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G. M. Guidi,36,37 A. R. Guimaraes,2 G. Guixé,23 H. K. Gulati,64 H.-K. Guo,152 Y. Guo,40 Anchal Gupta,1

Anuradha Gupta,161 P. Gupta,40,98 E. K. Gustafson,1 R. Gustafson,162 F. Guzman,163 L. Haegel,30 O. Halim,28,164

E. D. Hall,54 E. Z. Hamilton,140 G. Hammond,53 M. Haney,140 J. Hanks,51 C. Hanna,126 M. D. Hannam,17

O. Hannuksela,98,40 H. Hansen,51 T. J. Hansen,29 J. Hanson,6 T. Harder,79 T. Hardwick,2 K. Haris,40,98 J. Harms,25,85

G. M. Harry,165 I. W. Harry,134 D. Hartwig,108 B. Haskell,65 R. K. Hasskew,6 C.-J. Haster,54 K. Haughian,53 F. J. Hayes,53

J. Healy,109 A. Heidmann,86 A. Heidt,9,10 M. C. Heintze,6 J. Heinze,9,10 J. Heinzel,166 H. Heitmann,79 F. Hellman,167

P. Hello,32 A. F. Helmling-Cornell,44 G. Hemming,33 M. Hendry,53 I. S. Heng,53 E. Hennes,40 J. Hennig,168 M. H. Hennig,168

A. G. Hernandez,68 F. Hernandez Vivanco,5 M. Heurs,9,10 S. Hild,133,40 P. Hill,26 A. S. Hines,163 S. Hochheim,9,10

D. Hofman,136 J. N. Hohmann,108 D. G. Holcomb,106 N. A. Holland,8 K. Holley-Bockelmann,155 I. J. Hollows,135

Z. J. Holmes,67 K. Holt,6 D. E. Holz,141 P. Hopkins,17 J. Hough,53 S. Hourihane,113 E. J. Howell,70 C. G. Hoy,17

D. Hoyland,14 A. Hreibi,9,10 Y. Hsu,110 Y. Huang,54 M. T. Hübner,5 A. D. Huddart,120 B. Hughey,29 V. Hui,24 S. Husa,122

S. H. Huttner,53 R. Huxford,126 T. Huynh-Dinh,6 B. Idzkowski,87 A. Iess,103,104 C. Ingram,67 M. Isi,54 K. Isleif,108

B. R. Iyer,19 V. JaberianHamedan,70 T. Jacqmin,86 S. J. Jadhav,169 S. P. Jadhav,11 A. L. James,17 A. Z. Jan,109 K. Jani,155

J. Janquart,98,40 K. Janssens,170,79 N. N. Janthalur,169 P. Jaranowski,171 D. Jariwala,56 R. Jaume,122 A. C. Jenkins,41

K. Jenner,67 M. Jeunon,47 W. Jia,54 G. R. Johns,43 N. K. Johnson-McDaniel,12 A.W. Jones,70 D. I. Jones,172 J. D. Jones,51

P. Jones,14 R. Jones,53 R. J. G. Jonker,40 L. Ju,70 J. Junker,9,10 V. Juste,142 C. V. Kalaghatgi,17,98 V. Kalogera,15 B. Kamai,1

S. Kandhasamy,11 G. Kang,173 J. B. Kanner,1 Y. Kao,110 S. J. Kapadia,19 D. P. Kapasi,8 S. Karat,1 C. Karathanasis,174

S. Karki,73 R. Kashyap,126 M. Kasprzack,1 W. Kastaun,9,10 S. Katsanevas,33 E. Katsavounidis,54 W. Katzman,6 T. Kaur,70
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22Université de Lyon, Université Claude Bernard Lyon 1, CNRS,

Institut Lumière Matière, F-69622 Villeurbanne, France
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E-46100 Burjassot, València, Spain
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115Université Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon / IN2P3,
UMR 5822, F-69622 Villeurbanne, France

116Seoul National University, Seoul 08826, South Korea
117Pusan National University, Busan 46241, South Korea

118INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy
119University of Arizona, Tucson, Arizona 85721, USA

120Rutherford Appleton Laboratory, Didcot OX11 0DE, United Kingdom
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The second Gravitational-Wave Transient Catalog, GWTC-2, reported on 39 compact binary
coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019
15∶00 UTC and 1 October 2019 15∶00 UTC. Here, we present GWTC-2.1, which reports on a deeper list
of candidate events observed over the same period. We analyze the final version of the strain data over this
period with improved calibration and better subtraction of excess noise, which has been publicly released.
We employ three matched-filter search pipelines for candidate identification, and estimate the probability of
astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per
year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We
calculate the source properties of a subset of 44 high-significance candidates that have a probability of
astrophysical origin greater than 0.5. Of these candidates, 36 have been reported in GWTC-2. We also
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calculate updated source properties for all binary black hole events previously reported in GWTC-1. If the
eight additional high-significance candidates presented here are astrophysical, the mass range of events
that are unambiguously identified as binary black holes (both objects ≥ 3M⊙) is increased compared to
GWTC-2, with total masses from ∼14M⊙ for GW190924_021846 to ∼182M⊙ for GW190426_190642.
Source properties calculated using our default prior suggest that the primary components of two new
candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-
instability supernova theory. We also expand the population of binaries with significantly asymmetric mass
ratios reported in GWTC-2 by an additional two events (the mass ratio is less than 0.65 and 0.44 at 90%
probability for GW190403_051519 and GW190917_114630 respectively), and find that two of the eight
new events have effective inspiral spins χeff > 0 (at 90% credibility), while no binary is consistent with
χeff < 0 at the same significance. We provide updated estimates for rates of binary black hole and binary
neutron star coalescence in the local Universe.

DOI: 10.1103/PhysRevD.109.022001

I. INTRODUCTION

We are in the era of gravitational wave (GW) astro-
nomy, started by the Advanced Laser Interferometer
Gravitational-Wave Observatory (LIGO) [1] and the
Advanced Virgo [2] detectors. The first observing run
(O1) of the advanced detectors yielded the first detection of
GWs from a binary black hole (BBH), GW150914 [3]. By
the end of O1, the LIGO Scientific and Virgo Collaboration
(LVC) had reported on three BBH events [4]. The second
observing run (O2) of the advanced detectors saw the first
direct detection of GWs from a binary neutron star (BNS),
GW170817 [5]. This event was also detected in electro-
magnetic waves [6], expanding the field of multimessenger
astronomy to include GWs. By the end of O2, the LVC had
reported on a total of ten BBHs and one BNS event,
described in the first Gravitational-Wave Transient Catalog,
GWTC-1 [7]. The second Gravitational-Wave Transient
Catalog, GWTC-2 [8], added 39 GW events from the first
half of the third observing run (O3a), and included a total of
50 events. The GW data until the end of third observing run
(O3) have been made available to the public by the LVC.
Since the public release of the LIGO and Virgo data, groups
other than the LVC have also performed analyses searching
for GW signals [9–21] and reported additional candidate
events in some cases.
GW events between 1 April 2019 15∶00 UTC and 1

October 2019 15∶00 UTC (O3a) that passed a false alarm
rate (FAR) threshold of 2 per year were presented in
GWTC-2. Here, we present GWTC-2.1, a deep catalog that
includes 1201 candidates passing a low-significance FAR
threshold of 2 per day. Although most of the candidates in
this catalog are noise events, they can be used for multi-
messenger searches by comparing against other astronomi-
cal surveys. Temporal and spatial coincidences between
candidates in distinct astrophysical channels could lead
to multimessenger discoveries [22,23]. Multimessenger
observations could enhance our understanding of the phy-
sical processes associated with such systems. Previous
GW searches, both from the LVC [24] and independent

groups [10,13,14,24,25], including the 3-OGC analysis
of public data from O1 to O3a [17], have released sub-
threshold candidates. It is computationally unfeasible to
determine detailed source properties of the large set of
subthreshold GW candidates, therefore we identify a subset
of compact binary coalescence (CBC) candidates that have
a probability of astrophysical origin pastro [26–28] greater
than 0.5, and calculate the source properties of these events.
This probability pastro uses both the signal rate in addition
to the noise rate in order to determine the significance of
events. There are 44 such candidate events, 36 of which
have already been reported in GWTC-2 and their source
properties have been described in detail [8]. We present the
source properties with a consistent set of state-of-the-art
waveform models for all of these candidates, discussing the
properties of the eight new events that have a pastro greater
than 0.5 in detail in the body of the paper, and our results
for the previously reported candidates in the Appendix. A
subset of the eight additional events have been found in the
LVC search of O3a data [29] for faint gravitationally lensed
counterpart images [30,31], and in the independent 3-OGC
[17] analysis. While the eight new events presented here
have a non-negligible probability of being from noise,
some of these have astrophysically interesting source
properties under the default prior. Two of the new candi-
dates presented here have a primary component mass in the
pair instability gap [32–40], and one of those shows support
for high spin and unequal masses. We also find a new
candidate whose masses are consistent with a neutron star
black hole binary (NSBH), although as in the case of
GW190814 [41], we cannot rule out the possibility that the
secondary component of the candidate could be a low-mass
black hole.
In this work, all the analyses make use of the final

version of the strain data with improved calibration and
noise subtraction, which includes nonlinear subtraction
around the 60 Hz frequency of the US power grid
[42,43]. The data used in this work have been released
to the public [44–47]. We use three matched-filter pipelines
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for candidate identification: GstLAL [48–50], PyCBC
[51–55], and MBTA [56]. MBTA is reporting results
from an archival search for the first time. Previously,
in GWTC-2, only the GstLAL matched-filter pipeline
included Virgo data; now all three pipelines analyze the
data from all three detectors. For inferring the source
properties, we use waveform models that include effects
of spin-induced precession of the binary orbit, contribu-
tions from both the dominant and subdominant spherical
harmonic modes, and tidal effects as appropriate [57–66].
The paper is structured as follows. Section II describes

the instruments and the data that are analyzed by the
searches, including methods on calibration, data quality,
and glitch mitigation. Section III describes the methods
used by the search pipelines. Section IV describes the
events in GWTC-2.1, comparison to GWTC-2, sensitivity
of the search pipelines used, and inferred rates of BNSs and
BBHs. Section V describes the methods used for estimating
the source parameters of the GW candidates and results,
and in Sec. VI, we discuss the astrophysically interesting
events and their implications. In Sec. VII we describe the
data products being released alongside this catalog and our
conclusions. Finally, in the Appendix, we provide the
source properties of events with pastro greater than 0.5
that have previously been described in GWTC-1 and
GWTC-2. Companion results from the second half of
the third observing run (O3b) are presented in the third
Gravitational-Wave Transient Catalog, GWTC-3 [67].

II. INSTRUMENTS AND DATA

The Advanced LIGO [1] and Advanced Virgo [2]
instruments are kilometer-scale laser interferometers. The
two LIGO detectors are located in Hanford, Washington
and Livingston, Louisiana in the United States, and the
Virgo detector near Pisa in Italy. The advanced generation
of interferometers began operations in 2015, and observing
periods have alternated with commissioning periods since
then [68]. In the time between O2 and the O3, all three
detectors underwent significant upgrades that substantially
increased their sensitivity [8,69].
Major instrumentation upgrades on the LIGO detectors

included; replacement of main lasers to increase beam
stability, replacement of test masses to lower scattering and
absorption losses, installation of acoustic mode dampers to
mitigate parametric instabilities [70], installation of a
squeezed vacuum source to reduce quantum noise [71],
addressing issues with scattered light [72], and implemen-
tation of improved feedback control systems for the instru-
ments. Compared to the O2 run, the Hanford BNS range
[51,73] increased by 64% (from 66 Mpc to 108 Mpc), and
for Livingston by 53% (from 88 Mpc to 135 Mpc).
For Virgo, major upgrades included; replacement of the

steel wire suspensions of the four test masses with fused-
silica fibers [74], modification of the vacuum system to
avoid dust contamination of the lowest suspension stage,

replacement of the main laser to increase power, installation
of a squeezed vacuum source to reduce quantum noise [75],
improvements in beam stability [76], and addressing issues
with scattered light. Compared to the O2 run, the Virgo
BNS range increased by 73% (from 26 Mpc to 45 Mpc).
The processing of the data recorded by the LIGO and

Virgo detectors includes several steps that occur both in
near-real time to allow for the broadcasting of public alerts,
and in higher latency to shape the final data set and update
the catalogs of GW events. Raw data calibration and the
subtraction of noise from known instrumental sources,
documented in Sec. II A, occur first and the GW strain data,
reconstructed independently in each detector, are then
jointly processed. Significant GW candidates are vetted
with several data-quality tests as a part of the standard
analysis procedure. This procedure is described in Sec. II B.

A. Calibration and noise subtraction

The strain data used for astrophysical analyses is derived
from the optical power variations at the output ports of the
interferometers. Calibration of the raw photodetector signal
to GW strain requires a detailed understanding and model-
ing of the control system and optomechanical response
of the interferometers throughout an observing run. This
allows for accurate and reliable calibration of the strain and
also for quantifying its systematic and statistical uncer-
tainty. The detailed procedure for the calibration and the
determination of the systematic and statistical uncertainty
of the LIGO and Virgo detectors for O3 can be found
in [77–79].
There are usually two calibrations applied to the data; a

low-latency calibration and, if needed, an offline calibration.
The low-latency (online) estimate of the strain uses the best
models of the detector at the time of recording. However,
over the course of any observing run, data drop-outs due to
computer failures, incomplete modeling of the detector, and
unknown residual systematic errors are often identified. The
offline calibration incorporates the necessary corrections and
improvements, producing a better calibrated strain with
better known systematic uncertainty.
In addition, numerous noise sources and calibration lines

that limit detectors’ sensitivity are measured and linearly
subtracted from the data [42,80–82]. This subtraction is
performed online to generate the LIGO and Virgo low-
latency strain data, and it is also performed when regen-
erating the LIGO offline strain data. Additionally, noise due
to nonstationary coupling of the power mains with the
LIGO detectors was subtracted from the offline data [42].
As an example of noise subtraction, Fig. 1 shows the
improvement in the noise levels around the 60 Hz mains
line in the Hanford detector, after nonlinear noise sub-
traction was applied to the strain time series. Taking as a
figure of merit the BNS range of the detectors [51,73], the
subtraction results in a median range increase of 0.9 Mpc
for Hanford and 0.2 Mpc for Livingston.
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In GWTC-2, search pipelines and parameter estimation
analyses used a mix of low-latency and offline calibrated
frames. In contrast to this, all searches and analyses
presented in this paper use strain data with the best
available calibration and noise subtraction for each detec-
tor. For LIGO, this corresponds to the offline recalibrated
data with 60 Hz nonlinear subtraction. For Virgo, the online
strain data stream was good enough to be used offline,
except for the last two weeks of O3a which were reproc-
essed to improve subtraction of control and laser frequency
noise [83]. The strain data used in this work are publicly
accessible through the Gravitational Wave Open Science
Center (GWOSC) [44,47].
In addition, the LIGO offline data are accompanied with

a much improved systematic and statistical error estimate
compared to the online data. The probability distribution of
the calibration uncertainty estimate for LIGO in O3a is
characterized in [77], with the systematic error over the
detectors’ bandwidth being under 3% in magnitude and
under 2° in phase. The uncertainty in the Virgo strain data
in O3a had a maximum systematic error over the detector’s
bandwidth under 5% in magnitude and under 2° in phase
[78]. Parameter estimation takes into account calibration
uncertainties, as described in Sec. V. Given the size of
calibration uncertainties in O3, there is no evidence that
they have a significant impact on the inference of source
parameters [84,85].

B. Data quality, event validation and glitch mitigation

LIGO and Virgo data quality is continuously monitored
during an observing run both on site and remotely, as
reported in [86,87]. This can include, for example, internal

detector summary pages which detail the status of the
detectors and interferometer subsystems [88,89]. Feedback
from GW searches also gives an indication of the impact of
data quality on the sensitivity of a search. To exclude
identified instances of poor data quality from the searches
and produce the results in Sec. III, we used the same
methods and data products as reported for GWTC-2 [8].
The data-quality products used in this work are publicly
available [44,45].
Once a GW event has been identified by the search

pipelines, we check the quality of data around the time of
the event. We followed the same procedures outlined in [8]
to validate the data quality around each new GW candidate
reported in this paper. The aim of these validation proce-
dures is to identify any instrumental or environmental noise
that may impact the estimation of GW signal parameters.
As summarized for GWTC-2 [8], in some cases short-
duration noise transients, or glitches [86,90–92], can be
subtracted from the data [93–96]. When this is not possible,
analyses use tailored configurations, for example, a modi-
fied low-frequency cutoff, to exclude data that could be
corrupted by the presence of a nearby glitch. The full list of
candidate events using candidate-specific glitch mitigation,
along with the mitigation configuration, is found in Table I.
These data, for the events where the glitch-mitigated data
was used for the parameter estimation analysis in Sec. V,
are publicly accessible [46]. No candidates in this catalog
have clear evidence of instrumental origin identified
through data-quality validation studies.

III. CANDIDATE IDENTIFICATION

GW data is analyzed to search for candidates in
two stages; first in low-latency in order to generate public
alerts that subsequently trigger followup astronomical

55 56 57 58 59 60 61 62 63 64 65
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1.0

1.5
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Not Subtracted

FIG. 1. Comparison of the amplitude spectral density at
Hanford around the 60 Hz mains line, between data with
subtracted nonstationary noise and data with no subtraction.
The data correspond to a typical one-hour observation-ready data
stretch during O3a.

TABLE I. List of candidate-specific data usage and mitigation
methods for parameter estimates. Only candidate events for
which mitigation of instrumental artifacts was performed are
listed. The glitch-subtraction methods used for these candidate
events are detailed in Sec. II B. The minimum frequency is the
lower limit of data used in analyses of GW source properties for
the listed interferometer.

Name Mitigation

GW190413_134308 L1 glitch subtraction, glitch-only model
GW190425 L1 glitch subtraction, glitch-only model
GW190503_185404 L1 glitch subtraction, glitch-only model
GW190513_205428 L1 glitch subtraction, glitch-only model
GW190514_065416 L1 glitch subtraction, glitch-only model
GW190701_203306 L1 glitch subtraction, glitchþ signal

model
GW190727_060333 L1 fmin: 50 Hz
GW190814 L1 fmin: 30 Hz; H1 nonobserving

data used
GW190924_021846 L1 glitch subtraction, glitch-only model
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observations, and then in higher latency in the form of an
offline analysis of the archival strain data, which is used to
create GW catalogs. Five pipelines were used in real time to
analyze O3 data; a minimally modeled generic transient
search (coherent WaveBurst [97–101]), and four matched-
filter [51,52] pipelines (GstLAL [48–50], MBTA [56],
PyCBC [53–55,102], and SPIIR [103]). Collectively, they
identified 56 unretracted candidates during O3, 33 of which
were found in O3a. GWTC-2 [8] presented 39 events
identified by coherent WaveBurst, GstLAL, and PyCBC in
the first offline search over O3a.
We present here results from a refined offline search of

O3a. The search employs three matched-filter pipelines;
GstLAL, PyCBC, and MBTA [56], marking the first time
that MBTA results from archival data are presented and

included in a GW catalog. All three pipelines analyze the
data from all three detectors. While GWTC-2 imposed a
FAR ceiling of 2 per year on candidates, here we release a
deep list of GW candidates with a FAR smaller than 2 per
day [104]. In addition, we identify the 44 CBC candidates
with an estimated pastro greater than 0.5 (Table II). There
are also two candidates with pastro below 0.5 that do meet
the FAR criterion used in GWTC-2; these are presented as
marginal candidates. This GW catalog contains the largest
number of candidates with pastro greater than 0.5 to date.
In Sec. III A, we first lay out a general description of

matched filter searches and in Sec. III B, we describe the
methods employed by the three CBC searches used in this
work. We describe the search results in the follow-
ing Sec. IV.

TABLE II. Above-threshold GW candidate list. We find 44 events that have pastro in at least one of the searches as greater than 0.5.
Bold-faced names indicate the events that were not previously reported in GWTC-2 [8]. The candidates marked with an asterisk were
first published in 3-OGC [17]. The second column denotes the observing instruments. Candidate events in GWTC-2.1 which do not
meet the pastro threshold but were at the same time as above-threshold events are given in italics. The PyCBC and PyCBC -BBH,
network SNRs do not include detectors with SNRs below 4; these events are marked with double dagger ( ‡) next to their network SNR.
The four events marked with a dagger ( †) next to their FARs were found only in one detector by the GstLAL search. All four were
detected using the data from LIGO Livingston. For the single-detector candidate events, the FAR estimate involves extrapolation. All
single-detector candidate events in this list according to the FAR assigned to them are rarer than the background data of about six months
collected in this analysis. Therefore, a conservative bound on the FAR for candidates denoted by † is ∼2 yr−1. GstLAL FARs have been
capped at 1 × 10−5 yr−1 to be consistent with the limiting FARs from other pipelines. Dashes indicate that a pipeline did not find the
event with a FAR smaller than the subthreshold FAR threshold of 2 per day.

MBTA GstLAL PyCBC PyCBC-BBH,

Name Inst. FAR (yr−1) SNR pastro FAR (yr−1) SNR pastro FAR (yr−1) SNR pastro FAR (yr−1) SNR pastro

GW190403_051519 HLV � � � � � � � � � � � � � � � � � � � � � � � � � � � 7.7 8.0 0.61
GW190408_181802 HLV 8.7 × 10−5 14.4 1.00 <1.0 × 10−5 14.7 1.00 2.5 × 10−4 13.1‡ 1.00 <1.2 × 10−4 13.7‡ 1.00
GW190412 HLV <1.0 × 10−5 18.2 1.00 <1.0 × 10−5 19.0 1.00 <1.1 × 10−4 17.4‡ 1.00 <1.2 × 10−4 17.9‡ 1.00
GW190413_052954 HLV � � � � � � � � � � � � � � � � � � 170 8.5 0.13 0.82 8.5 0.93
GW190413_134308 HLV 0.34 10.3 0.99 39 10.1 0.04 21 9.3 † 0.48 0.18 8.9‡ 0.99
GW190421_213856 HL 1.2 9.7 0.99 0.0028 10.5 1.00 5.9 10.1 0.75 0.014 10.1 1.00
GW190425 LV � � � � � � � � � 0.034† 12.9 0.78 � � � � � � � � � � � � � � � � � �
GW190426_190642 HLV � � � � � � � � � � � � � � � � � � � � � � � � � � � 4.1 9.6 0.75
GW190503_185404 HLV 0.013 12.8 1.00 <1.0 × 10−5 12.0 1.00 0.038 12.2‡ 1.00 0.0026 12.2‡ 1.00
GW190512_180714 HLV 0.038 11.7 0.99 <1.0 × 10−5 12.2 1.00 1.1 × 10−4 12.4‡ 1.00 <1.1 × 10−4 12.4‡ 1.00
GW190513_205428 HLV 0.11 13.0 0.99 1.3 × 10−5 12.3 1.00 19 11.6 ‡ 0.49 0.044 11.8‡ 1.00
GW190514_065416 HL � � � � � � � � � 450 8.3 0.00 � � � � � � � � � 2.8 8.4 0.76
GW190517_055101 HLV 0.11 11.3 1.00 0.0045 10.8 1.00 0.0095 10.4‡ 1.00 3.5 × 10−4 10.3‡ 1.00
GW190519_153544 HLV 7.0 × 10−5 13.7 1.00 <1.0 × 10−5 12.4 1.00 <1.0 × 10−4 13.2‡ 1.00 <1.1 × 10−4 13.2‡ 1.00
GW190521 HLV 0.042 13.0 0.96 0.20 13.3 0.79 0.44 13.7‡ 0.96 0.0013 13.6‡ 1.00
GW190521_074359 HL <1.0 × 10−5 22.2 1.00 <1.0 × 10−5 24.4 1.00 <1.8 × 10−5 24.0 1.00 <2.3 × 10−5 24.0 1.00
GW190527_092055 HL � � � � � � � � � 0.23 8.7 0.85 � � � � � � � � � 19 8.4 0.33
GW190602_175927 HLV 3.0 × 10−4 12.6 1.00 <1.0 × 10−5 12.3 1.00 0.29 11.9‡ 0.98 0.013 11.9‡ 1.00
GW190620_030421 LV � � � � � � � � � 0.011‡ 10.9 0.99 � � � � � � � � � � � � � � � � � �
GW190630_185205 LV � � � � � � � � � <1.0 × 10−5 15.2 1.00 � � � � � � � � � 0.24 15.1 1.00
GW190701_203306 HLV 35 11.3 0.87 0.0057 11.7 0.99 0.064 11.9 0.99 0.56 11.7 1.00
GW190706_222641 HLV 0.0015 11.9 1.00 5.0 × 10−5 12.5 1.00 3.7 × 10−4 11.7‡ 1.00 0.34 12.6‡ 1.00
GW190707_093326 HL 0.032 12.6 1.00 <1.0 × 10−5 13.2 1.00 <1.0 × 10−5 13.0 1.00 <1.9 × 10−5 13.0 1.00
GW190708_232457 LV � � � � � � � � � 3.1 × 10−4† 13.1 1.00 � � � � � � � � � � � � � � � � � �
GW190719_215514 HL � � � � � � � � � � � � � � � � � � � � � � � � � � � 0.63 8.0 0.92

(Table continued)
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A. Matched-filter searches

The matched-filter method relies on having a model of
the signal, as a function of the physical parameters. The
parameters include those that are intrinsic to the source; two
individual component masses m1, m2 and two dimension-
less-spin vectors χ⃗1; χ⃗2 [related to each component’s spin
angular momentum S⃗i by χ⃗i ¼ cS⃗i=ðGm2

i Þ], and seven
extrinsic parameters that provide the orientation and
position of the source in relation to the Earth; the
luminosity distance DL, two-dimensional sky position
(right ascension α and declination δ), inclination between
total angular momentum and line-of-sight θJN , time of
merger tc, a reference phase ϕ, and polarization angle ψ .
The search pipelines create a template bank [105–107] of
GW waveforms covering the desired intrinsic parameter
space, and use these to filter against the data and produce
signal-to-noise ratio (SNR) time series. The component
masses describing template waveforms are affected by
source redshift z as mdet

i ¼ ð1þ zÞmi.
For each set of intrinsic parameters, extrinsic parameters

affecting the signal’s amplitude and phase may be maxi-
mized over analytically [51], if the signal can be approxi-
mated as a pure quadrupole mode, i.e. ðl; jmjÞ ¼ ð2; 2Þ. In
particular, for this search, the templates use only the
dominant quadrupole mode and assume quasicircular orbits
with component spins aligned with the total orbital angular
momentum. Peaks in the resulting SNR time series are
stored as triggers. GW candidates are formed by imposing
consistency in time and in template intrinsic parameters

between triggers in different detectors; in addition, GstLAL
also considers noncoincident triggers as candidates [48].
When considering a single template in a single detector

with stationary, Gaussian noise, the matched filter SNR is
an optimal statistic for ranking candidates. However, addi-
tional terms are needed to optimize sensitivity in searches
of real data covering a wide signal parameter space. To
account for the multidetector network, the distribution of
signals over relative times, phases and amplitudes between
detectors is considered [49,55]. Since detector noise is not
stationary or Gaussian, signal-consistency tests such as chi-
squared [52] are calculated and used to rank candidates.
The distribution of noise triggers may vary strongly over

the template masses and spins; we then model its variation
empirically, as a function of combinations of parameters
that are typically well-constrained by GW measurements.
The binary’s chirp mass [108],

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

; ð1Þ

determines to lowest order the phase evolution during the
inspiral, and is typically better constrained than the compo-
nent masses. At higher orders, the binary phase evolution is
affected by the mass ratio q ¼ m2=m1 (wherem2 ≤ m1) and
by the effective inspiral spin χeff , defined as [109]

χeff ¼
ðm1χ⃗1 þm2χ⃗2Þ · L̂N

M
; ð2Þ

TABLE II. (Continued)

MBTA GstLAL PyCBC PyCBC-BBH,

Name Inst. FAR (yr−1) SNR pastro FAR (yr−1) SNR pastro FAR (yr−1) SNR pastro FAR (yr−1) SNR pastro

GW190720_000836 HLV 0.094 11.6 1.00 <1.0 × 10−5 11.5 1.00 1.4 × 10−4 10.6‡ 1.00 <7.8 × 10−5 11.4 1.00
GW190725_174728 � HLV 3.1 9.8 0.59 � � � � � � � � � 0.46 9.1‡ 0.96 2.9 8.8‡ 0.82
GW190727_060333 HLV 0.023 12.0 1.00 <1.0 × 10−5 12.1 1.00 0.0056 11.4‡ 1.00 2.0 × 10−4 11.1‡ 1.00
GW190728_064510 HLV 7.5 × 10−4 13.1 1.00 <1.0 × 10−5 13.4 1.00 <8.2 × 10−5 13.0‡ 1.00 <7.8 × 10−5 13.0‡ 1.00
GW190731_140936 HL 6.1 9.1 0.80 0.33 8.5 0.78 � � � � � � � � � 1.9 7.8 0.83
GW190803_022701 HLV 77 9.0 0.96 0.073 9.1 0.94 81 8.7 ‡ 0.17 0.39 8.7‡ 0.97
GW190805_211137 HLV � � � � � � � � � � � � � � � � � � � � � � � � � � � 0.63 8.3 0.95
GW190814 LV <2.0 × 10−4 20.4 1.00 <1.0 × 10−5 22.2 1.00 0.17 19.5 1.00 � � � � � � � � �
GW190828_063405 HLV <1.0 × 10−5 15.2 1.00 <1.0 × 10−5 16.3 1.00 <8.5 × 10−5 13.9‡ 1.00 <7.0 × 10−5 15.9‡ 1.00
GW190828_065509 HLV 0.16 10.8 0.96 3.5 × 10−5 11.1 1.00 2.8 × 10−4 10.5‡ 1.00 1.1 × 10−4 10.5‡ 1.00
GW190910_112807 LV � � � � � � � � � 0.0029‡ 13.4 1.00 � � � � � � � � � � � � � � � � � �
GW190915_235702 HLV 0.0055 12.7 1.00 <1.0 × 10−5 13.0 1.00 6.8 × 10−4 13.0‡ 1.00 <7.0 × 10−5 13.1‡ 1.00
GW190916_200658 � HLV 6.9 × 103 8.2 0.66 12 8.2 0.09 � � � � � � � � � 4.7 7.9 0.64
GW190917_114630 HLV � � � � � � � � � 0.66 9.5 0.77 � � � � � � � � � � � � � � � � � �
GW190924_021846 HLV 0.0049 11.9 0.99 <1.0 × 10−5 13.0 1.00 <8.2 × 10−5 12.4‡ 1.00 8.3 × 10−5 12.5‡ 1.00
GW190925_232845 � HV 100 9.4 0.35 � � � � � � � � � 73 9.0 0.02 0.0072 9.9 0.99
GW190926_050336 � HLV � � � � � � � � � 1.1 9.0 0.54 � � � � � � � � � 87 7.8 ‡ 0.09
GW190929_012149 HLV 2.9 10.3 0.6 4 0.16 10.1 0.87 120 9.4 ‡ 0.14 14 8.5 ‡ 0.41
GW190930_133541 HL 0.34 10.0 0.87 0.43 10.1 0.76 0.018 9.8 1.00 0.012 10.0 1.00
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where M ¼ m1 þm2 is the total mass and L̂N is the unit
vector along the Newtonian orbital angular momentum.
Finally, the ranking of events by the search pipelines may
account for an assumed prior distribution of signals over
masses and spins [110,111].
The significance of each candidate event is quantified by

its FAR, the estimated rate of events due to noisewith equal or
higher ranking statistic value. The FAR is calculated by each
search pipeline by constructing a set of background samples
designed to have the same distribution over ranking statistic
as search events in the absence of binarymerger GW signals.
By considering also the expected distribution of GW

signal events recovered by a given search, we may derive an
estimate of the relative probabilities of noise (terrestrial)
origin pterr, and signal (astrophysical) origin pastro [26–28].
For the bulk of released events, detailed estimates of source
parameters are not calculated. Therefore, based only on the
matched-filter search results we also estimate the proba-
bility for each event to belong to three possible astrophysi-
cal binary source classes, labeled BNS, NSBH, and BBH.
The classes are defined by binary component masses; BNS
corresponds to fm1; m2g< 3M⊙, NSBH to m1 > 3M⊙,
m2 < 3M⊙, and BBH to fm1; m2g > 3M⊙. For MBTA, a
2.5M⊙ cut is used instead of 3M⊙, with a gap to 5M⊙ for
BBH. These definitions are chosen for simplicity: they do
not imply that every binary component within a given mass
range is necessarily a neutron star (NS) or a black hole
(BH). Such inference would ultimately require measure-
ment of the effects of NS matter on observed signals, which
is beyond the capabilities of the search pipelines. The
probabilities for an event to belong to each class (pBNS,
pNSBH, pBBH, and pterr) are calculated from the template
masses and spins recovered by the searches, under the
assumption that events from each class occur as indepen-
dent Poisson processes. The calculation also requires the
choice of a prior on the event counts in each category [28].
GstLAL used a uniform prior for the BNS and NSBH

categories, and a Poisson-Jeffreys prior for the BBH
category; MBTA used a uniform prior for the BNS
category, and a Poisson-Jeffreys prior for the NSBH and
BBH categories; and PyCBC used a Poisson-Jeffreys prior
for all three categories. Given the number of candidates, the
prior choice does not significantly impact the BBH results.
Implementation details differ between pipelines, as sum-
marized below; the resulting probability estimates are listed
in Tables II and III.
While the pastro values given here represent our best

estimates of the origin of candidates using the information
available from search pipelines, they are subject to stat-
istical (random) and systematic errors, as well as in some
cases clearly differing for a given candidate between
different pipelines. One such uncertainty arises from
methods used to rank events between pipelines, including
tests for noise artifacts; such tests, such as chi-squared
statistics, will in general add (different) random variations
to the ranking of a given event, in addition to their differing
power in distinguishing signals from artifacts. For single-
detector candidates, there is an additional inherent uncer-
tainty in estimating the rate of comparable noise events,
which may only be bounded to (less than) 1 per observing
time. An inherent source of potential systematic error also
lies in the search ranking statistic used in the calculation of
pastro; such statistics are optimized to detect a specific
(usually broad) distribution of signals over binary intrinsic
parameters. The resulting pastro estimates may be biased if
this distribution deviates significantly from the (unknown)
true signal distribution. The risk of such bias is largest for
regions of parameter space containing few, or zero, con-
firmed detections. For all these reasons, our current pastro
values may be revised in the future, particularly as and
when current uncertainties in the true signal rate and
distributions are eventually reduced.
We next review specific methods used by individual

matched-filter pipelines.

TABLE III. Source probabilities (pBBH, pBNS, pNSBH) for the high significance GW candidates listed in Table II for which pBNS or
pNSBH is greater than 1%. For other events in Table II, pastro ≈ pBBH, and therefore we do not list them here. Results are provided from all
three matched-filter pipelines. Dashes indicate that a pipeline did not find the event with a FAR smaller than the subthreshold FAR
threshold of 2 per day. The classification provided here assumes a boundary of 3M⊙ between NSs and BHs in the case of GstLAL and
PyCBC, and 2.5M⊙ in the case of MBTA.

Name

MBTA GstLAL PyCBC PyCBC-BBH,

pBBH pNSBH pBNS pastro pBBH pNSBH pBNS pastro pBBH pNSBH pBNS pastro pBBH pNSBH pastro

GW190425 � � � � � � � � � � � � 0.00 0.00 0.78 0.78 � � � � � � � � � � � � � � � � � � � � �
GW190707_093326 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.93 0.07 0.00 1.00 0.93 0.07 1.00
GW190720_000836 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.95 0.05 0.00 1.00 1.00 0.00 1.00
GW190725_174728 0.59 0.00 0.00 0.59 � � � � � � � � � � � � 0.79 0.17 0.00 0.96 0.58 0.24 0.82
GW190728_064510 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 0.97 0.03 0.00 1.00 0.97 0.03 1.00
GW190814 0.93 0.07 0.00 1.00 0.19 0.81 0.00 1.00 0.54 0.46 0.00 1.00 � � � � � � � � �
GW190924_021846 0.92 0.07 0.00 0.99 1.00 0.00 0.00 1.00 0.44 0.56 0.00 1.00 0.44 0.56 1.00
GW190930_133541 0.87 0.00 0.00 0.87 0.76 0.00 0.00 0.76 0.93 0.07 0.00 1.00 0.85 0.15 1.00
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B. Search pipelines

In this section we describe the pipelines that were used to
identify the candidates presented in GWTC-2.1.

1. GstLAL

The GstLAL analysis used in this search is similar to the
one used in the previous analysis for GWTC-2 [8]. The
template bank used in this analysis is identical to the one
used by GstLAL for GWTC-2 [8]. It covers waveforms
with redshifted total masses from 2M⊙ to 758M⊙, and
spins that are aligned or antialigned with the binary’s
orbital angular momentum. The template bank is con-
structed using a stochastic placement method in five
different regions of the parameter space [8]. The ranking
statistic used by the analysis is the log-likelihood ratio L
used in the previous analysis [8]. Improvements have been
made to the input data products generated by iDQ, the
statistical inference framework to autonomously detect
non-Gaussian noise artifacts in strain data based on
auxiliary witness sensors [112,113]. This iDQ timeseries
is used to compute one of the terms in the log-likelihood
ratio within the GstLAL analysis, that informs the search of
the presence of non-Gaussian noise in close proximity to a
GW candidate. Compared to GWTC-2, the timeseries
generated by iDQ was reprocessed offline, having access
to an expanded set of auxiliary witness sensors and trained
with an acausal binning scheme [112]. As a result, the
generated iDQ timeseries performs better in identifying
noise artifacts in strain data. In addition, for GWTC-2 the
iDQ term was only used when ranking single-detector
triggers, whereas now it is used for both coincident and
single-detector triggers. Because of changes in the iDQ
term, the empirically determined penalty for single-detector
candidates had to be retuned compared to GWTC-2, and
was increased to a penalty of ΔL ¼ −12 from ΔL ¼ −10.
The single-detector event penalty is determined by com-
paring the recovery of simulated signals in single detector
versus combinations of detectors and the sensitive volume-
time for each configuration.
For the GstLAL analysis, pterr and pastro shown in

Tables II and III are estimated following the multi-
component population analysis [26,114]. The response
of each GstLAL template to each astrophysical source
class, computed semi-analytically [111], is used in estimat-
ing these probabilities. The volume–time sensitivity of the
pipeline used in this calculation is estimated based on
simulated sources injected into the pipeline and is rescaled
to the astrophysical distribution [115]. The volume-time
ratios are used to combine triggers from various observa-
tion runs and perform a multicomponent analysis yielding
pastro and merger rates [26,114] inferred from O1 to O3a.
The astrophysical distribution assumed in this analysis uses
a log-uniform distribution for the source component
masses, the component spins aligned with the orbital
angular momentum, and a uniform distribution for the

component spin magnitudes. The BH masses in BBHs and
NSBHs are distributed between 3M⊙ and 300M⊙ with
aligned component spins distributed in the range
½−0.99; 0.99�. The NS masses in NSBHs and BNSs are
distributed between 1M⊙ and 3M⊙. In NSBHs, the NS
spins are assumed to be aligned and distributed in the range
½−0.4; 0.4�, whereas, in BNSs the NSs are assumed to have
small spins in the range ½−0.05; 0.05�. These choices match
previous analyses [8].

2. MBTA

The Multiband Template Analysis (MBTA) pipeline [56]
is based on matched filtering, relying on coincidences
between triggers observed in different detectors. The
version used for the offline search is close to the online
version which contributed to the LVC public alerts [116].
The archival-search version benefits from offline-specific
improvements, with a background estimate made over a
longer duration, and with a reranking of the candidates
using information collected not just before but also after the
candidate.
The parameter space covered by this analysis ranges

from 1M⊙ to 195M⊙ for the primary (more massive)
component, with total masses up to 200M⊙; or from
1M⊙ to 100M⊙ for the primary when the mass of the
secondary is between 1M⊙ and 2M⊙. Component spins are
aligned with the total angular momentum and are limited to
0.05 for objects below 2M⊙, and going up to 0.997 for
objects above 2M⊙. The waveform used for the search is
SpinTaylorT4 [117–119] if both binary masses are lighter
than 2M⊙, and SEOBNRv4 [120] if the mass of one of the
components is above 2M⊙. The total number of templates
in the bank used is 727,992. The SNR threshold for
recording triggers in each detector is 4.5, or 4.8 if one
of the components is above 2M⊙.
The FAR is calculated for each coincident event by

forming random coincidences among single detector back-
ground triggers. This computation is performed independ-
ently for three large regions of the parameter space bounded
by a 2M⊙ limit for the mass of each component. These
three regions are allowed to contribute equally to the
background, while within each of them we sum the back-
ground contributions from all the templates.
The pBNS, pNSBH, pBBH, and derived pastro quantities are

computed as the fraction of recovered simulated events,
representative of an astrophysical population, to this fore-
ground plus background estimate provided by the pipeline
[121]. The parametrizations of the populations are
described in Sec. IV D, with the POWER LAW + PEAK

model used for BBH [122]. The rate of each type of source
is adjusted using a multicomponent population analysis
[26]. To follow the population and background evolution
across the parameter space, 165 subregions are used. This
finer resolution has the benefit of revealing events in
population-rich areas, even if the overall background rate
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for their ranking statistic value is larger than few per
year, as in the case of the high-mass BBH event
GW190916_200658 presented in Table II.

3. PyCBC

In previous LVC searches [4,7,8,123], the offline PyCBC
[54,124] pipeline has analyzed data only from the two
LIGO detectors. In this analysis, PyCBC was extended to
search data from the three-detector LIGO-Virgo network,
along with updates to the event ranking statistic [102] and
the pastro calculation and a new method to estimate source-
class probability [125].
The PyCBC search uses the same template bank as

in GWTC-2 [8], constructed using a hybrid geometric-
random algorithm outlined in [126,127]. Peaks in SNR
time series exceeding a threshold of four constitute
single-detector triggers. Two-detector coincident events
are formed from triggers with the same component masses
and spins with a physically allowed time difference
between detectors, allowing for timing errors. Three-
detector triple coincidences require triggers in all pairs
of detectors to pass this consistency test.
The detection statistic is given by the logarithm of the

ratio of estimated signal-event rate density to noise-event
rate density. We model the noise distribution in each
detector as a decreasing exponential of the matched-filter
SNR, reweighted based on a chi-squared signal-glitch
discriminator [52,128], with parameters that depend on
the template intrinsic parameters. The signal distribution
includes terms accounting for dependence on relative times
of arrival, phases and amplitudes between detectors, as well
as relative sensitivities of the participating detectors [55].
We estimate the FAR separately for each combination of
detectors via time-shifted analyses [54,129]. The signifi-
cance for each candidate event is then found through
addition of the FARs at the candidate’s ranking statistic
value over all active detector combinations [102].
In addition to the generic PyCBC search, which covers

the full parameter space [8] including a range of possible
signal types, we also conduct a focused PyCBC BBH
search [8,14], capable of uncovering fainter BBH mergers
by imposing a prior form for the signal distribution over the
template bank [110]. This search is targeted at systems with
mass ratios from 1 to 1=3, primary component masses from
5M⊙ to 350M⊙, and aligned, equal component spins from
χ ¼ −0.998 to 0.998.
The inference of pastro and pterr for each candidate event

employs a Poisson mixture model of signal and noise
events [26–28]. Here, the distribution of signal events is
estimated via a set of simulated signals analyzed by the
pipeline, and the rate and distribution of noise events are
estimated from time-shifted analyses [54]. In GWTC-2 the
calculation was only performed on potential BBH events
with template chirp mass above 4.35M⊙ (which corre-
sponds to equal 5M⊙ component masses). Here, we include

potential BNS and NSBH events by performing indepen-
dent calculations over ranges of template chirp mass below
2.18M⊙ (corresponding to equal 2.5M⊙ components), and
between 2.18M⊙–4.35M⊙, respectively. Although the
implied signal distribution over template chirp mass does
not correspond to any specific astrophysical model, it is
adequate for assignment of pastro given the current knowl-
edge of BNS and NSBH merger populations. Systematic
biases in pastro calculation may arise if the (unknown) true
mass distribution is different from that assumed. The
calculation is also extended relative to previous analyses
to account for different possible coincident combinations of
detectors [130]. The results given here are obtained from
events occurring during O3a only, except for the BNS
region where prior information of one highly significant
detection was applied to represent GW170817 [5].
The estimation method for binary source-class proba-

bilities [125] uses the binary chirp mass as input, and
assumes a uniform density of candidate signals over the
plane of component masses fm1; m2g. Here we take the
classes to be defined by boundaries between different types
of binary component at 3M⊙. To estimate source chirp
mass, we correct the search template masses for cosmo-
logical redshift, using an estimate of the luminosity dis-
tance derived from the search SNRs and the corresponding
templates’ sensitivity. We then derive the relative proba-
bilities of each source class and enforce that the sum of
astrophysical source probabilities is equal to pastro.

IV. SEARCH RESULTS

We recover 1201 candidates that have FAR less than
2 per day in any of the search pipelines. These events and
their estimated source probabilities are shown in Fig. 2. The
candidates are shown in decreasing order of pastro. The total
sum of pastro represents the Poisson rate of sources that pass
the FAR threshold of 2 per day in each source class per O3a
experiment, as estimated by the search pipelines. We find
that this corresponds to between 24.95–44.50 signals in the
BBH class, 0.66–3.80 signals in the NSBH class, and 0.22–
0.81 signals in the BNS class in O3a. The range represents
the difference in the search pipelines. We do not consider
the PyCBC-BBH analysis in the estimate of the number of
signals in the BNS class provided here, as the analysis does
not search over the BNS parameter space. Names are
marked for the candidate events with pBNS or pNSBH greater
than 20%. The dashed vertical line shows the least
significant event with pastro greater than 0.5. An estimate
of the rate of sources in the subthreshold candidate list per
O3a experiment is obtained by the contribution to the sum
from events with pastro less than 0.5. This corresponds to
between 2.55–12.40 signals in the BBH class, 0.36–2.39
signals in the NSBH class, and 0.02–0.49 signals in the
BNS class in the subthreshold candidates in O3a.
We find 44 high probability CBC candidates that have

pastro greater than 0.5. These events are listed in Table II.
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This list includes eight new candidates that were not present
in GWTC-2 [8]. These are marked in bold in Table II. Out
of the 44 candidates, four were found with significant SNR
only in one of the detectors by the GstLAL search, which is
the only pipeline that looked for GW signals in single-
detector data. These are listed with a dagger ( †) next to the
FAR in Table II. For the majority of events listed in Table II,
pastro ≈ pBBH; the exceptions are listed in Table III, which
provides the list of candidates that have pBNS or pNSBH
greater than 0.01.

A. New high probability candidates

We recover all the events found in GWTC-2 as having
pastro above 0.5, with the exception of three: GW190424_
180648, GW190426_152155, and GW190909_114149.

Since the rate of BBH events detectable by the LIGO–
Virgo detectors is greater than the rate of detectable BNS or
NSBH events, the pastro for events in the BBH class is
higher than that of the events in the BNS or NSBH class at a
fixed FAR. Therefore, in switching to a pastro threshold
from a FAR threshold, one can expect to add BBH events
while dropping some low-mass events.
All the eight new candidates with pastro greater than 0.5

are classified as BBHs, that is, pBBH is greater than pNSBH
and pBNS. Only one new candidate, GW190725_174728,
has a non-negligible probability in a source class other
than BBH, with nonzero pNSBH (Table III). Out of
the eight candidates, only two (GW190725_174728 and
GW190916_200658) are assigned pastro > 0.5 by more
than one pipeline. Differences between pipelines are
expected, due to the effects of random noise fluctuations

FIG. 2. Cumulative sum of pBNS, pNSBH, pBBH as a function of the candidates that pass a FAR threshold of 2 per day. The events are
shown in decreasing order of pastro. The sum of the source probabilities shown here represents the estimated Poisson rate of sources in
each source class per O3a experiment by the different search pipelines. An estimate of the rate of sources in the subthreshold candidate
list is obtained by the contribution to the sum from events with pastro less than 0.5. This estimate yields between 2.55–12.40 signals in the
BBH class, 0.36–2.39 signals in the NSBH class, and 0.02–0.49 signals in the BNS class in the subthreshold candidates in O3a. The
dashed vertical gray line shows where this threshold is for each pipeline. Names are marked for the candidate events with pBNS or pNSBH
greater than 20%, since these are of particular interest for cross-correlation studies.
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on the different ranking statistics used, and due to different
assumed signal distributions and other choices. In princi-
ple, a more accurate assessment of the candidates’ origins
could be obtained by considering information from all
pipelines; however, this is not currently implemented as a
quantitative measure. One of the events, GW190917_
114630, is identified as a BBH by the GstLAL pipeline,
with pBBH ¼ 0.77 (Table II). However, when its source
properties are inferred by followup pipelines, the mass
parameters are found to be consistent with NSBH systems.
Had it been classified as an NSBH to begin with by the
search pipeline, the resulting pastro would not have made
the threshold of 0.5. There is also nonstationary noise in the
LIGO Livingston detector at the time of this event, but
we have no evidence that the FAR of the event is misesti-
mated. Out of the eight new candidates, five candidates
(GW190426_190642, GW190725_174728, GW190805_
211137, GW190916_200658, and GW190925_232845)
were identified in the LVC search for gravitationally lensed
candidates in O3a data [29], while four candidates
(GW190725_174728, GW190916_200658, GW190925_
232845, and GW190926_050336) were also indepen-
dently identified and presented in 3-OGC [17]. The source
properties of all eight candidates are discussed in Sec. V D.

B. GWTC-2 candidates with pastro < 0.5

The three events in GWTC-2 that have a pastro smaller
than 0.5 in GWTC-2.1 analyses are as follows:
(1) GW190424_180648: This event was found by

GstLAL as a single detector BBH event in Living-
ston. However, the data surrounding this event
recorded periodic glitching from a camera shutter
and iDQ (Sec. III B 1) heavily downranked the time
span surrounding this event [113]. Figure 4 of
the paper describing this iDQ [113] shows both
the inspiral track and the surrounding glitches in the
time-frequency spectrogram surrounding this event
and the response of iDQ. While the down-ranking
due to iDQ for this particular event remains largely
the same between GWTC-2 and GWTC-2.1, the
retuning of the singles penalty (Sec. III B 1) in
GstLAL for GWTC-2.1 caused the significance of
the event to go down. Consequently, in GWTC-2.1,

this event does not meet either the FAR threshold of
2 per year or the pastro threshold of 0.5.

(2) GW190426_152155: This event is in the marginal-
significance candidate list for GWTC-2.1 (Table IV);
the FAR is similar to the one in GWTC-2 and still
passed the threshold of 2 per year considered in the
previous catalog. However, based on the masses
recovered by the pipeline, it is assigned to the NSBH
class with pNSBH ¼ 0.14. The low pastro in the
NSBH class is due to the fact that the inferred rate
of detectable NSBHs is lower than that of detect-
able BBHs.

(3) GW190909_114149: This candidate BBH event
was found as a coincident event in Hanford and
Livingston detectors by GstLAL. It is recovered now
with smaller SNR in the Hanford detector and is
therefore ranked lower.

C. Marginal-significance candidates

The two GW candidates that satisfy the FAR criteria used
by GWTC-2, but do not have pastro greater than 0.5 are listed
as marginal candidates in Table IV. Both these events were
detected by GstLALwith a small FAR, and were assigned to
the NSBH classwithpastro andpNSBH smaller than 0.5. Since
the rate of detectable signals in the NSBH class is smaller
than that in the BBH class, thepastro for these are smaller than
they would be in the BBH class at the same FAR.

D. Search sensitivity

As in GWTC-2 [8], we quantify the sensitivity of the
search via a campaign of simulated signals injected into the
O3a data and analyzed by the search pipelines. We use a
BBH signal distribution adjusted over that used for
GWTC-2 to give more even coverage of the inferred
distribution from O1–O3a [122], changing specifically
the distributions over binary mass ratio and redshift. In
addition to the BBH set, we also inject BNS and NSBH sets
of simulated signals into the data. The sets are generated in
two stages: first, points are sampled out to the maximum
redshift considered for each set, then the samples are
reduced to sets of potentially detectable signals by impos-
ing that the expected LIGO Hanford–LIGO Livingston
network SNR, calculated using a representative noise

TABLE IV. Marginal-significance GWevent candidate list. There are two candidates that are found in at least one of the searches with
a FAR less than 2 per year, but with a pastro smaller than 0.5 in all searches. The candidate in bold, GW190531_023648, is a new
candidate identified in GWTC-2.1, not included in GWTC-2. The column max pastro shows the astrophysical class assigned with highest
probability. Both candidates are detected by GstLAL with a small FAR, and are assigned to the NSBH class with pastro and pNSBH
smaller than 0.5.

MBTA GstLAL PyCBC

Name Inst. FAR (yr−1) SNR Max pastro FAR (yr−1) SNR Max pastro FAR (yr−1) SNR Max pastro

GW190426_152155 HLV 32 9.8 pNSBH ¼ 0.01 0.91 10.1 pNSBH ¼ 0.14 43 8.8 pNSBH ¼ 0.01
GW190531_023648 HLV 8.1 9.8 pBNS ¼ 0.05 0.41 10.0 pNSBH ¼ 0.28 29 9.2 pNSBH ¼ 0.01
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power spectral density (PSD), be above a threshold of 6.
Although this threshold is below the matched-filter SNRs
of events we consider as high-significance candidates, for
detection thresholds corresponding to FARs significantly
higher than 2 per year (the value used in GWTC-2), the cut
may remove a non-negligible fraction of potentially detect-
able signals, due to random fluctuations in matched-filter
SNR. The results of this simulation campaign for all the
search pipelines have been made available [131].
The BNS signals are generated using the SpinTaylorT4

waveform model [117,119], while the BBH and NSBH sets
are generated using the SEOBNRv4PHM model [61–63].
For simulated signals with redshifted total mass below
9M⊙, the SEOBNRv4P model without higher-order multi-
pole emission was used, as higher-order multipoles would
lie above the data sampling Nyquist frequency. The
component spin magnitudes jχij are distributed uniformly
up to a maximum of 0.4 for NS components and 0.998 for
BBH, with isotropically distributed orientations.
The signal distributions over sky direction and binary

orientation are isotropic. The distributions over redshift are
proportional to the comoving volume element dVc=dz,
multiplied by a factor ð1þ zÞ−1 accounting for time dilation,
and by a factor ð1þ zÞκ modeling possible evolution of the
comoving merger rate density with redshift (as in
Appendix E of the GWTC-2 population analysis [122]). A
summary of the distributions of the three injection sets is
given in Table V.
Given the merger distribution used for each injection set,

the sensitivity of each search over theO3data is quantified by
relating the expected number of detections, at a specified
significance threshold, to the local astrophysical merger rate
as Ndet ¼ VRðz ¼ 0Þ, where V is an effective sensitive
hypervolume with units of volume × time. This effective
hypervolume is estimated by counting the number of injected
signals that are detected at the given threshold, here a FAR of
2 per year.

In addition to assumed merger distributions that follow
those used for the injection sets, we also provide V for a
fiducial BBH population model representative of those
found to have high-posterior probability in our population
analysis of GWTC-2 [122]. We choose the POWER LAW +
PEAK model (defined in Appendix B.2 of the GWTC-2
population analysis [122]) with parameters α¼ 2.5, β ¼ 1.5,
mmin ¼ 5M⊙, mmax ¼ 80M⊙, λpeak ¼ 0.1, μm ¼ 34M⊙,
σm ¼ 5M⊙, δm ¼ 3.5M⊙, setting the redshift evolution to
κ ¼ 0. The sensitivity for this BBH population is evaluated
via importance sampling [115,132] implemented via
GWPOPULATION [133]. The effective hypervolume for each
search and signal population is given in Table V.

E. Rates of BBH and BNS events

The rates of BBH and BNS binary mergers in the local
Universe were estimated in a companion paper [122] to
GWTC-2, using the count of detected events with FAR
below 1 per year, combined with estimates of search
sensitivity to the respective populations. The BBH rate
estimate was marginalized over uncertainties in the param-
eters of the population models used, while the BNS rate
estimate assumed a population uniform in component
masses between 1M⊙ and 2.5M⊙. The merger rate of
NSBHs was calculated following the discovery of
GW200105_162426 and GW200115_042309 [134], and
we do not update it here.
Here, we present complementary BBH and BNS rate

estimates based solely on the matched filter search pipeline
outputs, with methods that allow us to incorporate a large
number of likely noise (background) events [26] and thus
avoid potential bias due to an arbitrary choice of signifi-
cance threshold. Such methods allow for both foreground
(signal) and background event distributions with a priori
unknown rates, considered as independent Poisson proc-
esses. Furthermore, for the GstLAL pipeline we employ a

TABLE V. Measures of sensitivity for the search pipelines. We state the sensitive hypervolume V for each of four assumed signal
populations: a BBH population following the injected distribution, a BBH population given by the POWER LAW + PEAK model of [122],
and BNS and NSBH populations following the injected distributions. We give estimates for each search pipeline independently at a FAR
threshold of 2 per year, and for all pipelines combined, i.e. counting all injections detected in at least one pipeline at the given threshold.

Injection populations Sensitive hypervolume V (Gpc3 yr)

Mass distribution Mass range (M⊙) Spin range
Redshift
evolution

Max.
redshift GstLAL MBTA PyCBC

PyCBC
BBH All

BBH (INJ) pðm1Þ ∝ m1
−2.35

pðm2jm1Þ ∝ m2

2<m1 < 100
2 <m2 < 100

jχ1;2j< 0.998 κ ¼ 1 1.9 0.258 0.196 0.194 0.234 0.308

BBH (POP) POWER LAW

+ PEAK

(see text) jχ1;2j< 0.998 κ ¼ 0 1.9 1.22 0.885 0.914 1.20 1.44

BNS uniform 1<m1 < 2.5
1 <m2 < 2.5

jχ1;2j< 0.4 κ ¼ 0 0.15 0.00594 0.00631 0.00657 � � � 0.00781

NSBH pðm1Þ ∝ m1
−2.35

uniform
2.5<m1 < 60
1 <m2 < 2.5

jχ1j< 0.998
jχ2j< 0.4

κ ¼ 0 0.25 0.0174 0.0165 0.0181 � � � 0.0221
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multicomponent mixture analysis [114] to estimate the
rates of events in several astrophysical classes (BNS,
NSBH, and BBH) and terrestrial. Every trigger is assigned
probabilities of membership in each class, as described in
Sec. III B 1. For the MBTA and PyCBC rate estimates, only
the BBH class is considered.
The merger rate estimate then arises from the number of

search events assigned to each class, divided by the
estimated search sensitivity obtained via injection cam-
paigns reweighted to an astrophysical population model
[115], as discussed in the previous section. The population
models used here to quantify search sensitivity are in
general different from those used to obtain source classi-
fication probabilities, described in Sec. III A.
In both the BBH and BNS cases, as for other rate

interval estimates derived from search results [7], a
Poisson-Jeffreys (∝ R−1=2) prior was used. The choice of
prior has little influence on estimated BBH rate due to the
large count of signals, but it has a nontrivial effect on the
BNS rate estimate as compared to, for instance, a uni-
form prior.
BBH merger rate estimates are provided by the GstLAL,

PyCBC-BBH, and MBTA pipelines. The astrophysical
population assumed for measuring search sensitivities is
given by the POWER LAW + PEAK model [122] with fiducial
parameters as in Sec. IV D. The resulting merger rates are
25.0þ7.2

−6.1 Gpc−3 yr−1 for GstLAL, 26.0þ8.2
−6.8 Gpc−3 yr−1 for

PyCBC -BBH, and 25.6þ9.6
−7.8 Gpc−3 yr−1 for MBTA. These

estimates are fully consistent with the estimate of
23.9þ14.3

−8.6 Gpc−3 yr−1 as derived from GWTC-2 [122] using
only significant (FAR< 1 yr−1) events, and allowing for
uncertainties in the population model parameters.
Following the GWTC-2 analysis [122], we have not
included the effect of calibration uncertainties in our rate
estimates. A full quantitative analysis of such uncertainties
would require accounting for possible frequency- and time-
dependent amplitude systematic errors [77]; these are
typically ∼3% or less, corresponding to a ≲10% sensitive
volume uncertainty which remains subdominant to the
Poisson uncertainty in the signal counts [122].
Since the only significant event consistent with BNS

merger in O3a, GW190425 [135], was observed in a single
detector, it is present only in the GstLAL search results.
Hence, we quote a BNS merger rate estimate only from
the GstLAL pipeline, as we expect this to be more
informative than estimates from pipelines that did not
consider single-detector triggers. For measuring the search
sensitivity to BNS mergers, we use the injected popula-
tion described above in Sec. IV D, yielding an estimated
merger rate 286þ510

−237 Gpc−3 yr−1. This estimate is fully
consistent within uncertainties with the simpler estimate
of 320þ490

−240 Gpc−3 yr−1 derived using a fixed threshold
in expected SNR to determine sensitivity to simulated
signals [122].

V. ESTIMATION OF SOURCE PARAMETERS

The physical parameters ϑ⃗ describing each GW source
binary, corresponding to individual entries from the list of
events in Table II, are inferred directly from the data d and
represented as a posterior probability distribution pðϑ⃗jdÞ.
This probability distribution is evaluated through Bayes’
theorem as

pðϑ⃗jdÞ ∝ pðdjϑ⃗Þπðϑ⃗Þ; ð3Þ

with pðdjϑ⃗Þ being the likelihood of d given a set of source
parameters ϑ⃗, and πðϑ⃗Þ being the prior probability distri-
bution assumed for those parameters.
The likelihood itself describes the assumptions of the

underlying stochastic process generating the noise present
in d from a given detector. This noise is assumed to be
Gaussian, stationary and uncorrelated between pairs of
detectors [136,137], as further discussed in Sec. II B. This
yields a Gaussian likelihood [138,139], which for the ith
detector used in a given analysis takes the form

pðdijϑ⃗Þ ∝ exp
�
−
1

2
hdi − hiMðϑ⃗Þjdi − hiMðϑ⃗Þi

�
; ð4Þ

with di representing the data from this instrument. hiMðϑ⃗Þ is
the binary waveform model hðϑ⃗Þ calculated for ϑ⃗ after
being projected onto the detector and adjusted to account
for the uncertainty present in the offline calibration (as
described in Sec. II) of di [140]. The final likelihood is
evaluated coherently across the network of available
detectors and is obtained by multiplication of the like-
lihoods in each detector.
The term from Eq. (4) in angle brackets, hajbi, repre-

sents a noise-weighted inner product [138,141]. In addition
to di and hiMðϑ⃗Þ, evaluating this inner product requires
specification of the bandwidth to be used in the analysis as
well as the PSD characterizing the noise process. The low-
frequency cutoff used in our analysis is set at flow ¼ 20 Hz.
Time-domain waveform models are generated starting at a
frequency fstart such that the ðl; jmjÞ ¼ ð3; 3Þ spherical
harmonic mode of the binary inspiral signal, as estimated
from a set of preliminary analyses [7,8], is present at flow.
The high-frequency cutoff fhigh is selected for each analysis
as fhigh ¼ αroll−offfNyquist such that the ringdown frequency
of the ðl; jmjÞ ¼ ð3; 3Þ spherical harmonic mode, inferred
from waveforms taken from the same set of preliminary
analyses as mentioned above [7,8], occurs below fhigh. The
parameter αroll−off in this expression is a scale factor chosen
in order to minimize the frequency roll-off effects caused
by the application of a tapering window to the time-domain
data [142]. The Nyquist frequency fNyquist is then selected
as the smallest power-of-two-valued frequency which
together with αroll−off ¼ 0.875 satisfies the constraint on
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fhigh specified above. Similarly, the duration of data d used
in each analysis is determined from a requirement that the
waveforms from previous analyses [7,8] as evaluated from
flow ¼ 20 Hz and rounding up to the next power-of-two
number of seconds, are contained in the selected data
segment. The PSD for each event is inferred directly
from the same data that is to be used in the likelihood,
through the parametrized model implemented in
BayesWave [143,144]. From the inferred posterior distri-
bution of PSDs, the median value at each frequency is then
used in the final analysis [144,145].
A GW signal emitted from a binary containing two BHs

can be fully characterized by ϑ⃗ containing a set of fifteen
parameters, as introduced in Sec. III A, if the binary orbit is
assumed to have negligible eccentricity.1 The mass and spin
of the postmerger remnant BH, together with the peak GW
luminosity, are calculated from the initial binary parameters
using fits to numerical relativity (NR) [146–151].
For binaries expected to contain at least one NS, the

time-evolution of the binary orbit is modified by the
presence of matter and quantified in terms of the dimen-
sionless quadrupole tidal deformability Λ1;2, adding one
more parameter for each NS. In addition to the quadrupole
tidal effects, other matter effects are parametrized in terms
of Λ1;2 using equation of state (EOS)-insensitive relations
[152]. When a GWevent is assumed to contain one or more
neutron star, we do not report final masses or spins for the
remnant object.

A. Waveform models

The binary properties of the observed GW events are
characterized through matching against a set of waveform
models. For the events identified as BBHs, with both
components inferred to have masses above 3M⊙, we use
the independently developed IMRPhenomXPHM [57–60]
and SEOBNRv4PHM [61–63] models. Both waveform
models capture effects from spin-induced precession of
the binary orbit, as well as contributions from both the
dominant and subdominant multipole moments of the
emitted gravitational radiation.
IMRPhenomXPHM [57] describes the GW signal from

precessing noneccentric BBHs and is part of the fourth
generation of phenomenological frequency domain models.
Precession is implemented via a twisting-up procedure, as
for its predecessors IMRPhenomPv2 [153,154] and
IMRPhenomPv3HM [155,156]. For this, an aligned-spin
model defined in the coprecessing frame is mapped through
a suitable frame rotation to approximate the multipolar
emission of a precessing system in the inertial frame.
The stationary phase approximation is used to obtain
closed form expressions in the frequency domain [157].

The description for the precession dynamics is derived
using a multiple scale analysis of the post-Newtonian
(PN) equations of motion [158]. The underlying aligned
spin model for IMRPhenomXPHM is IMRPhenomXHM
[58–60], which calibrates the ðl; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ;
ð3; 2Þ; ð3; 3Þ and (4, 4) spherical harmonic modes to hybrid
waveformsconstructed fromNRwaveforms and information
from the PN and effective-one-body (EOB) descriptions for
the inspiral. IMRPhenomXHM represents the amplitudes
and phases of spherical or spheroidal harmonic modes in
terms of piecewise closed formexpressions,with coefficients
that vary across the compact binary parameter space, which
results in extreme compression of thewaveform information
and computational efficiency.
SEOBNRv4PHM comes from another waveform family

that is primarily based on the EOB formalism where the
relativistic two-body problem is mapped to motion of a
single body in an effective metric. In this framework,
analytical information from several sources, such as PN
theory and the test-particle limit, is combined in a resummed
form. This is complemented with insights from NR simu-
lations that accurately model the strong-field regime and
incorporated into the EOB waveforms via a calibration
procedure. We use the SEOBNRv4PHM [61–63] model,
which includes precession and modes beyond the dominant
quadrupole. This model is based on the aligned-spin model
SEOBNRv4HM [64] and is calibrated to NR in that regime.
It features full two-spin treatment of the precession equations
and relies on a twisting-up procedure to map aligned spin
waveforms in the coprecessing frame to the precessing
waveforms in the inertial frame [62,63].
For GW190917_114630, the less massive component is

indicated to lie below 3M⊙ and hence to have a strong
likelihood of being a NS instead of a BH. Following the
discussion for GW190814 [41], the nature of the less
massive compact object in GW190917_114630 cannot be
discerned from the GW data at present. This is primarily
dependent on the unequal masses [159–161] which will
lead the merger of the binary to occur before an eventual
NS component could have been tidally disrupted for any
realistic NS EOS [159]. The lack of an observable NS
disruption thus removes the potential for the observed
signal to contain any additional information above a point-
particle baseline. For this reason, we present results for
GW190917_114630 and GW190814 based on the BBH
waveform models discussed above.
For GW190425, the only O3a event in this catalog

classified as a BNS, we follow previous analyses [8,135],
and report findings using the IMRPhenomP_NRTidal
waveform model [65,66], which is based upon the BBH
model IMRPhenomPv2 [153,162,163] with the addition of
EOS dependent self-spin effects and contributions from
tidal interactions tuned against NR and tidal EOB models.
In order to reduce computational cost for the analysis of
GW190425, a reduced-order quadraturemethodwas applied
to the IMRPhenomP_NRTidal model used [164,165].

1See Table E1 in [142] for precise definitions of all parameters
used.
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B. Sampling methods

To represent the continuous posterior probability density
functions in ϑ⃗, we draw discrete samples from those
distributions using three different methods. For analyses
using IMRPhenomXPHM and IMRPhenomP_NRTidal we
use the Bilby inference package [142,166], together with
the nested sampling [167] method implemented in the
Dynesty sampler [168], or the Markov-chain Monte Carlo
sampler implemented in the LALInference package
[139,169–171]. An extensive set of comparison and veri-
fication studies for analyses done with both Bilby and
LALInference shows consistency between the two infer-
ence variants [142]. For analyses using SEOBNRv4PHM,
we use the RIFT package [172–175] which, due to a hybrid
exploration of the parameter space split into intrinsic
(masses and spins) and extrinsic parameters, is better suited
for use with this more computationally expensive wave-
form model. The robustness and performance of RIFT is
verified througha set of tests [175]. TheAsimov library [176]
is used to manage all stages of the parameter-estimation
analyses. This includes the automated creation of common
configurations used for the Bilby, LALInference and RIFT
runs, and the actual initialization, maintenance and com-
pletion of the analyses. The results from all analyses are
collected, again managed by Asimov, and presented in a
common format using the PESummary package [177,178].

C. Priors

The prior probability on ϑ⃗ is defined similar to GWTC-2
[8] as uniform in spin magnitudes and redshifted compo-
nent masses (specified in the geocenter rest frame), and
isotropic in spin orientations, sky location and orientation
of the binary orbit. We also assume uncorrelated and

uniform prior probabilities for the tidal deformability
parameters of the NSs in GW190425. The prior on the
luminosity distance follows a distribution uniform in
comoving volume, using a flat ΛCDM cosmology with
Hubble constant H0 ¼ 67.90 km s−1 Mpc−1 and matter
density Ωm ¼ 0.3065 [179]. Masses reported in Sec. V D
are defined in the rest frame of the original binary, and
computed by dividing the redshifted masses by (1þ z), with
z calculated from the same cosmological model. For
GW190425 we perform two separate analyses, differing in
the spin magnitudes they allow with a low spin (jχ⃗1j< 0.05)
and a high spin (jχ⃗1j< 0.89), consistent with the choices
made in GWTC-2 [8] for this binary.
All analyses account for uncertainties in the reported

strain calibration [77,180]. The calibration uncertainties are
described as frequency-dependent splines, defined sepa-
rately for the strain amplitude and phase [181]. The
coefficients at the spline nodes are allowed to vary along-
side the binary signal parameters according to a Gaussian
prior distribution set by the measured uncertainty at each
node [140]. For analyses performed with the LALInference
or Bilby inference packages, calibration uncertainties are
marginalized over through direct sampling of the spline
coefficients whereas RIFT analyses implement a likelihood
reweighting method through importance sampling over an
initial analysis where perfect calibration is assumed [182].

D. Source properties

In this subsection we report the inferred source proper-
ties of the eight new events reported in Table II. The source
properties for the BBH events from the first and second
observation runs, reported in GWTC-1 [7], together with
the remaining 36 events from Table II are reported in

FIG. 3. Marginal posterior distributions on the primary mass m1, secondary mass m2, mass ratio q, effective inspiral spin χeff and
luminosity distanceDL for the eight events that are new to this catalog with pastro > 0.5, highlighted in bold in Table II. The vertical span
for each region is constructed to be proportional to the one-dimensional marginal posterior at a given parameter value for the
corresponding event. The posterior distributions are also represented numerically in terms of their one-dimensional median and 90%
credible intervals in Table VI.
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the Appendix. For the vast majority of the events reported
both in this section and in the Appendix, the quoted
source properties are taken from a set of posterior samples
constructed from the two IMRPhenomXPHM and
SEOBNRv4PHM analyses with each given equal weight.
For a subset of events (GW151226, GW190413_052954,
GW190413_134308, GW190421_213856, GW190426_
190642, GW190521, GW190602_175927, GW190719_
215514, GW190725_174728, GW190803_022701,

GW190814, GW190828_063405, GW190828_065509,
GW190917_114630, GW190926_050336, and
GW190929_012149) the respective SEOBNRv4PHM
analyses did not converge in a timely manner, hence we
report results from the IMRPhenomXPHM only for these
events.
A selection of the one-dimensional marginal posterior

distributions are shown in Fig. 3, with two-dimensional
projections on theM–q andM–χeff planes in Figs. 4 and 5

FIG. 4. Contours representing the 90% credible regions in the total mass M and mass ratio q plane for all events reported in this
catalog. The events that are new to this catalog with pastro > 0.5, highlighted in bold in Table II, are highlighted in this figure following
the same color scheme used in Fig. 3. The dashed lines act to separate regions where the primary and secondary binary component can
have a mass below 3M⊙.

FIG. 5. Contours representing the 90% credible regions in the plane of chirp mass M and effective inspiral spin χeff for all events
reported in this catalog. The events that are new to this catalog with pastro > 0.5, highlighted in bold in Table II, are highlighted in this
figure following the same color scheme used in Fig. 3.
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respectively. A more detailed set of results are presented in
Table VI in the form of median and 90% credible intervals
for the one-dimensional marginal posterior distributions for
all eight events. The complete multidimensional posterior
distributions are available as part of the public data release
accompanying this paper [183], as detailed further in
Sec. VII.

1. Masses

The masses inferred for the eight events presented in this
section are generally comparable to, or higher, than the
binaries reported in GWTC-2 [7,8], as shown in Fig. 4.
We find that the most massive BBH in GWTC-2.1 is
GW190426_190642 with a total mass of 182.3þ40.2

−35.7M⊙ and
a remnant mass of 172.9þ37.7

−33.6M⊙; it probably super-
sedes the previous most massive BBH GW1905212

with total mass of 153.1þ42.2
−16.2M⊙ and a remnant mass

of 147.4þ40.0
−16.0M⊙ as reported in Appendix A 2. Both

GW190426_190642 and GW190403_051519 join
GW190519_153544, GW190521, GW190602_175927,
and GW190706_222641 in a population of BBHs with
over 50% posterior support for total massM > 100M⊙ [8].
While the majority of the new events show a preference

for mass ratios near unity, following the trend already
observed in GWTC-2 [7,8], both GW190403_051519 and
GW190917_114630 recover posteriors with median q ∼
1=5 with q ¼ 0.23þ0.57

−0.12 and q ¼ 0.21þ0.32
−0.09 respectively. As

shown in Fig. 4, this constraint for unequal masses is robust

at the 90% credible level for both GW190403_051519 and
GW190917_114630. Although the contour indicating the
90% credible region for GW190403_051519 includes
support at q ∼ 0 in Fig. 4, this is an artifact of the bounded
kernel density estimation used to construct the contours,
and for this event there are no samples at the prior boundary
of q ¼ 0.05.

2. Spins

The best measured spin parameter for CBCs with
observable inspiral signals tends to be the effective inspiral
spin χeff [184–186], introduced in Eq. (2), which is
approximately conserved under spin-induced precession
of the binary orbit [187–190]. Consequently, the angles
between the spin-vectors and the orbital angular momen-
tum at a formally infinite separation are well defined [190].
We therefore report χeff , as well as the spin-tilt angles
themselves, at this fiducial reference point of infinite binary
separation, or equivalently at an infinite time before the
binary merger. The spins are evolved to infinite separation
[191] using a precession-averaged evolution scheme
[158,190] where the orbital angular momentum is com-
puted using higher-order PN expressions.
The posterior distributions for χeff for all eight events are

shown in Figs. 3 and 5. Again, the majority of the binaries
are consistent with containing two nonspinning BHs with
only GW190403_051519 and GW190805_211137 recov-
ering a nonzero χeff at 90% credibility. Both binaries report
predominantly positive χeff , further strengthening the pat-
tern of a surplus of events with χeff > 0 relative to those
with χeff < 0 reported in GWTC-2 [8] and investigated
further in a companion paper [122].

TABLE VI. Median and 90% symmetric credible intervals for the one-dimensional marginal posterior distributions on selected source
parameters for the eight events that are new to this catalog with pastro > 0.5, highlighted in bold in Table II. The columns show source
total mass M, chirp mass M and component masses mi, dimensionless effective inspiral spin χeff , luminosity distance DL, redshift z,
final mass Mf, final spin χf , sky localization ΔΩ and the network matched-filter SNR. The sky localization is the area of the 90%
credible region. All quoted results are calculated from a set of posterior samples drawn with equal weight from the IMRPhenomXPHM
and SEOBNRv4PHM analyses, with the exception of the SNRs that are taken from the IMRPhenomXPHM analysis alone (as RIFT,
which was used for the SEOBNRv4PHM analysis, does not output that quantity). Additionally, following Sec. V D, the results presented
for GW190426_190642, GW190725_174728, GW190917_114630, and GW190926_050336 are taken from an analysis using the
IMRPhenomXPHM model only. A subset of the one-dimensional posterior distributions are visualized in Fig. 3. Two-dimensional
projections of the 90% credible regions in the M–q and M–χeff planes are shown in Figs. 4 and 5.

Event M (M⊙) M (M⊙) m1 (M⊙) m2 (M⊙) χeff DL (Gpc) z Mf (M⊙) χf ΔΩ (deg2) SNR

GW190403_051519 106.6þ26.7
−23.6 34.0þ15.1

−8.4 85.0þ27.8
−33.0 20.0þ26.3

−8.4 0.68þ0.16
−0.43 8.28þ6.72

−4.29 1.18þ0.73
−0.53 102.2þ26.3

−24.3 0.91þ0.05
−0.17 3900 7.6þ0.6

−1.1
GW190426_190642 182.3þ40.2

−35.7 76.0þ19.1
−17.4 105.5þ45.3

−24.1 76.0þ26.2
−36.5 0.23þ0.42

−0.41 4.58þ3.40
−2.28 0.73þ0.41

−0.32 172.9þ37.7
−33.6 0.77þ0.14

−0.16 4600 8.7þ0.4
−0.6

GW190725_174728 18.3þ7.4
−1.9 7.4þ0.5

−0.5 11.8þ10.1
−3.0 6.3þ2.1

−2.5 −0.04þ0.36
−0.16 1.03þ0.52

−0.43 0.20þ0.09
−0.08 17.6þ7.7

−1.8 0.65þ0.09
−0.07 2200 9.1þ0.4

−0.7
GW190805_211137 76.7þ19.5

−13.8 31.9þ8.8
−6.3 46.2þ15.4

−11.2 30.6þ11.8
−11.3 0.37þ0.29

−0.39 6.13þ3.72
−3.08 0.92þ0.43

−0.40 72.4þ18.2
−13.2 0.82þ0.09

−0.16 1600 8.1þ0.5
−0.7

GW190916_200658 68.0þ18.3
−13.1 26.9þ8.2

−5.4 43.8þ19.9
−12.6 23.3þ12.5

−10.0 0.20þ0.33
−0.31 4.94þ3.71

−2.38 0.77þ0.45
−0.32 65.0þ17.3

−12.6 0.74þ0.13
−0.24 2400 8.1þ0.3

−0.5
GW190917_114630 11.8þ3.0

−2.8 3.7þ0.2
−0.2 9.7þ3.4

−3.9 2.1þ1.1
−0.4 −0.08þ0.21

−0.43 0.72þ0.30
−0.31 0.15þ0.05

−0.06 11.6þ3.1
−2.9 0.42þ0.14

−0.05 1700 8.3þ0.5
−0.8

GW190925_232845 36.7þ3.6
−2.8 15.6þ1.1

−1.1 20.8þ6.5
−2.9 15.5þ2.5

−3.6 0.09þ0.16
−0.15 0.93þ0.46

−0.35 0.19þ0.08
−0.07 34.9þ3.5

−2.6 0.71þ0.06
−0.06 2900 9.7þ0.3

−0.6
GW190926_050336 61.9þ22.7

−12.0 24.4þ9.0
−4.9 41.1þ20.8

−12.5 20.4þ11.4
−8.2 −0.02þ0.25

−0.32 3.28þ3.40
−1.73 0.55þ0.44

−0.26 59.6þ22.1
−11.8 0.64þ0.14

−0.20 2000 8.1þ0.6
−0.8

2In GWTC-2, GW190521 was inferred to have a total mass of
163.9þ39.2

−23.5M⊙ and remnant mass of 156.3þ36.8
−22.4M⊙ [8].
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Similar to the compact objects reported in GWTC-2 [7,8],
the majority of the compact-object spins reported in GWTC-
2.1 have magnitudes consistent with zero. Two of the new
events show evidence for large BH spins. In the case of
GW190403_051519, 82% of the posterior probability lies in
a regionwhere at least one of the component spinmagnitudes
is above 0.8 whereas for GW190805_211137 this holds for
59% of the posterior probability.
For binaries with very unequal masses, measurements of

χeff can translate into strong measurement constraints of χ1,
the spin magnitude of the more massive object, whose spin
angularmomentumdominates over the secondary. This is the
case for GW190403_051519, whose primary dimensionless
spin is measured to be χ1 ¼ 0.89þ0.09

−0.31 . This represents the
most nearly extremal spin observed using GWs. Similarly,
GW190805_211137 is recovered with χ1 ¼ 0.75þ0.22

−0.59
and GW190917_114630 with χ1 ¼ 0.23þ0.63

−0.21 . Both
GW190403_051519 andGW190805_211137 are recovered
as strongly preferring large χ1, with the inferred posterior
distributions railing against the extremal BH-spin bound at
χ1 ¼ 1. Hence, we also report the one-sided 90% lower
bounds of χ1 > 0.69 for GW190403_051519 and χ1 > 0.29
for GW190805_211137. The posterior distributions for the
spin magnitudes and tilt angles for these three events are
shown in Fig. 6.

3. Three-dimensional localization

As the eight new events are all detected at relatively
modest SNRs, together with several identifications as high-
mass BBHs, the inferred luminosity distances DL are
generally larger than the binaries from GWTC-2 [7,8].
GW190403_051519 is identified as probably the most
distant event, with a recovered DL ¼ 8.28þ6.72

−4.29 Gpc corre-
sponding to a redshift z ¼ 1.18þ0.73

−0.53 approximately twice as

distant as the most distant events that were reported in
GWTC-2 [7,8] as also shown in Appendix A 2. In addition
GW190426_190642, GW190805_211137, GW190916_
200658 and GW190926_050336 all have inferred distances
comparable to, or larger than, GW190413_134308, further
highlighting the access to the distant Universe provided in
GWTC-2.1.
Another effect of the modest SNR of the new events is

their comparatively poor localization on the sky. The best
localized event is GW190805_211137 with a 90% credible
region of ΔΩ ¼ 1600 deg2. The credible intervals for the
inferred distances and sky areas are shown in Table VI. The
inferred localizations for all events are available as part of
the accompanying data release to this paper, detailed
further in Sec. VII.

4. Waveform comparisons: Model systematics

The use of both the IMRPhenomXPHM [57–60] and
SEOBNRv4PHM [61–63] models in the analyses of these
events are motivated by the need to capture, and account
for, potential differences in the inferred source parameters
caused by the different methods used in the constructions of
the models themselves. The vast majority of the posterior
distributions reported in this section are constructed
by combining an equal number of samples drawn from
each of the IMRPhenomXPHM and SEOBNRv4PHM
analyses [140]. For the majority of the eight new events,
the differences between the two single-model analyses, as
well as to the combined-model results, are found to be
comparable to the impact of model systematics effects
identified in GWTC-2 [7,8] being generally subdominant
to the statistical uncertainty caused by the noisy data.
For GW190403_051519 there are, however, slight dif-
ferences identified between the IMRPhenomXPHM and

FIG. 6. The dimensionless spin parameters χ⃗i ¼ cS⃗i=ðGm2
i Þ estimated for individual binary components of selected sources. The

radial distance of a given pixel on the left (right) of each disk, away from the center of the circle, corresponds to jχ⃗j for the more (less)
massive compact object. Each pixel’s angle from the vertical axis represents θLS, the angle between the spin vector S⃗ and the Newtonian
orbital angular momentum. All pixels have equal prior probability with the shading denoting the relative posterior probability of the
pixels, after marginalization over azimuthal angles. The events follow the same color scheme used in Fig. 3.
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SEOBNRv4PHM analyses, most noticeably in the shape
and structure of the marginal posterior distribution of
some of the recovered mass and spin parameters. In these
cases, the differences between analyses using either the
IMRPhenomXPHM or SEOBNRv4PHMmodels are domi-
nating over the other systematic uncertainties of the
analysis, such as the estimation of the noise PSD. A deeper
investigation into the broader impact of these model
systematic effects, and their impact on the inferred source
parameters for the population of GWevents presented here,
is left for a future study.

5. Comparison to 3-OGC

Out of the eight new events presented in this section,
GW190725_174728, GW190916_200658, GW190925_
232845 and GW190926_050336 were also indepen-
dently identified and analyzed as part of 3-OGC [17]
using the PyCBC Inference package [192] and the
IMRPhenomXPHM waveform model. We compare the
inferred source properties for these events as presented in
3-OGC [193] and, to minimize potential model syste-
matic effects, the IMRPhenomXPHM analysis performed
for GWTC-2.1 presented here. Overall, we find a broad
agreement between the two analyses. While there are
differences found in the two sets of posterior distributions,
they appear consistent within expectations from the differ-
ing choices of the analysis configurations and the assumed
prior distributions between the two analyses for low SNR
signals [194].

VI. ASTROPHYSICAL IMPLICATIONS

Our analysis reports eight new candidates with pastro >
0.5 in at least one pipeline. None of these candidates have
pastro equal to 1 (Table II). Four of them were found only by
a single analysis, and none were detected by all the
pipelines (Table II). As discussed above in Sec. III A,
pastro values are subject to statistical uncertainties, and are
also subject to uncertainties arising from the true rate and
distribution of signals. Such uncertainties are larger for
events which, if astrophysical, fall within populations with
few or zero significant detections. Here, we highlight such
uncertainties for specific candidates, and discuss possible
astrophysical implications under the hypothesis that the
candidates do originate from compact object mergers.
Parameter estimation indicates that two of the new can-

didates, GW190403_051519 and GW190426_190642,
if astrophysical, have sources with a large total mass
(≳100M⊙, Table VI). Both were found only by the
PyCBC-BBH, analysis with a low SNR and relatively
low pastro. They were also not recovered as significant
events in the focused search of O3 data for intermediate-
mass BH binaries [195]. Since there is only one significant
detection to date of a comparable BBH system, GW190521
[196,197], the calculation of pastro for these candidates is
subject to significant potential systematic error. These

events are confidently above the break mass in the broken
power-law mass distribution model, at 39.7þ20.3

−9.1 M⊙, or the
Gaussian in the POWER LAW + PEAK model at 33.1þ4.0

−5.6M⊙
[122,198,199]. The estimated primary component masses,
assuming astrophysical origin, are both above the lower
edge of the pair-instability mass gap mlow [200–203],
even considering the large uncertainties about its value
(≈40–70M⊙, [32–40]). Adopting a conservative estimate
of mlow ¼ 65M⊙, the primary component of GW190403_
051519 (m1 ¼ 85.0þ27.8

−33.0M⊙) has a probability 0.16 of
being below mlow with our standard mass prior.
Similarly, GW190426_190642’s secondary component
(m2 ¼ 76.0þ26.2

−36.5M⊙) has a probability of 0.30 of being
below mlow, while its primary component (m1 ¼
105.5þ45.3

−24.1M⊙) has a negligible probability of being below
mlow. The upper edge of the mass gap is even more
uncertain, with theoretical predictions suggesting mup ≈
120M⊙ [204,205]. The primary mass component of
GW190403_051519 (GW190426_190642) has a proba-
bility 0.021 (0.25) of being above this value ofmup. Thus, if
astrophysical, GW190403_051519 and GW190426_
190642 lie in the same group with GW190521; their
primary components might be either inside or above the
mass gap. Moreover, the estimated final mass of the merger
remnant of GW190426_190642 (Mf ¼ 172.9þ37.7

−33.6M⊙) is
in the intermediate-mass black hole regime (102–105M⊙).
These features are suggestive of a dynamical formation

channel, such as the hierarchical merger of smaller BHs
[206–217] or repeated stellar collisions in dense star
clusters [218–221]. In active galactic nuclei, the dense
gaseous disk surrounding the central BH also triggers the
hierarchical assembly of BHs [222–228]. Alternatively,
extreme gas accretion from a dense gaseous disk [229–231]
or from a stellar companion [232] might assist the growth
of BH mass above the pair-instability threshold. Finally,
primordial BHs might also have masses in the pair-
instability gap [233,234]. However, even the formation
of BHs in this mass range from stellar collapse cannot be
excluded, given the large uncertainties in stellar-evolution
models [36,39,40,235–237]. For example, very massive
(≳230M⊙) extremely metal-poor (Z < 10−4) stars might
turn into BHs with mass above the pair-instability gap
[238–241].
Parameter-estimation analysis indicates a large posi-

tive value of the effective inspiral spin χeff ¼ 0.68þ0.16
−0.43

and of the primary’s spin magnitude χ1 ¼ 0.89þ0.09
−0.31 for

GW190403_051519. From a theoretical perspective, BH
spin magnitudes are highly uncertain [235,242], with some
models [243,244] predicting very low spins (∼0.01) for
single BHs because of efficient angular momentum trans-
port in the stellar interior [245]. Observations of high-mass
x-ray binaries in the local Universe indicate that BH spins
can be nearly maximal [246,247], while the majority of
mergers in GWTC-2 are associated with low values of χeff ,
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with a slight preference for positive values [122]. Even if
single stars form BHs with low spins [244], BHs in binaries
may still develop high spins because of mass transfer [248],
tidal interactions [242,249,250], or chemically homo-
geneous evolution [251,252]. Alternatively, BHs born from
the merger of two smaller BHs are expected to have high
natal spins (∼0.7–0.9, [147,148,150]). This might suggest
that the primary component of GW190403_051519 is a
second-generation BH, which is also consistent with its
large mass [208,209,217,253,254]. However, the positive
effective inspiral spin χeff of GW190403_051519 indicates
a significant alignment of the spin vectors of (any of) the
two components with the orbital angular momentum vector
of the BBH. Nearly aligned spins are preferentially
associated with isolated binary evolution [255,256], while
dynamically formed binaries tend to have an isotropically
distributed spin orientations [257,258].
Finally, GW190403_051519 is associated with a com-

paratively small mass ratio q (Fig. 3). Such low values of
the mass ratio are unusual in isolated binary evolution,
especially for the chemically homogeneous evolution
[251,259] but also for the common-envelope scenario
[235,260–263]. In contrast, low mass ratios are expected
if the primary and secondary components are a second- and
a first-generation BH, respectively [211,212,214], or if the
primary BH is the result of a stellar merger in a young star
cluster [219].
Four of the other new candidates (GW190805_211137,

GW190916_200658, GW190925_232845, GW190926_
050336) fall in the mass range of the bulk of GWTC-2
BBHs, while the secondary component of GW190725_
174728 has a 0.18 probability of lying in the lower mass
gap (∼2–5M⊙). The existence of a lower mass gap
was inferred from observations of Galactic x-ray binaries
[264–266], but there are a few observations of BHs with
mass ≈3–4M⊙ in noninteracting binary systems [267,268]
and microlensing surveys find no evidence for a mass gap
between NSs and BHs [269,270]. GWTC-2 BBH obser-
vations also suggest a dearth of systems between 2.6M⊙
and 6M⊙ [122,271]. The only confirmed GW event in
GWTC-2 with a component in the lower mass gap is
GW190814 [41]. Numerical and theoretical models do not
exclude the formation of compact objects in this mass range
from a core-collapse supernova [272–275]. Other scenarios
to explain the formation of binary compact objects in this
mass range include mergers in multiple systems [276–279],
primordial BHs [233,280] and mass accretion onto a
neutron star [281].
Finally, GW190917_114630 has component masses con-

sistent with an NSBH (m1 ¼ 9.7þ3.4
−3.9M⊙,m2 ¼ 2.1þ1.1

−0.4M⊙),
but was identified only as a BBH candidate, withpNSBH ¼ 0
and pBBH ¼ 0.77, by the pipeline that detected it (GstLAL).
Since GW190426_152155 is a marginal candidate in this
catalog, due to its low pastro (Table IV), GW190917_114630
is the only high-probability candidatewithmass components

in the NSBH range. However, as discussed in Sec. IVA, had
it been classified as an NSBH to begin with, its pastro
measured by GstLAL would have been smaller due to the
lower foreground rate of NSBHs as compared toBBHs in the
detection pipelines, and not passed the threshold of 0.5
considered by the followup pipelines. As with the unusually
high-mass BBH candidates, the assignment of pastro for
NSBHs is subject to potential systematic error since no
NSBH events have been confidently detected in the data set
up to O3a used here, although there were NSBH discoveries
in O3b [67,134]. The masses and effective inspiral spin of
this candidate are consistent with prior expectations for
NSBH systems [260,282–288]. Inferring the impact on the
overall population of binary compact objects of the new
candidates, including those with non-negligible probability
of noise origin, requires a more involved analysis which is
beyond this scope of this work [289,290].

VII. CONCLUSION

We have presented GWTC-2.1, which includes results
from a refined search for CBCs in the first part of the third
observing run of the Advanced LIGO and Advanced Virgo
detectors. This is an extension to the previous GW catalog,
GWTC-2 [8], over the same data, and provides a deeper list
of GW candidates. The search we presented here was
carried out using three matched-filter pipelines, MBTA,
GstLAL, and PyCBC, and includes a list of candidates that
have a FAR less than 2 per day in any of the pipelines. We
provide detailed source properties of the eight events
that have pastro greater than 0.5 and were not present in
GWTC-2. In addition, the source properties of previously
reported events with pastro greater than 0.5 are presented in
the Appendix.
Out of the eight new candidates presented here, all events

have masses consistent with BBH sources with the excep-
tion of GW190917_114630, whose source masses are
consistent with being an NSBH (Sec. V D). If astrophysi-
cal, these events expand the scope of observed BBHs, with
several binaries inferred at larger distances than previous
detections and with both a new broader range of recovered
BH masses and the addition of two binaries with signifi-
cantly unequal masses. The primary components of two of
the new candidates (GW190403_051519 and GW190426_
190642) lie inside or, less likely, above the pair-instability
mass gap. GW190403_051519 also shows support for
high-spin, unequal masses, and remnant mass in the
intermediate-mass BH regime. These features are sug-
gestive of dynamical formation, by hierarchical BH
merger or by stellar collisions in dense stellar clusters or
active galactic nuclei. However, we cannot exclude that
GW190403_051519 and GW190426_190642 originated
from isolated binary systems, because of the large uncer-
tainties in the mass range of the pair-instability mass gap.
Among the new candidates, GW190725_174728 shows
some support for a secondary component mass in the lower
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mass gap (2 − 5M⊙). GW190917_114630, the only can-
didate with component masses consistent with an NSBH
was initially classified as a BBH by the search pipeline, and
therefore the pastro assigned to it is subject to systematics
due to uncertainty in classification.
The data products associated with GWTC-2.1 include

candidate information from relevant search pipeline(s) and
localizations for all events that pass a threshold of 2 per day
in any search pipeline. The information from each search
pipeline includes the template mass and spin parameters,
the SNR time series, chi-squared values, the time and phase
of coalescence in each detector, FAR, and pastro (Sec. III A).
These data can be found at Zenodo [104]. The source
localizations are computed using the rapid localization tool
BAYESTAR [291,292], which was also used to produce the
localizations in near real time during the observing runs
while sending out GW alerts. We also release the results of
the search pipelines running over simulated signal sets
classified as BNS, NSBH, and BBH [131] that were used to
calculate the sensitivities shown in Table V. For candidates
that have a pastro > 0.5, we perform followup parameter
estimation and also release the posterior samples associated
with these events. These are available via Zenodo [183].
Finally, the strain data for O3a used for the analyses in this
paper are also available [44,47].
The LVK have already announced the first observations

from NSBHs [134] in the data from O3b, and the catalog
that extends events up to O3b, GWTC-3 [67], has been
released. GWTC-3 adds 35 GW candidates with pastro
greater than 0.5 from O3b. O3 marks the most sensitive
GW data published upon so far. The LIGO, Virgo, and
KAGRA [293] detectors are currently offline and under-
going commissioning to enhance their sensitivities, and
plan to all collect data simultaneously during the fourth
observing run (O4) [68]. With further improvement in
sensitivities and planning for premerger BNS detections
[294–296], O4 offers improved prospects for GW and
multimessenger astronomy, and promises to build upon our
current knowledge of binary populations.
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performed with the GstLAL -based inspiral software
pipeline [48–50,298], with the MBTA pipeline [56,299],
and with the PyCBC [54,55,102,124] package. Estimates of
the noise spectra and glitch models were obtained using
BayesWave [93,96,300]. Source parameter estimation was
performed with the Bilby library [142,166] using the
DYNESTY nested sampling package [301], the RIFT
library [172–174] and the LALInference library [139].
PESummary was used to post-process and collate
parameter-estimation results [177]. The various stages of
the parameter-estimation analysis were managed with the
Asimov library [176]. Plots were prepared with Matplotlib

[302], SEABORN [303] and GWpy [88]. NumPy [304] and
SciPy [305] were used in the preparation of the manuscript.

APPENDIX: ESTIMATION OF SOURCE
PARAMETERS

1. Binary black holes from the first
and second observing runs

In order to provide a self-consistent set of source
properties, inferred using the state-of-the-art BBH wave-
form models described in Sec. VA, we have reanalyzed
the 10 BBH events observed during O1 and O2, and
reported in GWTC-1 [7]. We present results combining
samples from analyses using both the IMRPhenomXPHM
and SEOBNRv4PHM, with the exception of GW151226
which, as mentioned earlier in Sec. V D, was analyzed
using IMRPhenomXPHM only. As the BNS models
available at the time of GWTC-1 still can be considered
state-of-the-art in the NS-physics they describe, we have
elected to not reanalyze the BNS event GW170817 as part

of this study. For the source properties of GW170817, we
instead refer to GWTC-1 [7] and its accompanying data
release [306].
The source properties for the 10 BBH events from the O1

and O2 are reported in Table VII, with a selection of the one-
dimensionalmarginal posterior distributions shown in Fig. 7.
The two-dimensional projections on the M–q and M–χeff
planes are shown as light-gray contours in Figs. 4 and 5
respectively. The full 15-dimensional posterior distributions
are available as part of the public data release accompanying
this paper [183], as detailed further in Sec. VII.
Generally, the inferred source properties for these ten

BBHs are consistent with those presented in GWTC-1 [7],
but there are some new features worth highlighting. Where
most binaries have a nominal support for χeff ¼ 0,
GW151226 was in GWTC-1 identified to exclude this value
at> 90% probability [7,307], a conclusionwhich is strength-
ened further as of the analysis presented here in GWTC-2.1.
The other BBH in GWTC-1 with only marginal support for
χeff ¼ 0, GW170729, is now found to include support for
negative χeff in its 90% credible interval while also simulta-
neously preferring BH components with more unequal
masses relative to what was inferred in GWTC-1.
Previous independent analyses of these ten events with

the IMRPhenomXPHM model show broad consistency
with the results presented in this section [308].

2. Previously reported binaries from the first half
of the third observing run

The high-significance events from O3a are reported in
Table II. Out of these events, 36 were included in GWTC-2
[8] with its accompanying data release [309]. Again, to

FIG. 7. Marginal posterior distributions on the primary mass m1, secondary mass m2, mass ratio q, effective inspiral spin χeff and
luminosity distance DL for the 10 BBH events observed during O1 and O2. The vertical span for each region is constructed to be
proportional to the one-dimensional marginal posterior at a given parameter value for the corresponding event. The posterior
distributions are also represented numerically in terms of their one-dimensional median and 90% credible intervals in Table VII.
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ensure a self-consistent set of inferred source properties
available for all CBC events observed by Advanced LIGO
and Advanced Virgo, we provide a reanalysis of these 36
events using the BBH waveform models described in
Sec. VA. We present results combining samples from
analyses using both the IMRPhenomXPHM and
SEOBNRv4PHM, with the exception of GW190413_
052954, GW190413_134308, GW190421_213856,
GW190521, GW190602_175927, GW190719_215514,
GW190803_022701, GW190814, GW190828_063405,
GW190828_065509 and GW190929_012149 which, as

mentioned earlier in Sec. V D, were analyzed using
IMRPhenomXPHM only. As also described in Sec. VA,
for the BNS event GW190425, the IMRPhenomP_NRTidal
waveform model [65,66] was used. The analyses of these
events also used theGWstrain data described in Sec. II A, an
additional improvement over the analyses presented in
GWTC-2 [8]. For the events listed in Table I all analyses
made use of datawhich included glitch subtraction or a reduc-
tion in the bandwidth available for astrophysical inference.
The source properties for the 36 events from O3a

are reported in Table VIII, with a selection of the

TABLE VII. Median and 90% symmetric credible intervals for the one-dimensional marginal posterior distributions on selected
source parameters for the 10 BBH events observed during the O1 and O2. These binaries were reported in GWTC-1 [7]. The columns
show source total massM, chirp massM and component masses mi, dimensionless effective inspiral spin χeff , luminosity distance DL,
redshift z, final mass Mf, final spin χf , sky localization ΔΩ and the network matched-filter SNR. The sky localization is the area of the
90% credible region. All quoted results are calculated from a set of posterior samples drawn with equal weight from the
IMRPhenomXPHM and SEOBNRv4PHM analyses, with the exception of the SNRs that are taken from the IMRPhenomXPHM
analysis alone (as RIFT, which was used for the SEOBNRv4PHM analysis, does not output that quantity). Additionally, following
Sec. V D, the results presented for GW151226 are taken from an analysis using the IMRPhenomXPHMmodel only. A subset of the one-
dimensional posterior distributions are visualized in Fig. 7. Two-dimensional projections of the 90% credible regions in the M–q and
M–χeff planes are shown in gray in Figs. 4 and 5.

Event M (M⊙) M (M⊙) m1 (M⊙) m2 (M⊙) χeff DL (Gpc) z Mf (M⊙) χf ΔΩ (deg2) SNR

GW150914 64.5þ3.7
−3.2 27.9þ1.7

−1.5 34.6þ4.4
−2.6 30.0þ2.9

−4.6 −0.04þ0.12
−0.14 0.47þ0.14

−0.16 0.10þ0.03
−0.03 61.5þ3.4

−2.9 0.68þ0.05
−0.05 250 26.05þ0.1

−0.2
GW151012 38.8þ10.3

−4.7 15.6þ2.3
−1.5 24.8þ14.5

−6.3 13.6þ4.5
−4.9 0.12þ0.28

−0.21 1.00þ0.64
−0.49 0.20þ0.11

−0.09 37.1þ10.6
−4.6 0.69þ0.13

−0.13 1700 9.3þ0.3
−0.5

GW151226 21.7þ8.3
−1.6 8.9þ0.3

−0.3 14.2þ11.1
−3.6 7.5þ2.4

−2.8 0.20þ0.23
−0.08 0.46þ0.16

−0.20 0.10þ0.03
−0.04 20.7þ8.6

−1.6 0.75þ0.12
−0.05 950 12.7þ0.3

−0.4
GW170104 49.6þ4.7

−3.6 21.1þ2.0
−1.5 28.7þ6.6

−4.2 20.8þ4.1
−4.7 −0.04þ0.15

−0.19 1.11þ0.39
−0.48 0.22þ0.07

−0.09 47.5þ4.5
−3.4 0.67þ0.06

−0.08 1000 13.8þ0.2
−0.3

GW170608 18.5þ2.0
−0.6 7.9þ0.2

−0.2 10.6þ4.0
−1.4 7.8þ1.2

−1.9 0.05þ0.13
−0.05 0.34þ0.12

−0.13 0.07þ0.03
−0.03 17.7þ2.1

−0.6 0.69þ0.03
−0.03 380 15.3þ0.2

−0.3
GW170729 84.4þ15.0

−10.9 34.6þ7.0
−5.7 54.7þ12.7

−12.8 30.2þ11.9
−10.2 0.29þ0.25

−0.33 2.49þ1.69
−1.23 0.44þ0.24

−0.19 80.3þ13.5
−10.2 0.78þ0.09

−0.22 830 10.7þ0.4
−0.5

GW170809 58.5þ5.3
−3.9 24.8þ2.2

−1.6 34.1þ8.0
−5.3 24.2þ4.8

−5.3 0.07þ0.17
−0.17 1.07þ0.31

−0.38 0.21þ0.05
−0.07 55.7þ5.0

−3.6 0.71þ0.08
−0.08 260 12.8þ0.2

−0.3
GW170814 56.0þ3.5

−3.0 24.1þ1.4
−1.2 30.9þ5.4

−3.3 24.9þ3.0
−4.0 0.08þ0.13

−0.12 0.61þ0.16
−0.23 0.13þ0.03

−0.05 53.2þ3.2
−2.7 0.72þ0.07

−0.06 92 17.7þ0.2
−0.3

GW170818 62.5þ5.3
−4.6 26.8þ2.3

−2.0 34.8þ6.5
−4.2 27.6þ4.1

−5.1 −0.06þ0.19
−0.22 1.08þ0.43

−0.41 0.21þ0.07
−0.07 59.7þ4.9

−4.2 0.68þ0.08
−0.08 35 12.0þ0.3

−0.4
GW170823 67.0þ10.3

−7.2 28.6þ4.5
−3.3 38.3þ9.5

−6.2 29.0þ6.5
−7.8 0.05þ0.21

−0.22 1.97þ0.84
−0.93 0.36þ0.13

−0.15 63.9þ9.6
−6.8 0.71þ0.08

−0.10 1800 12.2þ0.2
−0.3

TABLE VIII. Median and 90% symmetric credible intervals for the one-dimensional marginal posterior distributions on selected
source parameters for the 36 events from Table II that were not reported in Table VI. The columns show source total massM, chirp mass
M and component masses mi, dimensionless effective inspiral spin χeff , luminosity distance DL, redshift z, final massMF final spin χf ,
sky localization ΔΩ and the network matched-filter SNR. The sky localization is the area of the 90% credible region. The results for the
BBHs are calculated from a set of posterior samples drawn with equal weight from the IMRPhenomXPHM and SEOBNRv4PHM
analyses, with the exception of the SNRs that are taken from the IMRPhenomXPHM analysis alone (as RIFT, which was used for the
SEOBNRv4PHM analysis, does not output that quantity). Additionally, following Sec. V D, the results for GW190413_052954,
GW190413_134308, GW190421_213856, GW190521, GW190602_175927, GW190719_215514, GW190803_022701, GW190814,
GW190828_063405, GW190828_065509, and GW190929_012149 are from analyses using the IMRPhenomXPHM model only. For
GW190425, we report results from the high-spin (jχ⃗1j < 0.89) analysis, and since the calculation of the BH remnant properties is only
valid for BBH model input those properties are excluded for this BNS signal. A subset of the one-dimensional posterior distributions are
visualized in Fig. 8. Two-dimensional projections of the 90% credible regions in the M–q and M–χeff planes are shown in gray in
Figs. 4 and 5.

Event M (M⊙) M (M⊙) m1 (M⊙) m2 (M⊙) χeff DL (Gpc) z Mf (M⊙) χf ΔΩ (deg2) SNR

GW190408_181802 43.4þ4.2
−3.0 18.5þ1.9

−1.2 24.8þ5.4
−3.5 18.5þ3.3

−4.0 −0.03þ0.13
−0.17 1.54þ0.44

−0.62 0.29þ0.07
−0.11 41.4þ3.9

−2.9 0.67þ0.06
−0.07 290 14.6þ0.2

−0.3
GW190412 36.8þ4.7

−4.4 13.3þ0.5
−0.5 27.7þ6.0

−6.0 9.0þ2.0
−1.4 0.21þ0.12

−0.13 0.72þ0.24
−0.22 0.15þ0.04

−0.04 35.6þ4.8
−4.5 0.66þ0.05

−0.04 240 19.8þ0.2
−0.3

GW190413_052954 58.0þ10.6
−7.8 24.5þ4.6

−3.4 33.7þ10.4
−6.4 24.2þ6.5

−7.0 −0.04þ0.27
−0.32 3.32þ1.91

−1.40 0.56þ0.25
−0.21 55.5þ10.1

−7.3 0.67þ0.10
−0.12 650 9.0þ0.4

−0.8

(Table continued)
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one-dimensional marginal posterior distributions shown in
Fig. 8. The two-dimensional projections on the M–q and
M–χeff planes are shown as light-gray contours in Figs. 4
and 5 respectively. The full multidimensional posterior
distributions are available as part of the public data release
accompanying this paper [183], as detailed further in
Sec. VII.
Similar to the results presented in Sec. A 1, the vast

majority of the inferred source properties for these 36
binaries are consistent with those presented in GWTC-2
[8]. For a subset of binaries, their inferred masses have
changed nominally with GW190706_222641 as of the
GWTC-2.1 analysis preferring a higher total mass whereas
both GW190521 and GW190929_012149 now are recov-
ered as less massive than in GWTC-2. Additionally,
GW190929_012149 as recovered in GWTC-2 had a

comparatively broad and multimodal posterior distribution
for its primary mass. The higher-mass mode is no longer
present in the GWTC-2.1 analysis, which together with the
secondary mass of GW190929_012149 remaining largely
unchanged between the GWTC-2 and GWTC-2.1 analyses
also leads to larger support for a more equal-mass binary.
On the other hand, we now identify GW190707_093326,
GW190708_232457 and GW190930_133541 more pre-
dominantly with an unequal q distribution as compared to
the broad support, with stronger preference for equal
masses, reported in GWTC-2. Finally, where in GWTC-
2 GW190521 was identified with a unimodal q posterior
distribution, GWTC-2.1 now also supports an additional
subdominant mode at more unequal masses.
A more direct comparison between the source properties

for the 36 events originally reported in GWTC-2 [8], with

TABLE VIII. (Continued)

Event M (M⊙) M (M⊙) m1 (M⊙) m2 (M⊙) χeff DL (Gpc) z Mf (M⊙) χf ΔΩ (deg2) SNR

GW190413_134308 81.3þ16.8
−11.8 33.3þ7.8

−6.3 51.3þ16.6
−12.6 30.4þ11.7

−12.7 −0.01þ0.28
−0.38 3.80þ2.48

−1.83 0.62þ0.32
−0.26 78.0þ16.1

−11.5 0.68þ0.12
−0.18 630 10.6þ0.4

−0.5
GW190421_213856 73.6þ13.2

−9.5 31.4þ6.0
−4.6 42.0þ10.1

−7.4 32.0þ8.3
−9.8 −0.10þ0.21

−0.27 2.59þ1.49
−1.24 0.45þ0.21

−0.19 70.5þ12.4
−9.0 0.66þ0.09

−0.12 1200 10.7þ0.2
−0.4

GW190425 3.4þ0.3
−0.1 1.44þ0.02

−0.02 2.1þ0.5
−0.4 1.3þ0.3

−0.2 0.07þ0.07
−0.05 0.15þ0.08

−0.06 0.03þ0.02
−0.01 � � � � � � 8700 12.4þ0.4

−0.4
GW190503_185404 69.4þ10.1

−8.6 29.3þ4.5
−4.4 41.3þ10.3

−7.7 28.3þ7.5
−9.2 −0.05þ0.23

−0.30 1.52þ0.63
−0.60 0.29þ0.10

−0.10 66.5þ9.4
−7.9 0.66þ0.09

−0.15 100 12.2þ0.2
−0.4

GW190512_180714 35.8þ4.1
−3.5 14.6þ1.4

−0.9 23.2þ5.6
−5.6 12.5þ3.5

−2.6 0.02þ0.13
−0.14 1.46þ0.51

−0.59 0.28þ0.08
−0.10 34.3þ4.1

−3.4 0.65þ0.06
−0.07 230 12.7þ0.3

−0.4
GW190513_205428 54.4þ9.3

−6.7 21.8þ3.8
−2.2 36.0þ10.6

−9.7 18.3þ7.4
−4.7 0.16þ0.29

−0.22 2.21þ0.99
−0.81 0.40þ0.14

−0.13 52.1þ8.8
−6.6 0.71þ0.13

−0.13 450 12.5þ0.3
−0.4

GW190514_065416 69.3þ19.8
−12.1 29.1þ8.1

−5.4 40.9þ17.3
−9.3 28.4þ10.0

−10.1 −0.08þ0.29
−0.35 3.89þ2.61

−2.07 0.64þ0.33
−0.30 66.4þ19.0

−11.5 0.66þ0.12
−0.16 3400 8.0þ0.3

−0.6
GW190517_055101 64.1þ9.9

−9.8 26.5þ4.0
−4.2 39.2þ13.9

−9.2 24.0þ7.4
−7.9 0.49þ0.21

−0.28 1.79þ1.75
−0.88 0.33þ0.26

−0.15 60.1þ9.9
−9.4 0.87þ0.05

−0.07 510 10.8þ0.5
−0.6

GW190519_153544 105.6þ14.4
−13.9 44.3þ6.8

−7.5 65.1þ10.8
−11.0 40.8þ11.5

−12.7 0.33þ0.20
−0.24 2.60þ1.72

−0.96 0.45þ0.24
−0.15 100.0þ13.0

−12.9 0.79þ0.07
−0.12 570 15.9þ0.2

−0.3
GW190521 153.1þ42.2

−16.2 63.3þ19.6
−14.6 98.4þ33.6

−21.7 57.2þ27.1
−30.1 −0.14þ0.50

−0.45 3.31þ2.79
−1.80 0.56þ0.36

−0.27 147.4þ40.0
−16.0 0.62þ0.21

−0.23 1000 14.3þ0.5
−0.4

GW190521_074359 76.3þ7.0
−5.9 32.8þ3.2

−2.8 43.4þ5.8
−5.5 33.4þ5.2

−6.8 0.10þ0.13
−0.13 1.08þ0.58

−0.53 0.21þ0.10
−0.10 72.6þ6.5

−5.4 0.71þ0.06
−0.06 470 25.9þ0.1

−0.2
GW190527_092055 58.1þ18.1

−8.8 23.9þ6.8
−3.9 35.6þ18.7

−8.0 22.2þ9.0
−8.7 0.10þ0.22

−0.22 2.52þ2.08
−1.23 0.44þ0.29

−0.19 55.5þ17.9
−8.5 0.71þ0.10

−0.16 3500 8.0þ0.4
−0.9

GW190602_175927 115.6þ19.2
−14.8 48.0þ9.5

−9.7 71.8þ18.1
−14.6 44.8þ15.5

−19.6 0.12þ0.25
−0.28 2.84þ1.93

−1.28 0.49þ0.26
−0.20 110.5þ17.9

−13.9 0.72þ0.11
−0.17 740 13.2þ0.2

−0.3
GW190620_030421 92.7þ18.5

−13.2 38.1þ8.5
−7.2 58.0þ19.2

−13.3 35.0þ13.1
−14.5 0.34þ0.22

−0.29 2.91þ1.71
−1.32 0.50þ0.23

−0.20 88.0þ17.2
−12.4 0.80þ0.07

−0.15 7700 12.1þ0.3
−0.4

GW190630_185205 59.4þ4.7
−4.8 25.1þ2.2

−2.1 35.1þ6.5
−5.5 24.0þ5.5

−5.2 0.10þ0.14
−0.13 0.87þ0.53

−0.36 0.18þ0.09
−0.07 56.6þ4.4

−4.5 0.70þ0.06
−0.07 670 16.4þ0.2

−0.3
GW190701_203306 94.3þ12.0

−9.5 40.2þ5.4
−5.0 54.1þ12.6

−8.0 40.5þ8.7
−12.1 −0.08þ0.23

−0.31 2.09þ0.77
−0.74 0.38þ0.11

−0.12 90.2þ11.2
−8.9 0.66þ0.09

−0.13 45 11.2þ0.2
−0.4

GW190706_222641 112.6þ27.4
−16.8 45.6þ13.0

−9.1 74.0þ20.1
−16.9 39.4þ18.4

−15.4 0.28þ0.25
−0.31 3.63þ2.60

−2.00 0.60þ0.33
−0.29 107.3þ25.2

−15.9 0.78þ0.09
−0.19 2600 13.4þ0.2

−0.4
GW190707_093326 20.1þ1.7

−1.2 8.4þ0.6
−0.4 12.1þ2.6

−2.0 7.9þ1.6
−1.3 −0.04þ0.10

−0.09 0.85þ0.34
−0.40 0.17þ0.06

−0.08 19.2þ1.7
−1.2 0.66þ0.03

−0.03 1200 13.1þ0.2
−0.4

GW190708_232457 31.4þ2.8
−2.2 13.1þ0.9

−0.6 19.8þ4.3
−4.3 11.6þ3.1

−2.0 0.05þ0.10
−0.10 0.93þ0.31

−0.39 0.19þ0.06
−0.07 30.1þ2.9

−2.1 0.68þ0.04
−0.05 11000 13.4þ0.2

−0.3
GW190719_215514 57.2þ38.4

−11.6 22.8þ8.3
−4.3 36.6þ42.1

−11.1 19.9þ10.0
−9.3 0.25þ0.33

−0.32 3.73þ3.12
−2.07 0.61þ0.39

−0.30 54.5þ38.3
−11.1 0.76þ0.13

−0.18 3600 7.9þ0.3
−0.7

GW190720_000836 21.8þ3.8
−2.0 9.0þ0.4

−0.8 14.2þ5.6
−3.3 7.5þ2.2

−1.8 0.19þ0.14
−0.11 0.77þ0.65

−0.26 0.16þ0.11
−0.05 20.8þ3.9

−2.0 0.71þ0.05
−0.05 260 10.9þ0.3

−0.8
GW190727_060333 68.8þ10.2

−7.8 29.4þ4.6
−3.7 38.9þ8.9

−6.0 30.2þ6.5
−8.3 0.09þ0.25

−0.27 3.07þ1.30
−1.23 0.52þ0.18

−0.18 65.4þ9.5
−7.3 0.73þ0.09

−0.11 380 11.7þ0.2
−0.5

GW190728_064510 20.7þ4.2
−1.4 8.6þ0.6

−0.3 12.5þ6.9
−2.3 8.0þ1.7

−2.6 0.13þ0.19
−0.07 0.88þ0.26

−0.38 0.18þ0.05
−0.07 19.7þ4.4

−1.4 0.71þ0.04
−0.04 400 13.1þ0.3

−0.4
GW190731_140936 70.7þ16.3

−11.4 29.7þ7.4
−5.3 41.8þ12.7

−9.1 29.0þ10.2
−9.9 0.07þ0.28

−0.25 3.33þ2.35
−1.77 0.56þ0.31

−0.26 67.4þ15.3
−10.8 0.71þ0.12

−0.14 3600 8.8þ0.3
−0.4

GW190803_022701 65.0þ12.0
−8.1 27.6þ5.4

−3.8 37.7þ9.8
−6.7 27.6þ7.6

−8.5 −0.01þ0.23
−0.28 3.19þ1.63

−1.47 0.54þ0.22
−0.22 62.1þ11.2

−7.6 0.68þ0.09
−0.12 1000 9.3þ0.3

−0.5
GW190814 25.9þ1.3

−1.3 6.11þ0.06
−0.05 23.3þ1.4

−1.4 2.6þ0.1
−0.1 0.00þ0.07

−0.07 0.23þ0.04
−0.05 0.05þ0.01

−0.01 25.7þ1.3
−1.3 0.28þ0.03

−0.03 22 25.3þ0.1
−0.2

GW190828_063405 57.2þ7.9
−4.3 24.6þ3.6

−2.0 31.9þ5.4
−4.1 25.8þ4.9

−5.3 0.15þ0.15
−0.16 2.07þ0.65

−0.92 0.38þ0.10
−0.15 54.3þ7.3

−4.0 0.74þ0.07
−0.07 340 16.5þ0.2

−0.3
GW190828_065509 34.3þ5.2

−4.3 13.4þ1.4
−1.0 23.7þ6.8

−6.7 10.4þ3.8
−2.2 0.05þ0.16

−0.17 1.54þ0.69
−0.65 0.29þ0.11

−0.11 33.0þ5.3
−4.3 0.64þ0.08

−0.08 590 10.2þ0.4
−0.5

GW190910_112807 78.0þ9.3
−9.1 33.5þ4.2

−4.1 43.8þ7.6
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FIG. 8. Marginal posterior distributions on the primary mass m1, secondary mass m2, mass ratio q, effective inspiral spin χeff and
luminosity distance DL for the 36 events from Table II that were not shown in Fig. 3. The vertical span for each region is constructed to
be proportional to the one-dimensional marginal posterior at a given parameter value for the corresponding event. The posterior
distributions are also represented numerically in terms of their one-dimensional median and 90% credible intervals in Table VIII.
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FIG. 9. Marginal posterior distributions of the primary mass m1, secondary mass m2, mass ratio q, effective inspiral spin χeff
and luminosity distance DL for the 36 events from Table II that were not shown in Fig. 3. The top halves of each distribution match the
results also presented in Fig. 8, with the bottom halves representing the analysis from the previous GWTC-2 [8,309]. The vertical span
for each region is constructed to be proportional to the one-dimensional marginal posterior at a given parameter value for the
corresponding event.
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its associated public data release [309], and the analysis
presented in this section is presented in Fig. 9. The main
differences between the two sets of analyses were already
presented in Sec. V, but where it is important to high-
light the differing choices of waveform models used. As
detailed in Sec. VA, the GWTC-2.1 analysis uses the
same two models (IMRPhenomXPHM [57–60] and
SEOBNRv4PHM [61–63]) for inferring the source proper-
ties of all BBHs whereas GWTC-2 makes use of a much
broader set of models with significant variability between
the analysis of specific events (the specific waveform
model choices are laid out in Sec. VA and Table III of
GWTC-2 [8]). These differences make the comparison
presented in Fig. 9 more complicated than between two
consistent sets of waveforms, but it nonetheless provides a
measure for the evolution and improvement of the inference
of the source properties of the observed events with the
newer and more self-consistent analysis presented in
GWTC-2.1 as the preferred results.

Independent results with the IMRPhenomXPHM model
for many of these events were previously presented in
3-OGC [17]; other groups have also presented results with
either the IMRPhenomXPHM, SEOBNRv4PHM or other
precessing higher-mode models for, most prominently, the
events GW190412 [310–313] and GW190521 [314–317].
While there is general agreement for the overall inferred
source properties from many of these studies, there are
significant differences present between them. These
differences can however, as also explicitly stated in the
studies themselves, be predominantly attributed to different
prior assumptions or analysis configurations across the
spread of the individual studies, in addition to the variance
induced by waveform differences. This further highlights
the need for the clear and public dissemination of both the
exact analysis configurations used and the generated data-
sets containing the source properties inferred in order to
encourage reproducibility and further model comparisons,
especially as more events are added to the population of
observed CBCs.
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