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Abstract—Ultra Wideband (UWB) is a popular technology to
address the need for high precision indoor positioning systems
in challenging industry 4.0 use cases. In line-of-sight (LOS)
environments, UWB positioning errors in the order of 1 − 10
cm can be achieved. However, in non-line-of-sight (NLOS) con-
ditions, this precision drops significantly, with errors typically
> 30 cm. Machine learning has been proposed to improve the
precision in such NLOS conditions, but is typically environment-
specific and lacks generalization to new environments and UWB
configurations. As such, it is necessary to collect large datasets
to train a neural network for each new environment or UWB
configuration. To remedy this, this paper proposes automatic
optimizations for transfer learning (TL) deep neural networks
towards new environments and UWB configurations. We analyze
error correction and (non)-line-of-sight ((N)LOS) classification
models, using either feature- or channel impulse response-based
(CIR) input data. Our TL solutions show a 50% error improve-
ment and 15% (N)LOS classification accuracy improvement (for
both feature- and CIR-based approaches) compared to a model
trained in a different environment. We also analyze the impact
on TL using a limited number of samples (25 to 400 samples).
The highest accuracy is typically achieved by the CIR-based
approach, where with only 50 samples from the new mixed
(N)LOS environment, we show ±10 cm precision after error
correction with 93% (N)LOS detection. The presented results
demonstrate high precision UWB localization (from 643 mm to
245 mm) through ML with minimal data collection effort in
challenging NLOS environments.

Index Terms—Transfer learning, UWB, localization systems,
error correction, (N)LOS classification

I. INTRODUCTION

High precision positioning has been extensively researched
in recent years as it is a core technology to support multiple
Internet of things (IoT) use cases such as forklifts control
[1], [2], assistive healthcare systems [3], automated guided
vehicles [4], positioning systems in industrial environments
[5]–[8] and to maintain the social distancing as observed in
the COVID-19 scenario [9]–[11]. According to this trend, the
Ultra Wideband (UWB)-based indoor positioning system (IPS)
is one of the most promising techniques in comparison with
several other technologies (e.g. RFID, Wi-Fi- and Bluetooth-
based positioning using received signal strength, etc.). UWB
IPS can achieve centimeter-level positioning accuracy due to
its capability of transmitting an extremely narrow pulse with
extremely wide bandwidth (≥ 500 MHz) and very fine time
resolution (around 1 ns) [12], [13]. In addition, due to the
large bandwidth of the transmitted signal, very high frequency

diversity is achieved which makes the UWB signal resistant
to phenomena such as severe multipath fading, propagation
penetrating through different types of materials and interfer-
ence [14], [15]. However, in the indoor environments, the high
accuracy performance of UWB is still not always guaranteed
due to the presence of a) non-line-of-sight (NLOS) and b) mul-
tipath conditions, which are usually considered as important
factors affecting the positioning accuracy of any IPS [16]–
[18]. UWB suffers in NLOS conditions as its direct path is
blocked which introduces a positive bias in the range estimates
between the transceivers [19]. In indoor environments, NLOS
is very common with propagating signals easily blocked by
walls (drywalls or concrete), pedestrians, industrial equipment,
robots, etc [20]. In addition, multipath conditions in UWB also
play a key role in deteriorating the positioning performance.
In such conditions, signals are reflected by the wall and might
be stronger than the (attenuated) direct path or arrive shortly
after each other. Therefore, it is important to minimize the
impact of NLOS and multipath conditions for improving the
accuracy of UWB IPS.

There has been an ongoing research addressing error cor-
rection and NLOS detection to improve the performance of
UWB IPS [17], [18], [21], [22]. In brief, most works focus
on machine learning (ML) techniques, which can use either
raw physical data or use a feature-based method [15], [23].
For raw channel impulse response (CIR)-based ML, typical
techniques are based on using the CIR signal, logged by the
UWB receiver, and train a ML model to identify NLOS and
ranging errors. These raw-CIR-based techniques can become
computationally complex. Instead, less complex feature-based
methods are proposed and rely on calculating the relevant
features (e.g., the amplitude of the signal, power difference,
power ratio, etc.) which can be extracted from the CIR or
directly registered by the UWB hardware. NLOS can then be
classified by ML approaches such as support vector machine
(SVM), decision tree, neural network (NN), convolutional
neural network (CNN) and so on [24]–[27].

It is worth noticing that both raw CIR- and feature-
based approaches show high error correction performance
and (N)LOS classification accuracy in known environments.
However, the performance of the proposed approaches is
often not evaluated in an unseen environment that the NN
is not trained for [24]–[27]. Some works have addressed the
performance from anchors not present in the training dataset
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and NLOS generalization towards one new environment [7],
where good generalization is achieved. Very recently, in [28]
the authors have noted generalization issues with CNNs in
unseen NLOS detection datasets, while using transfer learning
with 20%-70% of this dataset improves the performance. Such
unseen environments correspond to different UWB device
topologies, size of the room, and presence of objects, etc.
as compared to seen environments of the trained models.
These differences deteriorate the localization performance of
the UWB IPS because of two main reasons. Firstly, the UWB
collected signals in various environments could be different
due to diverse obstacles and differently sized rooms. Secondly,
the UWB devices used, configurations and deployment of
the UWB devices, together with the data collection process
will depend upon the trained UWB setup. This will result
in unsatisfactory performance of the previously-trained ML
models in unseen environments. However, collecting data
and training different models for each unique environment
and UWB configuration requires considerable work and time
(i.e. setting up the devices, perform large data collections
and labeling, and execute the training model process). Even
then, the environment could already have changed as time
progresses, requiring to update the models frequently. There-
fore, conventional techniques requiring new big datasets and
completely new models are limited in their versatility to
unseen and changing environments with or without different
UWB configurations.

To address this shortcoming, we propose a transfer learning
(TL) framework for UWB error correction and (non)-line-of-
sight ((N)LOS) detection using feature- and CIR-based NNs.
In the context of deep learning, TL typically requires careful
consideration of updating specific NN layers and finetuning the
model with data from a new environment. To reduce the effort
needed to perform TL, in the proposed TL framework we
consider these variables as hyperparameters and use Bayesian
optimization for automatic tuning of these hyperparameters.

As such, the main contributions of this paper are as follows.

• We propose a TL framework for UWB error correction
and (N)LOS detection using feature- and raw CIR-based
approaches.

• We construct various TL-based hyperparameters includ-
ing frozen layers, unfrozen finetuning and training with
small datasets in different environments and UWB con-
figurations.

• We propose an automatic hyperparameter tuning strategy
for TL using Bayesian optimization.

• We analyze the performance of both feature- and raw
CIR-based approaches towards various unseen environ-
ments and configurations for UWB error correction and
(N)LOS detection. In addition, we investigate different
number of training samples required from new environ-
ments. The complexity of the proposed TL raw CIR- and
feature-based approaches is also presented.

The remainder of this paper is organized as follows. The
related work is described in Section II. Next, we present
the system description and problem statement of error cor-
rection and (N)LOS detection in Section III, followed by a

detailed discussion on the dataset description and collection
in Section IV. In Section V, we present the proposed TL
feature- and raw CIR-based approaches for error correction
and (N)LOS detection. Section VI presents the results. Finally,
the conclusions and future work are presented in Section VII.

II. RELATED WORK

In this section, we provide an overview of several related
papers in the literature as shown in Table I. Firstly, we cate-
gorize existing UWB research into (i) error correction and (ii)
(N)LOS detection approaches. For each of the related papers,
we discuss if their approaches are feature- or raw CIR-based
and discuss TL in terms of automatic hyperparameter tuning,
number of samples analysis, new environments, and UWB
configurations in different domains. (iii) Next, we discuss other
UWB related domains, i.e. fingerprinting and elaborate that TL
is currently underexplored even in these domains.

A. UWB Error Correction

UWB error correction based on raw CIR-based are men-
tioned in [29]–[31]. Similar to the (N)LOS approaches, some
research papers have focused on extracting features from the
CIR data. The authors of [29] extracted the features based
on distance measurement and received signal strength. Then
the authors proposed local spatial feature extraction, temporal
feature extraction and position prediction to improve the
positioning accuracy. [30] main focus is on UWB measured
ranging associated with NLOS and multipath. A large dataset
comprising of the measured distance and 7 different signal
features was trained by a NN to perform error prediction.
The focus of [14] is on UWB feature-based error correction.
Two classes of non-parametric regression techniques include
a SVM and the Gaussian process and were applied by the
authors to directly mitigate the ranging error in the physical
layer, based on 6 signal features from the received waveform
and the estimated distance. The fraction of residual errors
less than 1m have increased from 63% to around 90% by
using SVM- and Gaussian process-based mitigation. Finally, in
paper [31], a semi-supervised autoencoder-based ML approach
is proposed by the authors, based on raw CIR data, to achieve
high IPS accuracy for low-cost edge devices. The results
achieved 29% higher localization accuracy than state-of-the-
art deep neural networks (DNNs) in complex environments.

Several papers have also explored both error correction
and NLOS detection [7], [32]–[35]. The authors in [32] put
forward a bagging-based ensembled tree classifier for NLOS
classification and treebagger regression for NLOS error miti-
gation. The result showed an accuracy of 95.65% for NLOS
classification and a root mean square error of 0.4790 m for
error correction. In [33], the authors presented a fuzzy logic
control decision method to identify the NLOS in multiple
classes (LOS, soft NLOS and hard NLOS). Similarly, in [34],
the authors collected 9 signal features of the data in terms
of LOS, weak LOS and NLOS. A SVM classifier is used
for detecting NLOS conditions as well as error correction in
different combination of features. In paper [35], the authors
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TABLE I: Comparison of the proposed TL approach and analysis performed in this paper with related work. If TL was used,
the table mentions: (i) if automatic hyperparameter tuning was applied (auto.), (ii) the number of considered TL samples that
are used as input for TL, (iii) if multiple configurations (conf.) and (iv) environments (env.) were used.

Transfer learning

Paper Domain and problem Feature- Raw-
based based Auto. # Samples > 1 Conf. > 1 Env.

[14], [29], [30] Error Correction ✓
[31] Error Correction ✓
[32]–[34] Error correction and (N)LOS detection ✓
[7], [35] Error correction and (N)LOS detection ✓
[36]–[38] (N)LOS detection ✓
[39]–[42] (N)LOS detection ✓
[43] (N)LOS detection ✓ 100 ✓
[28] (N)LOS detection ✓ 10000 ✓
[44] Fingerprinting (UWB) ✓ 4-225 ✓
[45] Fingerprinting (WiFi) ✓ 28-250
[46] Fingerprinting (WiFi) ✓ 200-600
Our work Error correction and (N)LOS detection ✓ ✓ ✓ 25-100 ✓ ✓

investigated subsets of anchor pairs selection with 1 tag and
8 anchors for a time difference of arrival (TDOA) position
algorithm. Using ML-based error correction and detection, the
positioning error can be reduced by 75% on top of selecting
the best combination of the anchors. In [7], the authors
trained three CNN based architectures (Residual network,
Encoder and Fully convolutional network) to detect NLOS
conditions directly from the raw CIR data. However, all the
aforementioned papers also did not evaluate their approaches
in unseen environments. Therefore, the applicability of the
approaches in unseen environments cannot be justified.

B. UWB NLOS Detection

Finally, the following papers did only consider NLOS clas-
sification. Although these papers retain a high classification
accuracy, they do not investigate the improvement of UWB
error correction.

UWB feature based methods are mentioned in [36]–[38].
In [36], the authors address three ML approaches to classify
NLOS in multiple classes (LOS, NLOS and multipath). 12
features were extracted and the overall accuracy reaches up to
91.9% in the best case. Similarly, the authors in [37] proposed
Gaussian distribution and generalized Gaussian distribution
algorithms to identify NLOS components in an imbalanced
dataset with 10 features. The NLOS classification accuracy
reached 96% and 98% respectively. Furthermore, [38] applied
a genetic algorithm to find the best combination of 18 features
in an office environment.

In contrast, the authors in [39]–[42] focused on UWB raw
CIR-based NLOS detection. Specifically, in [39], the authors
apply a CNN to identify the NLOS signal after denoising
the raw CIR data using a reversible transformation method.
The evaluation results show an averaged accuracy increase of
27.9% for NLOS classification accuracy. Similarly, the authors
of [40] also apply a CNN to classify the NLOS after using a
Gate Recurrent Unit to extract spatial features of raw CIR data.
Moreover, an unsupervised ML approach based on Gaussian
mixture models to identify the NLOS links from the unlabelled
data is proposed in [41]. The authors of [42] proposed a CNN
to extract non-temporal features from UWB raw CIR data, and
then, the features were fed into the Long-Short Term Memory

network for NLOS classification which showed an accuracy of
82.14%. Compared to the feature based methods, the above
mentioned papers based on raw CIR measurements provide a
superior performance for NLOS detection.

However, the aforementioned papers did not evaluate the
performance of the approaches in an unseen environment
which limits their suitability in practical settings. To the best
of our knowledge, until now only two research papers address
paper TL for UWB (N)LOS detection. In [43], the authors
proposed TL based on NN and CNNs to identify UWB NLOS
signals in unseen environments. 100 training samples were
selected for TL. The accuracy was improved approximately
10% higher accuracy and achieved approximately five times
faster training time by using the TL approach. However, the
paper does not consider a) feature based NN, b) the impact of
different UWB configurations and c) evaluating the impact of
different training samples. Finally, in [28] the authors propose
a Stockwell transform-based CNN (ST-CNN) method for
predicted (N)LOS conditions. This method is different from
most CIR-based models and uses both frequency and time
domain information as an input to the ST-CNN. The authors
note a 7-10% performance increase over more traditional
CNN-based approaches. However, when presenting the ST-
CNN data captured in a different environment, the accuracy
drops severely, to below 50% accuracy. To overcome this
generalization problem, the authors use a transfer learning
method with 20-40% of the dataset captured in the new
environment. As a result, accuracies above 97% are obtained
with a smaller training time. However, the paper does not
consider a) feature based NN, b) the impact of different UWB
configurations and c) evaluating the impact of a very small
TL dataset, as the results are still using up to 10000 training
samples.

C. TL based on Fingerprinting

Although, TL for UWB error correction and (N)LOS
detection has rarely been researched, multiple papers have
adopted TL to increase the accuracy of IPS using fingerprint-
ing approaches.

In [44]–[46], the authors proposed TL based on the fin-
gerprinting samples. The authors in [44] proposed a NN
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to learn precise fingerprinting of UWB access points in an
environment, then apply TL by updating the NN in a new
environment. Only 7% of fingerprinting samples is needed
for a new environment. Similar work was conducted in [45]
where the authors also used a NN based TL approach. But
they combine 15 different WiFi datasets to train the model.
The positioning error was reduced to 25% in most cases.
Finally, the authors in [46] proposed TL to efficiently transfer
the knowledge between source domains and the single target
domain for WiFi fingerprinting-based target positioning. They
applied the proposed approach with multiple sources jointly
when the datasets lacks of partial access point data or geo-
magnetic data. In conclusion, throughout the literature, none
of the aforementioned work on UWB discusses the stability
of TL models to an unseen environment when the devices
and configurations of devices are different. To the best of our
knowledge no previous work has been done on the comparison
of using both feature- and raw-based using TL. Moreover,
hyperparameter tuning is often manually executed which is
another drawback in the existing approaches.

To overcome these shortcoming, we fill these gaps and pro-
pose a TL framework for UWB error correction and (N)LOS
detection using both raw CIR-based and feature-based data.
Moreover, we identify TL variables as hyperparameters and
propose an automatic hyperparameter tuning strategy for TL
using Bayesian optimization. We also compare the evaluation
results in various environments and UWB configurations for
both feature- and raw CIR-based approaches. Furthermore, we
investigate different number of training samples required from
new environments and the complexity of the proposed raw
CIR-based and feature-based approaches.

III. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

To give a better understanding of the problem we try to
solve in this paper, we first present the UWB localization
system and its challenges in a detailed manner. As such, in
this section we mathematically formulate (i) UWB localization
systems (as shown in Figure 1 (a)) and (ii) different envi-
ronments and UWB configurations and their impact on the
UWB localization performance (as shown in Figure 1 (b)).
For improved readability, Table II gives an overview of all
mathematical symbols used throughout this paper.

A. UWB Localization Systems

UWB IPS need a coordinate system with a reference point
ref = (0, 0, 0) to offer relative 3-dimensional (3D) positions
for both anchors aq and tags tr,

aq ∈ {a1, a2, · · · , aQ}, (1)

tr ∈ {t1, t2, · · · , tR}, (2)

where Q is the total number of anchors (fixed node with known
coordinates) and R is the total number of tags (mobile node
with unknown coordinates) in the UWB IPS.

The position of an anchor and a tag within the UWB
localization system can be represented in (3) and (4).

TABLE II: Mathematical symbols used throughout this paper

Symbols Description
ref Localization system reference point
aq UWB anchor
Q Number of UWB anchors
tr UWB tag
R Number of UWB tags

∆aqtr Euclidean distance between aq and tr
ToFaqtr Time of flight between aq and tr

CIRaqtr (t) Channel impulse response provided by the UWB chip
T̂ oFaqtr The estimated ToF by the UWB chip

eaqtr The distance error between aq and tr
∆̂aqtr The estimated range between aq and tr
Xbase The base dataset, with samples from existing samples and

environments (in this paper from the IIoT testbed)
P Number of samples in Xbase

N Number of different environments
L Number of different configurations

MLbase The ML model trained on Xbase

M Number of samples in a new environment and UWB
configuration

K Number of TL samples from the new environment and
UWB configuration

X́new,k New small dataset intended for TL with K samples
ḾLnew New model trained from X́new,k

XO OfficeLab dataset, collected in a real office testbed
XU University dataset, collected in a university setting [34]
lr Learning rate of the ML model optimizer
H The collection of chosen trainable layers during TL
H′ Represents the H hyperparameter chosen by the Bayesian

optimizer
δfinetuning This Boolean parameter decides to perform additional

finetuning epochs including the previously untrainable
layers during the TL process

δ′finetuning Represents the δfinetuning hyperparameter chosen by
the Bayesian optimizer

aqpos = (aqx , aqy , aqz ), (3)

trpos = (trx , try , trz ), (4)

where x, y, and z are the Cartesian coordinates relative to the
reference point ref , respectively.

To calculate trpos , the r-th tag tr will measure it’s range
with each anchor aq in the localization system. The ground
truth range ∆aqtr between aq and tr can be represented by
the Euclidean distance formula as follows.

∆aqtr =
√

(aqx − trx)
2 + (aqy − try )

2 + (aqz − trz )
2. (5)

As the goal is to find the position of tr, the x, y, and z
coordinates are not available to the UWB systems, while the
x, y, and z coordinates of each anchor aq are known. In UWB
systems, ∆aqtr is determined by measuring the time of flight
between anchor aq and tag tr. Specifically, in this paper, we
focus on two way ranging (TWR), more specific DS-TWR
(double sided - two way ranging) which calculates the time
of flight with three packets (there exists also variants from
TWR with only 2 packets). Two packets are send from tag
tr to aq and one vice versa, which eliminates any processing
time differences due to the influence of crystal inaccuracies,
timings offsets or processing delays. More details on TWR
can be found in [47]. The result is a time of flight which can
be used to calculate ∆aqtr in LOS conditions as follows
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(a) ML for UWB improvements (b) ML solutions in multiple environments

Fig. 1: Illustration of the mathematical system description. (a) ML when applied to localization systems for error correction
and/or (N)LOS detection. (b) Using the ML models for different UWB radio configurations and/or environments.

ToFaqtr =
∆aqtr

c
, (6)

where c is the speed of light of value 3 x 108 m/s.
In NLOS conditions, the time of flight might be longer

due to the presence of multipath components in the environ-
ment [48], [49]. Before calculating this error, the received
UWB signal needs to be determined. The CIR, logged by
the UWB receiver, represents information about the first- and
multipath signal propagation between aq and tr and can be
represented as follows [50].

CIRaqtr (t) =

S∑
s=1

αsδ(t− τs) + n(t), (7)

where t indicates the timestamp for each value within the
CIR (there are 1016 values, each corresponding to 10−9 s);
δ is the Dirac delta function; S is the number of multipath
components; αs and τs are the amplitude and the time delay of
the s-th multipath components, respectively; and n represents
the additive white Gaussian noise present in the channel. In
LOS, the first path (FP) component in the CIR corresponds
to ToFaqtr and is typically estimated by a leading edge
algorithm, as used by the popular Qorvo DW1000 UWB
chip [51]. This leading edge algorithm detects the position
in time where the arriving signal, from the accumulated UWB
pulses, first rises above the noise floor (the position of the FP).
However, when the true first path, denoted by fp, is severely
attenuated in NLOS conditions, the detected first path (fp′) by
the UWB receiver is degraded. As a result in NLOS conditions,
the calculated T̂ oF aqtr can be inaccurate,

T̂ oF aqtr = ToFaqtr + τfp′−fp, (8)

where fp′ is the first detected path above the noise floor
n(fp − 1) where earlier multipaths are not detected and
τfp′−fp is the time difference between the detected first path
(fp′) and the true first path (fp). The amplitude of CIRaqtr

at τfp′ is thus:

CIRaqtr (fp
′) > n(fp− 1). (9)

The distance error (in meters) between aq and tr thus
becomes

eaqtr = τfp′−fp × c. (10)

where c is the speed of light and the calculated range between
aq and tr is

∆̂aqtr = ∆aqtr + eaqtr . (11)

The goal of UWB error correction ML model is to predict
the distance eaqtr accurately. To collect a dataset for the
training process, ground truth of ∆aqtr is required, together
with the UWB estimated ranges ∆̂aqtr. Alternatively, ML
models can also be used to predict whether the received
CIRaqtr was LOS or NLOS and avoid ∆̂aqtr in the UWB
IPS. The ground truth of (N)LOS is typically based on a
topology of the environment or based on visual indicators
during the data measurement campaign.

B. UWB ML in Different Environments and Configurations

ML models make their predictions based on the first- and
multipath components in the received CIR signals. Such
signals are collected in dataset Xbase, where a ML model
MLbase is trained using P samples from Xbase:

MLbase
training←−−−− Xbase = {1, 2, · · · , P}. (12)

In different environments these multipath components s
change severely, and depend on various factors including
walls, objects, ∆at, presence of humans, etc. The model
MLbase trained in thus specifically trained for N environ-
ments collected in Xbase. Moreover, we distinguish various
UWB hardware-level configurations: (i) different UWB plat-
forms with different transceivers and antennas (which can be
(omni)directional and have different form factors, gain levels
and radiation patterns), which can impact the received signal
strength of the first and multipath components, (ii) different
UWB configurable settings that can include TX power, UWB
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channels, the UWB pulse repetition frequency, the UWB
preamble length, etc. As these configurations impact the UWB
signals, they will influence the UWB packet propagation, and
therefore the CIR of the deployed UWB IPS system. These
factors can consist of different noise levels n(t), first- and
multipath amplitudes αs and timings τs. A model MLbase

trained in thus specifically trained for L configurations col-
lected in Xbase.

Thus, building a rich base dataset that targets N environ-
ments and L configurations requires the dataset collection
Xbase.

Xbase =


X11 X12 · · · X1N

X21 X22
. . . X2N

...
. . . . . .

...
XL1 XL2 · · · XLN

 . (13)

These environments and UWB configurations reliant influ-
ences make it difficult for a model MLbase trained on Xbase

to generalize to a new and unseen environment and UWB
configuration. As a result, a model MLbase can show poor
performance on an entirely new dataset Xnew. To capture M
samples in any new environment and UWB configuration will
result in creating a new large dataset Xnew:

Xnew,m = {1,2, · · · ,M}. (14)

Training MLnew from scratch and collecting Xnew is time
consuming and often not feasible. It is therefore desirable to
train a model ḾLnew using a X́new dataset with K samples
where

X́new,k = {1,2, · · · ,K} ∈ Xnew, (15)

so that,

K ≪M, (16)

resulting in a selection of K samples, which is much smaller
than collecting a new large dataset with M samples.

IV. DATA DESCRIPTION

In this section, the datasets are described, which are col-
lected from three different environments (industrial, office,
and university). The datasets from the industrial and office
environments are in-house measurements, while the dataset
from university measurements is from [34]. As part of our
contribution, we make our used dataset publicly available1 to
researchers, which allows the comparison of future algorithms
and solutions with the proposed solution in this paper.

1Dataset available at: https://github.com/JaronFontaine/UWB-dataset-from-
an-office-industrial-and-university-environment

A. Dataset environments

1) Large Industrial Environment Xbase: The first environ-
ment is part of the IIoT testbed [52], which mimics industrial
(warehouse) locations. In total, 18 measurement points were
used in this environment, where an UWB tag performed TWR
with all reachable 21 anchors. The IIoT testbed, illustrated
in Figure 2a, contains a variation of open space and metal
racks, which act as LOS and NLOS signal conditions. Out
of the 18 measurement positions, four were located relatively
close to the wall (10 cm) which can influence the first path
of the CIR, but represents a realistic setup. The total size of
this environment is approximately 30 m× 10 m. A fixed set
with small variation of UWB settings was used in Xbase,
i.e. UWB channel 1, 2 and 3, a data rate of 110 kb/s, a
pulse repetition frequency (PRF) of 64 MHz and a preamble
length of 1024 and 1536 symbols. The presence of multiple
setting combinations act as a variety factor in the dataset, while
mutually not diverging too much from a signal perspective.
Although for the TWR method the CIR data is available on
both anchor and tag, for this dataset we recorded the CIR
locally at the tag. The outcome of this data capture is a total
of 21,085 ranging measurements, of which 8,947 are LOS
and 12,138 NLOS. Ground truth measurements were achieved
using a laser Leica Disto D2 measuring tool, a precise floor
plan to measure the distance to the walls and known central
zero-point to determine the coordinates in a Cartesian system.
In addition, we visually noted (N)LOS labels at each position
and between each anchor-tag range on a best effort basis.
The mean absolute error (MAE) without error correction in
this dataset is 203 mm, while the MAE for LOS and NLOS
measurements are 109 mm and 273 mm, respectively.

2) Office Environment XO: The second environment char-
acterizes an office environment, which is significantly different
than the environments in Xbase. Specifically, the data was
captured in the OfficeLab testbed [53]. This testbed contains
15 anchors across different rooms and corridors, which contain
less metal but more concrete and drywall than in the industrial
environment. Because of this, the dataset contains signals with
a lot of multipath components and NLOS. All anchors were
configured to range with each other (for the combinations that
can reach each other) and ground truth was obtained similar to
the Xbase dataset, using a laser measurement tool and precise
floor plan. The UWB devices were configured with the same
settings as the Xbase dataset. In total, 44,894 UWB signals
were captured in the office environment, of which 9946 were
LOS and 35448 were NLOS. The (N)LOS label for each
anchor combination was determined using the floor-plan of
the office environment, as illustrated in figure 2b. The resulting
MAE of the dataset without error correction is 306 mm, while
the MAE for LOS and NLOS measurements are 155 mm and
346 mm, respectively.

3) University Environment XU : The university datasets
originates from a publicly available dataset [34], which was
collected in multiple (sub)environments in a university build-
ing and consists of ranges between different types of en-
vironments such as laboratories, hallways and offices. In
total, 733 unique ranging positions consist of 15,208 UWB



7

(a) The industrial environment (Xbase)

(b) The office environment XO

Fig. 2: (a) The industrial environment consists of a large industrial environment with metal racks as obstacles where anchors
are deployed both in open and NLOS locations. (b) The office environment consists of multiple rooms divided by different
wall types (brick, plywood and reinforced concrete).

TABLE III: Overview of datasets from different environments showing heterogeneous characteristics.

Dataset Positions Samples MAE (mm) UWB Transceiver Samples
Total LOS NLOS Total LOS NLOS / CIR

Industrial (Xbase) 18 21085 8947 12138 203 109 273 Wi-PoS [54] (Qorvo DW1000) 300
Office (XO) 15 44894 9946 35448 306 155 346 Wi-PoS [54] (Qorvo DW1000) 300
University (XU ) [34] 733 15208 8735 6473 419 71 961 DWM1001-DEV (Qorvo DW1000) 1015

ranges, of which 8,735 are LOS and 6,473 are NLOS. In
different sub-environments, both LOS and NLOS signals were
present (generated by large walls), as well as weak LOS
measurements, due to obstructions from smaller office devices
and equipment. Not only this dataset acts as an extra evaluation
measure for TL towards different environments, it also serves
as an assessment of TL towards different UWB configurations.
Indeed, both the hardware and UWB settings were different
from our in-house captured dataset. The DWM1001-DEV
UWB platform configuration uses channel 5, which has a
higher center frequency of 6489.6 MHz compared to the
previous datasets at channel 1, 2 and 3 with a center frequency
of 3494.4 MHz, 3993.6 MHz and 4492.8 MHz, respectively.
All these channels use the same bandwidth of 500 MHz. A
short preamble length of 128 symbols and a high data rate of
6.8 Mbps was used. Together with the different nature of the
environments and UWB configurations, the resulting ranging
errors have a wider range. The total MAE of the dataset is
419 mm, while the MAE for LOS and NLOS measurements
are 71 mm and 961 mm, respectively.

B. Dataset Measurement Campaigns

A general overview of the collected datasets can be found
in Table III. Multiple datasets were captured across three het-
erogeneous environments, each with different characteristics.
Moreover, the datasets were captured using different hardware
types and configurations. The in-house captured datasets Xbase

and XO in this research were collected with Wi-PoS devices
[54] which include UWB Decawave (now Qorvo) DW1000
transceivers with a sub-GHz backbone for MAC scheduling
and omnidirectional antennas. CIR information together with

other useful metadata, e.g. first path index, peak path index,
rx power, first path power, etc., was collected and stored
for further data pre-processing. The CIR is a complex-valued
array of 1016 samples, which is the result of the used PRF
setting at 64 MHz. [51] The majority of the reported first
paths is between index 740 and 750. By limiting the CIR
collection to 300 samples (from 650 untill 950), at least 90 ns
before the detected first path was collected and around 200 ns
after the detected path, the complexity is reduced, while the
ranging rate and throughput is increased. This way, the device
collects all signals from paths up to 27 m longer than the
direct path. Samples before 650 can usually contain noise and
can be ignored. The publicly available dataset XU [34] was
captured using the DWM1001-DEV UWB platform, which
consists of the same DW1000 UWB transceiver with a differ-
ent omnidirectional antenna compared to the Wi-PoS devices,
with a smaller form factor, different gain levels and radiation
pattern, impacting the CIR. The dataset accommodates all CIR
samples, although we use only a small portion (see Section
IV-C). Although most research focuses on Qorvo’s DW1000
or DW3000 chips, the proposed solution should still be useful
for performance improvements on other UWB chips, as long
as sufficient CIR samples around the first path index, or similar
features are logged. As investigated in [55], some CIRs from
different UWB chips can have higher amplitude multipath
components and or shorter CIR lengths. In these conditions,
transfer learning or training from scratch with different CIR
segment lengths may be the only viable method.
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TABLE IV: List of features extracted from the UWB
transceiver

Features Description
F1 The signal amplitude of third sample after the FP
F2 The signal amplitude of second sample after the FP
F3 The signal amplitude of first sample after the FP
CIR pwr The CIR power (scaled with 217 to fit 16-bit register [51])
Std noise σ of the noise reported in the CIR accumulator
RXPACC The number of preamble symbols accumulated in the receiver
fpindex The index of the detected FP, reported in the register

FP pwr

The estimated FP power level and can be calculated as

FP pwr (in dBm) = 10 log10

(
F2
1 +F2

2 +F2
3

N2

)
−A

where A is 113.77 for PRF = 16 MHz and 121.74 for
PRF = 64 MHz, N is the preamble accumulation count

RX pwr
The estimated RX power level and can be calculated as

RX pwr (in dBm) = 10 log10

(
CIRpwr×217

N2

)
−A

PD
The power difference between the RX pwr and FP pwr
and can be calculated as PD = RX pwr − FP pwr

PR
The power ratio between the RX pwr and FP pwr
and can be calculated as PR = RX pwr/FP pwr

∆̂aqtr

The estimated range calculated as ∆̂aqtr = τ × c
where c represents the speed of light in m/s and τ is
the signal propagation time from tag ti to anchor aq .

C. Data Pre-processing

1) Feature calculation: In addition to CIR feature based
approaches for UWB error correction and NLOS detection,
which are widely used [23], [36]–[38], we also propose a TL
framework for UWB error correction and (N)LOS detection
using UWB features. For signal features, the conventional
features used mainly rely on the statistical condition of the
received signals (e.g., maximum amplitude, mean excess delay,
and rise time). However, in most cases, the FP is the strongest
under LOS. Therefore, the power difference method have
attracted larger body of work in different current research for
featured based UWB error correction and NLOS detection.
This feature is based on taking the Power Difference (PD)
between the estimated Received signal (RX) power and FP
power which can be used to decide whether the signal is LOS
or NLOS. Specifically, if the PD between RX power and FP
power is less than 6 dB, then the channel is likely to be LOS,
while if the PD is greater than 10 dB the channel is likely to
be NLOS [51] (page-46). In total 12 features, as considered
in [23], are extracted from UWB sensors for our evaluation.
The brief description of each feature is shown in Table IV.

2) Raw CIR data: Before we feed the CIR data into the
NN, proposed in Section V, we first process the raw CIR
data in the pre-processing phase. The raw CIR pre-processing
step is three-fold. (i) Firstly, we convert the IQ-sampled array
into a RSSI-sampled array (RSSI =

√
I2 +Q2). The real

and imaginary components of the complex IQ-samples can
be represented by the Cartesian coordinate system. Next,
using the Euclidean distance from the origin in the com-
plex plane and the found Cartesian coordinates gives us the
absolute value of the complex IQ sample, corresponding to
the amplitude of the signal (RSSI). (ii) Secondly, the RSSI-
sampled array is trimmed further to 150 samples, with 50
samples before the FP index and 100 afterwards (including
the first path). (iii) Lastly, min-max normalization is applied
to each CIR of the dataset. Min-max normalization scales
each CIR, so that the highest value is 1 and the lowest is

0 (CIRnorm = (CIR−min(CIR))
(max(CIR)−min(CIR)) ). Data normalization

resulting in smaller numerical values can be beneficial for
the training optimization of NNs and their generalization
capabilities. It also ensures that the model learns more SNR
and peak features of the signals instead of absolute signal
strength features, which can vary by a significant factor for
different settings and environments (average distance between
tag and anchor) and do not necessarily indicate larger errors
or (N)LOS signal propagation.

In contrast to solutions that include CIR compression in
the raw data pre-processing [56], in this paper we focused
on reducing the length and rescaling the CIR samples. This
ensures exploring all available information around the first
path, as it is used by the leading edge algorithm to estimate
the time of flight and where most errors occur.

V. MACHINE- AND TRANSFER LEARNING APPROACHES

In this section, first we compare two ML-based approaches:
feature-based and (raw) CIR-based ML for UWB positioning
improvements. We expect both approaches to have a clear
trade-off between model (and data) complexity, accuracy and
TL capabilities. In the results section, we will analyze and try
to quantify this trade-off for both error correction and (N)LOS
detection. Next, we propose TL steps to adapt the UWB
models towards new environments using new, but limited in-
formation. Finally, in the experimental evaluation methodology
we present the implementation details of the evaluation results.

A. UWB ML models

For each ML approach, we investigate two methods for
UWB improvements: error correction and (N)LOS detection.
The goal of error correction is to estimate the error on the
UWB ranges. This error is a direct result of the leading
edge algorithm implemented on-chip failing to correctly and
precisely identify the first path. This occurs due to number
of factors including the received signal strength and used
bandwidth (impacting the width of the first peak) [57], low
SNR (< 6 dB) [58] and due to the presence of humans or other
obstructions (NLOS) [59]. With ML, the goal is to identify
this error (output data) using precise ground truth and the
associated CIR data (input data). Maximizing this correction
performance will have a positive impact on the localization
accuracy, which uses multiple ranges to triangulate the position
as illustrated in Figure 1. N(LOS) detection permits further
UWB localization improvements with intelligent anchor se-
lection. More specifically, given at least 4 anchors, an anchor
selection algorithm can mitigate one or more ranges based
on their (N)LOS information before providing the ranges to
the localization algorithm. The following describes the model
architecture for feature-based and raw CIR-based models for
error prediction and (N)LOS classification.

1) Feature-based machine learning: Feature-based ML for
error correction and (N)LOS detection typically uses DNNs
to make predictions based on previously extracted features.
In this paper, we employ a DNN architecture, as presented in
Table V. The first layer of the NN is the input layer and expects
an array of 12 values (features). Next, four dense layers are
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TABLE V: NN architecture for error correction and (N)LOS detection. Both UWB model architectures (feature-based and
CIR-based) use the same Dense layers (blue), while the CIR-based CNN consists of 7 additional layers (purple) on top of this
to automatically discover and learn features from the raw CIR data.

Layer name Activation Output size Layer name Activation Output size
CIR-based (454,259 parameters and 4,443,552 FLOPs)
Input (150x1x1)
Conv2D (128x(16x1)) ReLu 150x1x128
MaxPoo2D (2x1) 75x1x128
Conv2D (64x(8x1)) ReLu 75x1x64
Conv2D (32x(2x1)) ReLu 75x1x32
BatchNorm 75x1x32
Dropout 25% 75x1x32 Feature-based (23,401 parameters and 23,081 FLOPs)
Flatten 2400 Input 12
Dense (150) ReLu 150 Dense (150) ReLu 150
BatchNorm 150 BatchNorm 150
Dropout 20% 150 Dropout 20% 150
Dense (100) ReLu 100 Dense (100) ReLu 100
Dropout 20% 100 Dropout 20% 100
Dense (50) ReLu 50 Dense (50) ReLu 50
Dropout 10% 50 Dropout 10% 50
Dense (25) Sigmoid 25 Dense (25) Sigmoid 25
Dense (1) (Error) or Linear or 1 or Dense (1) (Error) or Linear or 1 or
Dense (2) ((N)LOS) Softmax 2 Dense (2) ((N)LOS) Softmax 2

attached followed by the final dense output layer. In between,
BatchNormalization and Dropout layers are added, which both
try to mitigate overfitting of the training dataset. Each dense
layer uses a ReLu layer as a non-linear activation function
to introduce non-linearity into the training and enables more
effective deep learning. The output layer has a linear activation
function for the UWB error prediction task (with one output
neuron, corresponding to the floating point precision error)
or a Softmax activation function for the (N)LOS classification
task (with two output neurons, one for LOS and one for NLOS
classification).

2) Raw CIR-based machine learning: The RAW CIR-based
model uses a CNN architecture, as presented in Table V.
The architecture was inspired from the CNN published in
[31], with the DNN portion further fine-tuned for optimal
performance for the feature-based approach. As the input here
considers an even smaller input size (150 in this research vs
500 samples in [31]), the convolutional layers were further
optimized, resulting in a slightly different overall architecture.
At the input layer, the model expects 150 signal strength
samples, with 50 samples before the first path index, and 100
after (including the first path index). Next, 3 convolutional
layers are trained to extract local time series features from each
CIR. These layers include kernel regularization, to reduce the
size of the weights, ReLU activation functions, zero padding,
and one max-pooling layer in between. Afterwards, a flatten
layer reshapes the activations from the convolutional layer to
1D, and lets the data flow towards the fully connected layers.
These last layers have the same architecture as the feature-
based ML model to have a symmetric comparison between
the two ML approaches.

B. Transfer Learning Optimization Strategy

As generalization towards multiple environments remains
challenging, training models in new environments is important
to boost accuracy. TL is a ML approach that can help with this
task, by transferring the knowledge already learned on Xbase,
e.g. time series features of the CIR, to data captured in XO

and XU . In this subsection, we describe the (automatic) TL
optimization strategy, which acts as a general framework for
a broader scope of use-cases with unseen environments.

Step 1 base model training: The first step combines existing
datasets and trains a base model NN. Best practices in training
such as dropout, (batch)normalization, large train-test splits,
etc., ensure steps towards best-effort generalization. In this
paper, the base models architecture will differ for the feature-
based and non-feature based models. Convolutional layers in
the non-feature based model learn high-level features, e.g.
temporal features, from the raw CIR data, while the feature-
based model assumes high-level features are already extracted.
Once the convolutional layers extract high-level features from
the raw data, fully connected layers follow in the NN. To
increase model capability fairness, both models share the same
fully connected layer architecture. Table V presents more
details of the NNs for both feature and non-feature based
methods.

Step 2 training with frozen layers: With the MLbase

trained, the next step makes some trainable layers (H) (i.e.
convolutional layers and dense layers) untrainable and cre-
ates (configure) a partially frozen model. The remaining
trainable layers can be either randomly initialized or they
can preserve the weights from the base model. In this paper,
we utilized weight preservation which can enhance model
convergence significantly by providing a good starting point
for the optimization process and preventing overfitting during
training. The decision on which layers to freeze is made by
based on a trial-and-error or consider these layer options as
hyperparameters and optimize them in an iterative manner. The
main expected benefit from this step is reduced training time
and a decreased required training samples to meet an expected
accuracy. DNN models working with manual extracted feature
can freeze fully connected layers, while CNN models trained
using raw data can additionally freeze convolutional layers.

Step 3 Fine-tuning with unfrozen layers: This step of the
TL framework is optional and follows either after the base
model training step or after the frozen layer training step.
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Although (latent) features represented in the frozen layers
should ideally be transferable, it is, however, possible for a
model to achieve higher accuracy when these features still
need to be slightly adapted to the new environment. Reducing
the learning rate (lr) and epochs in this step ensures earlier
learned features are not neglected completely.

Deciding how to finetune the aforementioned hyperparame-
ters of steps 2 and 3 can be challenging and requires expertise
of the developer. Furthermore, blindly trying all different
combinations (in this paper 256) is computationally expensive
and becomes infeasible quickly. In our TL framework, we
include automatic hyperparameter finetuning with Bayesian
optimization using the Gaussian process to mitigate manual
hyperparameter tuning and reduce the computational overhead.
In this paper, the hyperparameters are the optimal combination
of which frozen layers (H) to use (step 2) and whether to per-
form step 3, configurable with Boolean parameter δfinetuning .
The finetuning process is configured as an extra set of (50)
epochs with a low learning rate (lr) of 0.0001, after the first
round of 500 TL epochs have been executed at a higher lr
of 0.001. The input of this optimizer is the current state (H
and δfinetuning) together with the model accuracy using these
hyperparameters. We configured the optimizer to start with
15 random initialization hyperparameters configurations and
further explore and exploit more accurate configurations in
additional 15 steps, which are experimentally derived values
based on an accuracy and training time trade-off. More details
of this optimizer can be found in [60]. The output of the
optimizer is the hyperparameters H ′ and δ′finetuning during
the automatic discovery phase which are estimated to increase
accuracy. We propose the integration of the Bayesian optimizer
for UWB TL models in Algorithm 1.

C. Experimental Evaluation Methodology

In this paper we intentionally focus on the performance
improvements for (ranging) error correction and (N)LOS de-
tection, which are the most predominant parameters impacting
the positioning accuracy [31].

The TL steps outlined in the optimization strategy can be
performed with a small number of samples from a new unseen
environment. As such, in this paper, we assume it is possible
to collect CIRs from a few known positions. It is important to
analyze the number of samples we need to capture to allow
effective model TL. Obviously, the best results are achievable
when the model uses a large and varied (spread across the
environment) amount of samples. However, this is often not
a realistic assumption and diminishes the potential of TL. In
this paper, we evaluate sample selection from random positions
spread out in the unseen environment, obtaining a high spatial
diversity. Although this can require many measurement points
(depending on the size of the environment), we will only
investigate a range of few samples K << M . Specifically,
the evaluation analyzes TL with K samples ranging between
25 and 400.

To mitigate overfitting, we applied early stopping when
the validation loss didn’t decrease for more than 30 epochs.
Additionally, the learning rate automatically reduced when the

Algorithm 1 Transfer learning optimization algorithm

Input:
Xbase (Features or CIR) ▷ Base-dataset
[MLbase] ▷ Optional pre-trained model
´Xnew ▷ Dataset new environment

nb ▷ Number of Bayesian optimization steps
Output: MLnew

if MLbase then
while MLbase not converged do ▷ Step 1

loss←MLbase(Xbase)
optimize(MLbase, loss)

end while
end if
MLnew ←MLbase

H ←MLnew.get trainable layers()
δfinetuning ← True
i← 0
while i ̸= nb do

H ′, δ′finetuning =
Bayesian opt(MLnew, H, δfinetuning) ▷ 4)
configure(MLnew, H

′, lr = 0.001)
while MLnew not converged do ▷ Step 2

loss←MLnew(X́e1)
optimize(MLnew, loss)

end while
if δ′finetuning == True then

configure(MLnew, [True, ...], lr = 0.0001)
while MLnew not converged do ▷ Step 3

loss←MLnew(X́e1)
optimize(MLnew, loss)

end while
end if
keep best model(MLnew)
i← i+ 1

end while
return get best model()

loss didn’t decrease for more than 10 epochs. To aim for the
highest accuracy in the unseen environment, the TL samples
were split into a training (70%) and validation sets (30%). The
remaining data of the unseen environment is then considered
as a test set, of which the results are shown in Section VI. The
Adam optimizer was used to train the models for 300 epochs
with a dynamic learning rate starting from 0.001, together with
a MAE loss function. To construct the MAE loss each training
step, a batch size of 1024 was used, while a smaller batch size
of 16 can help the NN effectively learn the variation during
TL with limited samples. All models were trained using the
TensorFlow framework on a high-end NVIDIA V 100 GPU,
available in our in-house Virtual Wall [61].

VI. ANALYSIS AND EXPERIMENTAL RESULTS

In this section, we evaluate the performance of error cor-
rection and (N)LOS detection ML models with feature-based
and raw CIR-based input data. First, we discuss the optimal
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TABLE VI: This table presents optimal found configuration
by the Bayesian optimizer for each dataset, ML task and data
type. The ’+’ symbol indicates that the layer was selected
trainable (unlocked), while the ’-’ symbol indicates a locked
layer. There are no clear TL hyperparameter optimizations that
can be derived for a specific use case. Manually determining
the optimal configurations requires trial-and-error which can
be challenging and time-consuming. Some patterns can be
found, such as unlocked (+) and locked (-) convolutional
layers for error correction and NLOS detection, respectively.
Nonetheless, the optimal found hyperparameter configurations
indicate the need for an automatic optimization strategy.

Dataset ML task Data type Fine- Trainable Conv. Trainable FC
tuning I II III I II III IV

XO Error Features ✓ - + + +
CIR ✗ + + - + + + +

(N)LOS Features ✓ - + + -
CIR ✓ - - + + - - +

XU Error Features ✓ - + + +
Hallway CIR ✗ + + - + + - +

(N)LOS Features ✗ - + + +
CIR ✓ - - + + - + +

Hallway Error Features ✗ + + - +
1st floor CIR ✗ + - - + + + +

(N)LOS Features ✗ + + + +
CIR ✓ - - + + + + +

Lab room Error Features ✓ + + + +
CIR ✗ + + - + + - +

(N)LOS Features ✓ + - - +
CIR ✓ - - + + - + +

hyperparameter configurations found for each experiment us-
ing the Bayesian optimizer. Next, we analyze the performance
of the ML models on datasets XO and XU . We compare the
(i) UWB - no correction base ranging accuracy (with no error
mitigation algorithms applied), (ii) ML generalization (using
MLbase), (iii) ML from scratch (MLnew) with k = 50 and
(iv) TL performance (ḾLnew) in considered new environment
(XO or XU ). In the rest of the paper, we use ’ML from scratch’
and ’training from scratch’ interchangeably. Next, we perform
an identical evaluation, but on a publicly available dataset, cap-
tured in different environments with different UWB hardware
and UWB configurations. After that, the impact on the TL
accuracy with the number of chosen TL samples is illustrated,
and finally followed by a complexity analysis between feature
and raw CIR-based solutions.

A. Automatic Hyperparameter Optimization

Various ways to perform TL can be seen as hyperparameters
of the knowledge transferring process. In this paper, we
explore trainable (or locked) layers of the models as hyperpa-
rameters, together with the finetuning process (δfinetuning).
Trainable layers (H) are the collection of (three) convolutional
layers and (four) fully connected layers, which contain many
trainable parameters. For the experiments using feature-based
data, only the fully connected layers are chosen, as the
convolutional layers are typically used for feature extraction
of raw data. Table VI presents the optimal configurations
found by the Bayesian optimizer for each dataset, ML task
and data type. These configurations are then further used
throughout the remainder of the evaluation in this paper. Some
patterns can be found, such as unlocked (+) and locked (-)
convolutional layers for error correction and NLOS detection,
respectively. Nonetheless, the optimal found hyperparameter

configurations indicate the need for an automatic optimization
strategy. Generally, we noticed that locking the convolutional
layers is a good idea, as this consistently provides good
results, even if they are not the global optimal solution.
For most configurations the accuracy diverged only a few
percent, using an automatic hyperparameter optimizer like
a Bayesian optimization approach is required for reaching
optimal accuracy.

B. Generalization Towards Multiple Environments

1) Same UWB configuration: To assess the TL performance
of the proposed approach, we first analyze error correction and
(N)LOS detection in XO, which is a different environment
compared to Xbase, but uses the same radio configurations.
In Figure 3a, we compare the UWB - no correction, which
is the MAE of UWB ranging in XO, without any optimiza-
tion algorithms applied. Next, ML generalization shows the
performance of models trained on Xbase, validated on XO.
ML from scratch and TL both uses 50 samples of XO to
improve the ML performance. The ML from scratch approach
does not use any previously acquired knowledge, and starts
training a model from scratch with only these 50 samples,
while the proposed TL approach uses MLbase and further
applies TL techniques as described in Section V-B. Figure
3a illustrates the shortcomings of the ML generalization,
where the error after correction is worse than the UWB -
no correction performance using the feature-based approach.
The CIR-based approach, where neural networks have the
ability to extract more (generalizable) features, does improve
the accuracy. However, it does not reach performance gains
when it would be applied in a similar environment. A model
trained from scratch with 50 samples measured in the new
environment does offer significant improvements for both
the feature-based and CIR-based approaches compared to the
UWB - no correction MAE. However, most performance gains
can be seen when applying the proposed TL strategy. We
see more than 2× the performance increase for feature-based
error correction and almost 3× for the CIR-based approach.
Compared to generalization, TL with only 50 samples offers
an increase of 56.9% and 54.0% over the ML generalization
performance.

Figure 4 presents a CDF to further analyze error correction
at different percentiles. At the 95th percentile, both feature-
based and CIR-based approaches have a large relative im-
provement of 57.8% and 48.5% when applying TL compared
to the ML generalization performance of the base model. For
95% of the samples, with TL we achieved an error of less
than 300 mm, which is a significant accuracy improvement
over the UWB - no correction 800 mm error. Together with
a median error of only a few centimeters, a reliable target
accuracy of a few decimeters can be achieved, even in harsh
NLOS environments.

Figure 3b shows similar improvements for the (N)LOS
classification results. Both feature- and CIR-based approaches
using ML generalization fail to provide satisfactory results
with detection accuracies of 64.9% and 78.1%, respectively.
Again, training the model from scratch does offer higher
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(a) (b)

Fig. 3: Performance of the feature- and raw-based ML models in XO for (a) error prediction models and (b) (N)LOS detection.
The following data volume parameters are used: K=50, M=44894, K/M=0.11%.

(a) (b)

Fig. 4: The cumulative distribution function (CDF) for the office dataset XO shows a large precision improvement. The base
(generalization) model MLbase is trained on the industrial datasets Xbase and further transferred using 50 samples of XO.

accuracy than the generalization model, but is outperformed
by applying TL. Here, the accuracy improved significantly,
where the CIR-based approach reaches with 92.8% a rela-
tively high accuracy. Although this NLOS accuracy of 92.8%
is not perfect, a significant improvement can be found by
applying transfer learning versus generalization. As shown
in [10], NLOS can effectively improve the accuracy of the
UWB positioning by applying anchor selection, even when the
accuracy is not 100%. For both error correction and (N)LOS
detection, it is clear that the CIR-based approach outperforms
the feature-based approach. Although the CIR-based general-
ization appears more robust in new environment, the relative
performance gains (±50%) compared to the feature-based
approach is similar and results in an overall higher accuracy.

2) Different UWB radio configurations: Not every UWB
localization deployment will be similar in terms of settings,
UWB chip, antenna’s used, etc. To this end, the first three
figures in Figure 5 shows the TL performance on the pub-
licly available dataset of [34]. In this dataset, we selected
three environments with sufficient samples for evaluation.
Although the error correction improvements using TL are
still significant, the relative improvement is much smaller.

Interestingly, we also see that when training from scratch the
model offers similar performance, and even leads to higher
improvements for some feature-based cases. The base model
that is used for TL is trained on the IIoT dataset with a
different configuration. As a result, transferring the learned
knowledge in the from the base model towards a different
environment with also a different configuration is less ideal
than only changing the environment. As such, the features
learned in one dataset, which contains signals subject to
different channels and antennas from one type of device, are
not ideal to use on different devices. Moreover, the error
made by different UWB systems can vary a lot depending
on the settings, while this is not always reflected in the CIR
and available and extracted features. In contrast, the features
learned in one environment do seem useful knowledge when
only the environment changes. The 90th percentile results of
error correction in Figure 6 further confirms this conclusion
with relative improvements between 2.7% and 27.4% between
model generalization and TL, which is far smaller than the
results on XO. In the lab environment, the feature-based
approach achieves a higher performance improvement than
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the CIR-based approach. Despite achieving only small error
correction improvements in different configurations, the last
three figures in Figure 5 show large a large improvement in
(N)LOS detection accuracy. The difference between feature-
and CIR-based models is small for the TL approach, however,
the generalization performance of the CIR-based model is
higher. The (N)LOS label does not depend on the UWB
configuration, but rather on the topology and physical lay-
out of the environment. To this end, regardless of different
configurations, TL improvements for (N)LOS detection can
be expected in new environments.

C. Impact of Changing the Number of Samples for TL
Up to now we have considered using K = 50 samples

from the new environment to enable TL. Ideally, we want
to keep this number small to limit the overhead of manual
data collection and labeling. In Figure 7, we investigate the
impact of using K = 25 to K = 400 samples. A downwards
trend can be observed for error correction of both feature-
based and raw CIR-based models. Compared to collecting only
25 samples, an increase up to 51.6 mm and 100.4 mm can
be seen when collecting K = 400 samples for the feature-
based and raw CIR-based models, respectively. Similarly, an
upward trend exists for (N)LOS detection of both feature- and
CIR-based models. Both types of models benefit from more
TL samples and achieve an additional 7.8% and 9.5% for
feature- and CIR-based models, respectively, as compared to
no TL. Additionally, building on top of the best results from
the previous subsections (CIR-based ML), Figure 7 shows
the performance of traditional ML using CIR data, where a
model is trained from scratch using the data available in a new
environment. For a small K, CIR-based TL outperforms the
ML from scratch method. To reach the same error prediction
accuracy of the traditional ML ML from scratch method using
K=200 samples, with transfer learning only K=25 samples are
needed, a difference of 8x. For a larger K, this difference
becomes smaller as training from scratch becomes more effec-
tive. Nonetheless, depending on the required effort, choosing
only a few samples can still be the desired choice, and offers
significant performance gains compared to no TL (K = 0
samples) or not applying any ML approaches (UWB - no
correction performance).

D. Impact of ranging error correction on localization accu-
racy

Finally, we analyze the impact of improved ranging errors
on the UWB localization accuracy, calculated using the least
square method. Table VII shows the UWB localization ac-
curacy in XO when no correction has been applied, as well
as the corrected ranges using ML generalization, ML from
scratch (K = 50) and the proposed transfer learning method
(K = 50). The improvements to the localization accuracy
follow a similar trend as for the ranging error improvements.
Clearly, the proposed raw transfer learning method outper-
forms the feature-based methods, generalization and ML from
scratch. As such, it can effectively improve the localization
accuracy in challenging NLOS environments from 643 mm to
245 mm.

Method Localization accuracy (XO)
UWB - no correction 642.9 mm

Feature-based Raw
ML generalization 638.3 mm 482.5 mm
ML from scratch (K = 50) 424.3 mm 392.6 mm
Transfer learning (K = 50) 294.7 mm 245.1 mm

TABLE VII: Localization accuracy of XO with ranging error
correction shows large gains using TL

E. Complexity Analysis

Not only is it interesting to compare the accuracy of two
different ML approaches (feature- and CIR-based), they also
have different characteristics regarding the complexity. Addi-
tionally, TL can add complexity on top of training MLbase,
but it can also reduce the convergence time when accuracy
in a new environment is sub-optimal. In this subsection we
further analyze the complexity of the proposed solution.

1) Model complexity: As shown in Table V, the complexity
of feature-based models used in this paper are lower compared
to the CIR-based models due to two reasons: (i) the dimen-
sionality of the input layer is smaller and (ii) the amount of
fully connected neurons is smaller. The feature-based model
has less trainable parameters (23,401 vs 454,259) and FLOPs
(23,081 vs 4,443,552) as compared to the CIR-based model.
On the other side, the calculation of some features requires
additional calculations, which is not the case for the raw CIR
data. Typically, these features are calculated from raw data by
applying (expert) rule-based algorithms. However, the Qorvo
DW1000 UWB chip already provides most of the diagnostics
features (see Table IV), which can directly be read from the
radio chip registers for each UWB range, thus limiting the
calculation overhead to a negligible amount.

2) Transfer learning complexity: The TL process first re-
quires the training of a base model. This model can either be
provided, or trained with a existing dataset, where this com-
plexity was discussed above. Next, the model is transferred
with a small dataset X́new with K samples, which already will
significantly reduce the complexity as compared to training
a model from scratch with Xnew with M samples, where
K << M (a varying number of K was illustrated in Figure
7). However, searching for the optimal TL methodology can
require O(H×K) operations, with H the number of Bayesian
optimization search steps as compared to only O(M) with a
fixed TL configuration. Depending on the dataset reduction
factor M

K , TL can result in a lower computational complexity
than training a model with Xnew. Moreover, TL only happens
once in each new environment, where the computational effort
of the trained model remains unaltered. Requiring significantly
less training samples in each new environment will reduce
manual data collection and labeling effort.

VII. CONCLUSIONS AND FUTURE WORK

To enable high precision indoor positioning systems (1−10
cm) using UWB in both (N)LOS environments, ML algorithms
have been proposed to improve the errors of UWB localization
systems. However, these models lack generalization capa-
bilities towards new environments and UWB configurations.
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Error prediction for both feature-based and raw-based TL in XU in (a) the hallway environment, (b) the hallway
environment on another floor and (c) the lab room environment. Additionally, the accuracy of the (N)LOS detection performance
is shown in the same respective environments in (d), (e) and (f). The following data volume parameters are used for (a) and (d):
K=50, M=5345, K/M=0.94%, for (b) and (e): K=50, M=5509, K/M=0.91% and for (c) and (f): K=50, M=2871, K/M=1.74%.

(a) (b) (c)

(d) (e) (f)

Fig. 6: Cumulative distribution function shows a smaller increase of the UWB ranging precision after applying TL on dataset
XU , which was captured in a different environment with a different configuration.

As such, enabling these models in new environments and
UWB configurations is a challenging and expensive manual
process requiring the collection of large training datasets
for each environment. In this paper, we proposed automatic
optimizations for TL DNNs towards new environments and
UWB configurations. While keeping the complexity small due
to a limited number of training samples, the optimization
steps include an Bayesian optimizer which selects which
layers to freeze during TL and whether to apply a final
finetuning step with all layers unfrozen and a smaller learning
rate. Our results demonstrated 50% error improvements and

15% (N)LOS classification accuracy improvements (for both
feature- and CIR-based approaches) over a model which was
trained only in a different environment. We also showed the
expected gains for both approaches from using 25 until 400
transfer learning samples. The highest absolute accuracy was
typically achieved by the CIR-based approach, where with
as few as 50 samples from the new NLOS environment,
we showed ±10 cm precision after error correction with
93% (N)LOS detection. The presented results demonstrate
high precision UWB localization (from 643 mm to 245 mm)
through ML with minimal data collection effort in challenging
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(a) UWB error correction.

(b) UWB (N)LOS detection.

Fig. 7: Impact of using different number of samples from the
new (unseen) environment XO used for TL.

NLOS environments. In future work, we foresee sampling
selection strategies in new environments and configurations
(e.g. selecting only LOS samples or samples with a low
or high standard deviation at a position) to further limit
the overhead of manual data collection. Additionally, manual
labeling effort can be alleviated with the use of unsupervised
transfer learning, self-labeling and online learning techniques
to quickly adapt a pre-trained NN to any new condition.
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