior functionality and performance to HORTON,

HORTON’s emphasis on thorough documentation, comprehensive testing, and modular and

readable source code—required because it has never had any dedicated staff/researchers

and because it emerged from intercontinental collaboration, rather than a single group’s

research code—is unique. The precept of HORTON, encapsulated in its name, was to be a

helpful research tool: fast enough to be a useful computational tool, but designed to be

helpful to developers who wish to implement entirely new quantum chemistry approaches

or interface with other, external, packages. This vision has been the lodestar of HORTON’s

developers from the very beginning.

Although HORTON has existed in some form for nearly a decade, it has constantly evolved

and has recently been reenvisioned. After reviewing the history of HORTON in section II,

section III presents our guiding principles, section IV covers the main modules of HORTON 2

with examples, and section V provides a perspective on the future of HORTON 3. We refrain

from including installation guidelines and any other technical details that can easily become

outdated over time and instead, we invite our readers to consult HORTON’s website for further

information.

3

II. HISTORY OF HORTON

HORTON emerged in the summer of 2011 as a result of the close collaboration between Toon

Verstraelen and Paul Ayers. Specifically, parameterizing molecular mechanics force fields di-

rectly from ab initio calculations required building a flexible and easy-to-modify constrained

density-functional theory (DFT) program,16–23 and the available constrained-DFT software

was difficult to use/modify and had substantial convergence difficulties.7,24 This motivated

the creation of HORTON 1.x, which was almost single-handedly written by T. Verstraelen in

Python 2 and C++. Python was chosen as the primary language of HORTON to ensure the

readability and flexibility of the program, and because the primary purpose of HORTON has

always been to rapidly prototype new ideas. Even though many good software engineering

practices (Git version control, automatic testing, and documentation) were already present

in HORTON 1.x, it violated modularity (e.g., mainly through the Molecule class, which was

used throughout the code).

HORTON 2 was a response to the expansion of the Ayers group’s interests to include

wavefunction-based approaches to electron correlation,25–31 Supporting wavefunction-based

methods led to a need for increased performance, and in early versions of HORTON 2, linear

algebra factories were used to ensure that most computational bottlenecks were relegated

to underlying C++ code. Unfortunately, the LinearAlgebraFactory class also reached its

tentacles into all facets of the code, and in our zeal to rapidly prototype new methods,

the LinearAlgebraFactory class became a dumping ground for linear algebraic operations,

growing quickly beyond its original purpose, which made it difficult to retroactively repair.

There was also an alarming tendency to write C++ or Cython code instead of redesigning

algorithms for efficiency with NumPy32 vectorization. This combination of languages made

the code difficult to understand, compile and maintain, and they were aggravated by the

paucity of code quality tools for Cython.

Because of its increased complexity and scope, to avoid compromising our design prin-

ciples, HORTON 2 adopted continuous integration, continuous deployment, and protocols for

code-quality. We improved our development practices by expanding HORTON’s documen-

tation and incorporating code review of pull requests. Some quality-assurance tasks were

automated, including testing for style, documentation, test-coverage, and correctness. To

make it accessible, we released HORTON 2 on various software repositories (e.g., conda). To-

4

day, the HORTON library is automatically built on Azure by the Conda-Forge project and

users can install it with one command on the terminal.

The deprecation of Python 2.7 on January 1st, 2020 necessitated large-scale modifi-

cations to the code base. Thanks to the plethora of unit tests implemented, we could

complete Python 3 porting relatively quickly with reasonable confidence that no bugs

were introduced. In releasing HORTON 2.3, we also increased modularity by removing the

LinearAlgebraFactory and replacing it directly with the underlying NumPy operations.

This change has drawbacks (if developers are not careful, unnecessary copies of arrays can be

formed) but we decided that the advantages (increased modularity and decreased potential

for developer misuse) were worth the trade-off. As a part of this change, we simplified the

code by removing some post-Hartree-Fock methods that relied heavily on bespoke features of

the LinearAlgebraFactory, like the antisymmetric product of 1-electron reference-orbital

geminals (AP1roG).29 This pruning was necessary to ensure HORTON 2.3 was aligned with our

design principles and to accommodate the more general framework for wavefunction-based

methods in HORTON 3.33

III. OUR DESIGN PRINCIPLES

HORTON is designed to be a helpful framework for rapidly prototyping methods and testing

ideas, together with utilities that ensure the resulting implementation is not too inefficient.

Being a research tool, the current focus of HORTON is ab initio electronic structure theory

methods and post-processing (conceptual) quantum chemistry calculations. Unlike quan-

tum chemistry packages which are primarily intended to facilitate computational studies,

HORTON is not designed to achieve bleeding-edge performance: readability, extensibility, and

modifiability are often prioritized over computational efficiency and code compactness when

trade-offs are essential. HORTON has a gentle learning curve, with sensible default parameters

that can be overridden by advanced users. HORTON is well-documented and well-commented,

both for users and developers. It includes tools to ensure that test coverage and code quality

remain high while facilitating development by contributors who are less technically savvy.

HORTON is written primarily in Python because its simple syntax welcomes novice pro-

grammers. C++ is occasionally used for performance-critical features, but we strive to

confine C++ code to pre-packaged libraries. In addition, HORTON strives to use simple

5

Pythonic coding styles wherever possible, and resorts to invasive performance optimization

(caching, C++, ...), which might impair code transparency, only after profiling reveals a

computational bottleneck. HORTON is, and always will be, free and open source. The HORTON

development team welcomes and supports new contributions in accordance with our Code

of Conduct.

HORTON can be used in two ways: as part of a larger Python program or as a stand-alone

library. Retaining this flexibility is a fundamental design principle of HORTON. For example,

when HORTON’s functionality is limited or its computational requirements are prohibitive,

HORTON can be used alongside other software packages.

IV. MODULES AND EXAMPLES

As described below, HORTON is organized into modules. Lower-level modules provide

basic functionality and are combined with high-level modules like the modules for perform-

ing Hartree-Fock/Kohn-Sham density-functional theory (DFT) calculations, evaluating the

electrostatic potential, and computing atomic charges and other chemical concepts. These

modules are briefly exemplified below, but we delegate comprehensive documentation to

HORTON’s website.

A. IO: Input and Output

The input and output (IO) module is used for parsing, storing, and writing a wide va-

riety of computational chemistry file formats, and is designed to be easily extensible. This

module mediates HORTON’s interoperability with external software, including other electronic-

structure and post-processing software packages. In the simplest case, one can use HORTON

to convert between different file formats, which can be directly done on a command line:

1 $ horton -convert.py water_hfs_321g.fchk water.xyz

Listing 1. Convert file formats using command-line functionality.

Using HORTON as a Python library, the IO module is used to parse supported file formats

to conveniently access information therein and write alternative file formats.

1 from horton import *

6

2

3 # Load molecule from an FCHK file

4 mol = IOData.from_file(context.get_fn("test/water_b3lyp_ccpvtz.fchk"))

5

6 # Get information contained in FCHK file

7 print("Energy (a.u.): ", mol.energy)

8 print("HOMO Energy: ", mol.orb_alpha.homo_energy)

9 print("LUMO Energy: ", mol.orb_alpha.lumo_energy)

10 print("Dipole Moment: ", mol.dipole_moment)

11 print("NPA Charges: ", mol.npa_charges)

12 print("ESP Charges: ", mol.esp_charges)

13 print("Atomic Numbers: ", mol.numbers)

14 print("Atomic Coordinates (a.u.):")

15 print(mol.coordinates)

16

17 # Compute molecular mass and store it as an IOData instance attribute

18 mol.mass = sum([periodic[number].mass for number in mol.numbers])

19 print(f"Molecular Mass (amu): {mol.mass / amu: .5f}")

20

21 # Write molecule into MOLDEN file

22 mol.to_file("water_b3lyp_ccpvtz.molden")

Listing 2. Parse and convert file formats.

B. GBasis: Gaussian Basis Evaluation and Analytical Integration

This module is responsible for evaluations and manipulations involving Gaussian basis

functions. At the simplest level, Gbasis computes the values of basis functions and var-

ious molecular descriptors (including the electron density and its derivatives, electrostatic

potential, and kinetic energy density) on specified arrays of (grid) points. Gbasis also

computes integrals over Gaussian basis functions, including overlap, moment, and one- and

two-electron integrals (including various integrals associated with range-separated DFT-

7

functionals). Underlying this implementation is Ed Valeev’s widely used Obara-Saika code,

LibInt34. This introduces a dynamically linked dependency into HORTON and we have inter-

faced with it using Cython.

1 import numpy as np

2 from horton import *

3

4 # Set up a molecule and define basis set

5 coordinates = np.array ([[1.16 , 0.0, 0.0], [0.0, 0.0, 0.0], [-1.16, 0.0,

0.0]]) * angstrom

6 numbers = np.array([8, 6, 8])

7 obasis = get_gobasis(coordinates , numbers , "def2 -tzvpd")

8

9 # compute electronic kinetic energy integrals and then add electron

nuclear attraction itegrals

10 one_mo = obasis.compute_kinetic ()

11 obasis.compute_nuclear_attraction(coordinates , numbers.astype(float),

output=one_mo)

12 print("one_mo shape = ", one_mo.shape)

13

14 # Compute two -electron repulsion integrals

15 two_mo = obasis.compute_electron_repulsion ()

16 print("two_mo shape = ", two_mo.shape)

17

18 # Compute nuclear -nuclear repulsion energy

19 core_energy = compute_nucnuc(coordinates , numbers.astype(float))

20

21 # Make an instance of IOData and write to a FCIDUMP file

22 data = IOData(one_mo=one_mo , two_mo=two_mo , core_energy=core_energy , nelec

=20, ms2=0)

8

23 data.to_file("hamiltonian_ao.FCIDUMP")

Listing 3. Calculate and write 1- and 2-electron integrals of carbon dioxide in Def2-TZVPD basis.

C. Grid: Numerical Integration and Visualiztion

For molecular numerical integration, HORTON primarily uses atom-centered Becke-Lebedev35,36

integration grids. This is specifically used in evaluating exchange-correlation functions in

DFT (section IVD) and atoms-in-molecule analysis (section IVE). In this approach, the

molecular grid is composed of the union of weighted atom-centered grids. The atomic grids

are built from a one-dimensional radial grid and a Lebedev-Laikov angular grid; users choose

an atomic grid specification through the agspec argument by:

1. A string with the rname:rmin:rmax:nrad:nll format. Here rname specifies the type

of radial grid (linear, exp, or power), rmin and rmax specify the first and last radial

grid point (in angstrom), nrad is the number of radial grid points, and nll is the

number of points for angular Lebedev-Laikov grid. Alternatively, the user can provide

(rgrid, nll) tuple where rgrid is an instance of RadialGrid. In this flexible frame-

work, the user can even specify a different atomic integration grid for each element or

implement additional radial/angular grids.

2. For ease of use, HORTON also provides built-in optimized (a.k.a. pruned) Becke-Lebedev

atomic integration grids; these can be easily invoked by setting the agspec argument

equal to coarse, medium, fine, veryfine, ultrafine, or insane ; the expected ac-

curacy from these built-in grids is documented on HORTON’s website.

1 import h5py as h5

2 import numpy as np

3 from horton import *

4

5 # Load the Gaussian FCHK file from HORTON 's test data directory

6 fn_fchk = context.get_fn("test/water_b3lyp_ccpvtz.fchk")

7 mol = IOData.from_file(fn_fchk)

9

8

9 # Initialize the numerical grid

10 grid = BeckeMolGrid(mol.coordinates , mol.numbers , mol.pseudo_numbers ,

agspec="fine")

11 print("Number of Grid Points = ", grid.size)

12

13 # Get the spin -summed density matrix

14 dm_full = mol.get_dm_full ()

15

16 # Compute the density (integrand) on the grid points and integrate it

17 rho = mol.obasis.compute_grid_density_dm(dm_full , grid.points)

18 print("Integrate Electron Density: ", grid.integrate(rho))

19

20 # Compute the expectation value of |r| by integrating product of all

arguments (integrand)

21 r = np.sum(grid.points **2, axis =1) **0.5

22 expt_r = grid.integrate(rho , r)

23 print(f"Expectation Value of |r|: {expt_r}")

24

25 # Save grid into an HDF5 file for future use

26 with h5.File("water_b3lyp_ccpvtz_molgrid", "w") as fn:

27 grid.to_hdf5(fn)

Listing 4. Integrate electron density on a Becke-Lebedev grid and compute expectation value of r.

The Becke-Lebedev integration grid can be saved as an HDF5 file to be passed as an

argument to the command-line scripts (see the example in section IVE) or loaded in an-

other script using BeckeMolGrid.from_hdf5 constructor. HORTON also supports constructing

Gaussian Cube grids for visualization (e.g., molecular iso-density surfaces) and electrostatic

potential fitting in section IV F.

10

D. Meanfield: Self-Consistent-Field (SCF) calculations

This module performs Hartree-Fock and Kohn-Sham DFT calculations. As such, it is

built on the previously-described low-level modules. Meanfield is organized into classes

that represent various energy contributions. Density functional theory (DFT) functionals

are provided by LibXC37, which is dynamically linked just like LibInt234.

The simplest usage of this module is to perform a Hartree-Fock calculation. Because the

Hamiltonian is constructed as a list of terms, each of which is implemented in an object-

oriented style, it is easy to test new ideas. A variety of SCF solvers are implemented,

including conventional (Pulay) DIIS38, EDIIS39, and optimal damping40.

1 import numpy as np

2 from horton import *

3

4 # Construct a molecule from scratch (coordinates should be given in a.u.)

5 mol = IOData(title="carbon dioxide")

6 mol.coordinates = np.array ([[1.16 , 0.0, 0.0], [0.0, 0.0, 0.0], [-1.16,

0.0, 0.0]]) * angstrom

7 mol.numbers = np.array([8, 6, 8])

8

9 # Create a Gaussian basis set

10 obasis = get_gobasis(mol.coordinates , mol.numbers , "def2 -tzvpd")

11

12 # Compute Gaussian integrals in AO basis

13 olp = obasis.compute_overlap ()

14 kin = obasis.compute_kinetic ()

15 na = obasis.compute_nuclear_attraction(mol.coordinates , mol.pseudo_numbers

)

16 er = obasis.compute_electron_repulsion ()

17

18 # Construct the restricted HF effective Hamiltonian

19 external = {"nn": compute_nucnuc(mol.coordinates , mol.pseudo_numbers)}

11

20 terms = [

21 RTwoIndexTerm(kin , "kin"),

22 RDirectTerm(er , "hartree"),

23 RExchangeTerm(er, "x_hf"),

24 RTwoIndexTerm(na, "ne"),

25]

26 ham = REffHam(terms , external)

27

28 # Create alpha molecular orbitals (MO)

29 orb_alpha = Orbitals(obasis.nbasis)

30

31 # Construct initial guess for MO coefficients and assign orb_alpha.coeffs

32 guess_core_hamiltonian(olp , kin + na, orb_alpha)

33

34 # Choose MO occupation model and assign orb_alpha.occupations

35 occ_model = AufbauOccModel (11)

36 occ_model.assign(orb_alpha)

37

38 # Construct the initial density matrix (needed for CDIIS)

39 dm_alpha = orb_alpha.to_dm()

40

41 # Conventional DIIS SCF solver

42 scf_solver = CDIISSCFSolver (1e-6)

43 scf_solver(ham , olp , occ_model , dm_alpha)

44

45 # Update mol object and print energy

46 mol.energy = ham.cache["energy"]

47 mol.obasis = obasis

48 mol.orb_alpha = orb_alpha

49 print(f"Energy (a.u.) = {mol.energy: .5f}")

12

50

51 # Write calculation output as a MOLDEN file

52 mol.to_file("carbon_dioxide_hf_def2tzvpd.molden")

Listing 5. Run HF/Def2-TZVPD calculation for carbon monoxide and write MOLDEN file.

One of the strengths of HORTON, which we have employed in various research projects,41 is

its ability to support unconventional DFT calculations. As a relatively simple example, for

a hybrid Meta-GGA calculation, the Hamiltonian in the previous example can be replaced

with:

1 # Define a numerical integration grid needed for the XC functionals

2 grid = BeckeMolGrid(mol.coordinates , mol.numbers , mol.pseudo_numbers)

3

4 # Construct XC terms

5 libxc_term_x = RLibXCHybridMGGA("x_m05")

6 libxc_term_c = RLibXCMGGA("c_m05")

7 terms = [

8 RTwoIndexTerm(kin , "kin"),

9 RDirectTerm(er , "hartree"),

10 RGridGroup(obasis , grid , [libxc_term_x , libxc_term_c]),

11 RExchangeTerm(er, "x_hf", libxc_term_x.get_exx_fraction ()),

12 RTwoIndexTerm(na, "ne"),

13]

14 ham = REffHam(terms , external)

Listing 6. Constructing a Hybrid Meta-GGA Hamiltonian Operator.

E. Part: Atoms-in-Molecules Partitioning and Population Analysis

Part implements various methods for partitioning molecular electron density into atomic

contributions. Specifically, it includes Becke35, Hirshfeld42, iterative Hirshfeld (HI)43, iter-

ative stockholder partitioning (ISA)44, and minimal basis iterative stockholder (MBIS)45–47

methods. It also includes the orbital-based Mulliken population analysis method. Part was

13

extensively used for the development of additive48–50 and polarizable force fields.18 It also

exemplifies how HORTON can provide specialized functionality to a larger program (e.g., to

update the atomic charges in a molecular dynamics simulation).19,51–55

1 import numpy as np

2 from horton import *

3

4 # Load the Gaussian FCHK output from HORTON 's test data directory

5 fn_fchk = context.get_fn("test/water_b3lyp_ccpvtz.fchk")

6 mol = IOData.from_file(fn_fchk)

7

8 # Partition the density with the Minimal Basis Iterative Stockholder (MBIS

) scheme

9 grid = BeckeMolGrid(mol.coordinates , mol.numbers , mol.pseudo_numbers , mode

="only")

10 moldens = mol.obasis.compute_grid_density_dm(mol.get_dm_full (), grid.

points)

11 wpart = MBISWPart(mol.coordinates , mol.numbers , mol.pseudo_numbers , grid ,

moldens)

12 wpart.do_charges ()

13 wpart.do_moments ()

14 print("Atomic Charges = ", wpart["charges"])

15 print("Atomic Momenets = ", wpart["radial_moments"])

16

17 # Write the result to a file

18 np.savetxt("charges.txt", wpart["charges"])

Listing 7. Minimal basis iterative stockholder (MBIS) partitioning of electron density.

The same calculation can be done directly on the command-line using the following

command:

1 $ horton -wpart.py test/water_b3lyp_ccpvtz.fchk output.h5 mbis

Listing 8. MBIS partitioning of electron density.

14

F. ESPFit: Electrostatic Potential Fitting

This module can either fit atomic charges or test atomic charges ability to reproduce the

molecular electrostatic potential (ESP) on a set of user-defined points for isolated molecules

and periodic systems. Similar to the Hu-Lu-Yang approach56, ESPFit uses a quadratic cost

function defined as an integral rather than a sum over sample points. The ESP cost function

can be customized to accommodate different charge-fitting protocols, e.g., constraints or

bond-charge increments. ESPFit can work with any program that generates a Gaussian

Cube file; for periodic systems, this cube file can be generated by CP2K57. ESP fitting can

be run directly from command-line.

1 # Generate cost function

2 $ horton -esp -cost.py esp.cube cost.h5 --wdens=rho.cube --pbc ={000|111}

3

4 # Fit charges to the cost function

5 $ horton -esp -fit.py cost.h5 charges.h5

Listing 9. Fit atomic charges to an electrostatic potential.

V. REENVISIONING HORTON

While we still maintain and use HORTON 2.x, it has become clear that the monolithic

style of HORTON 2 and its reliance on nonstandard home-built C++ libraries prevent us from

achieving truly modular code and easy installation. In January 2019, the leading developers

of HORTON conceived HORTON 3. Based on lessons learned from our mistakes, we are rewriting

HORTON modules to strictly enforce modularity and exploit NumPy vectorized operations and

other standard Python libraries to the fullest. Our goal is to make HORTON even easier to

understand, install, maintain, and contribute to. In addition, to ensure that all HORTON

modules have a clear scope, clean API, and minimal dependency, they are each maintained

as separate (public) GitHub repositories so they can be installed and used independently.

This also distributes the workload of developing a library and accommodates the reality that

no one person can be an expert on the entire edifice of HORTON 3.

HORTON 3 is conceived as a set of workflows that bring together independent modules,

providing a modular and flexible architecture with a rich set of utilities and customizable

15

features for quantum chemistry, thereby extending the functionality that was previously

available in HORTON 2.x. While this structure is unusual for modern packages, it has a

strong precedent in quantum chemistry, most notably in Ernest Davidson’s MELD package.58

We believe that distributing separate, interoperable, modules is still valuable for innovative

method development research in quantum chemistry.

The first step of HORTON’s modularization was to entirely split off its post-processing

capabilities and incorporate them into the larger ChemTools1,2 package, which shares the

same principles of modularity and protocols for quality assurance as HORTON 3. The other

HORTON modules are:

• IOData59 is a module for reading, writing, and converting various file formats from

molecular and solid-state electronic structure theory software packages, and provides

functionality for writing input files for various quantum chemistry software packages.

• Grid is a module for performing operations on molecular integration grids including

integration, differentiation, interpolation, and nearly-arbitrary differential equation

solving, with support for periodic boundary conditions and for local grids.

• GBasis is a module for performing a wide variety of 1- and 2-electron integrals of

Gaussian basis functions and evaluating molecular descriptors like the electron den-

sity, electrostatic potential, and other density-based quantities, with an emphasis on

properties related to the kinetic-energy density.

• MeanField is a module for self-consistent-field calculations, chiefly (constrained)

Hartree-Fock and Kohn-Sham density-functional theory (DFT).

• GOpt is a module for geometry optimization, including robust methods for finding

transition states and reaction pathways using redundant internal coordinates.

• Fanpy33 is a module for exploring new post-SCF methods, including geminal-product

wavefunctions, tensor-product wavefunctions, and unconventional coupled-cluster

wavefunctions.

Beyond these core modules, there are additional modules attuned to the specific in-

terests of various contributing research groups, like BFit60 for basis function fitting and

Procrustes61 for matrix similarity analysis. For example, DensPart is a post-processing

16

tool for electron-density partitioning. PyCI and Fanpy support selected configuration in-

teraction and the development of new, more advanced, correlated wavefunction methods.33

ModelHamiltonian allows quantum-chemistry packages like HORTON to be applied to many

different types of model Hamiltonians, including those which are ubiquitous in condensed

matter physics.

VI. SUMMARY

Since its inception in 2011, HORTON has aspired to provide useful functionality (chiefly

related to the performing and post-processing of Hartree-Fock and Kohn-Sham DFT cal-

culations) while adhering to the ever-evolving “best practices” for scientific software design,

including version control, automated and manual quality-assurance checks, thorough docu-

mentation, and comprehensive automated testing. As shown through the above examples,

HORTON 2.3 can be used not only as a stand-alone program, but also as module(s) within a

larger workflow. We never intended HORTON to be a workhorse for routine electronic struc-

ture calculations. Instead, HORTON is intended to be a helpful open-source research tool for

testing new ideas and teaching quantum chemistry. We believe that its clear documentation,

thorough testing, and modular structure support this mandate.

HORTON is, and always will be, a work in progress: we continually strive to add features

and improve its utility for both scientific exploration and pedagogical purposes. By breaking

HORTON into modules, we hope to enhance its usability, increase its durability, and ensure

its sustainability.

DATA AVAILABILITY STATEMENT

The data and code that support the findings of this study are either included in the paper

or are free and openly available in the HORTON repository at https://github.com/theochem/horton.

HORTON’s last source code and any of its official releases can be directly downloaded from its

GitHub repository. In addition, HORTON can be installed using the conda package manager

from the theochem channel.

17

FUNDING INFORMATION

The primary funding for HORTON has been provided by a series of Natural Sciences and

Engineering Research Council (NSERC) of Canada to PWA and his research team. TV’s

contributions have been partly supported by ongoing support from the Foundation of Scien-

tific Research-Flanders (FWO) and the Research Board of Ghent University (BOF). FHZ’s

early contributions were subsidized by a series of fellowships from the Canadian Government

(Vanier CGS, NSERC), the European Commission (Marie Curie individual postdoctoral

fellowship), and the Flemish government (FWO postdoctoral fellowship), and her recent

contributions have been funded by an NSERC Discovery Grant and Queen’s University Re-

search Initiation Grant. EVM has been supported primarily by FONDECYT No. 1200369

(Chile). Many of the students and postdocs who have contributed to HORTON over the years

were supported by other fellowships from the Canadian government (chiefly from NSERC).

Most of the computational resources needed to develop HORTON were provided by Compute

Canada, a Research Tools and Instruments grant from NSERC, and the Flemish Supercom-

puter Center (VSC).

ACKNOWLEDGMENTS

Over the history of HORTON, there have been many contributors beyond those listed as

authors. We are grateful for the help of these scientists in the development and improvement

of HORTON, and especially wish to cite the contributions of the extended HORTON 2.x devel-

opment team (Katharina Boguslawski, Pawel Tecmer, Cristina E. González-Espinoza, Stijn

Fias, Marco Franco, Steven Vandenbrande, Diego Berrocal, Yilin Zhao, Peter Limacher,

Carlos Cardenas, and Ali Malek, in addition to many of the coauthors of this paper), the

people who have become core users of HORTON (including Paul Johnson and Ramon Alain

Miranda-Quintana) and the people who have hosted HORTON workshops, hackathons, and

training courses (including Carlos Cardenas, Julia Contreras, Shubin Liu, and Chunying

Rong).

CONFLICT OF INTEREST

There is no conflict of interest.

18

REFERENCES

REFERENCES

1F. Heidar-Zadeh, M. Richer, S. Fias, R. A. Miranda-Quintana, M. Chan, M. Franco-

Perez, C. E. Gonzalez-Espinoza, T. D. Kim, C. Lanssens, A. H. G. Patel, X. D. Yang,

E. Vohringer-Martinez, C. Cardenas, T. Verstraelen, and P. W. Ayers, “An explicit ap-

proach to conceptual density functional theory descriptors of arbitrary order,” Chemical

Physics Letters 660, 307–312 (2016).
2L. Pujal, A. Tehrani, and F. Heidar-Zadeh, “Chemtools: Gain chemical insight form

quantum chemistry calculations,” in Conceptual Density Functional Theory: Towards a

New Chemical Reactivity Theory, edited by S. Liu (Wiley, 2022) 1st ed.
3V. Chuiko, W. Adams, A. Richards, G. Sanchez-Diaz, M. Richer, Y. Zhao, F. Heidar-

Zadeh, and P. W. Ayers, “ModelHamiltonian,” (2022).
4J. Lehtola, M. Hakala, A. Sakko, and K. Hämäläinen, “ERKALE–a flexible program

package for x-ray properties of atoms and molecules,” Journal of Computational Chemistry

33, 1572–1585 (2012).
5R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, E. G.

Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di Remigio, R. M. Richard, J. F. Gonthier,

A. M. James, H. R. McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard,

P. Verma, H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F. A. Evangelista, J. M.

Turney, T. D. Crawford, and C. D. Sherrill, “Psi4 1.1: An open-source electronic structure

program emphasizing automation, advanced libraries, and interoperability,” Journal of

Chemical Theory and Computation 13, 3185–3197 (2017).
6I. Fdez. Galván, M. Vacher, A. Alavi, C. Angeli, F. Aquilante, J. Autschbach, J. J. Bao,

S. I. Bokarev, N. A. Bogdanov, R. K. Carlson, L. F. Chibotaru, J. Creutzberg, N. Dattani,

M. G. Delcey, S. S. Dong, A. Dreuw, L. Freitag, L. M. Frutos, L. Gagliardi, F. Gen-

dron, A. Giussani, L. González, G. Grell, M. Guo, C. E. Hoyer, M. Johansson, S. Keller,

S. Knecht, G. Kovačević, E. Källman, G. Li Manni, M. Lundberg, Y. Ma, S. Mai, J. P.

Malhado, P. A. Malmqvist, P. Marquetand, S. A. Mewes, J. Norell, M. Olivucci, M. Oppel,

Q. M. Phung, K. Pierloot, F. Plasser, M. Reiher, A. M. Sand, I. Schapiro, P. Sharma, C. J.

Stein, L. K. Sørensen, D. G. Truhlar, M. Ugandi, L. Ungur, A. Valentini, S. Vancoillie,

19

http://dx.doi.org/10.1016/j.cplett.2016.07.039
http://dx.doi.org/10.1016/j.cplett.2016.07.039
https://github.com/theochem/ModelHamiltonian
http://dx.doi.org/ https://doi.org/10.1002/jcc.22987
http://dx.doi.org/ https://doi.org/10.1002/jcc.22987
http://dx.doi.org/ 10.1021/acs.jctc.7b00174
http://dx.doi.org/ 10.1021/acs.jctc.7b00174

V. Veryazov, O. Weser, T. A. Wesołowski, P.-O. Widmark, S. Wouters, A. Zech, J. P.

Zobel, and R. Lindh, “OpenMolcas: From source code to insight,” Journal of Chemical

Theory and Computation 15, 5925–5964 (2019).
7M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. V. Dam, D. Wang,

J. Nieplocha, E. Apra, T. Windus, and W. de Jong, “NWChem: A comprehensive and

scalable open-source solution for large scale molecular simulations,” Computer Physics

Communications 181, 1477–1489 (2010).
8K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimi-

raglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen,

P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,

C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst,

I.-M. Høyvik, M. F. Iozzi, B. Jansík, H. J. A. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor,

S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted,

A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H.

Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J.

Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden,

K. Ruud, V. V. Rybkin, P. Sałek, C. C. M. Samson, A. S. de Merás, T. Saue, S. P. A.

Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Tay-

lor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras,

M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren, “The Dalton quantum

chemistry program system,” WIREs Computational Molecular Science 4, 269–284 (2014).
9L. Lemmens, X. D. Vriendt, D. Tolstykh, T. Huysentruyt, P. Bultinck, and G. Acke,

“GQCP: The ghent quantum chemistry package,” The Journal of Chemical Physics 155,

084802 (2021).
10G. J. R. Aroeira, M. M. Davis, J. M. Turney, and H. F. I. Schaefer, “Fermi.jl: A modern

design for quantum chemistry,” Journal of Chemical Theory and Computation 18, 677–686

(2022).
11J. P. Unsleber, T. Dresselhaus, K. Klahr, D. Schnieders, M. B"ockers, D. Barton, and

J. Neugebauer, “Serenity: A subsystem quantum chemistry program,” J. Comput. Chem.

39, 788–798 (2018).
12D. Poole, J. L. Galvez Vallejo, and M. S. Gordon, “A new kid on the block: Application

of julia to hartree–fock calculations,” Journal of Chemical Theory and Computation 16,

20

http://dx.doi.org/10.1021/acs.jctc.9b00532
http://dx.doi.org/10.1021/acs.jctc.9b00532
http://dx.doi.org/10.1016/j.cpc.2010.04.018
http://dx.doi.org/10.1016/j.cpc.2010.04.018
http://dx.doi.org/https://doi.org/10.1002/wcms.1172
http://dx.doi.org/10.1063/5.0057515
http://dx.doi.org/10.1063/5.0057515
http://dx.doi.org/ 10.1021/acs.jctc.1c00719
http://dx.doi.org/ 10.1021/acs.jctc.1c00719
http://dx.doi.org/10.1021/acs.jctc.0c00337
http://dx.doi.org/10.1021/acs.jctc.0c00337

5006–5013 (2020).
13Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain,

E. R. Sayfutyarova, S. Sharma, S. Wouters, and G. K.-L. Chan, “PySCF: the python-

based simulations of chemistry framework,” WIREs Computational Molecular Science 8,

e1340 (2018).
14K. Boguslawski, A. Leszczyk, A. Nowak, F. Brzęk, P. S. Żuchowski, D. Kędziera, and

P. Tecmer, “Pythonic black-box electronic structure tool (PyBEST). an open-source

python platform for electronic structure calculations at the interface between chemistry

and physics,” Computer Physics Communications 264, 107933 (2021).
15K. Boguslawski, F. Brzęk, R. Chakraborty, K. Cieślak, S. Jahani, A. Leszczyk, A. Nowak,

E. Sujkowski, J. Świerczyński, S. Ahmadkhani, D. Kędziera, M. H. Kriebel, P. S. Żu-

chowski, and P. Tecmer, “PyBEST: Improved functionality and enhanced performance,”

Computer Physics Communications 297, 109049 (2024).
16Q. Wu and T. Van Voorhis, “Direct optimization method to study constrained systems

within density-functional theory,” Physical Review A 72, 024502 (2005).
17T. Verstraelen, P. W. Ayers, V. Van Speybroeck, and M. Waroquier, “ACKS2: Atom-

condensed kohn-sham DFT approximated to second order,” Journal of Chemical Physics

138 (2013), 10.1063/1.4791569.
18T. Verstraelen, S. Vandenbrande, and P. W. Ayers, “Direct computation of param-

eters for accurate polarizable force fields,” Journal of Chemical Physics 141 (2014),

10.1063/1.4901513.
19E. Vohringer-Martinez, T. Verstraelen, and P. W. Ayers, “The influence of ser-154, cys-

113, and the phosphorylated threonine residue on the catalytic reaction mechanism of

pin1,” Journal of Physical Chemistry B 118, 9871–9880 (2014).
20T. Verstraelen, D. Van Neck, P. W. Ayers, V. Van Speybroeck, and M. Waroquier, “The

gradient curves method: An improved strategy for the derivation of molecular mechanics

valence force fields from ab initio data,” Journal of Chemical Theory and Computation 3,

1420–1434 (2007).
21P. W. Ayers, “Charge transfer and polarization in force fields: An ab initio approach

based on the (atom-condensed) kohn–sham equations, approximated by second-order per-

turbation theory about the reference atoms (ACKS2),” in Conceptual Density Functional

Theory: Towards a New Chemical Reactivity Theory , edited by S. Liu (Wiley, 2022) 1st

21

http://dx.doi.org/10.1021/acs.jctc.0c00337
http://dx.doi.org/10.1021/acs.jctc.0c00337
http://dx.doi.org/https://doi.org/10.1002/wcms.1340
http://dx.doi.org/https://doi.org/10.1002/wcms.1340
http://dx.doi.org/10.1016/j.cpc.2021.107933
http://dx.doi.org/10.1016/j.cpc.2023.109049
http://dx.doi.org/10.1063/1.4791569
http://dx.doi.org/10.1063/1.4791569
http://dx.doi.org/10.1063/1.4901513
http://dx.doi.org/10.1063/1.4901513
http://dx.doi.org/10.1021/jp505638w
http://dx.doi.org/10.1021/ct6002093
http://dx.doi.org/10.1021/ct6002093
http://dx.doi.org/10.1002/9783527829941.ch30
http://dx.doi.org/10.1002/9783527829941.ch30

ed., pp. 603–629.
22Q. Wu and T. Van Voorhis, “Constrained density functional theory and its application in

long-range electron transfer,” Journal of Chemical Theory and Computation 2, 765–774

(2006).
23Q. Wu, P. W. Ayers, and Y. K. Zhang, “Density-based energy decomposition analysis

for intermolecular interactions with variationally determined intermediate state energies,”

Journal of Chemical Physics 131, 164112 (2009).
24Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W.

Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson,

I. Kaliman, R. Z. Khaliullin, T. Kús, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee,

R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J. Sundstrom, H. L. Woodcock III,

P. M. Zimmerman, D. Zuev, B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A.

Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M.

Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A.

DiStasio Jr., H. Dop, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels,

A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W.

Hauser, E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev,

J. Kim, J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter,

K. U. Lao, A. Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits,

R. C. Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V.

Marenich, S. A. Maurer, N. J. Mayhall, C. M. Oana, R. Olivares-Amaya, D. P. O’Neill,

J. A. Parkhill, T. M. Perrine, R. Peverati, P. A. Pieniazek, A. Prociuk, D. R. Rehn,

E. Rosta, N. J. Russ, N. Sergueev, S. M. Sharada, S. Sharmaa, D. W. Small, A. Sodt,

T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, L. Vogt, O. Vydrov,

T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, V. Vanovschi, S. Yeganeh,

S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhou, B. R. Brooks, G. K. L. Chan,

D. M. Chipman, C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt,

H. F. Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xua,

A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz,

T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang,

C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M.

Herbert, A. I. Krylov, P. M. W. Gill, and M. Head-Gordon, “Advances in molecular

22

http://dx.doi.org/164112 10.1063/1.3253797

quantum chemistry contained in the q-chem 4 program package,” Mol. Phys. 113, 184–

215 (2015).
25P. A. Johnson, P. A. Limacher, T. D. Kim, M. Richer, R. Alain Miranda-Quintana,

F. Heidar-Zadeh, P. W. Ayers, P. Bultinck, S. De Baerdemacker, and D. Van Neck,

“Strategies for extending geminal-based wavefunctions: Open shells and beyond,” Compu-

tational and Theoretical Chemistry 1116, 207–219 (2017).
26P. A. Limacher, T. D. Kim, P. W. Ayers, P. A. Johnson, S. De Baerdemacker, D. Van Neck,

and P. Bultinck, “The influence of orbital rotation on the energy of closed-shell wavefunc-

tions,” Molecular Physics 112, 853–862 (2014).
27P. Tecmer, K. Boguslawski, P. A. Johnson, P. A. Limacher, M. Chan, T. Verstraelen,

and P. W. Ayers, “Assessing the accuracy of new geminal-based approaches,” Journal of

Physical Chemistry A 118, 9058–9068 (2014).
28P. A. Johnson, P. W. Ayers, P. A. Limacher, S. De Baerdemacker, D. Van Neck, and

P. Bultinck, “A size-consistent approach to strongly correlated systems using a general-

ized antisymmetrized product of nonorthogonal geminals,” Computational and Theoretical

Chemistry 1003, 101–113 (2013).
29P. A. Limacher, P. W. Ayers, P. A. Johnson, S. De Baerdemacker, D. Van Neck, and

P. Bultinck, “A new mean-field method suitable for strongly correlated electrons: com-

putationally facile antisymmetric products of geminals,” Journal of Chemical Theory and

Computation 9, 1394–1401 (2013).
30T. D. Kim, R. A. Miranda-Quintana, M. Richer, and P. W. Ayers, “Flexible ansatz for n-

body configuration interaction,” Computational and Theoretical Chemistry 1202, 113187

(2021).
31K. Boguslawski, P. Tecmer, P. A. Limacher, P. A. Johnson, P. W. Ayers, P. Bultinck,

S. De Baerdemacker, and D. Van Neck, “Projected seniority-two orbital optimization of

the antisymmetric product of one-reference orbital geminal,” Journal of Chemical Physics

140, 214114 (2014).
32C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,

E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van

Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant,

K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array

programming with NumPy,” Nature 585, 357–362 (2020).

23

http://dx.doi.org/10.1016/j.comptc.2017.05.010
http://dx.doi.org/10.1016/j.comptc.2017.05.010
http://dx.doi.org/10.1080/00268976.2013.874600
http://dx.doi.org/10.1021/jp502127v
http://dx.doi.org/10.1021/jp502127v
http://dx.doi.org/10.1016/j.comptc.2012.09.030
http://dx.doi.org/10.1016/j.comptc.2012.09.030
http://dx.doi.org/ 10.1016/j.comptc.2021.113187
http://dx.doi.org/ 10.1016/j.comptc.2021.113187
http://dx.doi.org/ 10.1063/1.4880820
http://dx.doi.org/ 10.1063/1.4880820
http://dx.doi.org/ 10.1038/s41586-020-2649-2

33T. D. Kim, M. Richer, G. Sánchez-Díaz, R. A. Miranda-Quintana, T. Verstraelen,

F. Heidar-Zadeh, and P. W. Ayers, “Fanpy: A python library for prototyping multide-

terminant methods in ab initio quantum chemistry,” Journal of Computational Chemistry

44, 697–709 (2023).
34E. F. Valeev, “Libint: A library for the evaluation of molecular integrals of many-body

operators over gaussian functions,” http://libint.valeyev.net/ (2022), version 2.8.0.
35A. D. Becke, “A multicenter numerical integration scheme for polyatomic molecules,” The

Journal of Chemical Physics 88, 2547–2553 (1988).
36V. I. Lebedev and D. N. Laikov, “A quadrature formula for the sphere of the 131st algebraic

order of accuracy,” Doklady Mathematics 59, 477–481 (1999).
37S. Lehtola, C. Steigemann, M. J. Oliveira, and M. A. Marques, “Recent developments in

libxc — a comprehensive library of functionals for density functional theory,” SoftwareX

7, 1–5 (2018).
38P. Pulay, “Improved scf convergence acceleration,” Journal of Computational Chemistry

3, 556–560 (1982).
39K. N. Kudin, G. E. Scuseria, and E. Cancès, “A black-box self-consistent field convergence

algorithm: One step closer,” The Journal of Chemical Physics 116, 8255–8261 (2002).
40E. Cancès and C. Le Bris, “Can we outperform the diis approach for electronic structure

calculations?” International Journal of Quantum Chemistry 79, 82–90 (2000).
41C. E. Gonzalez-Espinoza, P. W. Ayers, J. Karwowski, and A. Savin, “Smooth models for

the coulomb potential,” Theoretical Chemistry Accounts 135, 256 (2016).
42F. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theor.

Chim. Act. 44, 129–138 (1977).
43P. Bultinck, C. Van Alsenoy, P. W. Ayers, and R. Carbó-Dorca, “Critical analysis and

extension of the Hirshfeld atoms in molecules,” J. Chem. Phys. 126, 144–111 (2007).
44T. C. Lillestolen and R. J. Wheatley, “Redefining the atom: atomic charge densities pro-

duced by an iterative stockholder approach,” Chem. Commun. 45, 5909–5911 (2008).
45T. Verstraelen, S. Vandenbrande, F. Heidar-Zadeh, L. Vanduyfhuys, V. Van Speybroeck,

M. Waroquier, and P. W. Ayers, “Minimal basis iterative stockholder: Atoms in molecules

for force-field development,” J. Chem. Theory Comp. 12, 3894–3912 (2016).
46F. Heidar-Zadeh, P. W. Ayers, T. Verstraelen, I. Vinogradov, E. Vöhringer-Martinez, and

P. Bultinck, “Information-theoretic approaches to atoms-in-molecules: Hirshfeld family of

24

http://dx.doi.org/ https://doi.org/10.1002/jcc.27034
http://dx.doi.org/ https://doi.org/10.1002/jcc.27034
http://dx.doi.org/ 10.1063/1.454033
http://dx.doi.org/ 10.1063/1.454033
http://dx.doi.org/https://doi.org/10.1016/j.softx.2017.11.002
http://dx.doi.org/https://doi.org/10.1016/j.softx.2017.11.002
http://dx.doi.org/10.1002/jcc.540030413
http://dx.doi.org/10.1002/jcc.540030413
http://dx.doi.org/ 10.1063/1.1470195
http://dx.doi.org/10.1002/1097-461X(2000)79:2<82::AID-QUA3>3.0.CO;2-I
http://dx.doi.org/10.1007/s00214-016-2007-5

partitioning schemes,” The Journal of Physical Chemistry A 122, 4219–4245 (2018).
47F. Heidar-Zadeh and P. W. Ayers, “How pervasive is the Hirshfeld partitioning?” J. Chem.

Phys. 142, 044–107 (2015).
48L. Vanduyfhuys, S. Vandenbrande, T. Verstraelen, R. Schmid, M. Waroquier, and

V. Van Speybroeck, “Quickff: A program for a quick and easy derivation of force fields for

metal-organic frameworks from ab initio input,” Journal of Computational Chemistry 36,

1015–1027 (2015).
49S. Vandenbrande, M. Waroquier, V. V. Speybroeck, and T. Verstraelen, “The monomer

electron density force field (medff): A physically inspired model for noncovalent interac-

tions,” Journal of Chemical Theory and Computation 13, 161–179 (2017).
50S. Vandenbrande, M. Waroquier, V. Van Speybroeck, and T. Verstraelen, “Ab initio

evaluation of henry coefficients using importance sampling,” Journal of Chemical Theory

and Computation 14, 6359–6369 (2018).
51D. A. Saez and E. Vöhringer-Martinez, “A consistent S-Adenosylmethionine force field

improved by dynamic Hirshfeld-I atomic charges for biomolecular simulation.” J Computer-

Aided Molecular Design 29, 951–961 (2015).
52A. Lara, M. Riquelme, and E. Vöhringer-Martinez, “Partition coefficients of methylated

DNA bases obtained from free energy calculations with molecular electron density derived

atomic charges.” Journal of Computational Chemistry 93, 1281 (2018).
53M. Riquelme, A. Lara, D. L. Mobley, T. Verstraelen, A. R. Matamala, and E. Vöhringer-

Martinez, “Hydration Free Energies in the FreeSolv Database Calculated with Polarized

Iterative Hirshfeld Charges.” Journal of Chemical Information and Modeling 58 (2018).
54J. Oller, D. A. Saez, and E. Vöhringer-Martinez, “Atom-Condensed Fukui Function in

Condensed Phases and Biological Systems and Its Application to Enzymatic Fixation of

Carbon Dioxide,” Journal of Physical Chemistry A 124, 849–857 (2020).
55A. Gomez and E. Vöhringer-Martinez, “Conformational sampling and polarization of asp26

in pka calculations of thioredoxin,” Proteins: Structure, Function, and Bioinformatics 87,

467–477 (2019).
56H. Hu, Z. Lu, and W. Yang, “Fitting molecular electrostatic potentials from quantum

mechanical calculations,” Journal of Chemical Theory and Computation 3, 1004–1013

(2007), pMID: 26627419.

25

http://dx.doi.org/10.1002/jcc.23877
http://dx.doi.org/10.1002/jcc.23877
http://dx.doi.org/10.1021/acs.jctc.6b00969
http://dx.doi.org/10.1021/acs.jctc.8b00892
http://dx.doi.org/10.1021/acs.jctc.8b00892
http://dx.doi.org/ 10.1021/ct600295n
http://dx.doi.org/ 10.1021/ct600295n

57T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino,

R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H.

Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro,

H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter,

A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass, I. Bethune, C. J.

Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, and J. Hutter, “CP2K: An

electronic structure and molecular dynamics software package - quickstep: Efficient and

accurate electronic structure calculations,” The Journal of Chemical Physics 152, 194103

(2020).
58E. R. Davidson, “MELD: A many electron description,” in MOTECC-94: Methods and

Techniques in Computational Chemistry, Vol. B, edited by E. Clementi (STEF, Calgliari,

Italy, 1993) pp. 209–274.
59T. Verstraelen, W. Adams, L. Pujal, A. Tehrani, B. D. Kelly, L. Macaya, F. Meng,

M. Richer, R. Hernández-Esparza, X. D. Yang, et al., “IOData: A python library for

reading, writing, and converting computational chemistry file formats and generating in-

put files,” Journal of Computational Chemistry 42, 458–464 (2021).
60A. Tehrani, J. S. M. Anderson, D. Chakraborty, J. I. Rodriguez-Hernandez, D. C. Thomp-

son, T. Verstraelen, P. W. Ayers, and F. Heidar-Zadeh, “An information-theoretic ap-

proach to basis-set fitting of electron densities and other non-negative functions,” Journal

of Computational Chemistry 44, 1998–2015 (2023).
61F. Meng, M. Richer, A. Tehrani, J. La, T. D. Kim, P. W. Ayers, and F. Heidar-Zadeh,

“Procrustes: A python library to find transformations that maximize the similarity between

matrices,” Computer Physics Communications 276, 108334 (2022).

26

http://dx.doi.org/10.1063/5.0007045
http://dx.doi.org/10.1063/5.0007045
http://dx.doi.org/10.1002/jcc.27170
http://dx.doi.org/10.1002/jcc.27170

	The Tale of HORTON: Lessons Learned in a Decade of Scientific Software Development
	Abstract
	introduction
	History of HORTON
	our design principles
	Modules and Examples
	IO: Input and Output
	GBasis: Gaussian Basis Evaluation and Analytical Integration
	Grid: Numerical Integration and Visualiztion
	Meanfield: Self-Consistent-Field (SCF) calculations
	Part: Atoms-in-Molecules Partitioning and Population Analysis
	ESPFit: Electrostatic Potential Fitting

	Reenvisioning HORTON
	Summary
	Data Availability Statement
	Funding Information
	Acknowledgments
	Conflict of Interest
	References
	References

