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Abstract: In this paper, we present the development and the validation of a novel index of nociception/anti-
nociception (N/AN) based on skin impedance measurement in time and frequency domain with our
prototype AnspecPro device. The primary objective of the study was to compare the Anspec-PRO
device with two other commercial devices (Medasense, Medstorm). This comparison was designed
to be conducted under the same conditions for the three devices. This was carried out during
total intravenous anesthesia (TIVA) by investigating its outcomes related to noxious stimulus. In
a carefully designed clinical protocol during general anesthesia from induction until emergence,
we extract data for estimating individualized causal dynamic models between drug infusion and
their monitored effect variables. Specifically, these are Propofol hypnotic drug to Bispectral index
of hypnosis level and Remifentanil opioid drug to each of the three aforementioned devices. When
compared, statistical analysis of the regions before and during the standardized stimulus shows
consistent difference between regions for all devices and for all indices. These results suggest that
the proposed methodology for data extraction and processing for AnspecPro delivers the same
information as the two commercial devices.

Keywords: modeling; general anesthesia; skin impedance; nociception index; closed-loop control;
real-time monitoring; model adaptation; patient models

1. Introduction

The burden of developing suitable sensing techniques for use in closed-loop optimiza-
tion of drug management problems is becoming crucial as the medical and engineering
communities are increasingly joining efforts. Among the applications of fast computing
and data driven information processing for real-time extraction of individualized patient
models, we propose here solutions for closed-loop control of general anesthesia [1]. In-time
monitoring and reliable data processing techniques for real-time extraction of patient-
related information enables closed-loop control with search algorithms for optimal drug
dose management to maintain general anesthesia parameters under the surgical stimuli and
other biological response closed loops [2–5]. The choice of monitoring devices is, therefore,
crucial as their relevance for the closed loop can make the difference between applicability
of an optimal search algorithm or the bottleneck of lack of reliable data information [6–8].
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The general anesthesia drug management problem has already two matured and
established computer-assisted closed loops: (i) for hypnosis and (ii) for neuromuscular
blockade. The clinical practice uses standardized monitors for model-based computerized
management of the respective drugs. The control algorithms range from anything in
between feedforward, feedback, and predictive-based methodologies [9–12]. Most popular
solutions in the literature are the proportional–integral–derivative (PID) control [13–15]
and model-based predictive control (MPC) [16–21].

Advantageously, simple PID control requires a mere model approximation for initial tun-
ing of controller parameters and can be fine-tuned to achieve acceptable performance within
safe vital intervals [1,22]. The more complex MPC algorithms can apriori deal with imposed
constraints, variable delays in monitored information, and give optimal solutions within the
feasibility domain, and may continuously adapt controller parameters to tackle changes in a
patient’s response and mitigate critical events with new imposed constraints [23,24].

There is a stringent need for reliable and fast-computing models to allow further develop-
ments of MPC applications to general anesthesia. Unlike the aforementioned two components,
the third component of general anesthesia, namely, analgesia or anti-nociception (i.e., lack of
pain), is not yet resolved in terms of monitors for closed-loop applicability, and lacks models
from drug infusion rates of opioids (e.g., Remifentanil) to their effect in the patient to alleviate
nociceptor stimulation effects (i.e., pain stimulation in the presence of opioid medication).
A comprehensive overview of nociception/anti-nociception (N/AN) monitoring devices is
given in [25] and discussed for their suitability for use in closed-loop anesthesia management,
with examples of success stories in the literature. As such, two candidate commercial devices
stand out: Medasense and Medstorm monitors; their performance in real clinical environment
is analyzed and compared in our paper.

In this paper, we propose a carefully designed protocol of alternate monitoring devices
within the standardized stages of the induction phase of general anesthesia and sequences
before surgical initiation. This protocol allows us to introduce and validate the prototype
AnspecPro monitoring device, compared with the use of two commercial devices Medstorm
and Medasense. The data collected allow us to finalize the developing stages of the
AnspecPro device into an end-user skin-impedance-based index of nociception level. The
commercial devices also deliver an index of nociception level. Based on this information
at hand, the usefulness and causality of each index can be analyzed with respect to the
infused opioid drug and their relevance for integration within any closed-loop control
methodology can be assessed. A dynamic causal model is estimated for each monitor in
terms of input (drug Remifentanil) and output (index) transfer functions.

The original contributions of this paper are the following:

• Development and validation of the AnspecPro prototype device based on clinical data
evaluated for N/AN level;

• Clinical-data-based models for dynamic response in patients undergoing general
anesthesia for three monitors from opioid (i.e., Remifentanil) to N/AN level (index);

• Statistical analysis and comparison of monitor performance under general anesthesia.

2. Materials and Methods
2.1. Clinical Protocol and Patient Database

The goal of the clinical investigation was to validate the new N/AN AnspecPro monitor
during total intravenous anesthesia (TIVA) by investigating its outcomes related to noxious
stimulus. Additionally, we also compare it to two other commercial N/AN monitors:
Medasense Monitor (CE0344, Manufacturer: Medasense Biometrics Ltd., Ramat Gan, Israel)
and the Medstorm Monitor (CE0413, Manufacturer: Med-Storm Innovation AS, Oslo,
Norway). The clinical protocol of the testing of the three monitors is depicted in Figure 1.
The regions of interest presented in this paper are the Hypnotics region, where the TOF
(train of four) test is applied, and the region denoted by “Analgesics” from the initial
titration of Remifentanil right before intubation occurs. The data recordings analyzed
in this paper are those performed with Monitor 2 in the respective region. The random
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selection of monitor pairs per patient and biometrics are given in Table 1. Typical data
intervals in the region of interest range between 15 and 70 samples, available every 5 s. As
validation of nociception stimulus, the standard test train-of-four (TOF) is applied before
the Analgesics region. Here, we test the ability of all monitors to detect/react against the
TOF test in their monitored N/AN index.

Figure 1. Illustration of the clinical protocol for testing monitors in pairs of two per patient per action
or stage of the general anesthesia interval. MON1 and MON2 are two randomly blinded selected
monitors in pairs of two per patient. See Table 1 for details per patient.

Table 1. Patient biometrics and monitor selection (age in years, height in cm, weight in kg, and gender
X denotes transgender).

No Monitor 1 Monitor 2 Gender Age Height Weight Surgery

1 AnspecPro Medasense F 31 163 49 Varicetomy
2 Medstorm Medasense F 44 168 57 Arthroscopy
3 Medasense AnspecPro F 42 168 70 Varicetomy
4 AnspecPro Medasense F 71 158 69 Varicetomy
5 Medasense Medstorm F 38 182 87.6 Anal fistula
6 Medstorm Medasense F 41 175 135 Hemorrhoids
7 Medasense Medstorm F 68 172 67 Laparoscopic cholecystectomy
8 Medstorm AnspecPro M 59 183 76 Inguinal hernia
9 Medstorm AnspecPro M 50 186 96 Laparoscopic inguinal hernia
10 Medasense AnspecPro M 73 181 83 Laparoscopic inguinal hernia
11 AnspecPro Medstorm X 22 165 87 Hysterectomy
12 Medstorm Medasense M 29 183 92 Laparoscopic inguinal hernia
13 AnspecPro Medstorm F 54 160 48 Laparoscopic hysterectomy
14 Medstorm AnspecPro X 19 168.7 59 Laparoscopic hysterectomy
15 AnspecPro Medasense X 26 155 61 Laparoscopic hysterectomy
16 Medstorm Medasense F 54 163 58 Abdominal hysterectomy
17 AnspecPro Medstorm F 50 174 64 Breast augmentation & Liposuction
18 AnspecPro Medasense F 30 176 74 Unilateral open inguinal hernia
19 Medasense Medstorm F 57 164 70 Hysterectomy
20 Medasense Medstorm X 33 162 80 Laparoscopic hysterectomy
21 Medasense AnspecPro F 62 168 88 Exploratory laparotomy, Colpopromontoriopexy, placing JJ bilateral
22 Medstorm AnspecPro F 48 155 56 Hysterectomy
23 AnspecPro Medstorm M 62 183 85 Varicetomy
24 Medstorm AnspecPro F 36 168 63 Laparoscopic myomectomy
25 Medasense AnspecPro M 58 179 94 Inguinal hernia laparoscopy
26 AnspecPro Medstorm F 65 162 87 Gallbladder removal
27 Medstorm Medasense F 49 167 86 Laparoscopic cholecystectomy + Cholangiography.
28 Medstorm Medasense M 46 187 97 Laparoscopic bilateral inguinal hernia
29 AnspecPro Medasense M 68 176 85 Laparoscopic cholecystectomy + Cholangiography.
30 Medasense Medstorm F 50 167 70 Abdominal hysterectomy
31 AnspecPro Medasense M 54 175 90 Laparoscopic inguinal hernia unilateral
32 AnspecPro Medstorm F 64 164 96 Laparoscopic hysterectomy
33 Medstorm AnspecPro F 46 170 82 Laparoscopic hysterectomy
34 AnspecPro Medasense F 58 157 53.5 Adnexektomie laparoscopic bilateral
35 Medstorm AnspecPro F 41 167 65 Laparoscopic hysterectomy
36 Medasense AnspecPro F 40 159 63 Vulvectomy + Laparoscopic hysterectomy
37 AnspecPro Medasense F 30 160 53 laparoscopy Chromotubation + Operative + gynecological endometriosis
38 Medstorm AnspecPro F 18 163 64 Remove O.S. Material + Fulkerson Osteotomy ORTHO
39 Medasense AnspecPro F 64 158 58 Exploratory laparotomy
40 Medstorm AnspecPro M 63 171 104 Scrotal exploration
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Table 1. Cont.

No Monitor 1 Monitor 2 Gender Age Height Weight Surgery

41 Medstorm AnspecPro F 30 156 44 Diagnostic hysteroscopy + laparoscopy diagnostic + Chromotubation
42 AnspecPro Medstorm F 19 168 54 Diagnostic hysteroscopy + laparoscopy diagnostic + Chromotubation
43 AnspecPro Medasense F 51 168 58 Adnexektomie laparoscopic bilateral
44 Medasense Medstorm F 59 171 75 Vaginal hysterectomy
45 AnspecPro Medstorm M 73 174 67 Urethroplasty
46 Medstorm Medasense M 23 173 66 Circumcision
47 AnspecPro Medstorm M 25 181 74.5 Circumcision
48 Medstorm AnspecPro M 31 170 85 Circumcision
49 Medasense Medstorm M 32 186 100 Resection of scrotal injury
50 AnspecPro Medasense F 40 157 85 Laparoscopic hysterectomy
51 Medstorm Medasense F 27 157 58 Laparoscopic cystectomy
52 Medasense Medstorm F 71 174 71 Anterior and Posterior colporrhaphy
53 AnspecPro Medasense M 32 180 78 Vaso vasostomie
54 Medstorm AnspecPro F 21 166 63 laparoscopic ovariectomy
55 AnspecPro Medstorm X 48 170 84 Laparoscopic hysterectomy
56 Medasense AnspecPro M 63 168 82 Bilateral open inguinal hernia
57 AnspecPro Medstorm M 71 175 66 Laparoscopic bilateral inguinal hernia
58 AnspecPro Medasense F 48 165 76 Laparoscopy exploration gyneco
59 Medstorm AnspecPro F 71 167 83 Colpopromantoriopexia laparoscopy
60 Medstorm Medasense X 21 160 60 Laparoscopic hysterectomy
61 AnspecPro Medasense X 21 171 73 Laparoscopic hysterectomy
62 Medstorm Medasense X 34 172 90 Laparoscopic hysterectomy
63 Medstorm AnspecPro X 26 170 50 Laparoscopic hysterectomy
64 Medasense AnspecPro F 33 172 94 Resection of ovarian cyst
65 AnspecPro Medstorm X 22 172 69 Laparoscopic hysterectomy
66 Medstorm AnspecPro F 70 165 62 Bilateral adnexectomy
67 Medstorm Medasense X 21 168 56 Laparoscopic hysterectomy
68 AnspecPro Medasense F 35 160 82 Myomectomy
69 Medstorm Medasense X 21 165 70 Laparoscopic hysterectomy
70 Medstorm AnspecPro X 20 155 49 Laparoscopic hysterectomy

A total of 70 patients scheduled for elective surgery under TIVA were enrolled in the
study after signing their informed consent. During the preoperative consultation and prior
to entry in the trial, the investigator (the anesthesiologist) explained to potential subjects the
trial and the implication of participation. Subjects were informed that their participation
is voluntary and that they may withdraw consent to participate at any time. After this
explanation and before entry to the trial, written, dated, and signed informed consent was
obtained from each subject.

During the perioperative inclusion process, participants were randomly assigned a
pain monitor using sealed envelopes to ensure blinding. A total of 180 sealed envelopes,
each containing one of the three pain monitors, were prepared. These envelopes were di-
vided into three groups, each comprising 60 participants. Participants selected an envelope
from the pool of 180 (or the remaining envelopes if the study had already commenced),
and, upon opening, were allocated the pain monitor enclosed within. Randomization codes
were securely stored in the case report form (CRF) to maintain blinding and ensure the
integrity of the randomization process.

The inclusion criteria were adults with age between 18 and 80 years, American Society
of Anesthesiologists (ASA) Class I, II, and III classified by the anesthesiologist, and patients
able to comprehend, sign, and date the written informed consent document to participate
in the clinical trial.

Exclusion criteria were patients having epidural analgesia infused by a pain pump
during the operation, patients with chronic pain or under chronic pain medication (i.e.,
antiepileptics, antidepressants, opioids), pregnant women (asked at the patient before the
operation), and patients with electrically sensitive life support systems (e.g., implanted
pacemaker, defibrillator).

This trial was conducted in accordance with the protocol, also covering ISO 14155
which addresses good clinical practices (GCP) and applicable law(s). ISO 14155 is an
international ethical and scientific quality standard for designing, conducting, recording,
and reporting trials that involve the participation of human subjects. Compliance with this
standard provides public assurance that the rights, safety, and wellbeing of trial subjects
are protected, consistent with the principles originating from the Declaration of Helsinki,
while the clinical trial data are credible.
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The trial for intraoperative nociception monitoring during TIVA was a randomized
(1:1:1) controlled trial to validate a new N/AN monitor during general anesthesia by
investigating its outcomes related to noxious stimulus. It pursues the validation of the
Anspec-PRO (non-CE marked) by comparing its function with the already CE-marked
monitors Medasense Monitor (CE0344, Manufacturer: Medasense Biometrics Ltd., Ramat
Gan, Israel) and the Medstorm Monitor (CE0413, Manufacturer: Med-Storm Innovation
AS, Oslo, Norway). The clinical investigation involving human subjects was compliant
with the regulatory framework stated in the European Regulation (EU) 2017/745. This
academic clinical investigation was approved by the Ethics Committee of Ghent University
Hospital and the Federal Agency for Medicines and Health Products of Belgium FAGG
(EC/BC-08020, FAGG/80M0840, EudraCT: CIV-BE-20-07-0342442020, clinicaltrials.gov:
NCT04986163, principal investigator: Martine Neckebroek).

General anesthesia was induced and maintained by targeting desired effect-site con-
centrations by the anesthesiologists, with target-controlled-infusion (TCI). Initial target
of effect-site concentration for Propofol was 5 µg/mL and the BIS level. The targeted
effect-site concentration for Remifentanil started from 3 ng/mL, and was clinically changed
by the anesthesiologist whether the level was interpreted as too high or too low (specially
seen in the patient’s heart rate or blood pressure values). Muscle relaxation (curarization)
was obtained with Rocuronium, guided by an induction dose of 0.3 mg/kg and titrated by
additional boluses when needed, based on the clinical interpretation of the anesthesiologist.

2.2. Commercial Nociception/Anti-Nociception Monitors

Two commercially available and CE-marked monitors were available for this study:
The Medasense Monitor (CE0344, Manufacturer: Medasense Biometrics Ltd., Ramat Gan,
Israel [26,27]) and the Medstorm Monitor (CE0413, Manufacturer: Med-Storm Innovation
AS, Oslo, Norway [28]).

The Medstorm monitor uses skin conductance of single-frequency testing signal and
processes the number of variations in amplitude of intensity over periods of time to deliver
an index between 0 and 1. This index is denoted by SC (skin conductance) and has been
correlated with N/AN monitoring in various studies [29,30].

The Medasense monitor uses multivariate analysis and artificial intelligence tools on a
manifold of biological signal recordings to extract features correlated with signal intensity
and also delivers an index between 0–100. This index is denoted by NOL (nociception
level). Several clinical studies have suggested that the device delivers a confident measure
for nociception [31,32].

2.3. AnspecPro Prototype Monitor

The AnspecPro (AP) prototype was manufactured by the research group on Dynamical
Systems and Control (UGent) for continuous monitoring by means of (noninvasive) skin
impedance measurements, enabling pain/nociception measurement. It can be considered
as medical device according to the definition given by the Council Directive 93/42/EEC on
medical devices, repealed in 2021, after the trial approval, by the EU Regulation 2017/745
on medical devices. AnspecPro was authorized for this academic clinical investigation
by the Federal Agency for Medicines and Health Products (FAGG/80M0840, 2020), the
Belgian competent authority in charge of ensuring the application of MDD 93/42/EEC. The
general safety and performance requirements, the design and manufacturing specifications,
and the information needed to be supplied with the device were fulfilled in this trial.

AnspecPro was classified as medical device class IIa for short-term use in compliance
with MDR 2017/745, taking into account the intended purpose of the device and its
inherent risks. This classification includes AnspecPro in a class of devices with medium
risk for the patients. The classification rule under which AnspecPro fell was as an active
device for diagnosis/monitoring of vital physiological processes, as its intended use in the
clinical trial is to detect the nociceptive response, in particular, noninvasive monitoring
during TIVA. The electrodes and the electrode connectors are CE-marked (according to

clinicaltrials.gov
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MDD93/42/EEC). The National Instruments CompactRIO that is used to measure the
patient fulfills the required electrical equipment safety standards.

Following successful validation in silico [33], the AP device was validated for its
sensitivity to detect variations in skin impedance time and frequency information in awake,
communicative, healthy volunteers [34,35] and in clinical trials with awake and commu-
nicative postoperative care unit patients against golden standard numerical pain rating
scale [35].

Once tested in an experimental setup on awake healthy subjects having mechanically
induced acute pain [34], the AnspecPro monitor has also been successfully validated to
detect clinical postsurgical pain [35]. AnspecPro measures the skin impedance in response
to a multisine [34]:

u(t) =
29

∑
k=1

Aksin(ωkt) + ϕk, (1)

where A is the signal amplitude, ω = 2π f (rad/s) is the angular frequency, and ϕ is the
phase (rad), with the frequency f ∈ [100:50:1500] Hz linearly distributed in 29 values. Three
electrodes (commercial 3 M electrodes) are placed on the palm hand of the patient. For
converting the two measured time vectors (i.e., current c(t) and voltage v(t) signals) in
the frequency domain, the spectral power density function with a modified averaged peri-
odogram method is used [36]. The measured data are sampled at a frequency Fs = 15 kHz.
The frequency components of the current and voltage signals were returned via the fast
Fourier transform (FFT) for each sequence as the cross-spectra of these signals relative to
the applied excitatory input signal: SVU(jωk) and SCU(jωk), respectively. The vector of the
complex skin impedance Z(jω) is computed every 5 s as the ratio:

Z(jωk) =
SVU(jωk)

SCU(jωk)
, (2)

with j =
√
−1 as the imaginary number, for the total number of samples every 5 s measure-

ment interval and containing the frequency response function for ωk the 29 excited frequencies.

2.4. AnspecPro Monitor: N/AN Index Development

The N/AN index is, in fact, a time (and frequency) varying value, linked to physiolog-
ical complex phenomena taking place in the body and measured at the skin conductance
surface level. As such, the physiological phenomena in skin impedance studies has been
previously explored in electrical and material science engineering domains, with models
capturing various properties in various circumstances. Here, we make use of some of the
most suitable analogies to extract parametric model structures that still relate to physiology
but yet are minimally complex for the objective of capturing relevant changes in skin tissue
impedance as a result of opioid input in the system (in the patient).

By making use of our prior expertise in modeling physiological systems [37], we
propose an analogy between the tissue-related dynamic transfer impedance properties
and the electrical network circuits. The simplest yet physiologically-based is the recurrent
ladder network of resistors (R) and capacitors (C), whereas the recurrent properties are
explainable by specific tissue properties [37]. Specifically, a single RC-cell element in this
ladder network contains pairs of pole–zero polynomials [37]. This electrical network has
polynomials with roots following a recurrent placement in the complex numerical plane,
exhibiting phenomena well supported by the expected diffusion pattern in biological
tissues [38]. We propose this simple yet effective linear parametric model:

MRC(s) =
s2 + 2rR(m − 1)Rs + rR(m − 1)R2

s2 + 2rC(m − 1)Cs + rC(m − 1)C2 , (3)

with s as the Laplace operator, m = 1 . . . N as the number of recurrent cells, and the
recurrent coefficient values of Rm = R · (m − 1) · rR, Cm = C · (m − 1) · rC. Despite its
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high order, due to recurrent properties, it requires estimating only 4 unknown parameters:
R, C, rR, rC. In Appendix B we provide a numerical example for the model solutions. An
additional unknown parameter is the number of cells existing in the ladder network, but
this can be apriori fixed to limit the complexity of the model. From a dynamic transfer
function point of view, the locations of the roots denoting the poles of the system are the
most important when characterizing dynamical variability of tissue properties as they
change their value depending on the physiological phenomena occurring in the tissue,
which in turn depends on the presence/absence of drug molecules in tissue. Hence, an
index may be defined as

AP1 =
C
rC

(4)

representing the ratio of pole placement coefficient to their recurrent augmentation. This is
closely related to the analytically derived fractional-order coefficient in recurrent ladder
network models with continuous fraction expansions, namely,

N f o =
rR

rR + rC
(5)

which is directly related to layered tissue properties and electrical equivalent. Furthermore,
studies exist to provide data to examine the validity of this fractional order coefficient,
which will be used to discuss the Results section of this paper.

Recurrent ladder networks are distributed parameter models which, via continu-
ous fraction expansion, become a network of interlacing poles and zeros [37]. Algebraic
studies [39] showed that a reduced parametric model for the ladder network would be a
limited number of pole–zero interlacing pairs, represented as follows:

MZP(s) = K
[s2 + Z1s + Z2] · [s2 + Z3s + Z4] · [s2 + Z5s + Z6]

[s2 + P1s + P2] · [s2 + P3s + P4] · [s2 + P5s + P6]
(6)

exemplified for a 6th-order interlacing pairs and a scaling factor K. Notice the difference
with model (3) is that the positions of the poles and zeros by their respective polynomial
coefficients are left free to be identified. A potential indicator of changes in the dynamic
properties captured by such a model is the relative ratio of pole-to-zero location. This can
be expressed by the following index:

AP2 =
K
6
· Z1

P1

Z2

P2

Z3

P3

Z4

P4

Z5

P5

Z6

P6
(7)

This index is closely related to considering the distance between pole-to-zero interlacing
from model (3). Notice that a 6th order is needed to capture the frequency dependent
impedance as a function of time, but not all of the six ratios are required to capture the
variability of this function with variations of drug infusion patterns.

Both models from (3) and (6) were identified using nonlinear least squares method,
with function lsqnonlin in Matlab from Mathworks™. Initial values were reiterated for
estimations until no significant improvement was obtained (usually about 2–3 iterations
were sufficient). The optimization process is a subspace trust region method rooted in the
interior-reflective Newton method. For this particular context, parameter lower bounds
were constrained to 0, ensuring non-negativity, while no upper bounds were applied. Ter-
mination of optimization was triggered upon reaching a tolerance threshold of 10−8. Across
all scenarios, the correlation coefficient between data and model estimates consistently
surpassed 80%.

Specifically, skin impedance modeling characterized human skin properties by single,
double Cole model [40] or 3-layered model [41]. Galvanic skin response and electrodermal
activity was modeled by Cole and RC-layered models [37,42–44] and identification of
fatigue-induced changes and skeletal muscle damage by single Cole model [45]. The
combination of electrodes impedance and skin tissue impedance was characterized by a
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single Cole model structure [46] which we are also using here as a lumped fractional order
impedance model (FOIM):

MFOIM(s) = R +
K

1 + ( s
p )

β
(8)

where R denotes the gain at infinite frequencies, K denotes the relative gain difference
between low and high frequencies, and 1/pβ denotes pseudo-capacitance of the constant
phase element. It follows that τ = β

√
1/p is the relaxation time constant as per analogy

to Debye materials characteristics. The relaxation time constant of the material needs
to be scaled to the relative gain of the excited frequency response function, as it varies
significantly from low- to mid- and high-frequency range behavior. As such, an inversely
scaled index could be proposed from model (8) as follows:

AP3 = β
√

K/p (9)

Alternatively, another index holding tissue properties could be proposed as follows:

AP4 =
β

p
(10)

representing the fractional order of the Cole model—linked to structural changes in the
tissue as a function of time and frequency, and the impedance properties of the tissue,
which are changing along with the drug profiles.

To summarize, the developed indices for the AnspecPro device are defined by Equations (4),
(7), (9) and (10).

2.5. Frequency Domain Impedance Identification Methods

The parametric models from (3) and (6) were identified using nonlinear least square
method and Newton–Gaussian gradient search optimization algorithm. The identification
method requires initial values, which were randomly assigned in the first step. The method
was applied iteratively, updating initial values to the last estimated set of values. The
number of iterations was limited to 10 steps, but, in practice, this was found to be too large
(usually, no significant improvement is achieved after 3–4 steps). The Matlab function
lsqnonlin was used.

Given the nonlinearity in the parameters in the FOIM model from (8), genetic algorithm
optimization was used for searching optimality of the cost function, with the function in
Matlab 2023 ga. It solves stochastic global search optimization problems by repeatedly
modifying a population of individual solutions. The algorithm creates a random initial
population, from which the next generation of children is produced at each step by selecting
individuals from the current population to be parents. Over successive generations of elite
retentions until stopping conditions are met, the algorithm produces the crossover, and
mutation children’s optimals are set [47].

To select the most suitable solution for each patient globally, we assessed the goodness
of fit (gof) for every optimal parameter vector generated throughout each genetic algorithm
(GA) iteration. We identified the parameter set with the highest frequency, ensuring that
the corresponding fit value was at least go f < 0.1. Subsequently, this parameter set was
employed to initialize the model in the online procedure for the same patient. A fit value of
0 signifies an ideal match between the data and the estimated model outputs, yielding a
fitting percentage equivalent to (1 − go f )× 100.

2.6. Time Domain Transfer Function Model Structure Selection and Methods

In terms of input–output block scheme, we find that drug infusions of Remifentanil
correspond to a change in the drug concentration in tissue, affecting their effect. Phar-
macokinetic models from compartmental modeling were not possible to develop here
due to lack of data and lack of identification-rich information signals measured from the
patient during general anesthesia. Instead, simplified transfer function models denoting
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the central compartment where the drug is applied intravenously (blood compartment)
and an effect-side compartment (where the drug takes effect in the nervous system) were
possible to identify. This included the gain corresponding to the pharmacodynamic models
from effect site concentrations of the drugs to their effect (i.e., Hill curves).

A schematic flowchart is given in Figure 2. In this schematic, the variables Kij denote
the kinetic rate transfer in and out of the compartments and their clearances. The simplified
compartment model is then considered as a first-order transfer function with time constant
τ1 for central, respectively, τ2 for effect site compartment. The nonlinear Hill curve relating
the effect site drug concentration to its effect in the body of the patient is replaced by a gain
coefficient K. The dynamic response of this transfer function will be that of a second-order
damped system, i.e., having two real poles as roots in the complex plane.

Figure 2. Illustration of the rationale behind the development of the simplified transfer function
model structure.

For each value of the indices defined by relations (4), (7), (9), and (10), we have a
corresponding infused drug rate of Remifentanil, as described in Figure 1. This provides an
input–output vector relationship for the identification task. The Toolbox IDENT for system
identification in Matlab from Mathworks™was used here along with the transfer function
estimator command tfest.

2.7. Statistical Analysis

One-way analysis of variance was applied using Matlab function anova1. It gives a
boxplot representation of median, quartiles’ percent, and outliers for groups of samples
with normal distribution. Distribution tests, such as Anderson–Darling and one-sample
Kolmogorov–Smirnov, were used to verify the sample distribution. The classification
results were considered significant if p ≤ 0.05 (i.e., within 95% confidence interval) [48].
The results of this analysis can be found in the Supplemental Material.

Similarity among signals was verified using the correlation coefficient between two
signals, and was calculated using the Matlab function corrcoef. Following textbook stan-
dards in signal processing, a correlation coefficient above 0.3 was considered relevant to
pursue parametric models in transfer function structure [49]. The Granger causality test was
performed using both function iscausal and gctest available in Matlab environment.

Student’s t-tests with unequal sample size were used to compute the confidence
intervals. The classification results were considered significant if p ≤ 0.05 (i.e., within
95% confidence interval).

3. Results

First, the development of the AnspecPro N/AN index is presented in terms of results
of the identified frequency domain impedance measured at skin level, and the parametric
models from Section 2.4. An example of frequency domain impedance data identification
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for the AnspecPro monitor in patient 24 is given in Figure 3 (left) for the model from (3).
The results for the same data for the model (6) are given in Figure 3 (right), and for the
model (8) in Figure 4, respectively. Indeed, as expected, the best fit is obtained by the
highest-order model, namely, the model from (3) identified with 13 cells in the network,
resulting in a 26th order polynomial. This impedance is available for identification every
5 s; hence, a model is estimated every 5 s during the “Analgesics” region of interest (see
protocol Figure 1).

Figure 3. An example of identification result for the recurrent ladder network with 13 cells of second
order, i.e., 26th-order polynomials (left) and an example of identification result for the zero-pole
interlacing of 6th order (right).

Figure 4. An example of identification result for the compact FOIM model in 4 parameters (left) and
its genetic algorithm optimization solver view (right).

In terms of fractal dynamic component captured in our models, we have the relation
calculated with (5). Since the corresponding lumped model of (3) is the FOIM Cole model
from (8), we can look at the values of the fractional order β. However, in [46], it is discussed
that fractional order values of 0.942 are accounting for the electrode effect alone. One-
way ANOVA was performed on these two variables for the entire pool of data from the
AnspecPro monitor. After correcting values for effect of electrode in β, no statistically
significant difference is observed in Figure 5. The number of outliers is rather large given
the small dataset (n = 23 patients).

Since the patient variability is large in terms of skin and tissue impedance values, one
may not compare values directly among patients. It is therefore advisable to normalize
the AP values calculated to their maximum value in each corresponding patient. In this
way, all patients will have AP index values between 0–1, allowing a fair comparison. The
derived four AP indices are given in Figure 6 with normalized values, along with their
corresponding histogram distributions. The index from AP2 required only the second and
fourth pair to be calculated, as the other pairs were insensitive to variations correlated to
drug profiles. The histogram illustrates that AP1 uses a larger range of values than AP3
and AP4, also confirmed by the one-way ANOVA analysis, where no significant differences
were observed (p = 0.52).
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Figure 5. One-way ANOVA for the fractional orders calculated with (5) in the left column against the
fractional order identified of β − 0.942 from model (8) in the right column (p = 0.61).

Secondly, to determine whether or not a relation exists between the input of the system
(i.e., Remifentanil) and output of the system (i.e., N/AN index), correlation and causality
analysis was performed. When identifying dynamic models such as transfer functions,
one implies existence of causality. The Granger causality test was used and corresponding
correlations are given in Figure 7 (left) for Remifentanil, and in Figure 7 (right) for Propofol
infusion rates, respectively. As expected, the correlations to Remifentanil were slightly
higher than those to Propofol, but there were no statistically significant differences observed
(p < 0.5). It is difficult to speculate which one of the derived indices is best suited for
selection to pursue dynamic transfer function input–output model identification for the
purposes of control.

Figure 6. One-way ANOVA for the AP1 in first, AP2 in second, AP3 in third, and AP4 in fourth
column (left) and histogram (right) for all 4 AP indices normalized for each patient.

Figure 7. One-way ANOVA for the AP1 in first, AP2 in second, AP3 in third, and AP4 in the fourth
column for correlation coefficients to Remifentanil (left) and to Propofol (right).
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However, it is interesting to compare the AP indices herein derived against the NOL
and SC indices from the commercial monitors. One-way ANOVA for correlations to
Remifentanil are given in Figure 8 (left), and, respectively, for Propofol in Figure 8 (right).
In both cases, a statistically significant difference was determined (p < 0.002) with the NOL
values providing the highest correlation values, with median above 0.3 threshold. There
were no statistically significant differences observed in one-way ANOVA between NOL
and SC correlations to Remifentanil (p < 0.77), or in correlations to Propofol (p < 0.17). The
results from Figure 8 suggest that NOL may be the best-suited index for building dynamic
transfer function models between input infusion rates of Remifentanil to its output effect in
general anesthesia.

Following the correlation test, we pursued the causality test, reported in Table 2. The
lowest percent causality was obtained for the Medstorm device, whereas similar percents
were obtained for the Medasense and Anspec Pro devices.

Figure 8. One-way ANOVA for the AP1 in the first, AP2 in the second, AP3 in the third, AP4 in the
fourth, NOL in the fifth, and SC in the sixth column. Correlation coefficients for Remifentanil (left)
and for Propofol (right).

Table 2. Results of the Granger causality test. The table reports the causality test returned as valid
for the number of patients out of the total number of patients tested with the respective device.
Medasense device: 26 patients, Medstorm device: 20 patients, and AnspecPro device: 23 patients.

Device Causality with Propofol Causality with Remifentanil

Medasense 22/26 22/26
Medstorm 8/20 9/20

AnspecPro AP1 22/23 23/23
AnspecPro AP2 22/23 22/23
AnspecPro AP3 21/23 18/23
AnspecPro AP4 22/23 18/23

To further validate the AnspecPro monitor for noxious stimuli, we examined the data
in the pre-“Analgesic” region where TOF was applied. From Figure 9, we conclude that the
AnspecPro monitor is sensitive to changes in skin impedance induced by the TOF noxious
stimulus, with a relatively small difference between the indices (p < 0.162). More details
can be found in the Supplementary Material.

For those patients where both correlation and causality conditions exist, it infers that a
parametric model characterization can be obtained from the deterministic input–output signals.

Finally, the mathematical relationship in an input (i.e., Remifentanil) to output
(i.e., N/AN index) context of a dynamic system (patient) is the transfer function model [49].
The transfer function models identified from the index data for all monitors are summarized
hereafter. For each patient, the normalized step response from the identified model is given
in Figure 10 for the Medasense monitor, in Figure 11 for the Medstorm monitor, and in
Figures 12–15 for the AnspecPro monitor. The structure of the TF is K/(s + τ1)(s + τ2), and
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in Table 3, we give the coefficients for the averaged transfer function models along with
their standard deviations. Further details are provided in the Supplementary Material file.

Figure 9. TOF region test: One-way ANOVA for the AP1 in the first, AP2 in the second, AP3 in the
third, and AP4 in the fourth column normalized for each patient.

Figure 10. Normalized step responses for all transfer function models identified from patients
evaluated with the Medasense monitor in the Analgesic region.

Figure 11. Normalized step responses for all transfer function models identified from patients
evaluated with the Medstorm monitor in the Analgesic region.
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Figure 12. Normalized step responses for all transfer function models identified from patients
evaluated with the AnspecPro monitor in the Analgesic region for index AP1.

Figure 13. Normalized step responses for all transfer function models identified from patients
evaluated with the AnspecPro monitor in the Analgesic region for index AP2.

Figure 14. Normalized step responses for all transfer function models identified from patients
evaluated with the AnspecPro monitor in the Analgesic region for index AP3.
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Figure 15. Normalized step responses for all transfer function models identified from patients
evaluated with the AnspecPro monitor in the Analgesic region for index AP4.

Table 3. Averaged transfer function model parameters values.

Index K (103) τ1 (103) τ2 (103)

AP1 −3.96 ± 1.5 9.42 ± 5.5 0.33 ± 0.11
AP2 −0.0018 ± 0.007 9.49 ± 3.97 0.35 ± 0.23
AP3 −0.003 ± 0.0005 9.5 ± 1.16 0.64 ± 0.11
AP4 −0.0012 ± 0.004 9.74 ± 5.826 0.39 ± 0.143

Index K (104) τ1 (104) τ2 (104)

Medstorm −0.0003 ± 0.0002 2.83 ± 2.317 0.064 ± 0.0236

Index K (106) τ1 (106) τ2 (106)

Medasense 0.0037 ± 0.0193 1.58 ± 1.04 0.001 ± 0.003

4. Discussion

For the first time, the prototype skin-impedance-based monitor AnspecPro was evalu-
ated in patients in general anesthesia. An index of nociception/anti-nociception (N/AN)
was defined from the raw skin impedance data. In fact, several indexes were proposed, to
broaden the selection range of those best suited for a patient’s state evaluation. Each of
these indexes resulted from physiologically-based parametric models, and they capture
different biotissue properties and afferent variability in response to drug input and/or
nociception stimulation.

The nociceptive stimulus test applied with the standard TOF (train of four) test de-
livered useful information for concluding that the prototype device AnspecPro is able to
detect changes in skin impedance as a result of noxious stimulus. Its degree of sensitiveness
to these variations produced an effect that was not statistically different from the N/AN
index in the commercial devices (p > 0.5). With respect to evaluation of the four indices
developed for the AP device, there was also no statistical significant difference (p < 0.162)
(Figure 9). All three monitors were sensitive to the TOF test applied as nociceptive stimulus.

The TOF is a standard pain stimulus in awake patients, and it is a standard nociception
pain stimulus. Unlike other stimuli, it has the advantage of being repetitive (always the
same intensity and same time of duration), which makes it a good objective test. The
standard tetanic stimulation used to evaluate nociception levels is standardly applied
on the handpalm, but it was not possible in our case as our nociception monitors have
sensing patches on both hands, and therefore may interfere with the electric signals from



Sensors 2024, 24, 2031 16 of 21

the devices. On the other hand, a tetanic stimulus is not ethically acceptable for application
on the forehead of a patient.

Hence, we chose to apply the 3xTOF stimulus to the forehead of the patient. This
is an extremely painful stimulus in awake patients, so it surely also has a relatively high
intensity in anesthetized patients, making it relevant for our check test here.In our study,
the TOF was given in a set of three TOFs, one after another, which is surely a large intensity
for testing on patients and monitoring by the devices we analyze here.

It is true that when TOF is applied in patients under only Propofol-induced hypnoses,
this may not be very intense and probably not as intense as the surgical stimulus; but we
cannot know this beforehand as there is large uncertainty regarding the surgical stimulus
as well as in terms of its intensity, as it is also not as repetitive as TOF.

When comparing (see Supplementary Material) statistical analysis of the regions
before and during the standardized TOF, there was a difference between the two states in
all devices and for all indices, namely, a decrease in values during the TOF test data. Note
that all devices measure a dose-related corresponding effect; in other words, it is a measure
of the effect of the drug potency on the specific patients in the group. Our comparison
results indicate that there is an increase in the effect resulting from the potency of the drug
(i.e., dose effect) because Propofol and Remifentanil were administered (see Supplementary
Material). From a control engineering point of view, as well as from a closed-loop control
of anesthesia perspective, this result is very logical and makes sense to all coauthors from
both clinical and engineering disciplines. Moreover, it is a consistent and visible result in
all devices. From a control engineering perspective, the TOF is a disturbance (or, in clinical
terms, it is a stimulus). A decrease in the effect of the drug indicates that more of the drug
should be applied to maintain the same effect in presence of stimulus/disturbance.

If all devices consistently have the same “reaction” to the “disturbance” given by
TOF, it means that all of them are sensitive to capturing the effect of stimuli and are,
therefore, suitable candidates for closed-loop control of anesthesia involving both humans
and computers in the decision-making process of finding optimal infusion rates.

The parametric model from (3) is based on the distributed parameter properties of
an electrical network equivalent for skin layer impedance measurements. This is mainly
capacitive in properties with a scaling factor in terms of resistance coming from the bi-
ological tissue viscoelastic properties [50]. The threshold of neuronal signaling in the
sodium–potassium pump involved in gate mitigation for electrical stimulus from sensorial
to perceptual nodes within the pain pathways [37] is modified by the electrical transmis-
sibility of the tissue in response to molecular binding of the administered opioid. This
is represented by the variations in the capacitive values of the recurrent ladder network
herein proposed. It follows that the index AP1 from (4) is able to capture variations in the
capacitive sensitivity of tissue with changes in its electrochemical properties. The recurrent
ratio of the capacitance values will affect the slope of the Bode characteristic of the frequency
response of such a dynamic intricate process and, in turn, will affect the bandwidth of the
process (i.e., it affects the dynamic response to drug or stimulus input) [39,49]. By anal-
ogy to our in silico studies [33], this index characterizes the variability of electrochemical
properties of tissue impedance.

Physiologically similar, but in a more compact form as it has fewer parameters, is
the model from (6). The deep link to tissue electrochemical properties is lost here due to
simplification of the model structure, but it maintains the characterization of the dynamic
response. This is through the pole–zero locations which are identified in the Nyquist
complex plane, i.e., the roots of the polynomials of this model [39]. The index AP2 will
capture any variations in the pole–zero locations, i.e., again, related to changes in the
dynamic response of the tissue and properties such as electrical conductivity.

The lumped fractional order impedance model from (8) has a physiological interpreta-
tion as well; namely, it is the equivalent representation of tissue as a Debye or dielectric
material, and the index AP3 is the relaxation time constant with a scale factor K. This
particular physiological interpretation is very suitable for properties of tissue with opioid
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as it is equivalent of dispersion phenomena, closely related to diffusion. The effect of
opioid in molecular binding progression tends to behave as Debye first-order model disper-
sion. However, the electrical dispersion characteristics assume a uniformly lossy material
(i.e., tissue) and this might not be true as the pharmacokinetic models for drugs to take
effect are compartmental-based models, i.e., a central compartment (blood) and two periph-
eral compartments (muscle and fat). Still, permittivity and conductivity are properties well
encompassed by Debye circuit models, of which the model (8) is a simplified version [51].
Again, these properties will vary with changes occurring in the sodium–potassium pump
as a result of an opioid or of an noxious stimulus presence.

For a two-layered material Debye model, the relaxation time constant is given by
the formula:

τ = ϵ0ϵr1
1

(σ1 + σ2)/2
(11)

where ϵ0 is the residual permittivity of the material in suspended form (no input), ϵr1 is
the permittivity of the material in the first layer, and σ1 and σ2 denote the conductivity in
the first and second layer of material, respectively. For multilayered materials, such as in
the biological tissue case, the β is related to the relative permittivity between the layers,
and it affects the relaxation frequency of the material [51]. The term p is related to the
relative conductivity of electrochemical properties between layers. The index AP4 could be
indicative of relative changes in permittivity and conductivity of the tissue.

All indexes have physiological bases and seem to be correlated to changes in Remifen-
tanil administration. As no statistical significant difference is observed, the choice of a
singular index is, therefore, difficult. From the correlation point of view, the indexes AP2
and AP3 seemed best correlated, with a prevalent physiological basis in AP3 index.

All transfer function models gave similar time constant around 1 min for reaction time
to Remifentanil infusion, which corresponds well to time constants found in the central
compartment (i.e., blood). Interpatient variability was well observed in the identified
transfer function models for all monitors and for all indices, which suggests that both
the CE labeled monitors of Medasense and Medstorm gave similar performance to the
prototype monitor AnspecPro.

The use of AnspecPro as an N/AN monitor or as a monitoring device for the N/AN
state of the patient under general anesthesia is suitable, under the assumption that it per-
forms similar to the commercial devices used here for comparison. It is worth mentioning
that, of the three devices, the Medstorm device had the poorest performance in terms of
signal quality index, explainable by the fact that the algorithm to extract the SC index is
based on a single sinusoid and single conductance information variations of intensity over
time. By contrast, the NOL index from the Medasense device was most reliable in terms
of signal quality and had also the highest correlation among the devices to variations in
Remifentanil infusion profiles in the Analgesic region of our protocol. This is explainable
by the fact that it uses a multivariate algorithm on several signals and, thus, collects more
information from the patient to extract the N/AN level. As such, the prototype AnspecPro
uses a multisine to extract skin impedance variations over time and frequency, but no
other signal from the patient. It is, therefore, more complex than the Medstorm device and
less complex than the Medasense device. Both the NOL and AP devices are suitable for
closed-loop control, with preference given to NOL for being a multivariate signal processor
of the patient’s state.

5. Conclusions

This paper introduces the validation of the AnspecPro monitor as a nociception/anti-
nociception monitor under general anesthesia, as well as a comparison analysis of three
monitors. Two commercial pain monitors have a CE label and one is a prototype device.
All monitors perform similar under well-designed protocol suitable for fair comparison,
concluding that the prototype device detects nociception with similar performance to the
commercial ones. As a perspective for the application of closed-loop control of general
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anesthesia, the AnspecPro monitor and its multifrequency impedance analysis could be
well paired with the NOL index to overall improve the N/AN state evaluation in patients
under general anesthesia.
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Appendix A. Protocol Details

Following the illustration from Figure 1, the following measurements were performed.
The first registration by the two monitors (awake, no anesthetics) was performed before
induction, when the patient’s state was normal and could be considered the baseline
measurement (MON1, MON2). After each monitor registered the data for two minutes,
the anesthesiologist induced the anesthesia with hypnotics (Propofol), while the second
monitors still registered the patient’s response to this change.

A stable clinical level of hypnosis was reached for each patient, observed through a
constant effect-site concentration of Propofol, on the BIS/Neurosense monitors and other
clinical response signs from the patient. The second registration (hypnotics) by the two
monitors started then and continued for two minutes each monitor (MON2, MON1).

The third registration (TOF) was performed when applying TOF stimulus three times
for a total of 20–30 s by the anesthesiologist (MON2, MON1). For thirty seconds after TOF
finished, the first registering device continued to monitor the patient’s response. The REG3
for the second monitor started after another thirty seconds, waiting for the patient to return
to its initial sleepy state.

Remifentanil infusion was started by the anesthesiologist one minute later after TOF
registration finished (MON2). During the induction, first, hypnotics was given, followed
by analgesics. This was study-specific, so the design would allow the registration of the
monitor during a period of hypnosis without analgesics, but with simultaneous nociceptive
stimulus induced by a TOF monitor. Moreover, the muscular blockage was performed

https://www.mdpi.com/article/10.3390/s24072031/s1
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intravenously by the anesthesiologist with Rocuronium in case the tracheal intubation
was needed. During the induction with analgesics infusion, intubation, or insertion of
the laryngeal mask and incision, only one monitor remained connected to the patient and
registered the patient’s response (MON2).

Patients were randomized to be monitored by two out of the three monitors under
investigation. Three groups were created by blinded selection for each two monitors neces-
sary to make statistical pairing possible, as follows: AnspecPro–Medasense, AnspecPro–
Medstorm, Medasense–Medstorm. Each was also divided into two, because the study
protocol allows only one of the monitors to record while Remifentanil infusion starts, hence
the order of the monitor counts for the correlation with the analgesia level (e.g., AnspecPro–
Medasense delivers a different dataset in terms of monitoring period compared to the
group Medasense–AnspecPro). The choice of the group (which two monitors) was made
by random choice of sealed envelopes.

Appendix B. Numerical Examples for One Patient

Let us analyze the model from (3). Recall here the form of second-order polynomials
in the transfer function:

P(s) =
ω2

n
s2 + 2ζωn + ω2

n
(A1)

where s denotes the Laplace operator. If we bring the model from (3) into the form above,
it follows that the natural frequency for the polynomial in R is given by

ωn,R = R
√

rR(m − 1) (A2)

with the damping factor

ζ,R =
rR(m − 1)R

R
√

rR(m − 1)
=

√
rR(m − 1) (A3)

leading to the relation ωn = Rζ. Similarly, it can be obtained for the polynomials in C:
ωn,C = C

√
rC(m − 1), and ζ,C =

√
rC(m − 1).

For m = 1, corresponding to one cell, we have that M(s) = s2

s2 = 1, with ωn = ζ = 0.
For m = 2, we have the system:

M(s) =
s2 + 2rRRs + rRR2

s2 + 2rCCs + rCC2 (A4)

and ζ,R ,2 =
√

rR. For m = 3, it follows that ζ,R ,3 =
√

2rR, etc.
The examples of identification reported in paper in Figures 3 and 4 are given for

the patient indexed 24 as in Table 1. The results of the model parameter identification
from (3) averaged over the 33 samples of impedance data over time are R = 137.8, C = 242,
rR = 35.45, and rC = 6.75. For all patients, the value m = 13 has been fixed. From these
results, it follows that the damping factor in this model is always 1 < ζ for all values of
m = 1 . . . 13. This corresponds to the dynamic response of an overdamped system, well
supported by physiological insight.

Next, let us see an example for the model from (6). For the identification provided in
Figure 3, the model coefficients averaged over the 33 samples of impedance values over
time are as follows: Z1 = 69,769.51, P1 = −20,972.17, Z2 = −2,696,379.43, P2 = 57,746.65,
Z3 = −478.05, P3 = 561.66, Z4 = 103,041.20, P4 = 119,503.37, Z5 = −8506.34, P5 = 528.62,
Z6 = 33,455.10, P6 = −39,844.88, and K = 258.30.

Finally, for the model from (8), the identification result for the same patient and
same impedance data over the 33 samples in time are averaged as follows: R = 240.50,
K = 3903.08, p = 1927.40, and β = 1.66.
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