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Abstract: Manufacturing industry faces increasing complexity in the performance of assembly tasks
due to escalating demand for complex products with a greater number of variations. Operators
require robust assistance systems to enhance productivity, efficiency, and safety. However, exist-
ing support services often fall short when operators encounter unstructured open questions and
incomplete sentences due to primarily relying on procedural digital work instructions. This draws
attention to the need for practical application of natural language processing (NLP) techniques. This
study addresses these challenges by introducing a domain-specific dataset tailored to assembly tasks,
capturing unique language patterns and linguistic characteristics. We explore strategies to process
declarative and imperative sentences, including incomplete ones, effectively. Thorough evaluation of
three pre-trained NLP libraries—NLTK, SPACY, and Stanford—is performed to assess their effective-
ness in handling assembly-related concepts and ability to address the domain’s distinctive challenges.
Our findings demonstrate the efficient performance of these open-source NLP libraries in accurately
handling assembly-related concepts. By providing valuable insights, our research contributes to
developing intelligent operator assistance systems, bridging the gap between NLP techniques and
the assembly domain within manufacturing industry.

Keywords: natural language processing; NLP; part of speech; POS tagging; closed domain; operator
support; assembly instructions; NLTK; SPACY; Stanford; benchmark

1. Introduction

In recent years, manufacturing companies have faced escalating demand for complex
products with a greater number of variations [1]. This surge in product complexity has
been driven by the advent of Industry 4.0 technologies, which encompass a range of
advancements, such as the Internet of Things (IoT), artificial intelligence (AI), robotics,
and data analytics [2]. These technologies have revolutionized manufacturing processes,
creating highly customized products and flexible production lines. Consequently, assembly
operators have had to adapt their skills to accommodate a wider range of tasks, often
involving intricate assembly procedures and rapid product changes [3].

The development of Industry 4.0 technologies has also resulted in operators needing
to learn new skills to cope with the complexity of different products [4]. Automation and
digitization have transformed traditional assembly tasks, requiring operators to interact
with advanced machinery, robotic systems, and digital interfaces. As a result, the role of
assembly operators has evolved from executing manual tasks to managing sophisticated
production systems. In this context, the significance of operator assistance and smart
assistance technologies has been steadily increasing [5]. These technologies are designed
to enhance worker productivity, efficiency, and safety by minimizing errors, automating
repetitive tasks, and offering real-time feedback and guidance [6]. The integration of smart
technologies into assembly processes is essential for addressing the evolving needs of mod-
ern manufacturing. Industry 4.0 principles emphasize the interconnectedness of physical
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systems with digital technologies, enabling seamless communication and collaboration
between humans and machines. Smart assistance systems leverage these principles to
provide operators real-time support, context-aware guidance, and predictive maintenance
insights [7]. These systems optimize production workflows, reduce downtime, and improve
operational efficiency by harnessing data analytics and AI. Therefore, addressing the chal-
lenges in operator assistance systems is crucial for the manufacturing industry to leverage
the full potential of Industry 4.0 and to remain competitive in the global marketplace.

While existing support services for assembly operators provide procedural digital
work instructions, there are notable limitations. Operators must often rely on their own
knowledge or seek help from external experts when faced with unexpected challenges in
the assembly process. For example, if a unique problem arises during an assembly task that
deviates from the standard instructions, the current systems may not provide adequate
guidance. This reliance on human expertise can lead to delays and reduced efficiency
on the factory floor. The digitization of information presents an opportunity to address
these limitations by gathering data from IT systems and providing more comprehensive
support to operators [8]. To bridge this gap, adaptive assistance systems have emerged
as a promising solution in manufacturing contexts. These systems encompass a range of
technologies, including head-mounted displays [9], augmented reality [10,11], tangible user
interfaces [12], and motion recognition [13]. They aim to provide real-time, context-aware
support to operators, adapting to the specific needs of each assembly task and helping
operators overcome unexpected challenges more effectively.

Most existing support systems in the assembly domain are designed around well-
defined, pre-established questions and answers. These systems are effective when there is
a direct mapping between a question posed by an operator and a known answer, and this
mapping has been pre-defined within the system. However, a significant challenge arises
when operators ask open-ended questions for which no predefined semantic links or
specific answers exist. Moreover, these open questions are often formulated incompletely,
making it even more challenging to interpret their correct semantic meaning [14]. Consider
a scenario where an operator asks a question like, “How do I fix this?”. The system may
not have a predefined response because it lacks a direct match with any known question in
its database. Furthermore, the question’s vagueness and incompleteness pose additional
hurdles to understanding the operator’s intent. In these situations, an advanced solution is
required. This is where natural language processing (NLP) technology comes into play [15].
NLP empowers assistance systems to comprehend and respond to open questions posed by
operators by translating text strings into formal, semantic representations. NLP, in essence,
offers a computerized approach to process and understand human language. It serves as a
bridge between human language and computer systems, enabling the effective analysis of
text or speech [16]. NLP research covers both open and closed domains [17]. NLP projects
in both domains are areas of active research and have been extensively studied [18]. Open-
domain NLP has received significant attention over the years, focusing on understanding
and processing general human language, without specific constraints or limitations to
a particular domain. Closed domains are more specialized in different industries and
domains where the language and concepts are more specialized. The assembly domain in
the assembly environment can be categorized as the closed domain in NLP, which poses a
challenge for several reasons. First, to the best of our knowledge, there is limited existing
research on the application of NLP techniques in the manufacturing industry, particularly
in the area of assembly [19,20]. It means that there is a lack of publicly available documents
and specific corpora related to NLP in the assembly.

Secondly, informal writing and poor grammar in procedures like quality reports
further add to the challenge. While ChatGPT [21] and other large language models demon-
strate proficiency at generating human-like text across diverse fields, their suitability for
manufacturing assembly line support requires careful assessment. While these models can
offer detailed responses to a wide range of questions, the critical demand for precision in
manufacturing means that a single precise answer is often more valuable than extensive
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information. When the operator interacts with the assistance system, the initial request
can be in the form of either textual input in a conversational assistance system or spoken
dialogue processed by a speech-to-text system. However, incomplete sentences may occur
due to issues such as grammar, spelling, and speech variations, including different accents,
dialects, and speaking styles. The assistance system must be capable of handling such
incomplete requests effectively.

In this research, our objective is to address the challenges associated with NLP in the
assembly domain. To tackle the lack of specific corpora related to NLP in assembly, as the
first challenge, we aim to design and develop a domain-specific dataset with the dedicated
target language ‘English’ that serves as a benchmark for close-domain analysis. This dataset
will capture the unique language patterns, vocabulary, and linguistic characteristics specific
to assembly-related tasks. By creating such a dataset, our aim is to provide a valuable
resource for future research and contribute to the expansion of NLP applications in the
assembly domain. Moreover, we recognize the need for handling incomplete sentences as
the second challenge. To address this challenge, our research involves exploring two types
of sentences in our designed dataset: declarative and imperative. We consider how both
complete and incomplete sentences can be effectively processed within the realm of NLP,
employing techniques such as part-of-speech analysis. This exploration is fundamental to
bridging the gap between NLP techniques and the assembly domain within manufacturing
industry. Furthermore, as part of our work, we have rigorously evaluated three prominent
pre-trained NLP libraries: NLTK, SPACY, and Stanford. We have undertaken this evaluation
as a means to assess and validate the effectiveness of these libraries in handling assembly-
related concepts and addressing the unique challenges presented by the assembly domain.
This validation, in turn, informs our broader contribution to the development of intelligent
and efficient assembly processes.

2. Literature Review

Benchmarks are used to determine the top-performing system in a specific domain.
According to Bowman [22], a suitable benchmark should meet certain requirements, includ-
ing reliable assessment of language aspects, consistent annotated data, statistical power,
and discouragement of biased models. A good NLP benchmark should have diverse tasks
that reflect language understanding, high-quality labeled data, replicability, promotion of
robust and generalizable models, regular updates, accessibility, and wide adoption [23–25].

In the context of building a benchmark, tasks specifically refer to the linguistic chal-
lenges that NLP models are designed to address and evaluate. These tasks encompass
various aspects of language understanding, including, but not limited to, text classification,
question answering, sentiment analysis, and machine translation [15]. Each of these tasks
comes with its dedicated dataset and evaluation metrics that serve to measure the perfor-
mance of NLP models across a wide range of language understanding challenges. These
metrics can include accuracy, precision, recall, F1-score, or other task-specific evaluation
criteria, providing a standardized way to compare and rank different models based on
their performance [26]. To clarify, a task in this context represents a specific NLP problem
that a benchmark aims to assess, such as classifying the sentiment of a text or translating
one language to another.

State of the Art

There are two main categories of NLP benchmarks: open-domain and closed-domain.
Open-domain benchmarks refer to benchmarks that cover a wide range of topics and
domains and are designed to evaluate the general language understanding abilities of
NLP models, e.g., GLUE (General Language Understanding Evaluation) [25] and Super-
GLUE [27]. For building the benchmark in the open domain, various sources can be used,
such as Wikipedia or Google articles [24,28], or the collection of multiple-choice Q/A tasks
in different books, articles, and online forums [29].
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In the open domain, some benchmarks utilize knowledge bases as a source of in-
formation, e.g., QALD [30], WebQuestion [31], and SimpleQuestion [32]. The goal of a
knowledge-based benchmark is to evaluate a model’s ability to reason and utilize struc-
tured knowledge. This type of benchmark typically involves tasks that require a model
to answer questions or complete tasks based on a given knowledge base or graph [33].
The aim is to assess the model’s ability to retrieve, understand, and utilize information
from the knowledge base. Others, e.g., GLUE [25], SuperGLUE [27], and SQUAD [24], do
not necessarily require knowledge bases. The goal of a non-knowledge-based benchmark
is to evaluate a model’s ability to understand language and perform general language tasks
without relying on external knowledge sources. This type of benchmark typically involves
tasks such as text classification, sentiment analysis, and language modeling. The aim is to
assess the model’s ability to generalize and make sense of natural language text without
access to a specific knowledge base.

Closed-domain benchmarks, on the other hand, are designed to evaluate NLP models
in specific domains or tasks. These benchmarks typically have a narrower focus than
open-domain benchmarks and are designed to evaluate the ability of NLP models to
perform specific tasks in particular domains. There are some benchmarks available in the
medical domain (MiPACQ clinical QA benchmark [34], MIMIC benchmark [35], i2b2/VA
benchamrks [36]), and a bankruptcy dataset in the finance domain [37]. The purpose
of creating benchmarks in the close domain of NLP is to foster innovation, improve the
understanding of domain-specific language processing, and drive the development of
intelligent and efficient solutions that cater to the requirements of specific industries,
domains, or specialized fields.

For the training data, in some research, authors have used the manually trained corpus
in the open domain [38,39] or the closed domain [40,41] for their investigation. Kumar [42]
proposed an approach in part-of-speech (POS) tagging for the open domain, considering
their defined corpus with 77,860 tokens for training and 7544 for testing. In a similar study
in the open domain, 14,369 tokens in the training set and 5000 tokens in the testing set were
considered [43]. Rezai [44] offered a POS tagger corpus with 5,000,000 tokens in the open
domain for training and 11,766 tokens in the test set for the Persian language. However,
using the manually annotated corpus, the corpus size may not be enough for modeling
and efficient evaluation [16,45].

To address the challenge of corpus size, particularly in the closed domain, one solution
can be to employ open-source NLP libraries to train their methodologies and evaluate
their datasets. Open-source libraries in NLP can be traditional libraries, e.g., Stanford
NLP Suite [46], Google SyntaxNet [47], NLTK [48], and SpaCy [49], or the deep learning-
based models (transfer-based) libraries, e.g., BERT [50] and DistilBERT [51]. Many types
of research analyzing NLP tasks consider both traditional and deep learning pre-trained
libraries and compare them together in different aspects [52,53]. The transformer-based
technique performs efficiently in entity recognition, information extraction, and semantic
analysis [54–57]. However, in the preliminary step of pre-processing, particularly part-of-
speech (POS) tagging, traditional NLP techniques demonstrate notable efficiency [58,59].
In [60], the BERT method was used for sentiment analysis while considering information
extraction and named entity recognition. However, for the POS tagging, they used the
methods of the SpaCy and NLTK libraries to perform the analyses. The reason for choosing
these libraries, based on [60], was the ability to make predictions efficiently about which
tag or label most likely applied in this context. In the study by Omran [61], four distinct
traditional open-source libraries were utilized to train their methodology. Subsequently,
they manually annotated 1116 tokens with the correct part-of-speech tags and assessed the
tagging accuracy using each of these open-source libraries.

The method for collecting sentences in a benchmark varies depending on the bench-
mark and the task it aims to evaluate. It should be carefully designed to ensure that the
benchmark is both diverse and representative of the task it aims to evaluate. In some cases,
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the sentences are collected from existing datasets or corpora, while in other cases, these
may be created specifically for the benchmark.

Wang [25] collected the sentences from a variety of sources, including news articles,
social media posts, and product reviews, among others, in order to build the GLUE
benchmark. The sentences were then labeled according to specific tasks, such as natural
language inference, sentiment analysis, and textual entailment. Dietz [62] provided a
benchmark named “Wikimarks” for query-specific clustering, entity-linking, and entity-
retrieval. Their methods of picking sentences from Wikipedia can cover a wide range of
topics of general interest. In the case of the Penn Treebank benchmark [63,64], the sentences
were drawn from a large corpus of Wall Street Journal articles, which were manually
annotated with part-of-speech tags and syntactic parse trees.

In some cases, the sentences may be collected through crowdsourcing or other meth-
ods, such as in the case of the WebQuestions dataset [31], which was created by collecting
natural language questions from the Internet and then annotating them with corresponding
answers. Another example of a benchmark where the sentences were not collected through
corpora or datasets is the Winograd Schema Challenge [65]. The Winograd Schema Chal-
lenge consists of a set of multiple-choice questions that are designed to test a machine’s
understanding of natural language. The questions are based on a specific type of pronoun
resolution problem known as a Winograd Schema, which requires the machine to under-
stand the meaning of a sentence in order to correctly identify the referent of a pronoun.
The questions for the challenge were created by the organizers.

Various methods for sentence selection in both open and closed domains are discussed
in Table 1, taking into account the number of categories considered and the objective of
constructing the benchmark dataset.

Table 1. Techniques and purposes for sentence selection in open and closed domains of NLP benchmark.

Reference Domain Sentence Picking Techniques Number of Classes Purpose

[28] Open Queried Google with the OR-
linked keywords

One class related to
requirements engi-
neering

Oriented to enable replication of NLP
experiments and generalization of re-
sults in requirements engineering.

[29] Open Building three benchmarks con-
sidering rating numbers in AMA-
ZON, extracting sentence pairs
from Japanese datasets, and ran-
domly picking from Wikipedia

- Having a benchmark in the Japanese
language considering cultural/social
parameters without using the transla-
tion methods in order to evaluate NLU
ability in the general domain

[66] Close In three domains, medicine, tech-
nology, and finance, they pick the
sentences in Wikipedia based on
the defined categories

Depend on the do-
main in Wikipedia
categories

Fill the gap of the lack of pre-trained
domain-specific models for languages
other than English

[67] Close Build a benchmark based on one
specific available corpus

14 subcategories
based on the def-
inition of events
and entity, with not
equal amounts for
each

Compare two approaches on a newly
built benchmark

[68] Close The benchmark is built on 6 exist-
ing tasks available in the state-of-
the-art

6 available subtasks
in medical

To support downstream applications in
computerized diagnostic decision sup-
port and improve the efficiency and ac-
curacy of healthcare providers during
patient care.

Two factors, the size and composition of a benchmark, are important for its success.
Diverse, representative, and accurately labeled sentences are crucial. The number of
sentences needed depends on the task complexity and data variability. In the case of an
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open domain benchmark, where the goal is to test a model’s ability to perform a wide
range of tasks, it may be important to have a large number of sentences to ensure adequate
coverage of different domains and topics. The GLUE benchmark [25] consists of a collection
of nine different datasets each with its considered task. The number of sentences is between
780 for 755k to this benchmark. The SQuAD benchmark [24] consists of 100,000 question-
answer pairs, and [28] build a benchmark in the open domain with 79 documents as
34,268 sentences with 865,551 tokens.

However, in a closed domain benchmark, where the focus is on a specific task within a
domain, a smaller number of sentences may be sufficient. It is important to note that while
extensive datasets are vital for open-domain benchmarks to encompass diverse domains
and topics, the process of creating and curating large datasets, especially in closed domains,
can be inherently challenging and resource-intensive. This is exemplified by previous
research studies that have successfully utilized limited sets of sentences and tokens for spe-
cific domains. For instance, a study examining the cooking domain in a question-answering
context employed 2175 questions [69]. In the email domain for spam/thread detection,
a dataset consisting of 350 paired questions was utilized for analysis [70]. Similarly, a study
in the university field domain employed a corpus of 2903 sentences [71], while another
study focusing on the oil industry utilized an 18,000 token dataset [72]. These examples
highlight that even with a relatively smaller number of sentences or tokens, a closed domain
benchmark can yield valuable insights and enable targeted analysis specific to the domain.
Nonetheless, it is crucial for the selected sentences to encompass various aspects of the
specific domain to ensure comprehensive coverage during evaluation.

In addressing the challenge of incomplete sentences within the realm of NLP, various
methodologies have been proposed to infer missing information and enhance comprehen-
sion effectively. One such approach, hole semantics [73], has garnered attention for its
ability to interpret incomplete sentences by identifying and filling gaps in the semantic
structure. Recent studies have explored the application of techniques such as language
modeling, contextual understanding, and syntactic analysis to address this issue [74,75].

To the best of our understanding, there exists a research gap in the field of NLP
specifically in the context of assembly operations. This gap pertains to the lack of a
benchmark dataset tailored to the assembly domain, which is essential for achieving high-
performance NLP models. Furthermore, it remains unclear whether NLP techniques can
effectively handle non-complete sentences commonly encountered in the assembly domain.
The objective of our study is to bridge this gap. In Section 3, we outline the techniques
employed to construct the benchmark dataset for the assembly domain and elaborate on the
evaluation methods employed. The experimental findings are presented and analyzed in
Section 4. Lastly, Section 5 presents the conclusions drawn from our research and outlines
potential avenues for future work.

3. Methodology

In the assembly domain, NLP can be used to improve various aspects of operations,
such as quality control, supply chain management, and customer service. Based on the
general requirement for building a benchmark in NLP [15,76], a benchmark in the assembly
domain for manufacturing would require consideration of the following factors:

• Domain-specific language: The manufacturing industry has its own language and
terminology that people outside the industry may not be familiar with. A benchmark
for NLP in manufacturing would need to use language that is specific to the domain.

• Task-specific questions: The benchmark should be designed to evaluate the perfor-
mance of NLP models on tasks that are relevant to the manufacturing industry, such as
defect detection, predictive maintenance, and inventory management. The questions
should be carefully crafted to test the ability of NLP models to understand and process
information related to these tasks.

• Data quality: The quality of the data used to create the benchmark is critical to its
success. The data should be representative of the types of language and tasks that are
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encountered in the manufacturing industry, and it should be of high quality to ensure
that the benchmark results are accurate and reliable.

• Evaluation metrics: The benchmark should define clear evaluation metrics that can be
used to measure the performance of NLP models on task-specific questions. The met-
rics should be relevant to the manufacturing industry and should provide a meaning-
ful assessment of the model’s ability to perform the task.

• Ethical considerations: The manufacturing industry deals with sensitive information,
such as product designs and trade secrets. Therefore, the benchmark should take
into account ethical considerations, such as intellectual property and confidentiality,
to ensure that the data used in the benchmark are handled appropriately.

Overall, building a benchmark for NLP in assembly (as shown in Figure 1) would
require careful consideration of the unique language, tasks, and data encountered in the
industry, as well as the ethical considerations that come with handling sensitive information.
The benchmark should be designed to evaluate the performance of NLP models on tasks
that are relevant to the assembly domain in the manufacturing industry and provide a
meaningful assessment of the model’s ability to perform these tasks.

Figure 1. Key factors for building an NLP benchmark in the assembly domain.

In this research, we adopt a methodology similar to that described in [67], encompass-
ing the definition of the task, the introduction of the dataset within the assembly domain,
and the establishment of evaluation metrics. First, we outline the specific task. Following
that, we present the proposed dataset designed for the assembly domain. Finally, we
introduce the evaluation metrics utilized to assess task performance. In essence, the bench-
mark’s purpose lies in the assessment of task performance by contextualizing it within a
specific text domain, furnishing it with a tangible dataset, and employing well-defined
evaluation metrics.

3.1. The Task

In this sub-section, we focus on the defined task: part-of-speech (POS) tagging. POS
tagging is a crucial step in NLP in the case of improving the performance of a system related
to information retrieval and it has many practical applications, such as text-to-speech
synthesis, machine translation, and information retrieval [77]. This can be considered
as an initial stage of processing aimed at the ultimate objective of enabling computers
to comprehend human language [78]. It is the task of labeling or tagging each token in
sentences based on the defined rule [79,80]. A token refers to a sequence of characters, such
as a word or a punctuation mark, that serves as a unit of input for NLP tasks. Tokenization
is the process of breaking a text into individual tokens, allowing for further analysis and
processing [77]. POS tagging is useful for a variety of NLP tasks, such as information
extraction, entity recognition, and grammatical structure identification. It automatically
assigns the parts of speech tags to the tokens considering two main aspects: finding the exact
tags for each token and choosing between the possible tags for ambiguous tokens [81–83].
Figure 2 shows an example of the output of a POS tagger in regard to two different sentences
considering the eight classes of parts of speech tags [77] as Nouns, Verbs, Adjectives, Pronouns,
Determiners, Adverbs, Prepositions, and Conjunctions (Table 2).
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Table 2. Considered classes of part of speech tags.

Class of Tags Description

Noun Refer to entities in the world like people, animals, and things
Verb Describe actions, activities, and states
Adjective Describe properties of nouns
Pronoun Used as a substitute for a noun or noun phrase
Determiner Providing additional information or to specify the reference of the noun
Adverb Modify verbs, adjectives, providing extra information
Preposition Prototypically express spatial relationships
Conjunction Used to connect words, phrases, or clauses within a sentence

Figure 2. Visualizing part-of-speech tags for two sentences.

The main goal of developing the POS tagger for any language is to improve the
accuracy of tagging and also to consider the different language structures, seeking to
remove ambiguity in the tokens [84]. Two relevant factors to improve the performance
and accuracy of POS tagging are the number of tokens in the training and testing data
and also the corpus or the open-source dictionary being used in POS tagging [77]. In NLP,
a corpus refers to a large and structured collection of text or language data that is used for
analysis and linguistic research. On the other hand, a dictionary in NLP typically refers to a
structured resource that contains words or terms along with their corresponding definitions,
translations, and other linguistic information. It serves as a reference for lexical information
and can be used for tasks like word lookup and semantic analysis [85]. In this research, we
consider eight classes of parts of speech as mentioned in Table 2.

3.2. The Dataset

In our approach to building a benchmark dataset for the assembly domain, we cat-
egorize sentences based on two distinct structures commonly found in assembly-related
content: imperative and declarative sentences. In NLP, imperative and declarative sen-
tences are two types of sentence structures with distinct characteristics and functions [86].
An imperative sentence is a type of sentence that gives a command, makes a request,
or gives an instruction. It is usually written in the present tense and begins with a verb.
On the other hand, a declarative sentence is a type of sentence that makes a statement,
expresses a fact, or conveys information. It typically has a subject and a predicate.

In a benchmark, a representative portion of the multiple-class category refers to a
balanced distribution of the data across all the classes in the classification task. Kwong [70]
with 350 questions in their benchmark, considering different classes on sentence structures,
categorized 80% of the questions as interrogative, 11% as imperative, 5% as declarative, with
4% categorized as others [87]. In the TV show database benchmark with 25,076 statements,
considering two categories as imperative and non-imperative, imperative statements took
up about 8.8%.

In assembly benchmarks, both imperative (directive) and declarative (descriptive)
sentences can be used. Imperative sentences are often used for instructions and informative
sentences, such as “Place the part in the machine and press start”, while declarative
sentences are used to convey information or describe a process, such as “The machine
automatically aligns the part before beginning the milling process”. Both types of sentences
can be used in different tasks of the benchmark, such as text classification, information
extraction, and question answering.
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However, considering the mentioned categories in the different academic references
and also taking into account the different documents used in the assembly line in the
assembly domain, in this research, we consider four different categories in the assembly
domain as follows: Warnings, Informative texts, Manuals, and Work instructions.

• Manual documents are important in manufacturing as they provide detailed instruc-
tions on how to operate, maintain, and repair various types of equipment. (The
manual is on the level of equipment.) These documents typically contain textual de-
scriptions and diagrams or illustrations to help users better understand the processes
involved. Manuals may also include technical documents used in manufacturing, such
as installation manuals, service manuals, and troubleshooting guides. The manual
mostly includes declarative sentences.

• Warning documents in manufacturing are documents that provide warnings and
safety instructions to users who may operate or come into contact with machinery or
equipment. These documents are typically included with products or machinery and
provide information on how to properly operate, maintain, and service them to avoid
potential hazards. Examples of warning documents in manufacturing include safety
manuals, warning labels, caution tags, and safety data sheets. These documents use
mostly imperative sentences to convey warnings and instructions to ensure the safety
of those interacting with the equipment.

• Informative texts in the assembly domain provide additional information that is
relevant to the task at hand, but not necessarily part of the direct instructions or
warnings. These types of texts can provide important context and support for work-
ers, helping them to complete their tasks safely and efficiently, and mostly include
imperative sentences.

• Work instructions are documents that provide step-by-step guidance to operators,
technicians, or assembly line workers on how to perform a specific task or operation.
(The work instructions are on the level of process.) These instructions typically include
information on the tools or equipment required, safety procedures, quality checks,
and other relevant information and mostly contain imperative sentences. Work in-
structions may be presented in various formats, such as text, diagrams, photographs,
or videos. They are essential for ensuring that products are manufactured consistently
and to the required quality standards, and for training new employees. Work instruc-
tions are often updated and revised based on feedback from workers and changes in
the manufacturing process.

In the prepared benchmark, we consider around half of the sentences of the well-
written structured manual sentences to be declarative sentences, and the other half of the
sentences, comprising three different sub-categories in semi-structured sentences (Warning,
Informative texts, and Work instructions), to be imperative sentences. With the imperative
sentences, we consider 20% of the sentences to have an incomplete structure. In the
previous research, we considered 100 sentences, including 45 declarative sentences and
55 imperative sentences within the four categories in the assembly domain. Here, in order
to make the benchmark more diverse and representative of a wider range of languages
and also to check the effectiveness of the built benchmark, we add 100 new sentences to
the benchmark. So, in the new benchmark, we have 104 sentences that are imperative and
96 sentences that are declarative.

Thus, with this extension, we create a set including sentences picked from four dif-
ferent categories in the assembly domain, Warning, Informative texts, Manuals, and Work
instructions. Having 2752 tokens (excluding the punctuation marks), we perform the anno-
tation for all the tokens manually. The introduced eight POS tags based on our reference [77]
are assigned to each token in the considered sentences. After performing the manual POS
tagging with the help of an expert, we investigate which of the considered open-source li-
braries achieves the best result in the test set. After manually tagging the considered corpus,
we have 523 verbs, 68 pronouns, 419 prepositions, 896 nouns, 352 determiners, 172 conjunctions,
70 adverbs, and 251 adjectives in our annotated dataset. Table 3, shows the distribution of the
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tags in the considered corpus based on the assembly context. In addition, Figure 3 shows
the stacked bars of imperative and declarative sentences based on internal partitions of
different tags in the considered ground truth.

Table 3. Tag distribution in the considered benchmark dataset based on four assembly categories.

Sentences Adjective Adverb Conjunction Determiner Noun Preposition Pronoun Verb

Manual 167 50 75 155 436 211 36 267
Warning 28 10 34 41 127 66 8 84
Informative 23 5 28 37 85 36 4 60
Work instruction 33 5 35 119 248 106 20 112

Declarative 167 50 75 155 436 211 36 267
Imperative 84 20 97 197 460 208 32 256

Declarative Imperative
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Figure 3. Percentage partitions of tags in both declarative and imperative sentences in the considered
ground truth.

To the best of our knowledge, there are no publicly available POS annotated train-
ing data on the assembly domain of manufacturing. In order to implement POS tag-
ging, this research leveraged three prominent open-source NLP libraries: Stanford, SpaCy,
and NLTK (Natural Language Toolkit), serving as the framework for validating the pre-
pared benchmark. Traditional NLP libraries offer pre-trained models optimized for POS
tagging tasks, rendering them adept at efficiently processing large volumes of text. Their
interpretability enhances understanding and analysis of POS tagging results—an advan-
tage over deep learning-based models. The Stanford library [46], known for its robust
capabilities in NLP, further enriched our analysis. It provides comprehensive tools for
tokenization, part-of-speech tagging, and more, enhancing the depth of our investigation.
The NLTK (Natural Language Toolkit) library [88], a leading platform for Python-based
human language data manipulation, SpaCy [89], a powerful Python and Cython library
for advanced NLP tasks, and the newly added Stanford library, collectively formed the
cornerstone of our research toolkit. These libraries empower our work in the assembly
domain of manufacturing, facilitating tasks such as named entity recognition, sentiment
analysis, text classification, and beyond. They also offer a wide range of pre-trained models
for multiple languages, augmenting the versatility of our NLP pipelines.

3.3. The Evaluation Metrics

There are several evaluation metrics [26] that can be used to evaluate the performance
of a benchmark in NLP, depending on the specific task and the goals of the benchmark. In
this research, we consider accuracy, precision, recall, and the F1-score as the evaluation
metrics. Brief definitions of the considered metrics are provided below:

• Accuracy: Accuracy measures the overall correctness of the model’s predictions and
is calculated as the ratio of correctly predicted instances to the total instances.
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• Precision: Precision quantifies the model’s ability to make correct positive predic-
tions and is calculated as the ratio of true positives to the sum of true positives and
false positives.

• Recall: Recall assesses the model’s capacity to identify all relevant instances and is
calculated as the ratio of true positives to the sum of true positives and false negatives.

• F1-score: The F1-score, as a measure that balances precision and recall, calculated as
the harmonic mean of the two values, is used as the evaluation metric in many types
of research related to benchmark performance comparison [66,68,78].

4. Result and Discussion

To assess the performance of pre-trained taggers libraries, such as NLTK, SPACY,
and Stanford, in the assembly domain corpus, and to determine if the newly created bench-
mark can effectively perform NLP tasks, the study utilized a ground truth consisting of
2752 tokens divided into four categories. The libraries’ taggers were applied to the ground
truth data to compare the tags produced by the libraries with the manually annotated
ones. The tagging accuracy of the NLTK tagger compared to the ground truth was 90%,
an improvement from the previous research’s 87% accuracy with 100 initial sentences.
In addition, recall 90%, precision 91%, and F1-score 90% were estimated for NLTK. The tag-
ging accuracy of the SpaCy tagger on the ground truth was 93%, which is 3% more accurate
than the NLTK tagger. This is consistent with the previous research, which achieved a 93%
tagging accuracy with 100 initial sentences. In addition, recall, precision, and the F1-score
were estimated as 93% for SpaCy. The Stanford tagger, as the newly added library, had 91%
accuracy compared to the ground truth, 91% recall, 92% precision, and 91% F1-score.

In the task of token recognition and comparison with the ground truth, the NLTK
tagger achieved a perfect match by accurately identifying 2752 tokens, exhibiting a token
accuracy rate of 100%. The NLTK tagger demonstrated the ability to correctly handle
hyphenated compound words, such as “oil-lubricated”, treating them as single tokens.
In contrast, the SpaCy tagger successfully identified all tokens in the corpus but segmented
hyphenated compound words into separate tokens, resulting in 2792 identified tokens.
This discrepancy occurred because the SpaCy tagger treated hyphenated compound words
as three distinct tokens, for instance, “oil-lubricated” being recognized as “oil”, “-” and
“lubricated”. The assembly corpus contained a total of 36 hyphenated compound tokens. A
similar issue arose for the Stanford library as the tagger identified 2786 tokens, recognizing
6 out of 36 hyphenated compound words.

The accuracy of individual tags obtained by the considered libraries is presented in
Figure 4. With regard to analyzing the three key parts of speech, namely nouns, verbs,
and adjectives, SPACY achieved a high accuracy of 95% for verbs, 92% for nouns, and 78%
for adjectives. NLTK achieved an accuracy of 88% for verbs, 91% for nouns, and 82% for
adjectives. The considered accuracy for similar tags in the Stanford library was 94% for
verbs, 94% for nouns, and 78% for adjectives. The three libraries demonstrated satisfactory
accuracy in recognizing most tags. However, the NLTK and Stanford libraries exhibited the
lowest accuracy of 62% specifically for conjunction tags when compared to the other tags.

ADJECTIVE ADVERB CONJUCTION DETERMINER NOUN PREPOSITION PRONOUN VERB
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The absolute numbers of mis-annotations for each type of token in NLTK, SPACY,
and Stanford are presented in Figure 5. In NLTK, as shown in Table 4, the highest per-
centage of mis-annotations, at 38%, occurred for conjunctions. Specifically, 35 conjunctions
were mistakenly annotated as prepositions, and 24 were annotated as adverbs. Among the
251 adjective tokens, 18% were mis-annotated, with 30 of them incorrectly labeled as nouns.
Additionally, 11 out of the 12 mis-annotated tokens pertaining to pronouns were erroneously
annotated as determiners. There were instances of mis-annotations where nouns and verbs
were mistakenly labeled as each other or as adjectives. Among the tokens analyzed in the
SPACY library, adjectives had the highest rate of mis-annotation at 24%. Among these
mis-annotations, 28 tokens were mistakenly labeled as nouns and 27 as verbs. Additionally,
18 tokens originally identified as conjunctions were mislabeled as prepositions and pronouns.
Similar to NLTK, there were instances where nouns and verbs were incorrectly labeled as
each other. Furthermore, 22 nouns were mistakenly labeled as pronouns and 26 as adjectives.
For Stanford, the highest mis-annotation was 38%, which occurred for conjunctions, mostly
mis-annotated as prepositions and adverbs as for NLTK. A total of 30 adjective tokens were
mistakenly annotated as nouns and 24 adjective tokens were mistakenly annotated as verbs.
In addition 24 out of 30 mis-annotated verbs were identified as nouns in Stanford taggers.

Upon closer examination of mis-annotations, distinct patterns emerged in the labeling
behavior of NLTK, SpaCy, and Stanford NLP. Within NLTK, the most prevalent mislabeling
occurrences involved conjunctions being incorrectly labeled as prepositions, pronouns mistak-
enly identified as determiners, conjunctions labeled as adverbs, and adjectives mislabeled as
nouns. In the case of SpaCy, a notable tendency was observed in misclassifying adjectives as
nouns and adjectives as verbs. Stanford NLP exhibited its own set of common mislabeling
instances, including adjectives being miscategorized as nouns and verbs, conjunctions misla-
beled as adverbs and prepositions, nouns inaccurately tagged as adjectives and verbs, and verbs
erroneously identified as nouns.

Table 4. Mis-annotations of token types in NLTK, SpaCy, and Stanford libraries.

NLTK SPACY Stanford

Adjective 18.0% 22.0% 22.0%
Adverb 10.0% 4.0% 4.0%
Conjunction 38.0% 12.0% 38.0%
Determiner 0.2% 1.0% 0.8%
Noun 9.0% 8.0% 6.0%
Preposition 2.0% 2.0% 4.0%
Pronoun 18.0% 1.0% 18.0%
Verb 12.0% 5.0% 6.0%

To assess the classification of declarative and imperative sentences, we designated
the manual category as declarative, while the warning, informative, and work-instruction
categories were categorized as imperative. We evaluated the performance of each library
separately for these two sentence types across the eight tags. The NLTK library attained
an accuracy of 91% for declarative sentences and 89% for imperative sentences. Similarly,
SpaCy exhibited accuracies of 91% for declarative sentences and 95% for imperative sen-
tences. Additionally, Stanford achieved 90% accuracy for declarative sentences and 93% for
imperative sentences.

Figure 6 illustrates a comparison between NLTK, SPACY, and Stanford in terms of
imperative and declarative sentences. In the case of imperative sentences, NLTK exhibited
lower accuracy for adverbs and conjunctions compared to other tag types. Conversely, SPACY
performed well across all tag types for imperative sentences. In the Stanford library, for the
imperative sentences, conjunctions were less accurately tagged compared to other tags.
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Figure 5. Comparison of mis-annotations in 1-NLTK, 2-SpaCy, and 3-Stanford: Absolute numbers of
mislabeling by token type.

Further analysis revealed the percentage of mis-annotations for each tag in imperative
and declarative sentences, as depicted in Figure 7 for each respective library. The confusion
matrix presented in Figure 7 highlights the predominant types of mis-annotations observed
in NLTK for declarative sentences, which include pronouns mislabeled as determiners, adjec-
tives mislabeled as nouns, conjunctions mislabeled as adverbs, and conjunctions mislabeled
as prepositions. Similarly, for imperative sentences in NLTK, the prevalent mislabeled tags
encompassed conjunctions mislabeled as prepositions, adverbs mislabeled as nouns, verbs
mislabeled as nouns, and adjectives mislabeled as nouns. In the case of SpaCy, there were
no mis-annotations exceeding 10% for imperative sentences, while for declarative sen-
tences, the prominent mislabeled tags consisted of adjectives mislabeled as nouns, adjectives
mislabeled as verbs, and conjunctions mislabeled as pronouns. For the Stanford taggers,
in declarative sentences, the mislabel happened in adjectives to nouns, conjunctions to ad-
verbs, determiners, and prepositions, and finally, pronouns to determiners. For the imperative
sentences, the only mis-annotation higher than 10% was related to mislabeling conjunctions
to prepositions.
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Figure 6. Comparison of NLTK, SpaCy, and Stanford performance in classifying declarative and
imperative sentences across multiple tags.

Considering the incompleteness of sentences, which accounted for 20% of the imper-
ative sentences within the benchmark under examination, the results revealed that out
of 140 tokens in the incomplete sentences, NLTK annotated 121 tokens correctly. SpaCy,
on the other hand, identified 141 tokens within incomplete sentences, of which 138 tokens
were annotated accurately. In Stanford, when recognizing 141 tokens, 132 of them were
correctly annotated.

Within the diverse landscape of our dataset, where sentence lengths exhibit variations
across our four distinctive categories, we embarked on an exploration of whether sentence
length plays a pivotal role in the tagging performance of our NLP libraries: NLTK, SpaCy,
and Stanford. To investigate this, we conducted a comprehensive correlation analysis,
considering the interplay between sentence length and the number of mis-annotations
in each library. We meticulously evaluated this relationship, examining each library and
category individually. This resulted in 12 correlation analyses, providing a granular view
of whether certain libraries exhibited preferences for tagging accuracy in sentences of
specific lengths within different categories. Our findings, depicted in Figure 8 and Table 5,
shed light on the nuanced interactions between sentence length and tagging performance.
These figures offer insights into whether longer or shorter sentences are more prone to
mis-annotations for each library and category, enabling a deep understanding of their
performance intricacies. According to the figures, 7 out of 12 pairs had a significant positive
correlation and 5 out of 12 had no statistically significant correlation. For NLTK, informative
text and work instructions, for SpaCy, manual and informative text, and for Stanford, work
instructions had no significant positive correlation. Additionally, to assess the impact
on imperative and declarative sentences, we conducted similar correlation analyses. In
general, NLTK and Stanford had a positive correlation for both imperative and declarative
sentences. SpaCy had a positive correlation with imperative sentences. However, there
was no statistically significant correlation in declarative sentences in the SpaCy library.
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(f) Stanford, Imperative
Figure 7. Comparison of tag mis-annotation in NLTK, SpaCy, and Stanford for imperative and
declarative sentences: confusion matrix analysis.

Table 5. Correlation analysis: sentence length vs. mis-annotation in NLTK, SpaCy, and Stanford
libraries for 4 different categories.

Category NLTK SPACY Stanford

Manual 9 × 10−4 4.700 × 10−1 3.30 × 10−2

Warning 7.20 × 10−4 8.600 × 10−3 3.2 × 10−6

Informative text 1.500 × 10−1 3.800 × 10−1 7.5 × 10−3

Work instruction 8.800 × 10−1 4.2 × 10−3 6.30 × 10−2
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Figure 8. Correlation analysis: sentence length vs. mis-annotation in different categories and li-
braries. (a) Manual, NLTK, sentence length, (b) Manual, SPACY, sentence length, (c) Manual, Stan-
ford, sentence length, (d) Warning, NLTK, sentence length, (e) Warning, SPACY, sentence length,
(f) Warning, Stanford, sentence length, (g) Informative text, NLTK, sentence length, (h) Informative
text, SPACY, sentence length, (i) Informative text, Stanford, sentence length, (j) Work instruction,
NLTK, sentence length, (k) Work instruction, SPACY, sentence length, (l) Work instruction, Stanford,
sentence length.

5. Conclusions

In this study, we investigated the application of natural language processing tech-
niques in the assembly domain of manufacturing industry. By creating a domain-specific
dataset and exploring strategies for handling incomplete sentences, we sought to address
the challenges posed by unstructured open questions and incomplete sentences in operator
assistance systems. The outcomes of this research contribute to the advancement of NLP
applications in the assembly domain, providing valuable insights for the development of
intelligent and efficient assembly processes.

In light of the limited availability of a comprehensive corpus in the assembly do-
main, we present a novel dataset as a meticulously constructed benchmark comprising
2752 tokens pertaining to four distinct categories (Manual, Warning, Informative text,
and Work instructions) within the assembly. This dataset encompasses both imperative
and declarative sentence forms, mirroring the complexity inherent in assembly instructions.
The percentage of tokens in this built dataset is 51% for declarative sentences and 49% for
imperative sentences. Also, in order to check the incomplete sentences, we consider 20% of
the imperative sentences to be incomplete ones.

By manually assigning POS tags to the tokens within the dataset and utilizing the NLP
open-source libraries SPACY, NLTK, and Stanford, we assessed the effectiveness of their
pre-trained taggers in accurately labeling assembly-related concepts. Our objective was to
evaluate the extent to which these libraries can achieve high levels of accuracy in tagging
assembly concepts, leveraging their existing capabilities in NLP.



Appl. Sci. 2024, 14, 2766 17 of 20

In all aspects of our study, including tagging accuracy, token recognition, part-of-
speech annotation, mis-annotations, and sentence classification, the evaluated NLP libraries,
NLTK, SpaCy, and Stanford, exhibited robust performance. Each library displayed unique
strengths and behaviors, offering valuable insights for the development of intelligent as-
sembly processes and operator assistance systems in the manufacturing domain. While our
study achieved significant progress in accurately tagging assembly concepts and improving
the performance of NLP libraries, it is important to acknowledge the challenges we encoun-
tered. We observed instances of mis-annotation within the dataset in the assembly domain.
These mis-annotations, although limited in number, highlight the ongoing complexity of
NLTK, especially in specialized hyphenated compound words in the assembly domain.

In conclusion, this research significantly advances the application of NLP in the
assembly domain, offering a nuanced understanding of the capabilities and limitations
of prominent NLP libraries. The insights gained from this study lay the groundwork for
future advancements in intelligent assembly processes, strengthening the foundation for
Industry 4.0 transformations in the manufacturing sector.
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