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Abstract—in Ultra Wideband (UWB), large ranging errors
occur under Non-Line-of-Sight (NLoS) conditions, which signif-
icantly degrades positioning accuracy. Human body shadowing
(HBS) is a specific case of NLoS, which is a prominent error
source for on-body UWB positioning. This work presents a
tracking algorithm based on a Particle Filter (PF), designed to
mitigate HBS-induced positioning errors by using an orientation-
adaptive measurement model, consisting of a bank of Gaussian
Mixture Models. The relative orientation is derived from Inertial
Measurement Unit (IMU) data, and predicted positions from
the tracking algorithm itself. We propose a second tracking
algorithm in order to train the adaptive measurement model
in a semi-unsupervised way, eliminating the need for accurate
ground truth. The proposed algorithm outperforms a state of
the art algorithm by an average of 11% (unsupervised) to 39%
(supervised) in an experimental evaluation.

Index Terms—Gaussian Mixture Model, human body shadow-
ing, indoor positioning, IMU, NLoS, unsupervised learning, UWB

I. INTRODUCTION

For the last two decades, a large amount of research has
been directed towards detection and mitigation of non-line-
of-sight (NLoS) effects in Ultra-Wideband (UWB) ranging, in
which the direct path between tag and anchor is obstructed by
a wall, the human body, or other object. In NLoS conditions, it
is possible that a diffracted or reflected path component is seen
as the first path component, which adds a bias to the estimated
range [1]. Consequently, these NLoS-induced the performance
range errors degrade range-based positioning.
Human Body Shadowing (HBS) is the specific NLoS case
in which a human body obstructs the line-of-sight (LoS)
path. Several works have already investigated HBS, and have
identified it as an important cause of NLoS-induced range
errors in on-body UWB ranging, i.e. when the tag is attached
to a person’s body [2], [3]. Regardless of the specific setup,
a common pattern in the range error distribution has been
observed by several works [3], [4]. First, there are no sig-
nificant errors when there is no direct obstruction, i.e. when
the tag is in between the anchor and body. As the person

is turning, the direct part gradually becomes obstructed, and
the measured range becomes biased up to 10 − 30 cm, due
to the first path component diffracting around the body. These
diffracting or creeping waves are heavily mitigated, thus when
the body is fully in between the tag and anchor, the creeping
waves remain often undetected [2]. In that case, multipath
components who have reflected off other surfaces are detected
instead, causing outliers up to several meters, which heavily
skews the otherwise Gaussian range error distribution.
Despite the mentioned efforts of characterizing the HBS
effects, and the large amount of works on NLoS detection and
mitigation in UWB context, there is limited work on exploiting
the knowledge of this orientation-dependent effect to improve
on-body UWB positioning accuracy. In [5], we proposed a
robust HBS mitigation algorithm for static positioning, assisted
by an IMU. While [5] focused on static positioning, this work
is aimed at dynamic on-body UWB-Two-Way Ranging (TWR)
positioning, for which a new positioning algorithm is designed
and implemented. The general approach of both methods is
the same, as the Inertial Measurement Unit (IMU) is used
in order to estimate the relative orientation of the body with
respect to the anchor and tag, after which a more accuracte
position is estimated using knowledge of the HBS effect on the
range measurements. To mitigate the HBS effect, we present
a measurement model based on a bank of Gaussian Mixture
Models (GMMs), which characterizes the UWB range errors
as a function of the IMU-based orientation. However, training
these GMMs requires accurate ground truth data matching the
orientation to the ranging error, which can be expensive to
obtain. Therefore, in line with our philosophy in [5] of easy
deployability, we propose the usage of a second algorithm,
which can train the GMM-based measurement model, i.e.
the UWB range error model, of the first system without the
need for accurate ground truth. Together, this forms a semi-
unsupervised on-body UWB positioning system, which miti-
gates HBS effects by characterizing the orientation-dependent
range error distribution almost independently.



II. METHOD

This section describes the used hardware, the environment
in which the measurements were performed, followed by the
estimation of the relative orientation and a system overview.

A. Measurement configuration
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Fig. 1: Visualization of vectors related to estimation of the
relative tag orientation ϕ, with images of the hardware used
during the measurement campaign.

1) Hardware and data collection: The experiment setup
is visualized in Figure 1, which depicts a person wearing
an UWB tag at the belly. A picture of this tag is provided
on the right side of Figure 1, showing an attached IMU,
while the picture on the left shows an UWB anchor. The
latter is identical in terms of hardware, and can be seen
with an Infrared (IR) marker on its antenna for accurate
calibration of the anchor position. The UWB hardware used
is the Wi-Pos platform [6]. Wi-Pos consists of a Decawave
transceiver for UWB ranging, and a Zolertia Re-mote with
sub-GHz radio for orchestration of the TWR scheme and for
reporting the estimated range, which is performed at a rate of
23 Hz. The IMU used is the Adafruit BNO055, which consists
of a 3-axis accelerometer, gyroscope, and magnetometer, as
well as a built-in Attitude and Heading Reference System
(AHRS) module, which fuses the inertial measurements to
obtain accurate orientation at 100 Hz. The UWB and IMU data
are read by a Raspberry Pi, which immediately sends them a
local MQTT broker over Wi-Fi. Furthermore, accurate ground
truth is collected by a Qualisys motion capture (mocap) system
at 90 Hz, which is also sent to the MQTT broker. This ground
truth consist of accurate positions as wel as orientation of the
tracked object. Figure 1 shows in red how the local reference
frame of the mocap-tracked body is defined, having the tag
antenna as the local origin, and the local Y-axis coinciding
with

#    »

PT .
2) Environment and trajectories: The experiments are per-

formed in a 11 m x 9 m rectangular open area in the Internet of
Things (IoT) of the IDLab research group, featuring eight Wi-
Pos UWB anchors. Two UWB anchors are vertically stacked
at each of the corners, as shown by the red dots in Figure 2.
The axes of Figure 2 show how the global coordinate system is
defined, in which the YG-axis coincides with North. A training
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Fig. 2: Ground truth scatterplots of the training (a) and
evaluation (b) trajectories. Straight lines denote parts of the
trajectories with missing ground truth. UWB anchors are
marked in red, with each marker representing two anchors.

and evaluation trajectory were designed, of which the mocap-
provided ground truth are shown on the blue scatterplots
in Figure 2a and Figure 2b respectively. Each trajectory is
travelled five times, each with a duration of 50− 60 s, or an
average of 1160 UWB range measurements. The pedestrian
carried the tag at waist height, and walked casually along
the predefined trajectory, with some slight variations during
each repetition, e.g. sometimes taking a turn wider or sharper.
These variations do not require any extra work, since the
mocap system records the ground truth position with mm-level
accuracy while the UWB range measurements are taking place.

B. Orientation estimation

Figure 1 illustrates the discussed relative orientation for our
setup. The relative orientation is defined as the smallest angle
ϕ ∈ [0◦, 180◦] between the 2D vectors

#   »

TA and
#    »

PT in the
global XY-plane, in which T is the tag position, A is the
anchor position, and P represents the person’s center of mass.
Given the range of possible ϕ values, it is assumed that the
orientation-dependent range error distribution is symmetrical
with respect to

#    »

PT . To comply with this assumption, both the
tag and IMU are placed at a fixed position at the center of
the belly, and the antenna surface is placed perpendicular to
the

#    »

PT . Furthermore,
#   »

TA can be estimated given the anchor
position and a predicted tag position, whereas

#    »

PT can be
derived from the yaw angle estimated by the IMU’s AHRS.
For more details, we refer to our prior work [5].

C. System design

1) Particle Filtering: The design of the proposed posi-
tioning system is explained using the flowgraph in Figure 3.
The vertical dashed line divides the system into an offline
phase (left) for training the measurement noise model of
the online phase (right). As mentioned in Section I, each of
these two parts is a separate tracking algorithm, of which
the online one is based on a Particle Filter (PF), while its
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Fig. 3: Flowchart of the Human Body Shadowing mitigation approach. The blue blocks represent the data input to the system,
whereas the green blocks represent the typical steps of the tracking algorithm. The red blocks represent the unsupervised
training of the range error model, which is part of the offline phase left of the vertical dashed line. The yellow blocks represent
the orientation estimation and usage of the proposed orientation-adaptive measurement model.

offline counterpart is a smoother, more specifically based
on a Backtracking Particle Filter (BPF) [7]. While it can
produce real-time state estimations identical to a regular PF,
the BPF remembers each particle’s predecessor, which allows
it to backtrack through previous particle generations and re-
estimate a previous position based only on the particles with
surviving offspring. Both algorithms consist of the same three
elements, represented by the green blocks in Figure 3, starting
at the initialization. In this work, each algorithm waits until
one range has been received from four anchors. Then, the
initial position is calculated using Linearized Least Squares
(LLS) multilateration [8], after which a set of particles is
sampled from a Gaussian distribution centered around this
LLS position. Aside from a position, each particle’s state
also includes a velocity, which is initially set to 0m

s as it
is assumed that the experiment starts from a stationary pose.
After initialization, a two-step cycle is performed for each
incoming UWB range measurement. The prediction step adds
artificial noise to the velocity, and predicts a new position for
each particle using a Constant Velocity (CV) process model.
The update step calculates the (pre-fit) range residual for
each particle, i.e. the difference between the measured range
and the distance between the anchor and the particle. Each
particle is then weighted by plugging its range residual into
a measurement likelihood function, after which a weighted
position is calculated.
For best performace of the filter, the likelihood function
should resemble the Probability Density Function (PDF) of
the measurement noise. A Gaussian PDF is often used as
likelihood function, and works well for UWB positioning in
LoS conditions. However a Gaussian likelihood function is
unsuitable for use in NLoS conditions, in which the range error
PDF is heavily skewed. On top of that, in HBS conditions, the
range error PDF is dependent on the orientation of the user.
Therefore, the PF can benefit from an orientation-adapative
measurement model.

2) Orientation-adaptive measurement model: The differ-
ence between the offline and online algorithms lies in the
likelihood function, which is implied by the yellow blocks
in Figure 3. In both algorithms, the orientation ϕ is estimated
for each particle, based on each particle’s position, the anchor
position, and the yaw angle provided by the IMU (after a
bias correction). For the online PF specifically, the ϕ value
of each particle is used to select a GMM as likelihood
function, which resembles the range error distribution for that
value of ϕ. For low ϕ values, the GMM’s PDF is Gaussian-
like, while the PDF is heavily skewed for ϕ → 180◦. This
online PF algorithm with orientation-adaptive measurement
model based on GMMs, is denoted as PF-GMM when the
measurement noise model is trained on mocap ground truth
(supervised, benchmark), and is denoted as U-PF-GMM when
it is trained on output of the offline algorithm (unsupervised).
The offline algorithm evidently does not have this GMM-based
measurement model, but uses an adaptive Gaussian PDF, of
which the variance is doubled when ϕ̂ surpasses a threshold ϕc.
The latter is inspired by [9], in which the measurement noise
variance of an Extended Kalman Filter (EKF) is increased by
thresholding the skewness of the Channel Impulse Response.
Furthermore, since the Adaptive Backtracking Particle Filter
(ABPF) can provide real-time state estimations, Figure 3
shows an intermediate output called Adaptive Particle Filter
(APF) flowing out of the ABPF’s update step.

3) Semi-unsupervised training: A regular BPF requires the
tuning of two parameters: the noise variance of the process
model and of the measurement model, to which the ABPF adds
the threshold ϕc. Our system is semi-unsupervised, because
these parameters still have to be tuned manually. However,
unlike the PF-GMM with its GMM-based measurement model,
the two variances of the BPF can be tuned without the need for
accurate ground truth, by analyzing the BPF’s range residuals,
visually validating the convergence, etc. Furthermore, ϕc is
a robust parameter, as good (and similar) performance is
achieved for any value of ϕc ∈ [110◦, 160◦].



The red blocks in Figure 3 denote the (semi-)unsupervised
training of the GMM-based measurement model. While the
ABPF processes the training data, all estimated states are kept
in memory, i.e. in the state buffer, until all predict-update
cycles are finished. As mentioned, all positions are then re-
estimated, which makes the ABPF a smoother algorithm. A
second intermediate output is shown at the smoother block in
Figure 3. This output, along with the stored IMU and UWB
measurements, serve as the input for training the measurement
model. More specifically, a post-fit range residual y′ and
orientation ϕ̂′ are calculated for each smoothed position, which
results in a training dataset consisting of pairs of y′ and ϕ̂′

values. It is expected that these post-fit parameters are closer
to their ground truth counterparts than the pre-fit values, which
are calculated before each update step.
Finally, to obtain a bank of GMMs, a random subset of range
residuals is sampled from the training data for ϕ ∈ [0◦, 180◦].
For a given ϕ, the range residuals are weighted based on
their corresponding ϕ̂′ value, in such a way that residuals
with a ϕ̂′ close to ϕ have a higher chance of being selected.
For each subset, several GMMs with a differing amount of
Gaussian components are then fitted using the Expectation-
Maximization (EM) algorithm as implemented in [10]. The
GMM with the lowest Bayesian Information Criterion for a
particular subset is then selected for the corresponding ϕ value,
resulting in a bank of 181 GMMs.

4) Evaluated algorithms: Several algorithms have been de-
scribed in this section, which are evaluated in Section III. The
main evaluated algorithm is the U-PG-GMM, the proposed
PF algorithm which uses the orientation-adaptive GMM-based
measurement model trained by the ABPF. The ABPF, which
uses a simple threshold ϕc to increase the measurement noise
variance of its Gaussian measurement model, is evaluated
too. The ABPF can produce real-time results by simply not
performing the backtracking/smoothing step, in which case
it operates as a filter. This configuration is denoted as the
APF, of which the performance is also evaluated. The APF
is the most important benchmark for the U-PF-GMM, since
outperforming the APF means that the unsupervised training
with the ABPF is justified. The PF-GMM is used to evaluate
the highest possible performance of a PF with the GMM-
based measurement model, by training this model on mocap-
provided ground truth range errors and ϕ values. Furthermore,
a state-of-the-art algorithm PF-Ref [4] is implemented. The
PF-GMM uses a ϕ threshold to switch between a Gaussian
wit adaptive mean, and Gamma PDF. More specifically, a
Linear Regression model is used to predict the Gaussian
mean as a function of ϕ̂. The PF-Ref’s measurement model
is therefore also trained using the mocap ground truth of
the training trajectory. Finally, a traditional PF is used as a
benchmark for all other orientation-adaptive algorithms. This
PF is also configured as a smoother, i.e. BPF, in order to
evaluate the advantage of using the ABPF for training the U-
PF-GMM’s measurement model. A short description of the
discussed tracking algorithms and their prominent differences
in the context of this work, are summarized in Table I.

III. RESULTS

The results presented in this section are based on all five
recordings of the evaluation trajectory. Also, since PFs are
non-deterministic, each PF is run ten times per trajectory using
400 particles. A position error is defined as the Euclidean
distance in the XY-plane between the position estimated by
a specified tracking algorithm for a given UWB measurement,
and the mocap-provided position of which the timestamp
lies closest to the timestamp of that UWB measurement.
The position error is left out of the results if the closest
mocap timestamp is more than 0.1 s away from the UWB
measurement’s timestamp, which occasionally happens when
the mocap system has failed to track the tag.

A. Evaluation of unsupervised range error characterization
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Fig. 4: Boxplots of post-fit ϕ̂ errors (a), and range residual
y′ errors (b). Post-fit errors are calculated after smoothing
(ABPF), or after the state update (others).

Figure 4a shows boxplots of the post-fit ϕ̂ errors for the
ABPF, U-PF-GMM and PF-GMM. The post-fit ϕ̂ errors are
calculated by subtracting the mocap-based ϕgt from ϕ̂, in
which the latter is estimated after the filter algorithm has ex-
ecuted the state update. In the case of the smoother algorithm
(ABPF), the post-fit ϕ̂ error is calculated after the smoothed
states have been acquired. From Figure 4a, it appears the ϕ̂
error is not much affected by the tracking algorithm. This
is because the distance of any point of both trajectories to
the closest anchor is larger than 2 m, as shown in Figure 2.
Therefore, even if the position performance differs between
the type of tracking algorithm, ϕ̂ is not much affected, thus



TABLE I

Algorithm measurement model accurate ground Description
PF Gaussian no standard Particle Filter algorithm with constant velocity process model
BPF Gaussian no smoother variant of PF
APF Adaptive Gaussian no PF with orientation-adaptive measurement model by thresholding ϕ̂
ABPF Adaptive Gaussian no smoother variant of APF
PF-Ref [4] Gaussian/Gamma yes state-of-the-art PF algorithm with orientation-adaptive measurement model
PF-GMM GMM bank yes PF with orientation-adaptive measurement model using a bank of GMMs
U-PF-GMM GMM bank no Unsupervised PF-GMM trained without ground truth by output of ABPF
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Fig. 5: Histograms of UWB range error subsets with GMM-based PDFs fitted on mocap data (blue), and on subsets of range
residuals provided by a smoother algorithm (red). Each subset is sampled around ϕgt (blue) or ϕ̂ (red).

depends mostly on the IMU. This is also complemented by
the fact that the discussed tracking algorithms generally do
not produce enough outliers (in this experiment) that can
significantly affect ϕ̂ (see Section III-B). Regardless, the
IMU enables accurate estimation of ϕ, achieving a median
absolute error under 6◦ for each algorithm. This can still cause
problems for a threshold-based adaptive measurement model,
such as that of the A(B)PF or the PF-Ref [4], but is less of a
problem for the PF-GMM.Furthermore, the ϕ̂ as estimated by
the ABPF is unbiased unlike the APF, which already justifies
the use of the smoother variant for training the GMM-based
measurement model.
Figure 4b shows the post-fit range residual errors of the
same filter algorithms as Figure 4a, as well as the standard
PF. These residual errors are calculated by subtracting the
range error ϵr from the post-fit range residual y′, i.e. the
range residual calculated after the state update step, or after
smoothing if applicable. Figure 4b makes clear the advantage
of the APF over the PF algorithm, and of the ABPF over
the APF for training the GMM-based model. Especially the
ABPF clearly achieves a smaller error for the range residual,
allowing the training of a measurement model which resembles
the ground truth trained model of the PF-GMM more closely.
Note that the range residual is consistently underestimated by
all algorithms, This is normal, because the UWB range is
typically overestimated under NLoS conditions. Consequently,
the tracking algorithm incorporating a range measurement is
more likely to estimate a position further away from the anchor
than the actual position, resulting in an underestimated post-fit
range residual. Training the GMM-based measurement noise

model on biased training data is not desirable. However, this
problem is partly solved by assuming the range error resembles
a zero-mean Gaussian PDF for ϕ < 90◦. The PDFs estimated
by the EM algorithm can then be shifted by the opposite of
the y′ value at the PDF’s peak. Furthermore, the PF-GMM
achieves the smallest underestimation of y′ in absolute terms
(1 cm), and also has the smallest error standard deviation
(σy′ = 8.8 cm), implying that the GMM-based model is a
good representation of the true range error distribution, and
that the PF-GMM achieves high positioning accuracy.
Figure 5 shows the histogram of UWB range errors from the
training dataset sampled around four ϕ values based on their
corresponding ϕgt as described in Section II. The blue curves
represent the PDFs of the GMMs fitted on these range errors
by the EM algorithm, while the red curves show the PDFs of
GMM trained on subsets of range residuals y′ of ABPF. The
subsets of y′ are in turn sampled around ϕ values based on
their corresponding ϕ̂ value. Both types of GMMs conform
to the general pattern of orientation-dependent range error
distributions in HBS context discussed in Section I, in which
a zero-mean Gaussian-like PDF at ϕ = 0◦ transitions to a
positively shifted, heavily skewed PDF for ϕ → 180◦. For low
and high values of ϕ, the models trained on the ABPF output
show a good overlap with the models trained on ground truth
data. However, this overlap is achieved to a lesser extent for
medium ϕ values. The reason is that when the person is not
maneuvering, the tracking algorithm can estimate the general
direction of the person relatively well thanks to the CV process
model. However due to the range measurements being biased,
the estimated trajectory tends to have an offset to the side of



the true trajectory. In this particular measurement setup, the tag
is carried on the belly, and the person neither walked sideways
nor backwards. Therefore, the position errors to the side of the
true trajectory affect the range residual y′ less when the anchor
is located in the extension of the trajectory, i.e. close to either
ϕ = 0◦ or ϕ = 180◦.
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Fig. 6: CDFs of localization errors of discussed algorithms

B. Evaluation of proposed orientation-based positioning al-
gorithm

Figure 6 shows the position error Cumulative Distribution
Functions (CDFs) of the discussed tracking algorithms. The
proposed PF-GMM and U-PF-GMM algorithms are compared
to the well-known PF algorithm, to a state-of-the-art HBS
mitigation algorithm PF-Ref [4], and to the APF of which
the smoother variant ABPF is used to train the U-PF-GMM’s
measurement model. The PF is used as the main benchmark
algorithm, and achieves a median, p75, p90 and p99 error
of 18 cm, 27 cm, and 37 cm respectively. For the remaining
algorithms, reductions of position errors are expressed relative
to the standard PF, unless specified otherwise. Its smoother
variant (BPF) shows only a slight improvement, reducing the
p99 to 54 cm (−4%) and reducing other percentiles by 1 cm.
The APF reduces the p75 and p90 error only slightly to 24 cm
(−7%) and 36 cm (−3%) respectively, while suffering from
higher outliers as the p99 error increases to 61 cm (+5%).
However, these outliers are eliminated in the smoother variant
(ABPF), and achieves a p50, p75 and p90 error of 14 cm
(−22%), 21 cm (−22%), and 30 cm (−19%) respectively,
outperforming the APF and smoother variant of the PF on
all metrics. PF-GMM is the best performing algorithm, which
manages to reduce the median, p75 and p90 error to 9 cm
(-50%), 15 cm (-44%) and 22 cm (−43%) respectively. U-
PF-GMM achieves a median, p75, p90, and p99 error of
14 cm, 21 cm, 29 cm, and 45 cm respectively, which is an
improvement of 22% across all percentiles Therefore, U-PF-
GMM does not perform as good as PF-GMM, but outperforms
all other algorithms while not needing accurate ground truth
to train its measurement model, unlike the PF-GMM. Further-
more, while U-PF-GMM is only slightly better than the ABPF

by which it was trained, the latter being a smoother algorithm,
does not produce real-time results. Lastly, the referenced PF
(PF-Ref), of which the model is trained on our ground truth
data, is outperformed by both our proposed (U-)PF-GMM
algorithms. When using the measurement model parameters
fitted for the experiments in [4], the PF-Ref diverges.
To investigate how much training data is needed to train U-PF-
GMM’s model, we split the ABPF’s output in splits of varying
sizes. This is done by letting the ABPF process all recorded
measurements of the training trajectory, after which e.g. the
first 100 post-fit range residuals y′ and corresponding ϕ̂ values
are taken. This simulates scenarios in which the person walked
for a shorter amount of time, giving the system only a fraction
of the total amount of measurements to characterize the range
errors. Figure 7 shows different percentile positioning errors of
U-PF-GMM as a function of the relative size of the training
dataset. It is observed that the accuracy increases the most
for the first 900 range measurements, after which significantly
more data is needed in for marginal improvements. Lastly, it
is found that a training dataset of 1500 measurements, i.e. 66 s
is enough for U-PF-GMM to outperform the APF algorithm.
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IV. CONCLUSION AND FUTURE WORK

HBS is an important form of NLoS in on-body UWB
positioning. Although the orientation dependence of the range
error distribution has been observed in several works, only a
limited amount of works have used this knowledge to mitigate
the effects of HBS on UWB positioning. In this work, a PF
algorithm is presented which employs an orientation-aware
measurement model based on a bank of GMMs. This filter
algorithm estimates the orientation of the UWB tag relative
to the body and anchors after predicting a candidate position,
after which an orientation-specific GMM is selected for the
state update step. Furthermore, a semi-unsupervised system
is proposed, in which a smoother algorithm is used to train
the GMM-based model, with the goal of eliminating the need
for accurate ground truth. The proposed Unsupervised PF-
GMM outperforms the benchmark algorithms, achieving a



19% reduction of the p90 error after training on a 250 s
recording of UWB and IMU data, and a 39% reduction when
trained on ground truth data.
For future work, the authors would like to test the proposed
method in a more realistic environment, which includes exter-
nal NLoS sources, such as walls and metallic racks.
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