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ABSTRACT
Introduction  Loss of blood-brain barrier (BBB) integrity is 
hypothesised to be one of the earliest microvascular signs 
of Alzheimer’s disease (AD). Existing BBB integrity imaging 
methods involve contrast agents or ionising radiation, and 
pose limitations in terms of cost and logistics. Arterial 
spin labelling (ASL) perfusion MRI has been recently 
adapted to map the BBB permeability non-invasively. The 
DEveloping BBB-ASL as a non-Invasive Early biomarker 
(DEBBIE) consortium aims to develop this modified 
ASL-MRI technique for patient-specific and robust BBB 
permeability assessments. This article outlines the study 
design of the DEBBIE cohorts focused on investigating 
the potential of BBB-ASL as an early biomarker for AD 
(DEBBIE-AD).
Methods and analysis  DEBBIE-AD consists of a 
multicohort study enrolling participants with subjective 
cognitive decline, mild cognitive impairment and AD, as 
well as age-matched healthy controls, from 13 cohorts. 
The precision and accuracy of BBB-ASL will be evaluated 
in healthy participants. The clinical value of BBB-ASL will 
be evaluated by comparing results with both established 
and novel AD biomarkers. The DEBBIE-AD study aims to 
provide evidence of the ability of BBB-ASL to measure BBB 
permeability and demonstrate its utility in AD and AD-
related pathologies.
Ethics and dissemination  Ethics approval was obtained 
for 10 cohorts, and is pending for 3 cohorts. The results of 
the main trial and each of the secondary endpoints will be 
submitted for publication in a peer-reviewed journal.

INTRODUCTION
Ageing-related cognitive impairment has 
emerged as one of the major public health 
challenges of our time, with Alzheimer’s 
disease (AD) being one of the primary 
causes.1 While the diagnosis of AD can be 
made based on biomarkers for amyloid-β 
(Aβ) plaques and τ tangles alone,2 3 other 
biomarkers are still needed to help unravel 
the complex pathological cascade of AD.4–7 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ DEveloping BBB-ASL as a non-Invasive Early 
biomarker-Alzheimer’s disease (DEBBIE-AD) is a 
large prospective observational study that uniquely 
focuses on testing a single promising imaging bio-
marker in multiple cohorts.

	⇒ The outcomes of DEBBIE-AD may gain insights into 
the underlying mechanisms of cognitive impairment 
and may even present a novel imaging biomarker 
for disease prediction.

	⇒ Although most research questions can be addressed 
within individual cohorts, the need for harmonisation 
may arise to ensure consistency and comparability.

	⇒ Factors including patient motion and varying levels 
of atrophy may affect the acquisition and image 
analysis, but it is unsure yet to what extent the im-
age quality will be degraded.
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Novel biomarkers may help to improve prognosis and AD 
subtype stratification and eventually monitor the effects 
of potential disease-modifying treatments.8

One of the earliest microvascular observations in the 
pathogenesis of AD and related dementias is the loss of 
integrity of the blood-brain barrier (BBB).9 10 The BBB is 
a cellular structure that protects the brain by regulating 
the transport of molecules between the blood and the 
interstitial fluid in the brain.11 While BBB dysfunction in 
AD has been recognised for some time, its importance in 
neurodegenerative diseases has recently been redefined 
as a potential biomarker implicated in vascular, inflam-
mation and glymphatic pathways of AD pathogenesis.12 13

Encouraged by promising findings of altered albumin 
cerebrospinal fluid (CSF)/serum ratio in AD,14 novel 
BBB imaging biomarkers may uncover spatial patterns of 
BBB vulnerability in the brain. Compared with invasive 
methods to probe BBB integrity, such as positron emis-
sion tomography (PET) with radioactive isotopes and 
dynamic contrast-enhanced (DCE) MRI with gadolinium 
chelated agents, arterial spin labelling (ASL) perfusion 
MRI is fully non-invasive as well as cost-effective and easy 
to use. ASL uses magnetically labelled blood water as an 
endogenous tracer and can be extended to quantify BBB 
water exchange dynamics by separating the ASL signal 
into intravascular and extravascular compartments based 
on differences in the MRI signal characteristics of the two 
compartments. The BBB-ASL technique probes to quan-
tify BBB water permeability and potentially employ it as a 
new biomarker of BBB dynamics.

Therefore, the DEveloping BBB-ASL as a non-Invasive 
Early biomarker (DEBBIE) consortium was initiated in 
2020 through the Joint Programming Neurodegenerative 
Disease funded project ‘Novel imaging and brain stimu-
lation methods and technologies related to neurodegen-
erative diseases’. Here, we describe the DEBBIE-AD study 
design to investigate the clinical value of BBB-ASL as an 
early biomarker of AD.

Objectives
Our study design is based on specific methodological and 
clinical research questions (RQ1A-C and RQ2A-C, respec-
tively, as defined below).

Reproducibility (RQ1A)
Is the BBB water permeability measured with BBB-ASL repro-
ducible in healthy subjects? The within-subject coefficient 
of variation of ASL cerebral blood flow (CBF) has been 
established to be around 10–20%, and similar repro-
ducibility was found for the gold standard CBF acqui-
sition technique oxygen-15-labelled water (15O-H2O) 
PET.15 16 Nevertheless, the reproducibility of BBB-ASL 
measurements still needs to be established. One pilot 
study17 has shown encouraging BBB-ASL reproduc-
ibility in a cohort of 10 healthy volunteers. RQ1A will 
investigate the reproducibility of BBB-ASL in a larger 
cohort of healthy volunteers (n=50). Additionally, we 

aim to compare the two most-used BBB-ASL acquisition 
techniques: multi-echo (ME) and diffusion-weighted 
(DW) ASL.17 18

Accuracy (RQ1B)
What is the accuracy of BBB-ASL compared with PET in 
measuring BBB water permeability? Currently, the measure-
ment of blood flow with 15O-H2O-PET and 11C-buta-
nol-PET is considered the reference standard for in vivo 
BBB water permeability measurements. 11C-butanol is 
freely diffusible through the BBB, and, in contrast, water 
transport is mediated by aquaporin-4 (AQP-4) channels.19 
By comparing water permeability values derived by BBB-
ASL with PET acquired with a simultaneous PET-MRI 
device, we will investigate the accuracy of our biomarker.

Normal variability (RQ1C)
What is the normal range of BBB-ASL derived values across 
age and sex in a cognitively healthy cohort? Haemodynamic 
parameters such as CBF and arterial transit time (ATT) 
are known to have high physiological variability across 
healthy volunteers.20 CBF is not only known to have short-
term variability related to physiological changes such 
as caffeine and exercise21 but also changes significantly 
with age and sex.22 23 This variability may impact the BBB-
ASL values in older adults. Thus, to identify abnormal 
patterns of BBB water permeability in pathological status, 
the normal variability of BBB water permeability measure-
ments needs to be established in age and by sex.

Patients versus controls (RQ2A)
Can BBB-ASL differentiate patients with AD from healthy 
controls? Increased and decreased CBF patterns have 
already been recognised for both AD and prodromal AD 
stages.24 Additionally, ATT estimates have been shown to 
help differentiate patients with AD and controls, even 
when PET was already present in the model.25 For RQ2A, 
we will investigate if BBB water permeability differs 
between patients with AD and healthy controls in both 
regions of interest and pattern-based analysis.

BBB-ASL versus established AD biomarkers (RQ2B)
Does BBB-ASL correlate with current AD biomarkers? Recent 
studies have found associations between the BBB-
breakdown marker CSF/blood albumin ratio and Aβ 
deposition,26 suggesting that BBB breakdown may play 
a role in amyloid-related AD pathophysiology. The 
accepted clinical biomarkers of AD are defined mainly 
by Aβ and τ pathology (neurofibrillary tangles).3 These 
biomarkers can also be used to stage patients across 
the AD pathophysiology.27 28 Furthermore, apolipopro-
tein E-4 (APOE-4) is established as the most prominent 
genetic risk factor of AD. Therefore, we will investigate 
associations of BBB water permeability with more estab-
lished AD biomarkers: Aβ, τ, cortical atrophy and robust 
risk factors such as APOE-4, aiming to localise BBB-ASL 
alterations in the AD continuum.29
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BBB-ASL in novel AD pathways (RQ2C)
Is BBB-ASL associated with vascular, inflammation and glym-
phatic AD markers? Cardiovascular risk factors and neuroin-
flammatory markers have been shown to accelerate BBB 
dysfunction as well as AD pathophysiology,7 30 31 and 
investigating small vessel disease (SVD) in relation to AD 
has been gaining attention.32 33 Furthermore, activated 
microglia as a neuroinflammatory response has been 
found in patients with AD,34 and BBB breakdown has 
been correlated with activated microglia and cognitive 
decline in older adults35 as well as in patients with SVD.36 
Additionally, compromised functioning of the glymphatic 
system has been correlated with AD,37 impairing Aβ 
and toxin clearance. Furthermore, disturbed sleep and 
increased wakefulness have been found to acutely elevate 
Aβ production and impede Aβ clearance,38 39 concluding 
that unstable sleep is associated with an increased risk 
of AD. We will investigate the associations of cardiovas-
cular and cerebrovascular, neuroinflammatory and sleep 
disturbance factors with BBB water permeability.

BACKGROUND
The blood-brain barrier
The BBB is a cellular structure that tightly regulates the 
transport of molecules between the blood and the central 
nervous system.11 At the cellular level, the BBB comprises 
continuous endothelial cells surrounded by pericytes, 
smooth muscle cells, astrocytes and microglia (figure 1), 
constituting the neurovascular unit. In a healthy and 
intact BBB, the endothelial cells are held together by 
tight junctions, eliminating paracellular transport across 
the BBB. While small lipophilic molecules, such as O2, 
can passively diffuse through the cell membrane, water 

and small ions are transported through dedicated chan-
nels regulating their exchange. AQP-4 channels are 
responsible for water transport and play an essential role 
in the glymphatic system of the brain.40

Measuring the permeability of the BBB to water with ASL-MRI
BBB imaging with ASL may be a viable alternative to 
address the aforementioned shortcomings of PET due 
to its non-invasiveness by using magnetically labelled 
blood water as an endogenous contrast agent. A detailed 
explanation of ASL can be found elsewhere.41 Briefly, 
the water of the blood in the vertebral and internal 
carotids is magnetically labelled. When the labelled water 
reaches the microvasculature, at any given time—post-
labelling delay (PLD)—a fraction of the label remains 
in the intravascular compartment, and a fraction passes 
the BBB and becomes part of the interstitial fluid, that 
is, the extravascular compartment.42 43 Similarly to DCE, 
the measured MR signal can originate from the intravas-
cular and extravascular compartments. Various charac-
teristics of these two compartments, such as the diffusion 
coefficient44 and T2 time,43 can be measured by either 
DW- or ME-ASL, respectively, to estimate the contribu-
tion of each compartment to the total signal and the 
exchange time between these compartments that char-
acterise the BBB permeability to water. If the labelled 
water molecules remain within the blood compartment 
without crossing the BBB, they will retain the diffusion 
and T2 relaxation properties of blood. Conversely, if 
these labelled water molecules cross the BBB, they will 
assume the properties of the grey matter. By employing 
various diffusion gradients (DW-ASL) or acquiring data 
from multiple echo times (ME-ASL), it becomes possible 
to characterise these two compartments and estimate the 

Figure 1  Schematic representation of the blood-brain barrier. Adapted with permission from Moyaert et al.68 CNS, central 
nervous system.
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amount of water that has traversed from the blood to the 
brain parenchyma. Previous DW-ASL and ME-ASL studies 
have shown promising results for measuring this intra/
extravascular compartment ratio in patients who had a 
stroke and animals.45–47 The water exchange time (Tex) 
corresponds to the average time it takes for the labelled 
water at the capillary bed to transit from the intravascular 
to extravascular space by crossing the BBB. Thus rela-
tively high/low Tex represents a relatively low/high BBB 
permeability to water, respectively.

Relevance in AD
The focus on AD research is mostly based on the disease-
specific molecular biomarkers amyloid (A) and τ (T) 
within the AT(N) framework.3 The new NIA-AA criteria 
for AD diagnosis consider biomarkers of cerebrovascular 
health (V), by incorporating MRI findings of cerebro-
vascular disease.7 48 49 BBB dysfunction is increasingly 
acknowledged as a potential early risk factor for AD,7 50 51 
including increased leakage through disrupted tight junc-
tions, decreased AQP-4 expression and reduced clear-
ance of Aβ.52 53 BBB disruption has been correlated with 
Aβ burden in mice,54 and albumin levels have been found 
to correlate with Aβ levels.26 However, the association 
between BBB disruption and τ has yet to be elucidated.

Additionally, multiple novel AD pathology pathways/
hypotheses (vascular, inflammatory and glymphatics 
mechanisms) all likely contribute to reduced BBB 
integrity,55 56 making this a nexus for the major pathol-
ogies involved in age-related cognitive impairment and 
dementia.50 55 Focal BBB breakdown, as seen in early cere-
bral microhaemorrhages57 58 detected with susceptibility-
weighted imaging (SWI) MRI, leads to the extravasation 
of red blood cells to the central nervous system (CNS). 
Lobar microhaemorrhages are often due to cerebral 
amyloid angiopathy (CAA), present in many cases of mild 
cognitive impairment (MCI) and AD, along with Aβ depo-
sition in the brain parenchyma.59 The BBB is involved 
in neuro-inflammatory processes in AD, which include 
microglia activation34 60 and astrocytes’ response13 61 
through reactive gliosis, consequently upregulating glial 
fibrillar acidic protein (GFAP) and other inflammatory 
mediators.

Finally, studies have highlighted the role of the brain’s 
glymphatic system in AD by contributing to Aβ clear-
ance.37 62 AQP-4 water channels support the function 
of the glymphatic system,40 and their dysfunction can 
negatively affect Aβ clearance.63 Recent findings also 
described that genetic variations of AQP-4 can negatively 
impact sleep quality and clearance of Aβ,50 contributing 
to the development of AD.64 Therefore, investigating the 
permeability to water of the BBB and its relation to AD 
biomarkers could be of significant importance as an early-
stage vascular biomarker of AD and related dementias.

Current BBB biomarkers
A widely used fluid BBB biomarker is the CSF/plasma 
albumin ratio, as albumin is a protein naturally present in 

the blood but not the CSF. Thus, the presence of albumin 
in the CSF is used to measure BBB breakdown.65 This 
technique’s limitations include the absence of spatial 
information and its invasiveness—as it requires a lumbar 
puncture. Plasma BBB biomarkers include the platelet-
derived growth factor β (PDGFRβ; related to neuroin-
flammation) and GFAP (related to astrocytosis). Injured 
pericytes in the neurovascular unit release PDGFRβ into 
the CSF and CSF PDGFRβ has been recently correlated 
with worse BBB integrity measured by the CSF/plasma 
albumin ratio,66 concluding that it may be involved in age-
related BBB disruption together with neuroinflamma-
tion. GFAP is a marker of reactive astrocytes—considered 
critical glial cells in the support of vital CNS functions—
and has been found to be significantly increased in all 
Aβ-positive groups compared with participants without 
Aβ pathology.67

Several imaging markers exist to study BBB function; 
a more detailed overview can be found elsewhere.68 One 
of the most commonly used methods is gadolinium-based 
contrast-enhanced MRI. Gadolinium chelates cannot 
cross the intact BBB due to their relatively large molecular 
size69 and will only leak paracellularly through disrupted 
tight junctions. Gadolinium alters local magnetic proper-
ties, which can be measured over time with DCE. However, 
gadolinium’s relatively large molecular size makes DCE-
MRI less suited for measuring subtle BBB breakdown. 
Moreover, concerns about patient safety, comfort and 
environmental hazards70 71 make DCE unsuitable for 
repeated measurements.

An alternative approach is to measure the BBB perme-
ability to water. One way to measure BBB permeability to 
water is with PET imaging combining oxygen-15-labelled 
water (15O-H2O) and 11C-butanol isotopes.72–74 As alcohol, 
11C-butanol is a freely diffusible tracer, whereas 15O-H2O’s 
transport is typically limited to AQP-4 channels. There-
fore, the ratio of 15O-H2O to 11C-butanol transport-based 
PET measurements yields an index of BBB function. 
However, this approach is impractical for widespread use 
due to its costs, invasiveness, radiation burden and logis-
tical demands.

METHODS AND ANALYSIS
DEBBIE consortium
The collaborators of the DEBBIE consortium are shown 
in figure 2. DEBBIE builds on existing successful collab-
orations between consortium members and external 
collaborators on several international projects involving 
(1) dementia imaging using ASL (ASL-European Coop-
eration in Science and Technology (ASL-COST) – action 
BM113: ASL in dementia, in which ASL sequence stan-
dards and multisite reproducibility of ASL were estab-
lished,75 (2) automatic processing and interpretation of 
ASL-CBF (through the ExploreASL76 initiative, and Euro-
stars ‘ASPIRE’ project, http://aspire-mri.eu/) and (3) 
efforts to develop best practices for perfusion MRI image 
processing to accelerate ASL clinical integration77 (the 
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International Society for Magnetic Resonance in Medi-
cine (ISMRM) – Open Science Initiative for Perfusion 
Imaging (OSIPI), http://osipi.ismrm.org/).

BBB-ASL acquisition
ME-ASL probes the T2 relaxation time of labelled water 
at different inflow times (TI). As the T2 differs between 
blood and the extravascular compartment at 3T, it is 
possible to perform BBB water permeability analysis.78 79 
The ME acquisition allows the assessment of the trans-
versal relaxation time T2, which is longer for blood than 
for tissue. Since the ASL images with and without label-
ling are subtracted, all intravascular and extravascular 
signal is removed except for the signal coming from the 
labelled water molecules. If these molecules still reside in 
the intravascular compartment at the moment of acquisi-
tion, the measured signal will have a long T2. The more 
these molecules have passed the BBB into the extravas-
cular compartment, the larger part of the measured 
signal will have a shorter T2.17

DEBBIE sequence
Our proposed ME-ASL uses time-encoded pseudo-
continuous ASL acquisitions42 80 81 with Walsh-ordered 
Hadamard (HAD)-encoding and an ME segmented 
3D-GRASE readout.82 Two protocols with different sub-
bolus durations (SBD) are used,17 where TI=SBD+PLD 
(online supplemental table 1). First, the single-echo 
HAD8 includes seven PLDs optimised for ATT and CBF 
quantification, and second, the ME HAD4, includes three 

PLDs optimised for BBB Tex quantification. The sequence 
was also implemented in a vendor-independent MRI 
sequence development framework gammaSTAR.83 84 An 
illustration of perfusion-weighted images from single-TE 
HAD8 and ME HAD4 acquisitions is shown in online 
supplemental figure 1.

ME-ASL image processing
To harmonise the image processing, DEBBIE-AD uses 
ExploreASL.41 76 CBF, ATT and Tex quantification are 
performed with FSL-FABBER,76 85 implemented as a 
plug-in in ExploreASL. An example of the mean and SD 
Tex maps of two DEBBIE cohorts is shown in figure 3 to 
illustrate the similarities of the Tex patterns from two 
cohorts of similar-aged healthy adults from different sites.

Study participants
DEBBIE-AD includes cohorts with healthy as well as 
participants with cognitive impairment (table  1). The 
inclusion criteria for cognitively normal subjects are 
a global Clinical Dementia Rating (CDR) score of 0 or 
a score ≥27 points on the Mini-Mental State Examina-
tion (MMSE)86 or equivalent on other similar tests. For 
defining subjects with MCI, a global CDR score ≥0.5 point 
(s) or an MMSE score of 23–26 points (inclusive) or equiv-
alent will be used. As indicated in online supplemental 
table 2, these criteria vary slightly between cohorts. For 
AD, a global CDR score of ≥2 points or an MMSE score of 
<23 points will be used, as well as clinical consensus. Some 
cohorts (online supplemental table 2) also use Montreal 

Figure 2  A geographical overview of the DEBBIE (DEveloping BBB-ASL as non-Invasive Early biomarker of Alzheimer’s 
Disease) consortium partners (orange box) and external collaborators (violet box). Franhofer MEVIS, Fraunhofer-Institut für 
Digitale Medizin (Fraunhofer MEVIS);LCBC, Centre for Lifespan Changes in Brain and Cognition.
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Cognitive Assessment (MoCA) scores for diagnosis (at 
least 26 for healthy controls, 18–26 for MCI and 12–26 for 
AD). Exclusion criteria differ between cohorts but gener-
ally include major brain lesions or psychiatric disorders, 
the inability to undergo all study procedures, visual or 
hearing impairment that would impair neuropsycholog-
ical testing, severe depression (eg, Geriatric Depression 
Scale score ≥11 points),87 other comorbidities or medica-
tion that could impair cognition at the discretion of the 
cohort investigator (eg, stroke, epilepsy or use of lithium 
carbonate) and contraindications to MRI scanning (eg, 
pacemaker/defibrillator, ferromagnetic metal implants).

Patient and public involvement
The patients were not involved in the design of the study.

Biomarkers
The biomarkers from the DEBBIE-AD cohorts include 
MRI and PET (table  2) as well as blood and CSF 
biomarkers (table 2) and neuropsychological assessments 
(online supplemental table 3). In addition to BBB-ASL, 
the core MRI scan types (T1w, T2w, fluid-attenuated 
inversion recovery and diffusion-weighted imaging) 
are conducted in all DEBBIE-AD participants. Other 
advanced MRI acquisitions differ between cohorts. This 
may include one or more of the following types of acquisi-
tions: three-dimensional (3D) SWI or 3D-T2*-weighting, 
diffusion tensor imaging, resting-state and task-based 
functional MRI and quantitative susceptibility mapping. 
Five cohorts will also acquire amyloid-PET and τ-PET 
scans (RQ2A-C), and one cohort will acquire neuroin-
flammation PET scans (RQ2C). Eight cohorts include 

blood sample measurements (table  2) to allow APOE 
genotyping, inflammatory markers (RQ2C) such as C 
reactive protein, astrocyte neuroinflammation marker 
GFAP, microglial marker triggering receptor expressed on 
myeloid cells 2 (TREM2) and neurodegenerative marker 
neurofilament light chain. Plasma biomarkers (RQ2A-B) 
include Aβ peptides 1–40 and 1–42, as well as total-τ and 
phosphorylated-τ species. Additional routine blood anal-
ysis values (eg, lipids and glucose), vitamin status (B12 
and folic acid) and albumin will also be obtained in two 
cohorts (table 2) to investigate their potential effect on 
the normal BBB permeability (RQ1B). The neuropsy-
chological assessment for each cohort includes tests on 
several cognitive domains (table 2).

Analysis plan
The DEBBIE cohorts are designated a specific technical 
or clinical task to answer the research questions (table 1). 
The DEBBIE data collection has started in 2023 and is 
planned to finish by May 2025.

The reproducibility of BBB-ASL (RQ1A) will be investi-
gated with healthy participants from the Ghent cohort. 
Good reproducibility of ME-ASL data was already shown 
in a pilot study of 10 participants.17 We will extend this 
number to provide a more robust estimation of repro-
ducibility by including 50 healthy controls for test–retest 
analysis. Additionally, the Dementia Prevention Research 
Clinic (DPRC) cohort aims to compare DW-ASL18 with 
ME-ASL measurements in 40 healthy controls to inves-
tigate if the two ASL techniques used to measure BBB 
water permeability provide similar information.

Figure 3  Scanner-average time of exchange (Tex) maps for the two populations—National University of Singapore mean 
age of 56.7±6.1 with 62% women and Centre for Lifespan Changes in Brain and Cognition mean age of 52.9±15.3 with 64% 
women—with mean Tex and the voxel-wise between-subject SD in Montreal Neurological Institute (MNI) space.
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The accuracy of BBB-ASL values (RQ1B) will be evalu-
ated by comparing ME-ASL with 15O-H2O-PET values in a 
subset of 10 pigs and 12 AD, 12 MCI patients and 12 age-
matched controls from the Lawson Health Research Insti-
tute (LHRI) cohort, scanned with the same protocol and 
same scanner. Previous studies were able to establish the 
accuracy of ASL in comparison with 15O-H2O-PET with 
14 subjects,88 and 15O-H2O-PET has been used before to 
study the relation between water dynamics and early accu-
mulation of Aβ.89

The normal variability of the BBB-ASL values (RQ1C) 
over age and sex will be investigated in 150 healthy partic-
ipants from the Centre for Lifespan Changes in Brain and 
Cognition (LCBC) cohort to create an atlas of a healthy 
BBB across age groups and to investigate the ability of 
Tex to predict age above and beyond CBF and ATT.90 
Previous studies examining the age and sex-related 
variability of CBF in healthy adults achieved significant 
and reliable results when including between 50 and 100 
participants.91 92

To investigate if BBB-ASL can differentiate patients with 
AD from healthy controls (RQ2A), BBB-ASL differences 
between 25 patients with AD, 40 MCI patients and 40 
healthy controls will be investigated with data from the 
DPRC cohort. We will compare global and regional Tex 
values between the three groups and perform analysis 

to determine if spatial patterns of Tex distinguish the 
groups. We will test if the between-group results from 
the DPRC cohort are consistent with other cohorts in the 
consortium for the same groups, namely 55 MCI and 20 
patients with AD from the Amsterdam cohorts (Verloren 
Verbindingen Vinden (VVI) and Imaging inflammation 
in Alzheimer’s disease (InflammAD)), as well as 20 MCI 
and 20 patients with AD from the Technical University 
Dresden (UKD) cohort. Additionally, MRI and blood 
biomarkers data will be included from Centre Of Geri-
atrics Amsterdam (COGA) participants, which include 
from subjective cognitive decline (SCD) to patients with 
AD.

To investigate how BBB water permeability is related 
to the established AD biomarkers (RQ2B), we will compare 
the BBB-ASL values with established AD biomarkers, such 
as amyloid and τ, using CSF/blood, MRI and PET. The 
LCBC and DPRC cohorts will investigate Tex patterns 
with amyloid PET in subjects older than 50, for LCBC 
and in both 40 MCI and 20 patients with AD, for DPRC; 
the ‘Imaging inflammation in AD’ (InflammAD) cohort, 
will use blood and CSF biomarkers of amyloid and τ from 
20 patients with AD; and the ‘Synaptic density and tau 
pathology in AD’ (SYNAPSE) cohort will include amyloid- 
and τ from PET, CSF and blood, from 20 Aβ-positive 
individuals.

Table 1  Cohort demographics of DEBBIE-AD

DEBBIE-AD cohort Site Anticipated sample size (n)
Age range 
(years) RQ

Healthy controls Patients

LCBC Oslo University 150 – 20–90 1C/2B

DDI 50 50 (Aβ+) 40–80 2C

COGA Amsterdam UMC 204 (SCD/MCI/AD) 60+ 2A

VARIATION 50 (SCD/MCI/AD) 65+ 2C

VVI – 55 MCI 50+ 2A/2C

SYNAPSE 20 Aβ+ 50+ 2B/2C

InflammAD 20 20 AD 50+ 2A /2B/ 
2C

GUH memory clinic Ghent University 
Hospital (GUH)

– 30 MCI/20 AD 55–75 1A

Ghent healthy controls 50 – 18+ 1A

Cognitive Neurology 
and Alzheimer Research 
Centre

Lawson Health 
Research Institute

12 12 Stroke
12 MCI
12 AD

50–90 1B

DPRC University of Auckland 40 40 MCI
25 AD

55+ 1A/2A 
/2B

NEURO-BMC National University 
Hospital of Singapore

– 200 SCD or MCI 45–85 2C

AD, Alzheimer’s disease; Aβ, amyloid-β; COGA, Centre Of Geriatrics Amsterdam; DDI, Dementia Disease Initiation; DEBBIE, DEveloping 
BBB-ASL as a non-Invasive Early biomarker; DPRC, Dementia Prevention Research Clinic; InflammAD, Imaging inflammation in Alzheimer’s 
disease; LCBC, Centre for Lifespan Changes in Brain and Cognition; MCI, mild cognitive impairment; NEURO-BMC, NEUROlogical 
biomarkers of Blood, MRI and Cognition; RQ, research questions according to the Analysis Plan section; SCD, subjective cognitive decline; 
SYNAPSE, Synaptic density and τ pathology in Alzheimer’s disease; UMC, University Medical Centre; VARIATION, Vascular Phenotypes in a 
Geriatric Population; VVI, Verloren Verbindingen Vinden ('finding lost connections'); WMH, white matter hyperintensities.
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Finally, to study how the BBB is implicated in (1) 
vascular, (2) inflammation and (3) glymphatic AD 
pathways (RQ2C), we will include: (a) 200 SCD/
MCI participants will be selected with quite exten-
sive white matter hyperintensities, from the NEURO-
logical biomarkers of Blood, MRI and Cognition 
(NEURO-BMC) cohort, as well as 50 participants from 
the Vascular Phenotypes in a Geriatric Population 
(VARIATION) study which will be used to look at other 

vascular biomarkers including, for example, cerebral 
small vessel disease, microvascular function, arterial 
stiffness and intima-media thickness. Additionally, the 
Dementia Disease Initiation (DDI) cohort will focus 
on the differences in BBB-ASL values between Aβ+ 
and Aβ− groups, to identify CAA in early stages; (b) 20 
MCI and 20 patients with AD from UKD will be used to 
focus on investigating macrostructural and microstruc-
tural patterns of sleep in relation to BBB-ASL values in 

Table 2  Neuroimaging and fluid biomarkers

Cohort Participants

Neuroimaging Fluid biomarkers

Common MRI 
(T1w, T2w, 
FLAIR, DWI)

Other MRI 
(fMRI, DTI, 
SWI) Amyloid- PET Blood CSF

LCBC Healthy ✓ task-fMRI ✓ (for age >50 y) ✓ (CRP, vitamin D 
and cholesterol)

–

DDI SCD ✓ DTI, SWI ✓ (in MCI/AD 
ub-groups)

✓ (Aβ, p-τ, Nfl, 
GFAP, TREM2, 
albumin)

✓ (Aβ−38, 
Aβ−40/42, p-τ,t-
τ, Nfl, albumin)

COGA /
VARIATION

Healthy, MCI ✓ DTI, SWI – ✓ (Hb, vit D, vit 
B12, folic acid, 
cholesterol, 
albumin, 
creatinine)

–

VVI MCI ✓ DTI, fMRI – – ✓ (whole CSF 
proteome 
including 
amyloid and τ)

SYNAPSE AD spectrum ✓ DTI, fMRI ✓ Aβ, t-τ, p-τ, Nfl, 
TREM2,

InflammAD Healthy, AD 
spectrum

✓ DTI, fMRI – ✓ (to be 
determined)

GUH MCI, AD ✓ s-fMRI, DTI, 
SWI

– – –

Ghent healthy 
controls

Healthy ✓ rs-fMRI, DTI, 
SWI

– –  � –

LHRI Healthy, MCI, AD ✓ DTI, SWI – – –

UKD MCI, AD ✓ DTI, SWI – ✓ (Aβ, p-τ, Nfl) ✓ (Aß−40, 
Aß−42, 
Aß−40/42Ratio, 
p-τ, t-τ, Nfl, 
albumin)

DPRC Healthy, MCI, AD ✓ rs-fMRI, DTI, 
SWI, QSM

✓ ✓ (Aβ1–42, 
Aβ1–40, Aβ−40/42 
ratio, t-τ, p-τ, Nfl, 
GFAP, S100β, 
sPDGFRβ)

–

NEURO-BMC SCD, MCI, AD ✓ rs-fMRI, DTI, 
SWI

– – –

AD, Alzheimer’s disease; Aβ, amyloid β; COGA, Centre Of Geriatrics Amsterdam; CRP, C reactive protein; CSF, cerebrospinal fluid; DDI, 
Dementia Disease Initiation; DPRC, Dementia Prevention Research Clinic; DTI, diffusion tensor imaging; DWI, diffusion-weighted imaging; 
FLAIR, fluid-attenuated inversion recovery; GFAP, glial fibrillar acidic protein; GUH, Ghent University Hospital; InflammAD, Imaging 
inflammation in Alzheimer’s disease; LCBC, Centre for Lifespan Changes in Brain and Cognition; LHRI, Lawson Health Research Institute; 
MCI, mild cognitive impairment; NEURO-BMC, NEUROlogical biomarkers of Blood, MRI and Cognition; Nfl, neurofilament light protein; p-τ, 
phosphorylated τ; rs-fMRI, resting state functional MRI; SCD, subjective cognitive decline; sPDGFRβ, soluble platelet derived growth factor 
receptor-β; SWI, susceptibility weighted imaging; SYNAPSE, Synaptic density and τ pathology in Alzheimer’s disease; S100β, S100 calcium 
binding protein B; t-τ, total τ; UKD, Technical University Dresden; VARIATION, Vascular Phenotypes in a Geriatric Population; VVI, Verloren 
Verbindingen Vinden .
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participants with and without sleep disorders; and (c) 
55 MCI subjects from the VVI (‘Finding Lost Connec-
tions’) cohort, 20 Aβ+ subjects from the SYNAPSE 
group, as well as 20 healthy controls and 20 patient 
with AD from the InflammAD cohorts (table  1) will 
be used to examine novel inflammation biomarkers 
(GFAP, TREM2) and a new PET tracer for activated 
microglia (11C-SMW139 and UCBJ).

Regional analysis
We will investigate if there is a regional variability in Tex 
values related to tissue type (gray matter vs white matter) 
or vascular territory (Anterior, middle and posterior cere-
bral arteries, proximal vs distal). We hypothesise that BBB 
disruption patterns may follow amyloid and τ accumula-
tion patterns seen in various stages of AD pathology.93 94 
Therefore, for the clinical RQs (RQ2A-C), we will focus 
on the regional variability of BBB-ASL values in AD—
including the precuneus, cingulate cortex and orbital 
frontal gyrus94—as well as τ signature regions—tran-
sentorhinal, temporal and limbic regions such as the 
hippocampus.93

Data harmonisation
Although most of our research questions can be answered 
using single cohort data, we may need to combine cohorts 
for more statistical power for post hoc analyses (‘Analysis 
plan’ section). In the case of data pooling, we will attempt 
several harmonisation steps.

While the BBB-ASL acquisition protocols are consis-
tent across cohorts, the other imaging techniques may 
vary. To harmonise the data structure, we will convert all 
DEBBIE-AD data to Brain Imaging Data Structure (BIDS) 
format95 and investigate the metadata variability between 
data sets (eg, due to scanner hardware or software differ-
ences and updates). The structural and ASL image data 
will be analysed with one pipeline (ExploreASL)76 in 
a standardised setting, including quantification with 
BASIL and FSL-FABBER.85 We will perform harmon-
isation on MRI images by scaling the scanner-average 
mean and between-subject SD maps to be the same. Our 
amyloid-PET data will be harmonised using the centiloid 
method.96

Fluid biomarkers may also vary, and harmonisation 
strategies should be taken into account. CSF amyloid 
is often harmonised using, for example, the Aβ1–42/
Aβ1–40 ratio compared with Aβ1–42 alone for improved 
concordance, since the division by Aβ1–40 is hypothe-
sised to correct for interindividual biological variation in 
amyloid production and/or clearance. Recent literature 
has introduced standardised cut-offs for fluid biomarkers, 
highlighting all these aspects.97 98

While several cohorts have specific neuropsychological 
tests depending on their distinct aims, most/all studies 
have included the same MMSE and MoCA test.

Finally, the tabular derivatives can be harmonised in 
the statistics using neuroCombat.99

Expected impact
The DEBBIE-AD study aims to explore the potential use 
of BBB disruption as a novel early biomarker for AD. 
This project holds promise for various applications: (1) 
Research advancements: by gaining a deeper under-
standing of the role of BBB dysfunction in AD, this study 
can contribute to significant advances in AD research. 
Even if a plasma biomarker would be an easier/more cost-
effective or otherwise desirable biomarker than BBB-ASL, 
this would provide knowledge about such biomarkers; (2) 
clinical trials require more and more biomarkers for the 
increasing heterogeneity in AD cases and their potential 
response to disease-modifying treatment. The BBB being 
implicated in many AD pathways makes it a potentially 
helpful biomarker for selecting patients in clinical trials or 
as a secondary endpoint; (3) personalised diagnosis and 
treatment: in the future, BBB permeability assessment 
could assist in prognosis and tailoring AD medication.

Our study includes six distinct research questions. 
We anticipate obtaining over 1000 BBB-ASL scans from 
participants from various groups. Specifically, we expect 
to include more than 500 healthy controls, over 250 
individuals with MCI, approximately 100 patients with 
AD and the remaining participants representing Aβ+ 
and SCD cohorts. The research questions described here 
will be addressed without pooling data. Additionally, the 
strength of the DEBBIE consortium is that we have the 
opportunity to pool data, creating an extensive data set 
that enables comprehensive investigations into the value 
of BBB-ASL.

The focus of DEBBIE-AD is to investigate the impact 
of this potential biomarker across different cohorts, 
answering specific research questions. This aspect sets 
DEBBIE-AD apart as all cohorts within the consortium will 
measure the same biomarker to explore various aspects 
of AD. Furthermore, we ensure consistency by using 
the same sequence on the same scanner vendor, using 
gammaSTAR technology to ensure optimised uniformity 
across the consortium.

Although ME ASL has been proposed previously,43 
the significance of this work lies in its development of a 
time-efficient MRI sequence suitable for acquiring CBF, 
ATT and Tex in the clinical setting. To our knowledge, 
DEBBIE-AD is the first study protocol for evaluating a 
single promising MRI biomarker of AD across multiple 
cohorts.

This study also has some limitations. The main potential 
limitation of BBB-ASL as an early dementia biomarker is 
its methodological and physiological reliability. BBB-ASL 
has only been tested in healthy volunteers and not yet in 
patients. The inherently low signal-to-noise ratio (SNR) 
of the method may make the detection of clinically mean-
ingful changes challenging. We will regularly perform 
quality control to assess the image quality, test prelimi-
nary associations and adapt the BBB-ASL sequence if 
required (eg, increasing the number of averages to boost 
SNR). Furthermore, BBB-ASL uses water as an endoge-
nous tracer that has been shown to detect subtler—and 
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potentially earlier—BBB damage than tracers with larger 
molecular sizes. The downside could be that BBB-ASL has 
a higher physiological variability, requiring larger cohorts 
to achieve adequate statistical power. Additionally, patient 
motion, atrophy and haematocrit levels may affect the 
acquisition and image analysis. These factors can be 
critical as they vary between patients and controls—for 
example, patients typically move more—while haemato-
crit and atrophy can be both methodological and phys-
iological confounders. We will attempt several options 
to tackle these challenges. To optimise the quality of 
quantification, we intend to incorporate a T2 map for 
each participant based on the control images, aiming to 
minimise errors associated with the assumption of stan-
dard T2 relaxation values. Also, we will investigate if the 
image quality of the CBF, ATT and Tex maps is related 
to (patho-)physiological parameters such as age, sex and 
AD staging. Our objective is to determine whether the 
quality of these maps varies with age and then compare 
CBF quantification across a reduced number of PLDs 
within the same subject group, investigating potential 
challenges posed by ATT for BBB Tex quantification in 
elderly subjects. Additionally, our analysis will include 
testing the reliability of motion correction, specifically for 
the joint analysis of HAD4 and HAD8 sequences.

In summary, the mission of DEBBIE is to establish a 
non-invasive biomarker related to BBB health in AD. This 
requires demonstrating the significance of the biomarker 
within the disease context by comprehensive investi-
gations of repeatability, reproducibility, variability and 
associations with other disease markers. The successful 
validation of this biomarker could have far-reaching 
implications, including a better understanding of the 
underlying mechanisms of AD and lead to earlier detec-
tion and a more accurate diagnosis.

Ethics and dissemination
The Amsterdam Medical Ethics Review Committee 
approved the COGA, VARIATION, VVI, SYNAPSE and 
InflammAD studies, in accordance with the ethical 
conduct and juridical laws of the Declaration of 
Helsinki 64th WMA General Assembly, Fortaleza, Brazil, 
October 2013, (www.wma.net), and in accordance with 
the Medical Research Involving Human Subjects Act 
(WMO). For the Oslo cohorts (DDI and LCBC), the 
regional medical research ethics committee approved 
the study. All further study conduct was in line with the 
guidelines provided by the Helsinki declaration of 1964 
(revised 2013) and the Norwegian Health and Research 
Act. For both the Ghent and UKD cohorts, study protocol 
amendments are pending and being prepared, respec-
tively, for implementing the BBB-ASL sequence in the 
MRI protocols. For the LHRI cohort, the animal study 
will be conducted according to the regulations of the 
Canadian Council on Animal Care and was approved by 
the Animal Care Committee at Western University, and 
the human study will be conducted in accordance with 
the Declaration of Helsinki ethical standards and was 

approved by the University Research Ethics Board. DPRC 
study procedures were approved by appropriate ethical 
review boards (University of Auckland Human Partic-
ipants Ethics Committee ref 020737 and The Health 
and Disability Ethics Committee ref 15/NTB/202). All 
participants provided informed written consent before 
taking part in accordance with the New Zealand National 
Ethical Standards. The National University of Singa-
pore Institutional Review Board approved the study in 
Singapore for NEURO-BMC (NUS-IRB Reference Code: 
NUS-IRB-2021–531). All in accordance with the Human 
Biomedical Research Act and the applicable laws and 
regulations of Singapore. All study participants provided 
written informed consent. On each of the research ques-
tions, separate manuscripts will be written and submitted 
for publication in peer-reviewed journals.
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