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ABSTRACT
Phase gradients can help enforce phase consistency across time and
frequency, further improving the output of speech enhancement ap-
proaches. Recently, neural networks were used to estimate the phase
gradients from the short-term amplitude spectra of clean speech.
These were then used to synthesise phase to reconstruct a plausi-
ble time-domain signal. However, using purely synthetic phase in
speech enhancement yields unnatural-sounding output. Therefore
we derive a closed-form phase estimate that combines the synthetic
phase with that of the enhanced speech, yielding more natural out-
put. Secondly, we empirically evaluate the benefit of (re-)training
the phase gradient estimation networks on the amplitude spectra of
the estimated clean-speech signal. Lastly we apply our proposed
phase enhancement to the output of a phase-aware speech enhance-
ment DNN, verifying if an independent phase estimator brings ad-
ditional advantage. Results show that, compared to the baseline,
the proposed approach further improves the DNSMOS scores by
≈ 0.1 on average, and significantly in the first quartile on broad-
band, quasi-stationary noises, where phase enhancement is expected
to have maximum benefit. Training phase gradient estimators on es-
timated speech spectra is additionally beneficial here. Our method
even improves the performance of the phase-aware approach, indi-
cating its feasibility as a generic post-processor for speech enhance-
ment.

Index Terms— DNN-based speech enhancement, phase estima-
tion, CRUSE, phase derivatives, phase-aware speech enhancement

1. INTRODUCTION

Phase estimation of the underlying speech signal is a challenging
problem in single-channel speech enhancement, because of the lack
of discernible structure in phase spectra and the added complication
of the 2π periodicity. Classical speech enhancement in the short-
time Fourier transform (STFT) domain, therefore, focussed on the
estimation of the clean speech amplitude and retained the phase of
the noisy input. Typically this was justified by assuming a uniform
distribution for phase in [0, 2π] [1], or by assuming a (complex)
Gaussian distribution for the signal [2], whereby the noisy phase was
the MMSE-optimal estimate. Yet, as discussed in [3], the importance
of phase estimation in speech enhancement cannot be ignored.

Prior work: Interestingly, while the phase spectra do not show
structure, the phase derivatives demonstrate clear patterns. This was
first systematically studied and exploited in [4,5] to blindly estimate
the phase of speech harmonics during voiced speech. The core idea
here was to enforce the theoretically derived phase gradient across
time frames, for all frequency bins containing speech harmonics, and
to ensure consistency across frequency by factoring in the influence
of the window function. However, the approach requires a robust
estimate of the fundamental frequency (F0) in each frame. Unfor-
tunately, F0 estimation accuracy degrades at low SNRs, rendering

the approach less effective at exactly the conditions where phase en-
hancement would be most beneficial [6]. Secondly, the underlying
assumption is that the spectrum is purely harmonic during voiced
speech. However, when we have mixed excitation or spectra where
higher harmonics are not integer multiples of F0, phase reconstruc-
tion leads to a metallic-sounding output due to over-excitation.

Similar to classical approaches, DNN-based methods operating
in the STFT domain either estimate a denoising mask or perform
spectral mapping to clean speech amplitudes. To include phase,
mask estimation has been extended into the complex domain as, e.g.,
the complex ideal ratio mask [7] or phase sensitive mask [8]. Spec-
tral mapping has been similarly extended to estimate the complex co-
efficients of the clean speech, instead of the real-valued amplitude, in
the rectangular [9] or polar form [10,11]. However, as shown in [10],
the complex extensions make only small changes to the phase, com-
pared to the magnitudes, implying that the DNNs do not sufficiently
learn the distribution of the clean speech phase, but likely achieve a
local optimum in the MMSE sense, as in the statistical methods.

STFT-based methods are attractive for practical applications,
due to their interpretability and tunability. To solve the associated
phase enhancement problem, therefore, the use of temporal and
spectral phase derivatives (gradients) to estimate the phase of clean
speech have come under renewed focus. Specifically interesting - as
they are closely related to the denoising problem - are approaches
that can estimate the phase given only the clean magnitude spectra.
Such approaches are based on implicit relations between the spec-
tral and temporal phase gradients and the STFT amplitude spectra.
In [12] phase is retrieved in a non-causal and purely signal theoretic
framework, by integrating the gradients across time and frequency.
In contrast, in [13, 14], DNNs are first trained to predict the map-
ping from amplitude spectra of clean speech to the phase derivatives
along time and frequency. At inference, the phase at any particular
STFT bin is obtained by integrating the estimated phase derivatives
along time or frequency. The estimated phases from each direction
of integration is fused to obtain a single, consistent phase value for
that STFT bin, Whereas [13] heuristically weights the estimate from
each direction, in proportion to the magnitude along that path, [14]
proposes an elegant, analytic solution by posing the fusion as an
optimisation problem, to be solved independently at each STFT bin.

Contributions: We first note that the goal in [14] is to synthe-
sise the phase of clean speech, given its clean STFT amplitudes. In
speech enhancement, applying this synthetic phase to the enhanced
speech amplitude makes the result sound unnatural compared to the
target speech signal in the noisy mixture. This is the inspiration
for our work. We derive a closed-form phase estimate, combin-
ing the synthetic phase with that of the enhanced speech, leading to
more natural output. Secondly, whereas the phase-gradient estima-
tors of [14] are trained on amplitude spectra of clean speech, we em-
pirically evaluate the benefit of training these estimators in matched



conditions, using the estimated amplitude spectra. Lastly, we study
the added value of our proposed approach in phase-aware enhance-
ment approaches. This would indicate the feasibility of the approach
as a generic post-processor in STFT-based speech enhancement.

The paper is organised as follows: the signal model and the base-
line enhancement networks are discussed in Sec. 2, along with the
concept of phase derivatives. Next, we briefly summarise the ap-
proach of [14] and derive the analytic solution for the phase esti-
mate in the speech enhancement context (Sec. 3). Following this, we
evaluate the proposed approach on the DNS challenge test set and,
thereby, also draw conclusions on the questions raised previously.
The key take-aways are summarised in the conclusion.

2. STFT DOMAIN SPEECH ENHANCEMENT

Assuming an additive mixing model at the microphone, the observed
signal is represented in the STFT domain as:

Y (l,m) = H(m)S(l,m) +N(l,m) (1)

where the clean speech S(l,m) is degraded by the background noise
N(l,m) and possible reverberation introduced by the room transfer
function H(m). The l and m are the frame index and the frequency
bin index, respectively. Speech enhancement is obtained by estimat-
ing a time-frequency (TF) mask (or gain) G(l,m) which, applied to
Y (l,m), yields the clean speech spectrum estimate:

Ŝ(l,m) = G(l,m)Y (l,m) , (2)

from which the time-domain signal ŝ(k) is obtained by inverse
Fourier transform and overlap-add. The estimated mask, G(l,m)
can be real-valued, or complex-valued in the case of phase-aware
extensions. In the former case, the noisy phase is used for the final
speech estimate.

2.1. DNN baselines: CRUSE and Complex CRUSE (C-CRUSE)

Convolutional, recurrent encoder-decoder networks with skip con-
nections (commonly called UNets) are widely used for single- and
multi-channel speech enhancement in the STFT domain as they offer
a good balance between computational efficiency and performance.
Specifically, we select CRUSE [15] as the baseline for predicting the
real-valued TF mask from the noisy magnitude.

For the phase-aware baseline, we extend CRUSE as follows:
the input features are formed by concatenating the real and imag-
inary parts of the noisy spectrogram along the channel dimension.
Two output channels are obtained containing, respectively, the real
and imaginary part of the complex mask. The final mask is then:
G(l,m) = GR(l,m) + jGI(l,m) . To allow phase to be modelled
in the full range [0, 2π], the hyperbolic tangent activation function is
used in the final layer. The loss function is identical to CRUSE.

2.2. Phase derivatives

In the polar form, the complex spectrogram, S(l,m), of clean speech
can be written in terms of the amplitude A(l,m) and phase Φ(l,m)
as S(l,m) = A(l,m) exp

(
jΦ(l,m)

)
. The phase derivative along

frequency and time is then approximated as:

∆fΦ(l,m) = Φ(l,m)− Φ(l,m− 1) and (3)
∆tΦ(l,m) = Φ(l,m)− Φ(l − 1,m) . (4)

As the STFT is computed on windowed, overlapped, time-segments,
there is an additional offset term in the phase that is proportional
to the frame shift (Q). Because of the 2π periodicity, this offset
can distort the structure in the temporal phase difference. To avoid

this, [5] proposes to modulate the STFT into the baseband. If M is
the frame length, the baseband-modulated phase is given by:

Ψ(l,m) = Φ(l,m) + ψ0(l,m) , (5)

with ψ0(l,m) ≡ −2πlm Q
M

. The baseband phase difference is then:

∆tΨ(l,m) = Ψ(l − 1,m)−Ψ(l,m) . (6)

Note that, given the baseband phase difference ∆tΨ(l,m), it is
easy to compute ∆tΦ(l,m). Finally, if either Φ(l,m − 1) or
Φ(l − 1,m) are available and the corresponding phase differences
from (3) resp. (4) can be estimated, Φ(l,m) can be computed.

3. PHASE ESTIMATION

3.1. Estimating ∆fΦ(l,m) and ∆tΨ(l,m)

As shown in [12], phase derivatives are connected to the log mag-
nitude spectra. While it is possible to estimate these derivatives an-
alytically, it would require limiting assumptions on the evolution of
phase across time and frequency and exhibit the same drawbacks
as [5]. In contrast, data-driven methods [13, 14], where DNNs are
utilised to learn this relationship, offer more robust estimates.

Two separate UNets, each with one fully connected bottleneck
layer and 1×1 add-skip connection, are used to predict the two phase
differences, respectively. Training targets are the phase differences
of clean speech, ∆fΦ(l,m) and ∆tΨ(l,m). Due to the periodic
nature of phase, cosine loss functions, defined below, are adopted.

Lf =
∑
l,m

(
1− cos

(’∆fΦ(l,m)−∆fΦ(l,m)
))

(7a)

Lt =
∑
l,m

(
1− cos

(‘∆tΨ(l,m)−∆tΨ(l,m)
))

(7b)

3.2. Phase retrieval from clean speech amplitudes
As independent networks are employed to predict the phase differ-
ences across time and frequency, we obtain two estimates of Φ(l,m)
- one for each integration path. A final, consistent phase estimate is
obtained by fusing the individual results. This is formulated very
elegantly in [14] as an optimisation problem, allowing Φ(l,m) to be
computed recursively and in an analytical manner, once the phase
differences themselves are estimated. We briefly summarise this, us-
ing the same notation as [14], before deriving our extension.

Define V (l,m) ≡ S(l,m)
S(l−1,m)

, which, clearly, is linked to the tem-

poral phase difference. Inserting ‘∆tΦ(l,m), and the known clean
speech amplitudes A(l,m), we obtain an estimate of V (l,m) as:“V (l,m) =

A(l,m)

A(l,m− 1)
exp (j‘∆tΦ(l,m)). (8)

Denote by zl =
[
z(l, 0), z(l, 1), . . . , z(l,M ′)

]T , the complex spec-
trum estimate of clean speech for the M ′ = M/2 positive frequen-
cies of frame l. The reason for using z(l,m) instead of S(l,m) will
become clear presently. Given the clean speech spectral estimate
Ŝl−1 = [Ŝ(l − 1, 0), Ŝ(l − 1, 1), . . . , Ŝ(l − 1,M ′)]T of the prior
frame, zl can be obtained by minimising:

Jt(zl, Ŝl−1, “Vl) =
∥∥zl − “Vl ⊙ Ŝl−1

∥∥2

Λl
. (9)“Vl = [“V (l, 0),“V (l, 1), . . . ,“V (l,M ′)]T , and ⊙ is the Hadamard

product. The notation
∥∥e∥∥2

Λ
is the weighted inner product: eHΛe.

To obtain zl from the phase gradient across frequency, we define
U(l,m) ≡ S(l,m)

S(l,m−1)
. Given’∆fΦ(l,m), we estimate U(l,m) as:“U(l,m) =

A(l,m)

A(l,m− 1)
exp (j’∆fΦ(l,m)). (10)
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Fig. 1: Block diagram of the proposed speech enhancement system with phase reconstruction. Dashed boxes represent neural networks whereas solid boxes
indicate data contained. The frame index l and the frequency bin index m have been dropped for conciseness.

Defining the sparse (M ′ − 1)×M ′ matrix Dl as:

Dl(m,m
′) =


−“U(l,m+ 1) m′ = m

1 m′ = m+ 1

0 otherwise
, (11)

it is clear that zl can be estimated by minimising:

Jf (zl, “Ul) =
∥∥Dlzl

∥∥2

Γl
. (12)

Minimising the combined cost functions in (9) and (12) :

J (zl) =
∥∥zl − “Vl ⊙ Ŝl−1

∥∥2

Λl
+

∥∥Dlzl

∥∥2

Γl
. (13)

yields ẑl =
(
Λl+DH

l ΓlDl

)−1
Λl

(“Vl⊙Ŝl−1

)
, which is the jointly

optimal estimate. From this, the phase estimate is obtained as:

Φ̂(l,m) = ̸ ẑ(l,m) . (14)

where ̸ z calculates the phase of a complex coefficient z. This is
combined with the amplitude A(l,m) to yield Ŝ(l,m).

The weights Λ and Γ indicate the reliability of the two predicted
phase differences. Since the network prediction accuracy is related
to the spectral magnitude, it is proposed in [14] to define diagonal
weighting matrices as:

Λl(i, i) = (A(l − 1, i)A(l, i))p and (15)
Γl(i, i) = γ · (A(l, i)A(l, i+ 1))p , (16)

where p is the magnitude compression factor, and γ is the extra factor
to balance two different estimates.

3.3. Phase reconstruction for speech enhancement
When applying the above approach for estimating the phase for
speech enhancement, two points should be considered: first, the
magnitude spectra used for obtaining the phase gradients and es-
timating the phase are obtained from the preceding speech en-
hancement system. Thus, they are imperfect and possibly contain
artefacts due to residual noise and speech distortion. Hence, it might
be advantageous to train the DNNs for phase gradient estimation
on these estimated speech amplitudes. Second, using the purely
synthetic estimate from (14) leads to an output that sounds unnatural
compared to the speech in the noisy mixture. Therefore, to obtain
natural-sounding audio, the initial phase available from the speech
enhancement stage should be incorporated in the phase estimator.
We propose to do this by including an additional term in the cost
function in (13), which penalises large deviations from the estimated
speech spectrum obtained after the speech enhancement stage. De-
note by S̃l = [S̃(l, 0), S̃(l, 1), . . . , S̃(l,M ′)]T the enhanced speech

at frame l, from the baseline speech enhancement. The spectral
deviation cost to be added to (13) can be expressed as:

Js(zl, S̃l) =
∥∥zl − S̃l

∥∥2

Ωl
. (17)

Since only the current frame is relevant to this distance, we propose
to construct Ωl as the diagonal matrix:

Ωl(i, i) = ω(Ã(l, i))2p , (18)

consistent with the definition of Λ and Γ. Further ω is a hyperpa-
rameter to adjust the contribution of this cost component. This leads
to the following estimate of zl in the context of speech enhancement:

ẑl =
(
Λl +DH

l ΓlDl +Ωl

)−1
(
Λl

(“Vl ⊙ Ŝl−1

)
+ΩlS̃l

)
(19)

Computing the enhanced phase as in (14), we obtain the final clean
speech estimate as:

Ŝ(l,m) =
∣∣S̃(l,m)

∣∣ exp (j Φ̂(l,m)
)

(20)

=
∣∣G(l,m)Y (l,m)

∣∣ exp (j Φ̂(l,m)
)

The system is summarised by the block diagram in Fig. 1.

4. EXPERIMENTAL EVALUATION AND DISCUSSION

For CRUSE and C-CRUSE, we adopt the four layer encoder-decoder
structure with grouped GRUs (true to [15]), to predict the mask for
the initial noise reduction and dereverberation. The networks were
trained on the DNS challenge 2021 wideband dataset [16]. We syn-
thesised 140 hours of training data from English speech, with 50%
of them in reverberant conditions (T60 in the range 0.3 s – 1.3 s).
The SNR of the training set was varied between −5 dB and 20 dB.
Audio was sampled at 16 kHz. The STFT employs 75% overlapped
frames and a square-root Hann window of length M = 512 for
analysis & synthesis. The enhanced speech signals were evaluated
by segmental SNR [17], STOI [18], and DNSMOS P.835 [19].

The UNets for phase gradient estimation comprise three convo-
lutional layers in the encoder and decoder, respectively. Kernels of
dimension 2 × 3 (time, frequency), and strides of 1 × 2 were used
at all layers. The number of channels of each layer were: 16, 32, 32,
which resulted in a 992 unit fully connected layer at the bottleneck.
All convolutional layers were followed by the leaky ReLU function
with an α = 0.003 negative slope. Two sets of UNets were trained:
1) the first set, as originally proposed for phase retrieval, learn the re-
lationship between the clean magnitude spectra and the phase deriva-
tives. They are agnostic of the speech enhancement (SE) stage; 2)
the second set is adapted to the speech enhancement context, and
learn to predict the phase derivatives of the clean speech from the
estimated magnitude spectra. Both approaches have unique poten-
tial advantages: enhancement-agnostic networks need no retraining
when switching other components in the pipeline, while networks



Fig. 2: Comparison of the denoised signals by CRUSE and with the proposed phase reconstruction. Noisy signal: Street noise, -2 dB. Note the clearer harmonic
structure after phase reconstruction by the proposed method in the highlighted area. C-CRUSE in combination with phase reconstruction even manages to pick
up very weak harmonic structure (white box) and gives a more continuous harmonic spectrum (red box)

trained specific to a certain speech enhancement system might pro-
vide better performance, due to matched conditions. We denote the
networks as ‘SE-Agnostic’ and ‘SE-Matched’ in the sequel.

Optimal values for the compression factor p and the weights γ
and ω, were obtained by grid search. Based on the DNSMOS scores
on a subset of development data of the DNS2020 challenge [20],
with wideband, quasi-stationary noise, the optimal parameters were
[p = 0.3, γ = 10, ω = 5] for SE-Agnostic, and [p = 0.5, γ =
10, ω = 5] for SE-Matched.

4.1. Results & Discussion
The optimised system is evaluated on the DNS2021 synthetic test
set [16]. Averaged metrics are given in Tab. 1. Compared to the
noisy input, a significant improvement is provided by all approaches,
and on all metrics. As an upper bound on achievable performance,
we also present results where the oracle, clean phase is used with the
estimated speech amplitudes. Comparing CRUSE and its complex
extension, we see a marginal benefit of estimating the phase in the
enhancement stage - in line with previous works.

More importantly, the proposed phase enhancement improves all
quality metrics, compared to both corresponding baselines (CRUSE
& C-CRUSE). Only STOI is constant for all approaches. This is
expected: phase enhancement should not affect the speech envelope,
which is important for intelligibility. This sanity check ensures we
do not improve quality at the cost of intelligibility. We also see that
the phase-enhanced outputs are comparable to using oracle phase –
a pleasing result.
Table 1: Averaged instrumental metrics on test set. Best results in bold.
Phase enhancement consistently improves all metrics compared to baselines
and is comparable to using oracle phase.

Method segSNR STOI DNSMOS
[dB] OVRL SIG

Noisy 6.87 0.87 2.53 3.33
CRUSE 13.74 0.93 3.10 3.36

CRUSE-Agnostic 14.30 0.93 3.17 3.43
CRUSE-Matched 14.19 0.93 3.17 3.44

C-CRUSE 13.92 0.93 3.14 3.40
C-CRUSE-Agnostic 14.45 0.93 3.20 3.45
CRUSE-OraclePhase 14.51 0.94 3.17 3.43

C-CRUSE-OraclePhase 14.77 0.94 3.20 3.45

We expect the proposed phase reconstruction to offer maximum
benefit with stationary, broadband noise conditions, as such noise
typically results in vocoding artefacts between the harmonics after
speech enhancement – which phase reconstruction can ameliorate.
In such cases, we expect differences between the various configura-
tions to be more evident. Thus, we split the test set into two subsets:
a) mixtures with stationary or short-term stationary noise, such as
car, traffic, babble; b) mixtures with sparse, transient noise, such as

footsteps, typing, etc. The distribution of the DNSMOS scores are
shown in Fig. 3 for both subsets. We now see that on subset a, SE-
Matched has a bigger margin over the SE-Agnostic. When the noise
is less stationary and sparse (subset b), using SE-Agnostic is bet-
ter. We reason that in such cases there are fewer contiguous regions
where the speech and noise overlap. Then, SE-Agnostic networks,
being trained on clean speech, yield more accurate phase estimates.
The averaged results in Tab. 1 may indicate only a small achiev-
able improvement by using the proposed phase reconstruction on
CRUSE/C-CRUSE. However, Fig. 3 shows that phase reconstruc-
tion manages to boost the signal quality in poor SNR conditions –
reflected by the decreased spread and higher minimum in the scores!

Fig. 3: DNSMOS score distribution, separately on broadband/quasi-
stationary and transient/sparse noise subsets from DNS 2021 test set.

5. CONCLUSIONS
We proposed a phase reconstruction method for speech enhance-
ment, based on phase gradients. Using independent DNNs to pre-
dict spectral and temporal phase derivatives from the estimated am-
plitude spectra (from a preceding speech enhancement stage), we
obtain two estimates of the phase. A closed-form, analytic solu-
tion was derived to fuse these estimates in an MMSE-optimal man-
ner. We further introduced an additional cost term that incorporated
phase information present in signal after the speech enhancement
stage – which led to a more natural-sounding output. Experimen-
tal results validate the quality improvement brought by the proposed
phase enhancement - with the performance of the proposed method
being comparable to using oracle phase. The proposed phase es-
timator is also beneficial when used with phase-aware speech en-
hancement, indicating its feasibility as a generic post-processor in
STFT-based speech enhancement frameworks. Lastly, training the
phase derivative estimator DNNs specific to the preceding speech
enhancement stage is beneficial when noise is (short-term) station-
ary and broadband. For sparse, transient noises, training the DNNs
on clean-speech spectra gives more accurate results. Audio sam-
ples can be found at https://aspireugent.github.io/
diff-based-phase-reconstruction-SE/.

https://aspireugent.github.io/diff-based-phase-reconstruction-SE/
https://aspireugent.github.io/diff-based-phase-reconstruction-SE/
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