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Abstract22

Selecting climate model projections is a common practice for regional and local23
studies. This process often relies on local rather than synoptic variables. Even24

1



when synoptic weather types are considered, these are not related to the variable25
or climate impact driver of interest. Therefore, most selection procedures may26
not su�ciently account for atmospheric dynamics and climate change impact27
uncertainties.28
This study outlines a selection methodology that addresses both these short-29
comings. Our methodology �rst optimizes the Lamb Weather Type classi�cation30
for the variable and region of interest. In the next step, the representation of31
the historical synoptic dynamics in Global Climate Models (GCMs) is evaluated32
and accordingly, underperforming models are excluded. In the last step, metrics33
are introduced that quantify the climate change signals related to the impact of34
interest. Using these metrics, a scoring method results in assessing the suitabil-35
ity of GCMs. To illustrate the applicability of the methodology, a case study of36
extreme heat in Belgium was carried out.37
The developed method o�ers a framework for selecting periods within cli-38
mate model datasets while considering the changes in the large-scale circulation39
patterns and the changes in the climate signal, each step optimized for a spe-40
ci�c climate impact driver. This framework provides a comprehensive method41
for selecting periods from large ensemble GCM simulations based on weather42
types, ensuring relevant climate projections for subsequent research which can43
be applied in model ensemble-based research for di�erent climate variables and44
climate impact drivers.45

Keywords: CMIP6, Model selection, Lamb Weather Type classi�cation, Extreme heat46

1 Introduction47

The latest release of the Intergovernmental Panel on Climate Change's (IPCC ) Sixth48

Assessment Report (AR6, IPCC (2023)) is heavily based on the sixth generation of the49

Coupled Model Intercomparison Project (CMIP ), denoted as CMIP6 (Eyring et al ,50

2016). Important enhancements were made to the CMIP6 Global Climate Models51

(GCMs) leading to an overall better performance than previous CMIP generations52

as documented by e.g.Fan et al (2020); Brands (2022a), and a higher global climate53

sensitivity ( Zelinka et al, 2020; De et al, 2022). The IPCC (2023) even states that54

\robust climate information is increasingly available at regional scales for impact and55

risk assessments", indicating that GCMs are becoming su�ciently advanced to be used56

for decision-making on a regional scale. However, the use of GCM data for local-scale57

analyses should be approached with caution (Gualdi et al, 2013).58
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For the climate of Europe, numerous CMIP6 models have undergone thorough59

evaluation, as evidenced by comprehensive studies, such asBrunner et al (2020)60

and Brands (2022a). The outcomes of these analyses have been included in a selection61

procedure for dynamic downscaling proposed by the EURO-CORDEX (Coordinated62

Regional Climate Downscaling Experiment) community (Sobolowski et al, 2023).63

Their selection criteria include the availability of data for planned analyses, the64

selection of models with a good overall performance, and the spread of the future65

climate change signal. While these guidelines and the initially recommended models66

in Sobolowski et al(2023) have helped research groups across Europe in their model67

selection for various analyses, the evaluation of model performance is conducted holis-68

tically for a large variety of variables and the entirety of Europe. Therefore, it is not69

optimized for certain climate impact drivers and di�erent geographical regions. This70

may play a role as some models may excel in certain regions, such as coastal areas,71

but may be suboptimal in others such as in mountainous terrains (Brands, 2022a;72

Di Virgilio et al , 2022). Furthermore, some models may be better suited for speci�c73

variables (Kotlarski et al , 2014). McSweeney et al(2015), for instance, has conducted74

a thorough analysis of surface temperature and precipitation, evaluating models for75

large regions and examining the potential ranges in key variables.76

Understanding the synoptic-scale patterns in climate models is essential, as is77

shown by the study of Vautard et al (2023) on heatwaves. They show that, although78

the CMIP6 models e�ectively capture how thermodynamics drive temperature rising79

in Europe, the models often overlook the signi�cant role dynamic processes play in80

these temperature changes. Moreover, the authors suggest the model dynamics to be81

responsible for the underestimated trend in extreme temperatures for Western Europe.82

In other studies, an evaluation method of the synoptic-scale atmospheric dynamics83

based on weather types is getting more attention and is being studied, e.g. byOtero84

et al (2018); Brands (2022a); Fern�andez-Granja et al (2023). Regarding the weather85
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types, a very common method is the Lamb Weather Type classi�cation (LWT) which86

has already been used in di�erent works, to understand the in
uence of regional cli-87

mate on speci�c variables. For instance,Brisson et al (2011) demonstrated the impact88

of weather types on precipitation in coastal regions, characterizing certain weather89

types as \wet". Another study by Tomczyk and Owczarek(2020) associated the occur-90

rence of heat stress in Poland with the presence of high-pressure systems. Additionally,91

Hoogeveen and Hoogeveen(2023) developed a temperature-speci�c weather-typing92

classi�cation to study the relation between the increasing temperatures and the origin93

of the air
ow.94

However, to the best of our knowledge, a method that uses climate impact95

driver-tailored weather typing for model selection has not been proposed so far. The96

demonstrated in
uence of weather types on both the region and variable of interest97

underscores the need for a methodology that integrates both aspects. A comprehen-98

sive framework for the tailored selection of large simulation ensembles that relies on99

climate projections and is based on synoptic weather types could prove bene�cial for100

a range of purposes, such as analyzing changes in synoptic patterns and downscaling101

relevant models.102

This study proposes a selection methodology that establishes a link between103

synoptic weather types and variables of interest, enabling the evaluation of models104

based on pre-established in
uences. Drawing inspiration from the guidelines proposed105

by Sobolowski et al (2023) and the analysis of McSweeney et al(2015), this study106

adapts and expands upon these principles to formulate a selection methodology. This107

approach facilitates the identi�cation of both the most and least extreme model mem-108

bers as well as models with an average signal for a speci�c region and variable of109

interest, thereby contributing to an informed decision-making process grounded in110

relevant climate projections.111
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2 Material and methods112

2.1 Overview of the selection methodology113

To select the models that are best suited for a speci�c variable or climate impact114

driver over a region of interest, we developed the methodology outlined in Fig.1.

Fig. 1 : Overview of the di�erent steps of the selection methodology. The boxes on
the top row represent the requirements for each step. The boxes on the second row
indicate the di�erent steps of the selection process, with the numbers indicating the
respective steps. The bottom row relates to the outcomes of the associated step

115

The methodology consists of three main steps, each described in the following116

sections. In the �rst step (Sect. 2.1.1), the observational data are used to adjust the117

existing Lamb Weather Type classi�cation to a variable- and region-speci�c classi�-118

cation. The second step (Sect.2.1.2)consists of the GCM evaluation to analyze the119

atmospheric dynamics through the adjusted Lamb Weather Type classi�cation. The120

practical considerations of this step revolve around the data availability given the121

variable and region of interest. In the last step (Sect.2.1.3), the remaining models122
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are scored based on a set of metrics obtained using the climate change signal. These123

metrics are dependent on the variable of interest. The data availability can again be124

an important practical consideration. This methodology results in an overview of the125

climate change signals among the di�erent GCMs. This overview can be combined126

with practical considerations for the �nal decision, e.g. the subset of GCMs for which127

the driving data is available for a speci�c Regional Climate Model (RCM).128

2.1.1 Region- and variable-speci�c LWT classi�cation129

Following previous studies of e.g.Huth et al (2008), Demuzere et al(2009) and Brands130

(2022a), the evaluation of di�erent GCMs is carried out by comparing the frequency of131

occurrence of Lamb Weather Types (LWT) of these models with those of a reference132

dataset over the historical period. One of the main advantages of this classi�cation133

method is that the di�erent LWTs can be linked to surface variables such as wind134

speed, rain, and temperature (Jones et al, 1993; Trigo and DaCamara, 2000). While135

several studies (e.g.Jones et al(1993), Trigo and DaCamara (2000) and Brands et al136

(2014)) have proven that some of these circulation patterns and certain weather phe-137

nomena are strongly related, these relations are dependent on the region as well (Jones138

et al, 1993; Trigo and DaCamara, 2000; Brands et al, 2014). For example, Tomczyk139

and Owczarek (2020) found that persistent and widespread high-pressure systems140

above Europe often block zonal circulations leading to periods with very strong heat141

stress.Brunner et al (2017) have found similar results when connecting atmospheric142

blocking to temperature extremes in Europe. Additionally, both Trigo and DaCamara143

(2000) and Brisson et al (2011) have concluded that certain weather types resulted in144

signi�cantly wetter days than others, for Portugal and Belgium respectively.145

In the �rst step of our methodology, we therefore propose two adjustments of the146

existing LWT classi�cation based on the optimization of the grouping of di�erent147

weather types. The goal of the optimization is both to increase the inter-group sepa-148

ration and to decrease the intra-group variability of the climate variable of interest.149
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By doing so, this classi�cation is tailored to account for a speci�c signal of a variable150

for a speci�c region.151

The original 27-type LWT classi�cation is determined based on a 16-point grid of152

Mean Sea Level Pressure (MSLP) which is used to calculate the resultant 
ow (F ) and153

the total shear vorticity ( Z). The classi�cation usesF and Z to classify each moment154

into one of 27 LWTs (Fig. 2): pure cyclonic (C) and anticyclonic (A) circulation, 8 pure155

directional types (N, NE, E, ..., NW) and 16 hybrid types (combinations of either A156

or C with any of the directional types) and a 27th type (LF), the unclassi�ed records157

due to days with low 
ows. Details on this classi�cation can be found in Supp. A. Our158

suggested adjustments to the original LWT classi�cation are two-fold and result in a159

13-type reduced LWT (rLWT ) classi�cation:160

1. Removal of the existing hybrid category: all hybrid weather types are merged with161

the pure directional types, which is in line with previous studies (e.g.Trigo and162

DaCamara (2000); Demuzere et al(2009)). The latter study showed that the fre-163

quencies of occurrence of the hybrid types are relatively small compared to the164

other weather types over their region of interest, and additionally, that di�erences165

between the pure directional type and its related hybrid types are smaller than166

di�erences between directional types. Comparable outcomes were obtained in this167

study, as illustrated in Supp. B.168

2. Introduction of the weak/strong vorticity separation: this step consists of the intro-169

duction of four new weather types. These are obtained by splitting the anticyclonic170

and cyclonic weather types into weak (w) and strong (s) weather types i.e. wA, sA171

and wC, sC, by optimizing a separation threshold for the total shear vorticity (Z).172

We use the Calinski-Harabasz Index (CHI , Calinski and Harabasz (1974), also173

referred to as the Pseudo-F statistic (Beck and Philipp, 2010)) to optimize the group-174

ing of the weather types and the associated climate variable. TheCHI for K number175

of weather types in dataset D for the variable of interest with N data points = [ d1,176
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d2, d3, ..., dN ] is de�ned as:177

CHI =

" P K
k=1 nk k ck � c k2

K � 1

# " P K
k=1

P n k
i =1 k di � ck k2

N � K

#� 1

(1)

wherenk and ck are the number of points and the centroid for the variable of interest178

of the k-th weather type, respectively, c is the global centroid for the variable of179

interest over all weather types anddi the value of the variable of interest of data point180

i within weather type k. The CHI calculates the intra-group variability by comparing181

the points to the centroid of the weather type and the inter-cluster separation by182

comparing the centroid of each weather type to the global centroid. HigherCHI values183

indicate that the weather types and related values for the variable of interest are184

dense and separated. Generally, there are no clear cut-o� values for theCHI and185

therefore the value that gives a clear peak or an abrupt increase/decrease in the plot186

of the CHI is the one that should be chosen (Calinski and Harabasz, 1974). To avoid187

obtaining solutions within local maxima, the Constrained Optimization BY Linear188

Approximations ( COBYLA , Powell (1994)) method was applied to di�erent initial189

guesses.190

2.1.2 CMIP6 evaluation191

The developed regional and variable-speci�c rLWT classi�cation is used to evaluate192

the di�erent CMIP6 models in representing synoptic dynamics. We have calculated the193

model frequencies of each of the 13 rLWTs and compared them with the corresponding194

LWT frequencies derived from ERA5 for the reference period. The Perkins Skill Score195

(PSS, Perkins et al (2007)) was used as a metric to evaluate the correspondence196

between these frequency distributions, de�ned as:197

P SS =
X

k

min( f O;k ; f M;k ); (2)
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with k the weather type, f M;k the frequency of weather typek in the model distribu-198

tion and f O;k the frequency of weather typek in the reference distribution. A perfect199

match between both distributions would lead to a PSS of 1, whereas a complete mis-200

match leads to aPSS of 0. Following an empirical statistical rule, all models with PSS201

values below thePSS average minus thePSS standard deviation are omitted from202

further analysis.203

2.1.3 Scoring based on climate change signal204

The second and last step of this methodology concerns the selection of models based on205

their climate change signal for a future period of interest. This requires the de�nition206

of di�erent metrics related to the climate change signal of interest, e.g. HUMIDEX in207

case of humid heat or return periods in case of extreme precipitation.208

We capture the relationship between the weather types and the variable of inter-209

est in a newly developed metric, by assigning weights to the relevant percentiles for210

the variable of interest and investigating the change in weather types. As such we211

address whether the occurrence of several weather types, relevant to the variable of212

interest, is projected to change. More speci�cally, we introduce a new metric called213

the \Weather Type Change Index" ( WTCI ) to quantify the future change in the214

frequency of weather types relevant to the variable of interest (var). The following215

formulas are used for the calculation:216

WTCI =
KX

k=1

� f k � �
0

k ; (3)

�
0

k =
� k

P K
k=1 � k

; (4)

� k =

8
><

>:

f hist (var < x j k) if x < 50

f hist (var � x j k) if x � 50
(5)
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where � f k refers to the frequency change between the future and the historical period.217

The frequency of historical days (f hist ) with weather type k where the variable of218

interest stays below (< 50) or exceeds (� 50) the x-th percentile is used as a weighting219

factor (� k and � 0
k ). The di�erentiation at x = 50 is made to make theWTCI gener-220

ally applicable, e.g. minimum versus maximum temperatures. The percentile can be221

extreme (e.g. 1% or 99%) but could target the median of the distribution (50%) as222

well. Additionally, this is illustrated by the case study that will be discussed in the223

following section.224

Once all metrics are calculated, an overall scoring can be made as follows:225

1. Determine the minimum and maximum value for each metric over each future226

period.227

2. Scale the metrics using minimum-maximum scaling.228

3. Average the scaled metrics for each model. This gives the score for each model.229

This strategy results in an overall scoring for the climate change signal per period230

for the variable of interest. Upon using multiple metrics, their dependence should be231

investigated as one may wish to account for the relation between metrics. An example232

of such analysis would be to perform a Principle Component Analysis.233

2.2 Data234

2.2.1 ERA5235

The �fth generation atmospheric reanalysis (ERA5 ) of the global climate of the Euro-236

pean Centre for Medium-Range Weather Forecasts (ECMWF ) covers the period from237

January 1940 to the present and is available at a resolution of about 0.25° (Hersbach238

et al, 2023).239
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For this study, we used the ERA5 data between 1985 and 2014, following the240

end date of most CMIP6 historical runs as well as the guidelines of theWorld Mete-241

orological Organization (2017) to use 30-year periods. Three variables were used:242

mean sea level pressure (MSLP), 2m temperature (T ) and 2m dewpoint temperature243

(Tdew). Additionally, following the recommendations of the ECMWF, daily mini-244

mum and maximum temperatures (Tmin and Tmax, respectively) were obtained from245

the hourly 2m temperature data (ECMWF , 2020). Relative humidity ( RH2m) was246

obtained by combining T and Tdew. The calculations for the RH2m are included247

in Supp. C. The ERA5 data was bilinearly interpolated to a common 1� x1� grid,248

following e.g. Broderick and Fealy (2015) and Kim et al (2020).249

2.2.2 CMIP6250

An ensemble of CMIP6 models with one member per model is considered. A summary251

of the CMIP6 models can be found in Table1. For each model, the historical and the252

Shared Socioeconomic Pathways (SSP, limited to SSP1-2.6, SSP2-4.5, SSP3-7.0, and253

SSP5-8.5) were retained if all required variables were available at a daily frequency254

("Retained" in Table 1). Following Brunner et al (2020) and Brands (2022b), it is255

recommended to consider di�erent model families to incorporate the widest possible256

range of model components, hence the model families are also included in the table. A257

limited number of models that the IPCC used in the AR6 report ( IPCC, 2023), were258

not included in the whole analysis due to data unavailability (e.g. AWI-CM-1-1-MR259

and CIESM), or due to known errors in the most recently-published data (e.g. CESM2,260

CESM2-WACCM, information obtained from ES-DOC (2016)). The same variables261

as for ERA5 were extracted, excluding the dewpoint temperature but including the262

relative humidity, and we adopted the same abbreviations. TheRH2m was preferred263

over the Tdew as this was available for more models. Similarly to ERA5, all data was264

bilinearly interpolated to a common 1� x1� grid.265
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Table 1 : Overview of the CMIP6 model runs used in this work. "Model family" follows the grouping made by Brands (2022b)
and Brunner et al (2020), with italics referring to GCMs that did not ful�l the grouping criteria. The models that were retained
for the case study are indicated in the "Retained" and "SSP" columns

CMIP6 model Run Model family Retained SSP References
ACCESS-CM2 r1i1p1f1 HadGAM/UM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Bi et al (2020)
ACCESS-ESM1-5 r1i1p1f1 HadGAM/UM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Ziehn et al (2020)
BCC-CSM2-MR r2i1p1f1 CAM Wu et al (2019)
BCC-ESM1 r1i1p1f1 CAM Wu et al (2020)
CanESM5 r1i1p1f1 CanAM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Swart et al (2019)
CESM2 r4i1p1f1 CAM Danabasoglu et al (2020)
CESM2-FV2 r1i1p1f1 CAM Danabasoglu et al (2020)
CESM2-WACCM r1i1p1f1 CAM Danabasoglu et al (2020)
CESM2-WACCM-FV2 r1i1p1f1 CAM Danabasoglu et al (2020)
CMCC-CM2-HR4 r1i1p1f1 CAM Cherchi et al (2019)
CMCC-CM2-SR5 r1i1p1f1 CAM Cherchi et al (2019)
CMCC-ESM2 r1i1p1f1 CAM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Lovato et al (2022)
CNRM-CM6-1 r1i1p1f2 ARPEGE X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Voldoire et al (2019)
CNRM-CM6-1-HR r1i1p1f2 ARPEGE X SSP5-8.5 Voldoire et al (2019)
CNRM-ESM2-1 r1i1p1f2 ARPEGE X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 S�ef�erian et al (2019)
EC-Earth3 r1i1p1f1 IFS X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 D•oscher et al (2022)
EC-Earth3-AerChem r1i1p1f1 IFS X SSP3-7.0 D•oscher et al (2022)
EC-Earth3-CC r1i1p1f1 IFS X SSP2-4.5, SSP5-8.5 D•oscher et al (2022)
EC-Earth3-Veg r1i1p1f1 IFS X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 D•oscher et al (2022)
EC-Earth3-Veg-LR r1i1p1f1 IFS X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 D•oscher et al (2022)
FGOALS-f3-L r1i1p1f1 GAMIL He et al (2020)
FGOALS-g3 r1i1p1f1 GAMIL X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Li et al (2020b)
GFDL-CM4 r1i1p1f1 GFDL-AM X SSP2-4.5, SSP5-8.5 Held et al (2019)
GFDL-ESM4 r1i1p1f1 GFDL-AM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Dunne et al (2020)
GISS-E2-2-G r1i1p1f1 GISS-E2 Rind et al (2020)
HadGEM3-GC31-LL r1i1p1f3 HadGAM/UM X SSP1-2.6, SSP2-4.5, s SSP5-8.5 Roberts et al (2019)
HadGEM3-GC31-MM r1i1p1f3 HadGAM/UM X SSP1-2.6, SSP5-8.5 Roberts et al (2019)
IITM-ESM r1i1p1f1 GFS X SSP1-2.6 Swapna et al (2015)
INM-CM4-8 r1i1p1f1 INM-AM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Volodin et al (2018)
INM-CM5-0 r1i1p1f1 INM-AM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Volodin et al (2017)
IPSL-CM5A2-INCA r1i1p1f1 LMDZ Dufresne et al (2013)
IPSL-CM6A-LR r1i1p1f1 LMDZ X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Boucher et al (2020)
IPSL-CM6A-LR-INCA r1i1p1f1 LMDZ Dufresne et al (2013)
KACE-1-0-G r2i1p1f1 HadGAM/UM X SSP1-2.6, SSP2-4.5, SSP3-7.0 Lee et al (2020a)
KIOST-ESM r1i1p1f1 GFDL-AM X SSP2-4.5, SSP5-8.5 Pak et al (2021)
MIROC6 r1i1p1f1 MIROC-AGCM/CCSR X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Tatebe et al (2019)
MIROC-ES2L r1i1p1f2 MIROC-AGCM/CCSR X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Hajima et al (2020)
MPI-ESM1-2-HR r1i1p1f1 ECHAM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Mauritsen et al (2019)
MPI-ESM1-2-LR r1i1p1f1 ECHAM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Mauritsen et al (2019)
MPI-ESM-1-2-HAM r1i1p1f1 ECHAM X SSP3-7.0 M•uller et al (2018)
MRI-ESM2-0 r1i1p1f1 GSMUV/MRI-AGCM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Yukimoto et al (2019)
NESM3 r1i1p1f1 ECHAM Cao et al (2018)
NorCPM1 r1i1p1f1 CAM Bethke et al (2021)
NorESM2-LM r1i1p1f1 CAM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Seland et al (2020)
NorESM2-MM r1i1p1f1 CAM X SSP1-2.6, SSP2-4.5, SSP3-7.0 Seland et al (2020)
SAM0-UNICON r1i1p1f1 CAM Park et al (2019)
TaiESM1 r1i1p1f1 CAM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Lee et al (2020b)
UKESM1-0-LL r1i1p1f2 HadGAM/UM X SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 Sellar et al (2019)
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2.3 Methodology applied to a case study: extreme heat in266

Belgium267

This section uses the developed selection methodology to answer the question: "Which268

�ve CMIP6 models have the most extreme summer temperature signals under di�erent269

GWLs for Belgium?". Given that Belgium is a relatively small country, we considered270

the coordinate 50°N - 5°E to be representative of Belgium. Note that this is a very271

speci�c research question to illustrate the application of the methodology and that272

the framework is 
exible to be used for di�erent CMIP6 selection criteria.273

We choose to de�ne model periods based on di�erent Global Warming Levels274

(GWLs). The method of using GWLs instead of transient scenarios has become a com-275

mon practice in the scienti�c literature as well as in communication with society and276

stakeholders (IPCC, 2023). Several studies (e.g.Seneviratne et al(2016); Tebaldi and277

Knutti (2018); Li et al (2020a)) have found that the climate change signal at di�erent278

GWLs is almost entirely independent of scenario and time horizon for most variables.279

Additionally, they stated that the signal at a GWL is nearly linearly related to regional280

climate e�ects. GWLs represent the change in the global mean surface temperature281

throughout the �xed duration, which is usually a 20- or 30-year period (IPCC, 2023;282

World Meteorological Organization, 2017), from a future period concerning a refer-283

ence period (here 1985-2014) where the average global temperatures from 1850 until284

1900 are used as a baseline. This baseline was obtained by averaging three datasets:285

NOAAGlobalTemp ( Zhang et al, 2023), HadCRUT5 ( Morice et al, 2021) and Berkely-286

Earth ( Rohde and Hausfather, 2020). In the following sections, the "(model) period"287

refers to a future 30-year period around a GWL.288

In this work, similar to Sanderson et al(2011), four di�erent GWLs have been289

chosen to de�ne model periods: 1.5°C, 2°C, 3°C and 4°C. The method of Vautard290

et al (2014) was followed to determine the periods where the di�erent models reached291

these GWLs.292
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Fig. 2 : Graphic overview of the Lamb Weather Type classi�cation based on the total
shear vorticity ( Z , x-axis) and the resultant 
ow ( F , y-axis). Both 
ow and vorticity
units are geostrophic and are expressed in hPa per 10° latitude. The left graph refers
to the original LWT classi�cation, as introduced by Jenkinson and Collison(1977).
The right graph represents the adjusted classi�cation for extreme heat in Belgium.
"LF" stands for the Low Flow/Unclassi�ed weather type. "N, NE, ..., NW" represent
the di�erent wind directions. "A" and "C" stand for the (Anti)cyclonic weather types,
while the hybrid weather types are a combination of either wind direction with either
(anti)cyclonic weather type. Pre�xes "w" and "s" stand for "weak" and "strong",
respectively

To equalize the comparison between the di�erent GCMs, all CMIP6 tempera-293

ture variables and RH2m were bias-corrected. The equidistant cumulative distribution294

function matching technique was used, a quantile-mapping approach that explicitly295

accounts for distribution changes between the projection and historical periods (Li296

et al, 2010).297

2.3.1 Applied temperature-dependent classi�cation298

The �rst step of the selection methodology (as explained in Sect.2.1.1) consists of299

the adjustment of the LWT classi�cation. For this, we used the daily Tmax of ERA5.300

Here, the value of 18 (17.78) hPa for the total shear vorticity has been proven to301

be the optimal separation between weak and strong (anti)cyclones using theCHI302

as described in Sect.2.1.2. An overview of the new, temperature-dependent 13-type303

classi�cation is given in Fig. 2.304
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In Fig. 2, it can be seen that the pure directional category has been extended305

compared to the original classi�cation. Additionally, the separation between weak and306

strong (anti-)cyclones becomes visible.307

2.3.2 Metrics for ranking308

As mentioned in the methodology, the ranking that will result in the model periods309

with the highest increase in extreme heat is based on di�erent metrics. The selec-310

tion methodology here is based on three di�erent metrics: one related to the weather311

types, as suggested, and two related to heat. As such, we attempt to capture di�er-312

ent characteristics in
uencing the extreme heat climate change signal. We used two313

di�erent heat stress metrics: the Heat Wave Degree Days (HWDD ), which relates to314

the length and intensity of heatwaves, and the humidity index (HUMIDEX ), which315

relates to thermal comfort. The three metrics address heat on di�erent temporal316

scales: the HUMIDEX is calculated daily, the WTCI is calculated with daily data but317

aggregated over the total period, while the HWDD only considers heat waves and is318

therefore linearly related to the amount of heat. For both heat indices, the change in319

P95 between the historical period and the future period was calculated and used in320

this study. Details in the HWDD and the HUMIDEX can be found in Supp.D.321

Fig. 3 shows how the di�erent rLWTs relate to the daily maximum temperature.322

Continental air masses (E, SE and S) generally result in warmer days, while oceanic323

air masses (W, SW) result in colder temperatures. These �ndings result in the third324

metric for the ranking: the WTCI, as introduced in Eq. ( 5). Here, we useTmax for var325

(variable of interest) and x equals 90, re
ecting our focus on extreme heat. Positive326

values indicate an increase in weather types related to extreme temperatures. As327

weather types are also related to wind direction and humidity, this metric indirectly328

accounts for changes in atmospheric conditions.329
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Fig. 3 : Relation between the weather types of the reduced Lamb Weather Type
classi�cation and the corresponding maximum temperatures for JJA over the period
1985-2014. The weather types on the x-axis are ordered on decreasing frequency of
each weather type above the 90th temperature percentile

3 Results330

3.1 CMIP6 evaluation331

We assess the evaluation of the atmospheric dynamics of the di�erent CMIP6 models.332

Fig. 4 shows rLWT summer (JJA) frequencies where the panels per model are sorted333

by decreasingPSS (Eq. 2). Four out of 32 models fall below the performance threshold334

of 0.815, which was de�ned as the averagePSS minus the standard deviation of the335

PSS of the included GCMs. These models are deemed to represent the large-scale336

atmospheric circulations inferior to other models and are consequently excluded from337

further analysis. In general, lowerPSS values can be observed when a model strongly338

over-/underestimates the frequency of a weather type that occurs either very often339

(e.g. sA for MIROC-ES2L) or very little (e.g. E for INM-CM4-8).340
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Fig. 4 : Barplots representing the frequency of the di�erent reduced Lamb Weather Types (rLWT) for di�e rent CMIP6 models in JJA. The Perkins Skill Score (top
number) as well as its rank compared to the other models (bottom number) is shown. Red values indicate a PSS performance worse than� � � (here: 0.815). The colours
of the model names refer to the di�erent model families as given in Table1
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The worst-performing models (in red in Fig. 4) have clear di�erences in the frequen-341

cies of the di�erent rLWTs compared to ERA5. Both INM-CM4-8 and INM-CM5-0342

overestimate the Northeasterly (NE) and Easterly (E) weather types while under-343

estimating the Southwesterly (SW) and Westerly (W) weather types. MIROC-ES2L344

strongly overestimates the Low Flow (LF) and weak Anticyclonic (wA) weather types,345

while underestimating the strong Anticyclonic (sA) weather type. This might be par-346

tially explained by the model underestimating the vorticity, as this leads to more wA347

and less sA. And lastly, NorESM2-LM mainly overestimates sA and W and under-348

estimates the LF and Northerly (N) weather types. In general, two model families349

are less capable of representing the atmospheric dynamics: INM-AM (averagePSS:350

0.727) and MIROC (averagePSS: 0.804).351

The 10 best models predominantly originate from two model families (Table1): the352

HadGAM/UM (HadGEM3-GC31-LL, HADGEM3-GC31-MM and ACCESS-CM2),353

and all models from the EC-Earth Consortium. The rLWT frequencies of each of these354

eight models have a high correspondence (lowestPSS = 0.913) with those of ERA5,355

indicating that the models represent the atmospheric dynamics very well during the356

JJA of the reference period.357

3.2 Model selection based on the change of the climate change358

signal359

After the evaluation and subsequent elimination of the CMIP6 models, we now select360

models for Belgium based on three metrics that are related to extreme heat. The361

results for these metrics for the di�erent GWL periods are shown in Fig. 5. For the362

selected metrics there is a big spread among the di�erent models and the GWLs.363

Additionally, this spread increases with increasing GWL, indicating that a warmer364

world will on average lead to more heat stress but also to more uncertainty on the365

heat-stress signal. The WTCI median increases with increasing GWL, while the P5366
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Fig. 5 : Graphical overview of the positioning of the di�erent CMIP6 models for three
di�erent metrics and four GWLs. Red squares indicate the top �ve models in the �nal
overview, purple squares indicate the bottom �ve models. The number of models that
reach a certain GWL is indicated in the top left corner of each plot. The dashed lines
represent the P5, P50 and P95 of the WTCI and � P95 Humidex for each GWL

and P95 remain similar for 1.5°C, 2°C and 3°C. In contrast, HUMIDEX consistently367

increases with GWL, similar to the change in HWDD. The similar WTCI values for368

the di�erent GWLs might indicate that the WTCI has the potential to detect models369

with more extreme climate change signals.370

The presented methodology results in a model scoring for each GWL and for371

di�erent SSPs by adding the ranks for the three di�erent selected metrics. As the372

correlation between the three chosen metrics was relatively low in our study (0.59,373

0.37 and 0.29), we did not include any weighting of ranks.374

The top �ve (red squares in Fig. 5) and lowest �ve (purple squares) models in375

the ranking for extreme heat are mostly situated in the �rst quadrant and third376

quadrant respectively. Quadrants are here based on the median values for the WTCI377

and the change in the 95th percentile of the HUMIDEX. This visually demonstrates378
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the e�cacy of the developed selection methodology. Models that have a high (low)379

overall score also have a high (low) score for the di�erent metrics.380

Lastly, the answer to our case-study-speci�c question, the top �ve models with the381

overall most extreme heat signal for Belgium is given in Table2.382

Table 2 : Top �ve models with the most extreme change in heat signal
over Belgium, with the reference period of 1985-2014.

1.5°C 2°C 3°C 4°C
ACCESS-ESM1-5
SSP5-8.5 (0.873)

MRI-ESM2-0
SSP5-8.5 (0.802)

CanESM5
SSP3-7.0 (0.783)

EC-Earth3-Veg
SSP5-8.5 (0.799)

MRI-ESM2-0
SSP5-8.5 (0.818)

TaiESM1
SSP5-8.5 (0.780)

ACCESS-ESM1-5
SSP5-8.5 (0.756)

CanESM5
SSP3-7.0 (0.764)

MRI-ESM2-0
SSP3-7.0 (0.736)

ACCESS-ESM1-5
SSP5-8.5 (0.711)

MRI-ESM2-0
SSP5-8.5 (0.724)

EC-Earth3
SSP5-8.5 (0.761)

TaiESM1
SSP3-7.0 (0.702)

MRI-ESM2-0
SSP3-7.0 (0.708)

EC-Earth3-Veg
SSP5-8.5 (0.718)

IPSL-CM6A-LR
SSP3-7.0 (0.759)

EC-Earth3-Veg
SSP2-4.5 (0.654)

EC-Earth3
SSP5-8.5 (0.658)

NorESM2-MM
SSP3-7.0 (0.712

TaiESM1
SSP3-7.0 (0.753)

4 Discussion383

4.1 CMIP6 evaluation384

The model evaluation is predicated on the assumption ofSobolowski et al (2023),385

stating that "realistic models will produce more realistic future projections, because386

they can represent processes correctly". Following this, we aimed to develop a method-387

ology that could limit the risk of selecting models with errors in their synoptic-scale388

model dynamics. By introducing the performance threshold in the CMIP6 evaluation,389

we excluded models that are less capable of representing the atmospheric dynamics390

of the region of interest. However, as stated byKnutti et al (2010), the question of391

whether a model is good or bad often depends on the intended application. As a con-392

sequence, we developed the variable-speci�c LWT classi�cation and applied this for393

heat in Belgium. By doing so, we ensured that the model evaluation was based on394

heat-related weather types. As errors in atmospheric dynamics are often inherited in395
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RCMs after downscaling, our developed methodology can for example be used to limit396

this transfer of errors in a physically consistent way.397

One example of the application potential of the selection methodology is downscal-398

ing GCMs with speci�c climate change signals, and more speci�cally, the propagation399

of the climate change signal when downscaling (Liang et al, 2008). By introducing400

weather types, that act on the synoptic scale, we aimed at developing a method that401

would limit the risks of an unwanted propagation, e.g. the RCM has a strong cooling402

signal while the GCM has a strong warming signal.403

The general evaluation of the CMIP6 models as previously discussed is in line404

with the results of Brands (2022a), who used the MAE as an evaluation criterion. We405

found that our correlation between PSS and MAE was equal to -1, indicating that406

when applied to the same categorical data, thePSS and MAE are opposites of each407

other. The correlation between ourPSS and the MAE of the results of Brands (2022a)408

is -0.84. The negative sign of the correlation indicates that models that adequately409

represent the atmospheric dynamics feature highPSS values and low MAE values.410

The correlation is remarkably high despite the di�erences in the reference period411

(1979-2005 versus JJA of 1985-2014) and reference data (ERA-Interim and JRA-55412

versus ERA5). Additionally, the MAE as given by Brands (2022a) is the median413

value of all calculations over the mid-to-high latitudes in the Northern Hemisphere,414

while the values of this study are limited to the calculations representative of Belgium415

only. Similar to their �ndings, the models of the Earth Consortium all had a high416

PSS. The a�nity of these models to ERA5 has previously been partly related to the417

fact that they both are based on the ECMWF IFS and thus share similar model418

components (Hersbach et al, 2020; D•oscher et al, 2022; Brands, 2022b).419

In general, we can conclude that the overall assessment as mentioned in the420

CORDEX white paper ( Sobolowski et al, 2023) provides a comprehensive overview421
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of the performance of CMIP6 models over Europe. Our framework can be used com-422

plementary, as it o�ers intricate details for speci�c regions and periods which could423

contribute to the selection process.424

4.2 Selection methodology425

Our selection methodology consists of three steps. In each included step, we aimed426

to develop a method that considers the uncertainties in the large-scale atmospheric427

dynamics and accounts for the climate change signal of interest. Admittedly, we rec-428

ognize the sensitivity of our developed methodology to the number of included models429

and the length of the considered periods. Both are discussed below.430

To start, our evaluation is limited to 32 models as the remaining CMIP6 models431

lacked the data required for the further steps of this study. A more extensive analysis,432

including 48 CMIP6 models, can be found in Supp.E. Executing the evaluation with433

other models inherently leads to a di�erent performance threshold forPSS, in this434

case 0.807. However, the same models were excluded, which seems to indicate that435

the method is robust and rather independent of the number of included models.436

Furthermore, to investigate the sensitivity of the method to the length of the model437

periods, we applied our selection methodology to 20-year periods (reference period:438

1995-2014), instead of the 30-year periods used so far. Here, the same threshold of 18439

hPa was found for the optimal separation of weak and strong (anti-)cyclonic weather440

types. This might indicate that such separation could be applied in similar research441

where the maximum temperatures and related weather types in summer are studied.442

Fig. 6 shows that the PSSs of the 20-year periods (y-axis) are similar to those443

obtained using the 30-year periods (x-axis) and have a correlation of 0.979. This shows444

that the evaluation with the PSS is rather robust. This robustness can be partially445

related to the fact that the PSS results in one value for each model and will have446

relatively similar results over di�erent periods.447

22



���
 ���� ���
 ��
� ��

 ���� ���


�������

�	����

���


����

���


��
�

��



����

���


���
���

��

�	�

���

�����

����


�����

����


���	�

�����

Fig. 6 : PSS for a 30-year reference period (1985-2014) compared to thePSS for a 20-
year reference period (1995-2014). The correlation is indicated in the top left corner

Fig. 7 depicts the di�erences in scoring for each GWL. It becomes clear that there448

is a rather large impact of the period length on the �nal scoring based on the three449

metrics for the climate change signals, despite moderate to high correlations between450

both period lengths.451

As can be seen, the scoring varies most for models at the centre of each graph452

([0.40, 0.60] in Fig7). This larger variation can be related to the values of the metrics;453

the metrics of the models in the middle will be more similar compared to the most and454

the least extreme models. As a consequence, minor di�erences between both periods455

can lead to a substantial change in score for the models in the middle. The top and456

bottom scores, on the other hand, have changed less, suggesting that the length of457

23



��� ��� ��
 ��� ��� ���

���

���

��


���

���

���

��
��

���������	�

��� ��� ��
 ��� ��� ���

���

���

��


���

���

���

�����

�������	�

��� ��� ��
 ��� ��� ���

���

���

��


���

���

���

���
�

�������	�

��� ��� ��
 ��� ��� ���

���

���

��


���

���

���

�����

�����
�	�

�����

�����

�����

���
�

�����

�����

�����

���
�

��"� !�

�� !���� ��� ���"����������
�

�� 
!��

�� 
���

 ��
�"

���
���

���
�
�

Fig. 7 : Scores of the CMIP6 models obtained using 30-year periods (reference period:
1985-2014) against their scores obtained using 20-year periods (reference period: 1995-
2014) for GWL 1.5°C, 2°C, 3°C and 4°C. The correlations are indicated in the top
left corner

the periods has a relatively small e�ect on the most extreme models. Therefore, our458

selection methodology can be considered most suitable for selecting the models with459

the highest and the lowest change in their climate signal.460

Our case study was intended to �nd �ve CMIP6 models that have the highest461

extreme heat signal. Table3 shows the �ndings with the reference period of 1995-2014462

and period lengths of 20 years. Some models and SSPs are the same as in Table2,463

but there are di�erences. When comparing values in both tables, it becomes clear464

that the scoring is very sensitive to the considered periods as the scores of the same465
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Table 3 : Top �ve models with the most extreme heat signal over
Belgium, with the reference period of 1995-2014.

1.5°C 2°C 3°C 4°C
MRI-ESM2-0
SSP5-8.5 (0.841)

MRI-ESM2-0
SSP5-8.5 (0.824)

EC-Earth3-Veg
SSP5-8.5 (0.842)

IPSL-CM6A-LR
SSP5-8.5 (0.799)

MRI-ESM2-0
SSP3-7.0 (0.799)

MRI-ESM2-0
SSP3-7.0 (0.768)

IPSL-CM6A-LR
SSP5-8.5 (0.784)

UKESM1-0-LL
SSP5-8.5 (0.740)

MRI-ESM2-0
SSP1-2.6 (0.717)

ACCESS-ESM1-5
SSP5-8.5 (0.757)

MRI-ESM2-0
SSP5-8.5 (0.738)

ACCESS-ESM1-5
SSP3-7.0 (0.708)

UKESM1-0-LL
SSP2-4.5 (0.696)

EC-Earth3
SSP1-2.6 (0.756)

CanESM5
SSP5-8.5 (0.721)

CanESM5
SSP3-7.0 (0.685)

TaiESM1
SSP3-7.0 (0.679)

CNRM-CM67-1
SSP1-2.6 (0.695)

CMCC-ESM2
SSP2-4.5 (0.714)

MRI-ESM2-0
SSP3-7.0 (0.680)

models also di�er. This emphasizes that our selection methodology has succeeded in466

selecting case-study-speci�c models of interest.467

To �nalize, we recognize the limitations of our methodology. A limitation of the468

use of the LWT classi�cation for the evaluation lies in its consideration of a substan-469

tial geographical expanse for the calculations, while only yielding a singular output.470

As such, some information is inherently lost. Additionally, the use of the LWT clas-471

si�cation is limited to mid-to-high latitude regions ( Jones et al, 2013). However, a472

recent study by Fern�andez-Granja et al (2023) stated that it can be reliably applied473

over most areas within the 23.5° to 80° latitudinal range. And lastly, we did not apply474

the readjustment or selection methodology to larger and more diverse geographical475

regions, or other variables of interest, such as precipitation. Thus, a thorough review476

becomes necessary before applying the methodology to other cases. As a consequence,477

we cannot ensure that performing the readjustment on other variables would give a478

similarly strong di�erentiation for the di�erent weather types. For example, Brisson479

et al (2011) showed both the regional and seasonal di�erences in correlation between480

geostrophic winds, which they related to LWTs and precipitation. However, the adjust-481

ments are optional changes and can be left out in case of more complex variables of482

interest, such as snow events.483
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5 Conclusion484

This study presents a novel methodology to select climate models for a speci�c485

region and variable of interest. The �rst step includes the adjustment of the existing486

LWT classi�cation to make it both variable and region-speci�c and thus, application-487

speci�c. The adjusted classi�cation is consequently included in the second step, the488

evaluation of the atmospheric dynamics through synoptic-scale weather patterns. This489

ensures that the selection procedure limits the risk of inheriting the major errors in490

the synoptic-scale model dynamics. The second step of the methodology encompasses491

a speci�c analysis of di�erent metrics that quantify the climate change signal for the492

climate impact driver of interest. We developed a new metric, the WTCI, that quan-493

ti�es the contribution of a change in weather types to the change in the variable of494

interest, which could be a speci�c percentile of temperature, precipitation, or wind ...495

between two time periods. The WTCI can be used together with other metrics for a496

given climate impact driver, like heat stress metrics. The GCMs are scored with dif-497

ferent metrics, which results in an assessment of the suitability of the models for the498

required application.499

We applied the developed methodology for the case study of extreme heat over500

Belgium on the CMIP6 ensemble using di�erent GWLs. We excluded four underper-501

forming models after model evaluation. As our case study focused on extreme heat, we502

tailored the WTCI and included a metric that targets heat comfort (HUMIDEX) and503

one that targets heatwaves (HWDD). The WTCI was found to give complementary504

information to these existing heat indices. The CMIP6 evaluation was quite robust505

concerning changes in the length of the climatological period (20 or 30 years), while506

the scoring is more sensitive.507

We highlight the potential of this method as a general framework for tailored model508

selection. Our developed selection methodology can contribute to informed decisions509

when selecting CMIP6 models for di�erent purposes, such as the detailed analysis of510
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climate signals and downscaling of extreme weather events. The framework can be511

used for selecting model periods to downscale with RCMs. Additionally, the adjusted512

variable dependent classi�cation can serve as a starting point to analyze the relation513

between circulation patterns and other climatological variables.514
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Appendix A Lamb Weather Type Classi�cation545

The Lamb Weather Type classi�cation was developed byLamb (1950, 1972) as a large-546

scale circulation classi�cation based on maps of mean sea level pressure (MSLP) for547

the regional weather over the British Isles.Jenkinson and Collison(1977) translated548

this empirical classi�cation into an objective classi�cation, known as both the LWT549

classi�cation and the "Jenksinson-Collison Weather Type" classi�cation. The LWT550

classi�cation uses the daily Mean Sea Level PressureMSLP (in hPa) at a 16-point551

grid (Fig. A1) over a spatial extent of 30� longitudes by 20� latitudes to classify the552

synoptic pattern at its centre point, located at latitude � . Each of the 16 points is553

spaced 5° in latitude (�lat) and 10 ° in longitude toward the adjacent points. Both554

the 
ow units as well as the units for the geostrophic vorticity are expressed in hPa.555

The following rules are used to de�ne the LWTs, based on the formulas shown in556

Table A1:557

1. The direction of the 
ow (in degrees) is given by tan� 1(W=S) + � , where � =558

180° if W is positive and � = 0 otherwise. The corresponding wind direction is559
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Fig. A1 : The 16-point grid as used in the Lamb Weather Type classi�cation. The
grid is centred over the orange point within Belgium

Table A1 : Equations for the di�erent parameters required for the Lamb Weather Type
classi�cation, for the Northern Hemisphere. The p's represent the values of the MSLP
(in hPa) as given in Fig. A1, the � is the latitude of the central point and � lat is the
lateral distance among the points.

Parameter Symbol Equation
Westerly Flow W = [( p12 + p13 ) � (p4 + p5 )] =2
Southerly Flow S = � [(p5 + 2 p9 + p13 ) � (p4 + 2 p8 + p12 )] =4
Resultant Flow F = ( S2 + W 2 )1=2

Westerly Shear Vorticity WZ = � [(( p15 + p16 ) � (p8 + p9 )) � 
 (( p8 + p9 ) � (p1 + p2 ))] =2

Southerly Shear Vorticity SZ
=

�

4
[(p6 + 2 p10 + p14 ) � (p5 + 2 p9 + p13 )

� (p4 + 2 p8 + p12 ) + ( p3 + 2 p7 + p11 )]
Total Shear Vorticity Z = W Z + SZ

where � = cos � 1 (� ); � = sin( � ) sin � 1 (� � � lat ); 
 = sin( � ) sin � 1 (� + � lat ) and � = cos� 2 (� )

computed using an eight-direction compass, allowing 45° per sector. For example:560

the Northeastern weather type occurs for wind direction between 22.5° and 67.5°.561

2. If jZj > 2F, then the pattern is strongly cyclonic (Z > 0) or anticyclonic (Z < 0),562

corresponding to the pure cyclonic and anticyclonic types.563
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3. If jZj is between F and 2F, the 
ow is considered to be of a hybrid type and is564

characterized by both direction and circulation, leading to sixteen di�erent types.565

4. If jZj < F, the 
ow is considered straight and corresponds to a Lamb pure566

directional type. Eight di�erent types exist: N, NE, E, SE, S, SW, W and NW.567

5. If both jZj and F are smaller than the LF-threshold of 6 hPa, as de�ned byJenk-568

inson and Collison (1977), the 
ow is indeterminate, corresponding to the Low569

Flow type (also called the "Unclassi�ed type"). This corresponds to the so-called570

"barometric swamps" (Grimalt et al , 2013).571

Appendix B Overview of directional and hybrid572

resemblance573

The �gures below show all weather types associated with the western 
ow, as574

determined for ERA5. The relative frequency of each weather type over the period575

1985-2014 is given in TableB2.576
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Fig. B2 : Yearly averaged MSLP patterns for the W-weather type over the period
1985-2014

Fig. B3 : Yearly averaged MSLP patterns for the AW-weather type over the period
1985-2014
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Fig. B4 : Yearly averaged MSLP patterns for the CW-weather type over the period
1985-2014

Table B2 : Relative frequency (%) of the directional and
hybrid weather types over the summer periods of 1985-
2014. The LF (10.94 %), anticyclonic (23.12 %) and cyclonic
(6.92 %) weather type are excluded from the table

Direction Pure Hybrid Cyclonic Hybrid Anticyclonic
N 6.37 4.78 0.80
NE 5.91 3.33 1.16
E 3.95 1.85 0.43
SE 1.78 0.51 0.80
S 1.67 0.58 0.62
SW 4.71 1.27 0.94
W 5.25 2.40 1.12
NW 5.80 2.40 0.62
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Appendix C ERA5: calculation of relative humidity577

at the surface level578

ERA5 lacks direct relative humidity data at the 2-meter level. Therefore, we derived579

this information by calculating it from the corresponding temperature and dew-point580

temperature at 2 meters. The calculations follow the steps as described inECMWF581

(2016):582

esat;x;w = eS0 � exp
�

17:502
�

x � T0

x � 32:19

��
(C1)

esat;x;i = eS0 � exp
�

22:587
�

x � T0

x + 0 :7

��
(C2)

esat;x = �e sat;x;w + (1 � � ) esat;x;i (C3)

where x can be both the air temperature and the dewpoint temperature at 2 meters,583

T0 equals 273.16K andeS0 represent the saturated vapour at T0 and equals 611.21584

Pa. and � represents the mixed phase ratio and is calculated as follows:585

with586

� = 0 T < = Tice (C4)

� =
T � Tice

T0 � Tice

2

Tice < T < T 0 (C5)

� = 1 T > = Tice (C6)

where Tice equals 250:16K .587

The relative humidity (%) is:588

RH = 100 �
esat;T dew

esat;T
(C7)
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Appendix D Heat indices589

D.1 HWDD590

The HWDD is a yearly heat-stress indicator speci�cally developed for Belgium591

(Brouwers, J. et al, 2015; Wouters et al, 2017) and quanti�es the accumulated592

temperature exceedance during heat-wave days:593

HWDD =
NX

i

h
(Tmin � Tmin P 90;hist )+ + ( Tmax � TmaxP 90;hist )+

i
hi ; (D8)

with TmaxP 90;hist and Tmin P 90;hist referring to the 90th percentile of Tmax (°C) and594

Tmin ( °C), respectively, of the JJA data over the historical period of 1985-2014. The595

summation i is over N days andhi indicates (0 or 1) whether the dayi is a heat-wave596

day i.e. when the 3-day average of the minimum and maximum temperature exceeds597

their respective thresholds and thus incorporating the temporal persistence of the598

heat wave. The superscript + refers to the positive di�erence between the considered599

maximum/minimum temperature and the respective threshold and equals zero if the600

di�erence is negative. By including the minimum temperatures, HWDD also takes601

into account high nocturnal temperatures which can limit the ability of the body to602

recover during heatwave periods and which has been related to increased mortality603

among elderly people (Basu, 2002; Laaidi et al, 2012).604

D.2 HUMIDEX605

The HUMIDEX is calculated based on Basara et al (2010), who adapted the original606

formula from Masterton and Richardson (1979):607

HUMIDEX = T +
5
9

(e � 10); where e = 6 :112� 107:5�T=(237 :7+ T ) �
RH
100

; (D9)
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where e refers to the partial vapour pressure (hPa). By incorporating both tempera-608

ture and humidity, the HUMIDEX includes two of the most important variables for609

addressing thermal (dis)comfort (Epstein and Moran, 2006; Fischer et al, 2012). How-610

ever, we also acknowledge that other indices can be used to describe heat (dis)comfort611

and that other variables impact heat (dis)comfort, e.g. radiation (Van De Walle et al,612

2022).613

Appendix E Extensive CMIP6 evaluation614

The evaluation of the di�erent CMIP6 models was carried out for multiple models. As615

not all models had all the required data for the heat analysis, they were not included in616

the paper. However, the complete overview of the evaluation can be found in Fig.E5.617

Here, the threshold for model exclusion equals 0.844. A detailed description of the618

atmospheric components of the di�erent CMIP6 models can be found in TableE3.619

Additionally, the version of the dataset for the historical pressure is given.620
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Fig. E5 : Extensive overview representing the frequency of the di�erent Lamb Weather Types (LWT) for di�erent CMIP6 models. The Perkins Skill Score as well
as its rank compared to the other models is shown. Red values indicate a performance worse than� - � . The colours of the model names refer to the di�erent
model families as given in Table1
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Table E3 : Overview of the CMIP6 models used in this work, including the atmosphere components, the nominal resolution in longitude and
latitude, and the number of vertical model levels. The downloaded version as well as the reference articles are also included. 'rg' refers to a
Reduced Gaussian grid con�guration, and 'gp' refers to grid points. 'Model family' follows the grouping made byBrands (2022b) and Brunner
et al (2020), with italics referring to GCMs that did not ful�l the grouping criteria.

CMIP6 model Run Atmospheric model Model family Version References
ACCESS-CM2 r1i1p1f1 MetUM-HadGEM3-GA7.1 (N96, 192x144, 85 lv) HadGAM/UM v20210317 Bi et al (2020)
ACCESS-ESM1-5 r1i1p1f1 HadGAM2 (r1.1, N96, 192x145, 38 lv) HadGAM/UM v20210318 Ziehn et al (2020)
BCC-CSM2-MR r2i1p1f1 BCC-AGCM3-MR (320x160, 46 lv) CAM v20181216 Wu et al (2019)
BCC-ESM1 r1i1p1f1 BCC-AGCM3-Chem CAM v20181220 Wu et al (2020)
CanESM5 r1i1p1f1 CanAM5 (T63, T63 Linear Gaussian Grid, 128x64, 49 lv) CanAM v20190429 Swart et al (2019)
CESM2 r4i1p1f1 CAM6 (1deg, 288x192, 32 lv) CAM v20190308 Danabasoglu et al (2020)
CESM2-FV2 r1i1p1f1 CAM6 (2deg, 144x96, 32 lv) CAM v20191120 Danabasoglu et al (2020)
CESM2-WACCM r1i1p1f1 WACCM6 (1deg, 288x192, 70 lv) CAM v20190227 Danabasoglu et al (2020)
CESM2-WACCM-FV2 r1i1p1f1 WACCM6 (2deg, 144x96, 70 lv) CAM v20191120 Danabasoglu et al (2020)
CMCC-CM2-HR4 r1i1p1f1 CAM4 (1 deg, 288x192, 26 lv) CAM v20200904 Cherchi et al (2019)
CMCC-CM2-SR5 r1i1p1f1 CAM5.3 (1 deg, 288x192, 30 lv) CAM v20200616 Cherchi et al (2019)
CMCC-ESM2 r1i1p1f1 CAM5.3 (1deg, 288x192, 30 lv) CAM v20210202 Lovato et al (2022)
CNRM-CM6-1 r1i1p1f2 Arpege 6.3 (T127, rg with 24572 gp, 91 lv) ARPEGE v20190219 Voldoire et al (2019)
CNRM-CM6-1-HR r1i1p1f2 Arpege 6.3 (T359, rg with 181724 gp, 91 lv) ARPEGE v20191202 Voldoire et al (2019)
CNRM-ESM2-1 r1i1p1f2 Arpege 6.3 (T127, rg with 24572 gp, 91 lv) ARPEGE v20191021 S�ef�erian et al (2019)
EC-Earth3 r1i1p1f1 IFS cy36r4 (TL255, linearly rg, 512x256, 91 lv) IFS v20200310 D•oscher et al (2022)
EC-Earth3-AerChem r1i1p1f1 IFS cy36r4 (TL255, linearly rg, 512x256, 91 lv) IFS v20200624 D•oscher et al (2022)
EC-Earth3-CC r1i1p1f1 IFS cy36r4 (TL255, linearly rg, 512x256, 91 lv) IFS v20210113 D•oscher et al (2022)
EC-Earth3-Veg r1i1p1f1 IFS cy36r4 (TL255, linearly rg, 512x256, 91 lv) IFS v20221112 D•oscher et al (2022)
EC-Earth3-Veg-LR r1i1p1f1 IFS cy36r4 (TL159, linearly rg, 320x160, 62 lv) IFS v20201123 D•oscher et al (2022)
FGOALS-f3-L r1i1p1f1 FAMIL2.2 (c96, 360x180, 32 lv) GAMIL v20191019 He et al (2020)
FGOALS-g3 r1i1p1f1 GAMIL3 (180x80, 26 lv) GAMIL v20190820 Li et al (2020b)
GFDL-CM4 r1i1p1f1 GFDL-AM4.0.1 (cubed sphere, c96, 360x180, 33 lv) GFDL-AM v20180701 Held et al (2019)
GFDL-ESM4 r1i1p1f1 GFDL-AM4.1 (cubed sphere, c96, 360x180, 46 lv) GFDL-AM v20180701 Dunne et al (2020)
GISS-E2-2-G r1i1p1f1 GISS-E2.2 (144x90, 102 lv) GISS-E2 v20191120 Rind et al (2020)
HadGEM3-GC31-LL r1i1p1f3 MetUM-HadGEM3-GA7.1 (N96, 192x144, 85 lv) HadGAM/UM v20191207 Roberts et al (2019)
HadGEM3-GC31-MM r1i1p1f3 MetUM-HadGEM3-GA7.1 (N126, 432x324, 85 lv) HadGAM/UM v20201114 Roberts et al (2019)
IITM-ESM r1i1p1f1 IITM-GFSv1 (T62, Linearly rg; 192 x 94 64 lv) GFS v20201112 Swapna et al (2015)
INM-CM4-8 r1i1p1f1 INM-AM5-0 (2x1,5, 180x120, 21 lv) INM-AM v20190530 Volodin et al (2018)
INM-CM5-0 r1i1p1f1 INM-AM5-0 (2x1,5, 180x120, 73 lv) INM-AM v20190610 Volodin et al (2017)
IPSL-CM5A2-INCA r1i1p1f1 LMDZ (APv5, 96x96, 39 lv) LMDZ v20200729
IPSL-CM6A-LR r1i1p1f1 LMDZ (NPv6, N96, 144x143, 79 lv) LMDZ v20190614 Boucher et al (2020)
IPSL-CM6A-LR-INCA r1i1p1f1 LMDZ (NPv6, 144 x 143, 79 lv) LMDZ v20210216
KACE-1-0-G r2i1p1f1 MetUM-HadGEM3-GA7.1 (N96, 192x144, 85 lv) HadGAM/UM v20200102 Lee et al (2020a)
KIOST-ESM r1i1p1f1 GFDL-AM2.0 (cubed sphere, c48, 192x96, 32 lv) GFDL-AM v20210601 Pak et al (2021)
MIROC6 r1i1p1f1 CCSR AGCM (T85, 256x128, 81 lv) MIROC-AGCM/CCSR v20191016 Tatebe et al (2019)
MIROC-ES2L r1i1p1f2 CCSR AGCM (T42, 128x64, 40 lv) MIROC-AGCM/CCSR v20200318 Hajima et al (2020)
MPI-ESM1-2-HR r1i1p1f1 ECHAM6.3 (spectral T63, 384x192, 95 lv) ECHAM v20190710 Mauritsen et al (2019)
MPI-ESM1-2-LR r1i1p1f1 ECHAM6.3 (spectral T63, 192x96, 47 lv) ECHAM v20190710 Mauritsen et al (2019)
MPI-ESM-1-2-HAM r1i1p1f1 ECHAM6.3 (spectral T63, 192x96, 47 lv) ECHAM v20190627 M•uller et al (2018)
MRI-ESM2-0 r1i1p1f1 MRI-AGCM3.5 (TL159, 302x160, 80 lv) GSMUV/MRI-AGCM v20191108 Yukimoto et al (2019)
NESM3 r1i1p1f1 ECHAM v6.3 (T63, 192x96, 47 lv) ECHAM v20190812 Cao et al (2018)
NorCPM1 r1i1p1f1 CAM-OSLO4.1 (2deg, 144x96, 26lv) CAM v20200724 Bethke et al (2021)
NorESM2-LM r1i1p1f1 CAM-OSLO (2deg, 144x96, 32 lv) CAM v20190815 Seland et al (2020)
NorESM2-MM r1i1p1f1 CAM-OSLO (1deg, 288x192, 32 lv) CAM v20191108 Seland et al (2020)
SAM0-UNICON r1i1p1f1 CAM5.3 (288x192, 30 lv) CAM v20190323 Park et al (2019)
TaiESM1 r1i1p1f1 TaiAM1 (.9x1.25 deg, 288x192, 30 lv) CAM v20210517 Lee et al (2020b)
UKESM1-0-LL r1i1p1f2 MetUM-HadGEM3-GA7.1 (N96, 192x144, 85 lv) HadGAM/UM v20190715 Sellar et al (2019)
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