
Demonstrating Adaptive Many-to-Many Immersive
Teleconferencing for Volumetric Video

Matthias De Fré, Jeroen van der Hooft, Tim Wauters, Filip De Turck

matthias.defre@ugent.be

IDLab, Ghent University - imec

Ghent, Belgium

ABSTRACT
In today’s world, the use of video conferencing applications has

risen significantly. However, with the introduction of affordable

head-mounted displays (HMDs), users are now seeking new immer-

sive and engaging experiences that enhance the 2D video conferenc-

ing applications with a third dimension. Immersive video formats

such as light fields and volumetric video aim to enhance the experi-

ence by allowing for six degrees-of-freedom (6DoF), resulting in

users being able to look and walk around in the virtual space. We

present a novel, open source, many-to-many streaming architecture

using point cloud-based volumetric video. To ensure bitrates that

satisfy contemporary networks, the Draco codec encodes the point

clouds before they are transmitted using web real-time communi-

cation (WebRTC), all while ensuring that the end-to-end latency

remains acceptable for real-time communication. A multiple de-

scription coding (MDC)-based quality adaptation approach ensures

that the pipeline can support a large number of users, each with

varying network conditions.

In this demo, participants will be seated around a table and will

engage in a virtual conference using an HMD, with each participant

being captured using a single depth camera. To showcase the quality

effectiveness of the MDC-based adaptation algorithm, a dashboard

is used to monitor the status of the application and control the

bandwidth available to each participant. The available bandwidth

and position of the user are taken into account to dynamically

assign a quality level to each participant, ensuring a higher quality

experience compared to having a uniform quality level for each

point cloud object.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Human-
centered computing→ Virtual reality.

KEYWORDS
Volumetric Video, Adaptive Streaming, WebRTC, Virtual Confer-

encing, Multiple Description Coding, Virtual Reality

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MMSys ’24, April 15–18, 2024, Bari, Italy
© 2024 Association for Computing Machinery.

ACM ISBN 979-8-4007-0412-3/24/04. . . $15.00

https://doi.org/10.1145/3625468.3652192

ACM Reference Format:
Matthias De Fré, Jeroen van der Hooft, Tim Wauters, Filip De Turck. 2024.

Demonstrating Adaptive Many-to-Many Immersive Teleconferencing for

Volumetric Video. In ACM Multimedia Systems Conference 2024 (MMSys ’24),
April 15–18, 2024, Bari, Italy. ACM, Bari, Italy, 6 pages. https://doi.org/10.1

145/3625468.3652192

1 INTRODUCTION
In recent years, the use of many-to-many conferencing tools, such

as Microsoft Teams and Zoom, has increased significantly [12].

These platforms offer the ability to set up a virtual conference

call, allowing for remote meetings. However, these tools offer a

limited experience in terms of interactivity and participants often

lack a personal connection with each other compared to face-to-

face conversations [15]. To address these limitations, immersive six

degrees-of-freedom (6DoF) video approaches have emerged as a

potential solution. Unlike traditional 2D conferencing tools, 6DoF

streaming allows for both rotational and positional freedom [1],

enabling participants to interact with each other and allowing them

to view each other from multiple angles. This newfound freedom

helps to create a more personal experience between participants.

Immersive 6DoF video content is represented by one of two

distinct classes. Image-based videos, such as light fields, use the

viewing angle of the user to generate a 2D image by using a large

number of images that were captured with a specialized camera [6].

In contrast, volumetric-based approaches use cameras to capture

a 3D representation of an object. These representations, such as

meshes and point clouds, are subsequently placed in a virtual en-

vironment, allowing them to be viewed from all angles and posi-

tions [2]. Compared to light field video, volumetric videos have

lower bandwidth and computational requirements, which is im-

perative to ensure low bitrates and latency required for real-time

communication [26].

Despite having significantly lower bandwidth requirements com-

pared to image-based videos, contemporary network infrastruc-

tures still struggle to supply bitrates sufficient enough to stream

volumetric videos. Therefore, it is crucial to implement additional

mechanisms, such as compression or adaptation, in order to enable

the use of such immersive content by a variety of users with varying

network conditions and bandwidth restrictions: not all objects are

always visible to each user, and sending objects that are currently

outside of the field-of-view (FoV) results in a waste of bandwidth.

An intelligent streaming system should be capable of utilizing the

position and FoV, which are tracked by the head-mounted display

(HMD) [11], to dynamically assign a quality level to each object

in the scene. This involves assigning a higher quality to objects

that are closer in proximity and a lower quality to those farther

away [27].

https://doi.org/10.1145/3625468.3652192
https://doi.org/10.1145/3625468.3652192
https://doi.org/10.1145/3625468.3652192

MMSys ’24, April 15–18, 2024, Bari, Italy M. De Fré et al.

Figure 1: The system architecture for the used multiple description coding (MDC)-based many-to-many volumetric video
streaming solution, which requires a fixed number of encoders per participant based on the amount of descriptions. The
number of local decoders for each client scales with the number of received descriptions.

Virtual conferencing requires real-time latency, and therefore

relies on a transport protocol that is capable of meeting these de-

mands. Transmission control protocol (TCP)-based approaches,

such as low-latency HLS (LL-HLS) and low-latency DASH (LL-

DASH), struggle in achieving real-timeliness by having a latency

between 1 and 5 seconds [29]. This is mainly due to the overhead

caused by the forced reliability and flow control mechanisms of

TCP, as well as the grouping of frames into a segment [5]. User

datagram protocol (UDP)-based solutions do not have these restric-

tions and allow for the implementation of these mechanisms at the

application layer, resulting in a lower latency [4]. Web real-time

communication (WebRTC) is such an example, and has been used

to ensure low-latency transmission for existing 2D conferencing

solutions [29].

In our previous research [7], we proposed a one-to-many stream-

ing pipeline designed for conferencing in virtual reality (VR). This

proposed architecture used an MDC-based quality adaptation solu-

tion that adapts the quality of input frames based on the network

condition and position of the receiving user. This pipeline served

as a basis to create a demo with the following contributions:

• An extension to our one-to-many pipeline to allow for many-

to-many virtual conferencing [21].

• A dashboard to view the overall state of the application and

control the available bandwidth for each participant.

• A demo which showcases a many-to-many virtual confer-

ence with up to four participants, illustrating the increased

quality of our MDC-based approach compared to uniformly

dividing the bandwidth between all other participants.

• A Unity application which renders the received point cloud

objects in a 3D environment and streams the rendered frames

to a HMD.

The remainder of the paper is organized as follows. Section 2

presents the implementation details of our many-to-many system

architecture. Following this, Section 3 presents our demo goal, setup,

and functionalities of our dashboard used to control demo parame-

ters. Finally, Section 4 concludes the paper with a brief overview of

the discussed topics and future improvements to the pipeline.

2 SYSTEM ARCHITECTURE
For the demonstration, we employ the MDC-based pipeline as de-

picted in Figure 1. The MDC-based approach facilitates the creation

of multiple combinable quality representations from one single

captured object, allowing for a wider range of quality represen-

tations with differing bitrates. This section contains an extensive

overview of each component of this pipeline and its respective

implementation details.

2.1 Capturing
Each user utilizes a single D455 Intel RealSense [16] camera with a

frame rate of 30 FPS and a resolution of 848x480 pixels. This camera

captures both depth and color images, which are transformed into

a point cloud representation using a mapping function based on

an example function included in the RealSense SDK [17]. Certain

performance improvements have been incorporated into this func-

tion, optimizing it in order to reduce the overall latency. By default,

the camera may occasionally produce an image with numerous

gaps when capturing in certain environments, thereby reducing

the quality of the resulting point cloud. However, by maximizing

the laser power of the camera, visual quality is greatly enhanced.

2.2 Preprocessing
The raw point cloud produced by the camera is too large (1.4Gbit/s)
to be transmitted directly over contemporary networks. Addition-

ally, the camera also captures background details that are not

needed for virtual conferencing. To reduce the required bitrate,

following preprocessing steps are executed:

• A rudimentary distance filter removes points that are too far

away from the camera.

• The number of points in the point cloud is limited to a maxi-

mum, preventing sudden bandwidth increases between con-

secutive frames.

• Three fixed percentages (15%, 25%, 60%) are used to uni-

formly sample the point cloud into three descriptions each

containing a distinct fraction of the points corresponding

with their respective percentage.

Demonstrating Adaptive Many-to-Many Immersive Teleconferencing for Volumetric Video MMSys ’24, April 15–18, 2024, Bari, Italy

• The Draco [8] codec encodes the three resulting descriptions

in parallel.

2.3 WebRTC Transport
To achieve minimal delay, WebRTC is used to facilitate real-time

communication between the capturing and rendering components.

WebRTC is a UDP-based solution, which achieves lower latency by

eliminating the overhead introduced by TCP mechanisms such as

forced reliability and acknowledgments. However, the presented

pipeline requires frames to be fully received before they can be

decoded. To address this issue, features such as retransmissions

of lost packets are implemented in software using methods more

optimal for low-latency transmission.

Before streaming the point clouds, the clients first need to es-

tablish a connection to the multipoint control unit (MCU) using a

signaling algorithm. This algorithm involves exchanging session

description protocol (SDP) messages that contain details on sup-

ported codecs, as well as available network routes [24]. The specifics

of implementing the signaling process are not standardized and

there are various methods available. In this particular pipeline, a

websocket server is co-located at the WebRTC server. Clients are

able to setup a websocket connection between them and this server.

Subsequently, this connection is used to exchange a variety of mes-

sages between the server and the client. Initially, this connection is

only used for the exchange of the SDP messages. However, once

the WebRTC connection is set up, it is also used by the client to

transmit his current position and FoV.

The Golang programming language [10] is used to implement

both the WebRTC server and client applications. Additionally, the

Pion [23] Golang package is an ideal candidate to implement the

WebRTC communication due to its preexisting implementation of

the WebRTC protocol suite. This package includes server-side band-

width estimation using the Google congestion control (GCC) [14] al-

gorithm. Pion allows for the transmission of data via both data chan-

nels and media tracks. Although both methods could be adapted

for point cloud video, the use of media tracks enables access to the

congestion control feedback mechanisms implemented in Pion and

allows complex bandwidth estimation using GCC. As the pipeline

uses a novel frame format, a new WebRTC media track type is

created to accommodate the differences in transcoding and pack-

etization compared to traditional 2D video. The implementation

of this track is based on the included track types, with the major

exception being a custom payloader and an RTP packet write func-

tion. The payloader interface is invoked by the packetizer to divide

the frame into multiple packets. Furthermore, to ensure that frames

remain decodeable in the event of packet loss, any lost packets

are retransmitted using a negative acknowledgment (NACK)-based

solution.

The GCC implementation used by Pion employs transport wide

congestion control (TWCC) feedback messages allowing for sender-

side estimation [13], compared to receiver estimated maximum

bitrate (REMB)messages that estimate the bandwidth at the receiver

side [3]. By default, the client transmits thesemessages every 100ms.

However, the GCC specification [14] recommends to send these

messages at least once per frame. With the default Pion interval of

100ms this comes down to sending a TWCC message every three

Figure 2: Quality category is assigned based on distance and
field of view [7].

Table 1: Available quality representations for each quality
category.
% of original point cloud 15 25 40 60 75 85 100

Quality Category Low Medium High

frames when using a 30 FPS stream. The interval of 100ms does not

cause significant problems when dealing with small frames that can

be easily packetized into a small number of packets. However, with

our encoded point cloud frames, each of which has an average size

of 0.3MB, the frame is segmented into a larger number of packets.

Fortunately, Pion allows for the adjustment of the interval delay

for TWCC reports. By lowering the interval time to 25ms, the loss

controller no longer reports incorrect packet loss and accurately

calculates the loss of the connection.

2.4 Quality Adaptation
The quality adaptation uses a MDC-based approach, which com-

bines the descriptions generated in the preprocessing step to obtain

a broader spectrum of available qualities with differing bitrates. In

general, 𝑛 descriptions result in 2
𝑛 − 1 possible combinations. In

this demo, the pipeline uses 𝑛 = 3, which results in seven possible

representations for each user.

Using the estimated bitrate obtained from the GCC algorithm,

together with the position and FoV of each user, quality adaptation

takes place on the central server. The applied algorithm aims for a

fair approachwhich searches for a balance between assigning a high

quality to nearby client frames and a lower quality to those further

away. The distance between the frame and the receiver’s position

determines the maximum assignable quality level, as illustrated in

Figure 2. In the first step, the algorithm uses an iterative approach

which first assigns bitrate to the furthest frames before continuing

to the closest frames. Each frame is assigned at least the minimal

quality, even if there is not enough available bitrate. The second

step starts from the opposite direction and causes the closer frames

to reallocate bitrate from the further frames until there is enough

bitrate for at least their minimal quality.

The first step of the bitrate allocation adopts a fair approach

by initially allocating bitrates to the frames that are farthest away

but still visible. Initially, all frames are assigned a quality category

based on the distance to the receiving user, as shown in Figure 2.

This category determines the potential quality representations that

can be assigned, as shown in Table 1, and thus how much bitrate

can be assigned to each frame.

Initially, all frames within a category are assigned the same

quality level, which is calculated by uniformly distributing the

current bitrate, with respect to the maximum assignable quality,

between all frames in that category, as seen in Algorithm 1. If there

MMSys ’24, April 15–18, 2024, Bari, Italy M. De Fré et al.

Algorithm 1 Bitrate allocation step 1: initial bitrates allocation.

1: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← 𝑔𝑒𝑡𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝐵𝑖𝑡𝑟𝑎𝑡𝑒 ()
2: 𝑟𝑎𝑡𝑒𝑠𝑃𝑒𝑟𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ← Init array with zeros

3: for 𝑐 ← 𝑛𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 − 1 to 0 do
4: 𝑐𝑎𝑡𝐵𝑖𝑡𝑟𝑎𝑡𝑒 ← 𝑔𝑒𝑡𝐹𝑟𝑎𝑚𝑒𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝑏𝑖𝑡𝑟𝑎𝑡𝑒, 𝑐)
5: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 − 𝑐𝑎𝑡𝐵𝑖𝑡𝑟𝑎𝑡𝑒
6: 𝑟𝑎𝑡𝑒𝑠𝑃𝑒𝑟𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 [𝑐] ← 𝑐𝑎𝑡𝐵𝑖𝑡𝑟𝑎𝑡𝑒

7: end for
8: if 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ≥ 0 then Concatenate client frames

9: else Go to next step (Algorithm 2)

10: end if

is insufficient bandwidth available, all frames in that category are

assigned the lowest quality level of that category (lines 3-7), even

if this means that excessive bandwidth will be allocated. In such

instances, the quality of frames must be reduced to ensure that the

available bitrate remains positive, which is performed in the next

step of the algorithm.

The second step of the algorithm, shown in Algorithm 2, ad-

dresses the situation where the current frame quality configuration

exceeds the available bandwidth. Unlike the previous step, this

step adopts a greedy approach, allowing higher quality frames to

reallocate bitrates from lower quality levels in an attempt to regain

sufficient bitrate for their own quality level (first iteration of inner

loop lines 2-11). The reduction in quality within a category is per-

formed on a frame-by-frame basis, starting from the frames that

are the furthest from the center, and continues until either enough

bitrate is regained or no more frames remain in the category. To

prevent a single category from monopolizing all the available band-

width, only the category directly beneath the current category can

be downgraded in each iteration. This ensures that frames which

are close, but not in the center of the FoV, still receive some bitrate.

Following this, if there is still insufficient bitrate, frames within

the category itself will be downgraded (second iteration of inner

loop lines 2-11). This iterative downgrading is repeated until ei-

ther enough bitrate is regained or there are no more frames in

the current category. This entire process is repeated for each of

the categories, with frames in the lowest category being discarded

rather than downgraded. Finally, any remaining bandwidth is used

to improve the quality of objects that have been assigned the lowest

quality.

Algorithm 2 Bitrate allocation step 2: Quality downgrading.

1: for 𝑐 ← 0 to 𝑛𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 − 1 do
2: for 𝑞 ← 𝑐 + 1 to 𝑐 do
3: while 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 < 0 and 𝑓 𝑟𝑎𝑚𝑒𝑠𝐼𝑛𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 > 0 do
4: 𝑓 𝑢𝑟𝑡ℎ𝑒𝑠𝑡 ← 𝑔𝑒𝑡𝐹𝑢𝑟𝑡ℎ𝑒𝑠𝑡𝐹𝑟𝑎𝑚𝑒𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑞)
5: 𝑔𝑎𝑖𝑛𝑒𝑑𝐵𝑖𝑡𝑟𝑎𝑡𝑒 ← 𝑙𝑜𝑤𝑒𝑟𝐹𝑟𝑎𝑚𝑒𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝑓 𝑢𝑟𝑡ℎ𝑒𝑠𝑡)
6: 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 ← 𝑏𝑖𝑡𝑟𝑎𝑡𝑒 + 𝑔𝑎𝑖𝑛𝑒𝑑𝐵𝑖𝑡𝑟𝑎𝑡𝑒
7: if Quality reduced to lowest level for category then
8: 𝑑𝑜𝑤𝑛𝑔𝑟𝑎𝑑𝑒𝐶𝑙𝑖𝑒𝑛𝑡𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙 (𝑓 𝑢𝑟𝑡ℎ𝑒𝑠𝑡)
9: end if
10: end while
11: end for
12: end for

(a) 40% sampled point cloud (b) Upscaled point cloud

Figure 3: Increasing the size of the rendered points by a factor
of 1.6 enables a simple and fast upscaling method [7].

2.5 Decoding and Rendering
Unity, a game engine commonly used to develop video games [25],

is used to design the application responsible for rendering the

point clouds. Unity’s extensive support for virtual reality makes

it an ideal candidate to use for developing a virtual conferencing

application. The OpenXR [20] plugin included within Unity enables

the use of several HMDs. For this demo, the Meta Quest 2 [18]

headset will be used in conjunction with the Meta Quest Link

application, allowing us to build a PC VR application and stream the

rendered frames to the Meta Quest headset. It is worth noting that

streaming the content rendered in Unity to the headset introduces

additional latency. However, when employing a USB 3.0 connection,

this latency is negligible (1ms) compared to USB 2.0 (30ms) or

wireless streaming (50ms). The encoded point clouds are received in

the Unity application via a UDP socket proxy which communicates

with the Pion WebRTC client.

Unlike the encoding process, the number of received descriptions

varies based on factors such as the available bandwidth and the

distance to the other participants. For this reason, a thread pool is

used with a number of concurrent workers. Whenever a worker

becomes available, a decoding job is dequeued. Once decoding of a

single object is complete, all corresponding descriptions are merged

together into a single point cloud object. The decoding operation

utilizes the official Draco Unity plugin [9].

Visualizing the point cloud in the application is accomplished by

using the Pcx [22] package. Ordinarily, this package is employed

to import point clouds during the development of the application

rather than during runtime. However, by leveraging the shader

included in the package and applying it to a mesh component, Unity

renders the vertices of the mesh as individual point primitives. As a

result, the vertices can be set at runtime in order to achieve dynamic

point cloud rendering.

By utilizing point primitives instead of triangles, we have the

ability to increase the size of the points in order to increase the

density of the point cloud, and subsequently the overall quality. A

sampled version of the point cloud can be used to a visually similar

result whilst maintaining lower bandwidths. Figure 3 shows an ex-

ample of this simple upscaling effect when applied to a 40% sampled

point cloud. However, this method of upscaling only works when

utilizing an OpenGL [19] or Vulkan [28]-based graphics pipeline, as

only these pipelines support manipulation of the size of the point

primitive.

3 DEMONSTRATION
The demonstration will consist of a many-to-many virtual confer-

encing scenario, assuming a fixed camera position per participant

Demonstrating Adaptive Many-to-Many Immersive Teleconferencing for Volumetric Video MMSys ’24, April 15–18, 2024, Bari, Italy

Figure 4: The dashboard that will be used during the demo. This dashboard allows us to view the current quality, latency and
bandwidth usage for each user, and to change parameters such as the available bandwidth and network latency.

with the ability to look around the virtual environment. We aim to

illustrate the positive impact on the video quality of the proposed

MDC-based adaptation approach, which assigns bandwidth based

on visibility and distance to the user, compared to the uniformly

dividing the bandwidth. The demo consists of the following three

phases:

(1) Sufficient bandwidth to stream every point cloud object at

high quality.

(2) Lower bandwidth and assign quality uniformly to each ob-

ject.

(3) Lower bandwidth and assign quality using the proposed

MDC-based approach, ensuring that the currently viewed

objects are assigned a greater quality

3.1 Setup
The demonstration will take place with a maximum of four par-

ticipants seated around a table. Each participant will be captured

using an Intel RealSense D455 camera. A Meta Quest 2 HMD allows

the participants to see each other in a virtual space rendered by

the Unity application. Both this application and the WebRTC client

will run on a Windows 10 laptop with the following specifications:

CPU: i7 11th Generation, GPU: RTX 3070 RAM: 32GB.
The central server application will be executed on a separate

laptop with identical specifications, running the Ubuntu 20.04 op-

erating system. This setup facilitates the use of traffic control (TC)

in order to vary the bandwidth available to each participant. Using

TC together with internet protocol (IP)-based filters, a separate

bandwidth can be assigned to each participant by using the IP ad-

dress of each user. This laptop will be physically connected to a

network switch, allowing each client to connect to the server via

the Ethernet interfaces of the switch.

3.2 Dashboard
During the demonstration, a dashboard, shown in Figure 4, is used

to provide an overview of various metrics and alter the demo pa-

rameters, such as available bandwidth. This dashboard contains the

following panels:

(1) Illustrates the FoV of each client.

(2) Indicates, with a color and a numerical value, which quality

level is received for each client.

(3) Shows the used bandwidth and estimated bandwidth, as well

as a graph illustrating the bandwidth trace for each user.

(4) Shows which clients are visible for each participant, as well

as having the ability to change the position of each partici-

pant in the virtual environment.

(5) Is used to change the bandwidth available to a client.

This dashboard is used to showcase the overall quality improve-

ment (panel 4) that occurs when using the proposed MDC-based

approach compared to uniformly distributing the quality between

the point cloud objects. Furthermore, it shows that the MDC-based

approach uses available bandwidth more optimally (panel 3).

4 CONCLUSION
In this paper we propose a demonstration of a many-to-many vol-

umetric streaming architecture, with the aim of illustrating the

possibility of multi-user conferencing in VR. The demo showcases

the impact of bandwidth allocation based on the position and FoV

of the user. This MDC-based adaptation algorithm has the goal of

dynamically assigning a quality level to each of the point cloud

objects representing the other participants, while maintaining a

fair quality balance between the nearby objects and those objects

that are further away.

In future research, we will be containerising the encoding and

decoding modules and deploy these containers in a cluster-based

MMSys ’24, April 15–18, 2024, Bari, Italy M. De Fré et al.

setup. In addition to allowing for more active users, this cluster

also enables the implementation of other modules such as viewport

prediction and server-side rendering. Having an accurate viewport

prediction facilitates the use of tiling, which would allow the MDC-

based adaptation to assign a separate quality to parts of the object,

rather than the complete object. This provides flexibility to assign

a higher quality level to specific regions of the content that are

more important than others, such as the head and the hands of the

participants.

ACKNOWLEDGMENTS
This work has been funded by the European Union (SPIRIT project,

Grant Agreement 101070672, https://www.spirit-project.eu/).

REFERENCES
[1] Sun Joo Ahn, Laura Levy, Allison Eden, Andrea Stevenson Won, Blair Mac-

Intyre, and Kyle Johnsen. 2021. Ieeevr2020: exploring the first steps toward

standalone virtual conferences. Frontiers in Virtual Reality, 2, 648575.
[2] Dimitrios S Alexiadis, Dimitrios Zarpalas, and Petros Daras. 2012. Real-time,

full 3-d reconstruction of moving foreground objects from multiple consumer

depth cameras. IEEE Transactions on Multimedia, 15, 2, 339–358.
[3] Harald T. Alvestrand. 2013. RTCP message for Receiver Estimated Maximum

Bitrate. Internet-Draft draft-alvestrand-rmcat-remb-03. Work in Progress. In-

ternet Engineering Task Force, (Oct. 2013). 8 pp. https://datatracker.ietf .org/do

c/draft-alvestrand-rmcat-remb/03/.

[4] Muhammad Ajmal Azad, Rashid Mahmood, and Tahir Mehmood. 2009. A com-

parative analysis of dccp variants (ccid2, ccid3), tcp and udp for mpeg4 video

applications. In 2009 International Conference on Information and Communica-
tion Technologies. IEEE, 40–45.

[5] Nassima Bouzakaria, Cyril Concolato, and Jean Le Feuvre. 2014. Overhead and

performance of low latency live streaming using mpeg-dash. In IISA 2014, The
5th International Conference on Information, Intelligence, Systems and Applica-
tions. IEEE, 92–97.

[6] Michael Broxton et al. 2020. Immersive light field video with a layered mesh

representation. ACM Transactions on Graphics (TOG), 39, 4, 86–1.
[7] Matthias De Fré, Jeroen van der Hooft, Tim Wauters, and Filip De Turck.

2024. Scalable mdc-based volumetric video delivery for real-time one-to-many

webrtc conferencing.

[8] [SW] Google, Draco 2023. url: https://google.github.io/draco/.

[9] [SW] atteneder, Draco Unity Plugin 2023. url: https://github.com/atteneder

/DracoUnity.

[10] [SW], Golang 2023. url: https://go.dev/.

[11] Michael J Gourlay and Robert T Held. 2017. Head-mounted-display tracking

for augmented and virtual reality. Information Display, 33, 1, 6–10.
[12] Janine Hacker, Jan vom Brocke, Joshua Handali, Markus Otto, and Johannes

Schneider. 2020. Virtually in this together–how web-conferencing systems

enabled a new virtual togetherness during the covid-19 crisis. European Journal
of Information Systems, 29, 5, 563–584.

[13] Stefan Holmer, Magnus Flodman, and Erik Sprang. 2015. RTP Extensions

for Transport-wide Congestion Control. Internet-Draft draft-holmer-rmcat-

transport-wide-cc-extensions-01. Work in Progress. Internet Engineering Task

Force, (Oct. 2015). 11 pp. https://datatracker.ietf .org/doc/draft-holmer-rmcat-t

ransport-wide-cc-extensions/01/.

[14] Stefan Holmer, Henrik Lundin, Gaetano Carlucci, Luca De Cicco, and Saverio

Mascolo. 2016. A Google Congestion Control Algorithm for Real-Time Com-

munication. Internet-Draft draft-ietf-rmcat-gcc-02. Work in Progress. Internet

Engineering Task Force, (July 2016). 19 pp. https://datatracker.ietf .org/doc/dra

ft-ietf-rmcat-gcc/02/.

[15] Emily J Hurst. 2020. Web conferencing and collaboration tools and trends.

Journal of Hospital Librarianship, 20, 3, 266–279.
[16] [SW], Intel Realsense 2023. url: https://www.intelrealsense.com/.

[17] [SW] intel, Intel Realsense cepth/color frame to point cloud 2023. url: https:

//github.com/IntelRealSense/librealsense/blob/master/wrappers/pcl/pcl-colo

r/rs-pcl-color.cpp.

[18] [SW] Meta, Meta Quest 2 Virtual Reality Headset 2023. url: https://www.met

a.com/quest/products/quest-2.

[19] [SW], OpenGL 2023. url: https://www.opengl.org/.

[20] [SW], OpenXR 2023. url: https://www.khronos.org/api/index_2017/openxr.

[21] [SW], Point Cloud Streaming Application 2023. url: https://github.com/Matt

hiasDeFre/webrtc-pc-streaming.

[22] [SW] keijiro, https://www.meta.com/be/en/quest/products/quest-2/ 2023. url:

https://github.com/keijiro/Pcx.

[23] [SW], Pion WebRTC 2023. url: https://github.com/pion/webrtc.

[24] Branislav Sredojev, Dragan Samardzija, and Dragan Posarac. 2015. Webrtc

technology overview and signaling solution design and implementation. In

2015 38th international convention on information and communication technology,
electronics and microelectronics (MIPRO). IEEE, 1006–1009.

[25] [SW], Unity 2023. url: https://unity.com.

[26] Jeroen van der Hooft, Hadi Amirpour, Maria Torres Vega, Yago Sanchez,

Raimund Schatz, Thomas Schierl, and Christian Timmerer. 2023. A tutorial

on immersive video delivery: from omnidirectional video to holography. IEEE
Communications Surveys & Tutorials.

[27] Jeroen van der Hooft, Tim Wauters, Filip De Turck, Christian Timmerer, and

Hermann Hellwagner. 2019. Towards 6DoF HTTP adaptive streaming through

point cloud compression. In Proceedings of the 27th ACM International Confer-
ence on Multimedia, 2405–2413.

[28] [SW], Vulkan 2023. url: https://www.vulkan.org/.

[29] Wowza. 2021. 2021 Video Streaming Latency Report. Tech. rep. Wowza.

https://datatracker.ietf.org/doc/draft-alvestrand-rmcat-remb/03/
https://datatracker.ietf.org/doc/draft-alvestrand-rmcat-remb/03/
https://google.github.io/draco/
https://github.com/atteneder/DracoUnity
https://github.com/atteneder/DracoUnity
https://go.dev/
https://datatracker.ietf.org/doc/draft-holmer-rmcat-transport-wide-cc-extensions/01/
https://datatracker.ietf.org/doc/draft-holmer-rmcat-transport-wide-cc-extensions/01/
https://datatracker.ietf.org/doc/draft-ietf-rmcat-gcc/02/
https://datatracker.ietf.org/doc/draft-ietf-rmcat-gcc/02/
https://www.intelrealsense.com/
https://github.com/IntelRealSense/librealsense/blob/master/wrappers/pcl/pcl-color/rs-pcl-color.cpp
https://github.com/IntelRealSense/librealsense/blob/master/wrappers/pcl/pcl-color/rs-pcl-color.cpp
https://github.com/IntelRealSense/librealsense/blob/master/wrappers/pcl/pcl-color/rs-pcl-color.cpp
https://www.meta.com/quest/products/quest-2
https://www.meta.com/quest/products/quest-2
https://www.opengl.org/
https://www.khronos.org/api/index_2017/openxr
https://github.com/MatthiasDeFre/webrtc-pc-streaming
https://github.com/MatthiasDeFre/webrtc-pc-streaming
https://github.com/keijiro/Pcx
https://github.com/pion/webrtc
https://unity.com
https://www.vulkan.org/

	Abstract
	1 Introduction
	2 System Architecture
	2.1 Capturing
	2.2 Preprocessing
	2.3 WebRTC Transport
	2.4 Quality Adaptation
	2.5 Decoding and Rendering

	3 Demonstration
	3.1 Setup
	3.2 Dashboard

	4 Conclusion

