
Advanced Engineering Informatics 60 (2024) 102443

1

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Full length article

Comparative analysis of approaches for automated compliance checking of
construction data
Emma Nuyts a,∗, Mathias Bonduel b, Ruben Verstraeten a

a Department of Architecture and Urban Planning, Ghent University, Jozef Plateaustraat 22, Ghent, 9000, Belgium
b Neanex Technologies, Klokstraat 12, Antwerp, 2600, Belgium

A R T I C L E I N F O

Dataset link: OSF, https://osf.io/5rwt6/?view_o
nly=7637d2f2718341a59a5bd6635965e973

Keywords:
Automated compliance checking
Building information management
Comparative analysis

A B S T R A C T

While the domain of Automated Compliance Checking (ACC) has gained track, the construction industry has
been flooded with different approaches. This paper studies these different approaches for use in compliance
checking of construction data. The approaches are compared by defining constraints for the same set of five
requirements, each of a different category, stemming from the Flemish building regulation on accessibility.
Eight approaches have been selected for comparison: two IFC-based approaches (Solibri Model Checker and
the upcoming buildingSMART standard IDS), two general data standards and their accompanying schema
definition languages (JSON Schema and XSD), and four Linked Data approaches (OWL, SWRL, SPARQL, and
SHACL). Besides the pure functional analysis, the relative uptake and support in tooling are also considered.
While XML/XSD and JSON/JSON Schema and the Linked Data approaches are in essence domain-independent,
only the latter has an extra layer for agreeing on high-level data modeling (and thus data validation) patterns
in the construction domain with the EN17632-1:2022 standard. SHACL is considered the most adept method
from the Linked Data approaches since it is fully standardized for both inputs and outputs and was developed
for validation use cases.
1. Introduction

The Architecture, Engineering, Construction, and Operations
(AECO) industry has seen a rapid improvement in digitization in
the last decade. The design of the built environment has evolved
from 2D line drawings on paper and unconnected datasets to us-
ing data-centered construction processes relying on databases and 3D
modeling, including Building Information Management (BIM) tools
combining geometry and alphanumeric data. Examples of alphanu-
meric data are non-physical objects or semantic information about
construction components. While this construction information is cap-
tured in machine-readable data, the building regulations, however, are
still written in a solely human-readable format. This manual interpreta-
tion of the governing codes and standards is known to be error-prone,
inefficient, and therefore a contributing factor to declining productivity
in the domain [1]. The automation of this compliance checking process
would be a vast improvement for the industry, although it is not that
easy to implement. The use of Automated Compliance Checking (ACC)
would mean both the normative data, stemming from the building

∗ Corresponding author.
E-mail addresses: emma.nuyts@ugent.be (E. Nuyts), mathias.bonduel@neanex.com (M. Bonduel), ruben.verstraeten@ugent.be (R. Verstraeten).

1 The terms ‘requirement’, ‘constraint’, and ‘rule’ will be used interchangeably in this paper.

regulation, and the construction information have to be represented
in a compatible machine-readable format. Fig. 1 shows that the subject
from construction project data (stemming from architectural design, en-
ergy analysis, circularity calculations, planning tools, etc.) needs to be
matched to the corresponding requirement,1 to allow for verification of
this subject. The optimal approach for representing these requirements
in a machine-readable format is dependent on the representation of
the construction information, to ensure an efficient matching process.
Since there are dozens of approaches to define both normative and con-
struction information for use in compliance checking, this article will
review existing approaches and compare them. The paper is organized
as follows. In Section 2, the processing of normative data, previously
studied compliance checking methods and similar comparative analyses
are reviewed. In Section 3, the research methodology is proposed, after
which eight approaches for compliance checking are evaluated and
compared in Section 4. The discussion is presented in Section 5 and
final conclusions are given in Section 6.
474-0346/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.aei.2024.102443
Received 31 August 2023; Received in revised form 17 February 2024; Accepted 2
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
2 February 2024

https://www.elsevier.com/locate/aei
https://www.elsevier.com/locate/aei
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
mailto:emma.nuyts@ugent.be
mailto:mathias.bonduel@neanex.com
mailto:ruben.verstraeten@ugent.be
https://doi.org/10.1016/j.aei.2024.102443
https://doi.org/10.1016/j.aei.2024.102443
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2024.102443&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.

2

2

o
o
a
n
f
e
t
T
L
f
b
c
w
a
i
a
f
s

2

2

a
s
a
s
I
a
a

i
F
c
M
i
a
s
a
a
f
m
w
h
d
F
b
w
d
c

Fig. 1. Compliance checking model.

. Related work

.1. Processing normative data

The first step in the creation of an ACC workflow is the processing
f the legislative text to create machine-readable constraints. This area
f research is also known as Rules as Code (RaC), which is defined
s ‘‘the activity of creating or converting legal text which is in a
atural language, in or into a representation in a computer-processable
orm’’ [2]. Doing this conversion manually is not recommended, since
xperience from previous research indicates it takes an expert a day
o translate one page of regulations, including quality control [1].
his conversion can however partially be automated, by using Natural
anguage Processing (NLP) techniques. There is plenty of research to be
ound on using NLP for the creation of machine-readable constraints,
ased on (building) regulations. Some examples of NLP research fo-
using specifically on use in ACC systems are Zhang & El-Gohary [3],
ho extract regulatory information from legislative documents and
lign the representation with building information so that they can be
nterpreted together in one system. Zhou et al. [4] propose a novel
utomated rule interpretation framework, based on NLP and context-
ree grammar. This method achieves 99.6% parsing accuracy for simple
entences and 91.0% for complex sentences.

.2. Previously studied compliance checking methods

.2.1. IFC-based approaches
The Industry Foundation Classes (IFC) [5] is a standardized open

nd neutral data interchange format, specifically intended for the de-
cription of AECO models. Different IFC-based approaches for compli-
nce checking exist, ranging from software tools to buildingSMART
tandards, such as Model View Definitions (MVD) and the upcoming
nformation Delivery Specifications (IDS) and research initiatives such
s the Query Language for Building Information Models (QL4BIM) [6]
nd BIMRL [7].

ACC tools operating on datasets stored in the open IFC format
nclude (but are not limited to) DesignCheck [8], ePlanCheck and
ornax [9,10], Solibri Model Checker [11], Jotne EDM and SMART-
odes [12] as listed by Amor & Dimyadi [1]. Out of this list, Solibri
odel Checker (SMC) is the only one still available and widely used

n the industry. It provides a user interface for compliance checking,
lthough the created requirements are not available outside of the
oftware. Apart from software tools, buildingSMART standards such
s MVD and IDS can be used to validate data captured in IFC. MVD
re defined as a specific implementation level of IFC to describe or
acilitate a specific use or workflow [13]. MVD for IFC are created using
vdXML, a buildingSMART standard, of which the latest version (1.1)
as published in 2016 [14]. The use of MVD in compliance checking
as been researched by Lee et al. [15], who investigated how to create
ifferent kinds of constraints based on the IfcDoc tool [16]. However, in
ebruary 2023, buildingSMART announced that MVD will be replaced
y the future IDS standard for end-users, while the creation of MVD
ill be left to data developers [17]. Since this standard is still under
evelopment, it has not been researched extensively for compliance-
hecking purposes, except for checking information availability [18].
2

As for research initiatives, QL4BIM has been proposed by Daum &
Borrmann in 2014 [6] as a query language that provides metric,
directional, and topological operators for defining filter expressions
with qualitative spatial semantics. This query language was extended
by Preidel et al. [19], by creating a visual variant of QL4BIM for
general IFC filtering and processing. On top, they developed the Visual
Code Checking Language (VCCL), suitable for translating building code
contents in a digital format. Another research initiative, BIMRL, was
proposed by Solihin et al. [7] in 2017. It is based on the BIMRL sim-
plified schema, which allows almost lossless IFC data transformation
and utilizing the established relational database system, and support-
ing highly efficient queries to be performed [7]. Dimyadi et al. [20]
integrate BIMRL into a computer-aided compliance audit process to
facilitate information gathering.

2.2.2. General open data standards
Apart from conventional BIM datasets, general data formats such

as Comma-Separated Values (CSV), the Extensible Markup Language
(XML), and the JavaScript Object Notation (JSON) are often used by
tool developers in data exchanges. CSV is a structured data format, uti-
lizing commas to separate individual data fields. While RFC 4180 [21]
proposes a specification for CSV, it is not standardized. Some CSV
schema languages exist [22–24]. The main limitation of using CSV
in the AECO industry is that all project data has to fit one table,
making it difficult to define relationships between objects. Secondly,
XML is a W3C standardized markup language and data format for
storing, transmitting, and reconstructing data [25,26]. Multiple schema
languages for XML exist, with the XML Schema Definition (XSD) being
one of the most common ones. XSD provides a detailed description of a
particular type of XML document, specifying additional constraints on
the structure and content beyond what is required by the XML syntax.
It is furthermore a W3C recommendation [27]. Lastly, JSON is a data
format for storing and transmitting data objects consisting of attribute–
value pairs and arrays. It was standardized in 2013 and last updated
in 2017 [28]. The JSON Schema language includes constraints and
conditions, such as whether an information field is mandatory or not,
and what datatype a data field should be. A schema created with JSON
Schema can be used to check whether the captured data complies with
it [29].

2.2.3. Linked data approaches
The concept of Linked Data makes use of the Resource Description

Framework (RDF) data model, which is a framework for representing
information on the Web and can be stored in one of its many serializa-
tions (RDF/XML, JSON-LD, Turtle, etc.) [30]. Linked Data approaches
such as the Web Ontology Language (OWL), the Semantic Web Rule
Language (SWRL), N3Logic, the SPARQL Protocol and RDF Query
Language (SPARQL), and the Shapes Constraint Language (SHACL) can
be used for compliance checking of construction data captured as RDF
graphs. The W3C standardized Web Ontology Language (OWL) [31]
can be used to describe concepts in an ontology, which in turn can be
published as an RDF graph to enhance reuse and extensions in other
ontologies. While standard OWL axioms can be used in an inferencing
process to derive statements, Tao et al. [32] defined a separate variant
of OWL that can define so-called ‘‘integrity constraints’’ and operate
under different assumptions to cater to a limited amount of actual
data validation use cases. Based on OWL and RuleML, the Semantic
Web Rule Language (SWRL) [33] was proposed as a W3C member
submission in 2004. SWRL defines rules in the form of an implication
between an antecedent and a consequent. Uhm et al. [34] created
computer-interpretable rules in SWRL, based on the South Korean
online e-procurement system. In 2007, N3Logic [35] was proposed as a
minimal extension of RDF, ensuring the same language can be used for
both logic and data. While it was never accepted as a standard, Pauwels

et al. [36] implemented N3Logic for checking acoustical performance.

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.
Another W3C recommendation is SPARQL [37], which is a query lan-
guage for RDF. Zhong et al. [38] evaluated this language for compliance
checking purposes, and Zheng et al. [39] developed an algorithm to
automatically generate SPARQL-based queries from regulatory texts.
Lastly, SHACL [40] is a language for validating RDF graphs against a set
of conditions and a W3C recommendation since 2017. Soman et al. [41]
evaluated this language for scheduling constraints in a look-ahead
planning environment. Another language for validating RDF graphs is
Shape Expressions (ShEx) [42]. However, it is not standardized and
has not been used in literature on compliance checking of construction
data.

2.3. Similar comparative analyses

Only a few similar comparative analyses have been conducted in
the past. Pauwels & Zhang [43] analyze three different strategies: (1)
‘‘hard-coded rule checking after querying for information’’, (2) ‘‘rule-
checking by querying’’, and (3) ‘‘semantic rule-checking with dedicated
rule languages’’. The first strategy relies on RDF and OWL, while
the second strategy uses SPARQL to query the dataset. For the third
strategy, both SWRL and N3Logic are provided as options, but the
exemplary listing shows the N3Logic notation.

The conclusions state that strategy 1 has a short implementation
time, however, customization is limited and knowledge inference is not
possible. Strategies 2 and 3 both have a longer implementation time
but do allow customization. The second strategy however only supports
limited knowledge inference, while the latter fully supports it. A more
recent conference paper comparing compliance checking methods was
written by authors affiliated with buildingSMART [18]. The paper
investigates nine methods (spreadsheet, Product Data Templates, data
dictionary, IDS, mvdXML, idmXML, Level Of Information Need, IFC
Property Templates, and SHACL) to define information availability
requirements, which are evaluated against 19 criteria, divided into 7
categories: (1) Standardized, (2) Applicability, (3) Fields: information
type, datatype, unit of measurement, description, references, (4) Value
constraints: equality, range, enumeration, patterns, (5) Content: exis-
tence, documents, structure, (6) Geometry: representation, detailedness
and (7) Metadata: purpose, actors, process map. The authors conclude
that none of the researched solutions cover all evaluation criteria, but
IDS is presented as ‘‘the most advantageous method when it comes to
automated compliance checking by validation of the alphanumerical
IR’’. However, no supporting listings were shown.

3. Research methodology

3.1. Comparative analysis

Since there are dozens of compliance checking approaches, this
article makes a comparative analysis between different approaches.
The primary objective is to define the strengths and weaknesses of
each approach, to facilitate a comparison. In Section 3.2, the selection
of approaches to be reviewed will be substantiated. To ensure the
comparison happens in a consistent manner, the same set of constraints
is defined manually with each approach, which is elaborated in Sec-
tion 3.3. Section 3.4 will cover that although the construction data is
needed in multiple formats, attention has been given to the consistency
of these formats to ensure standardization. Furthermore, to ensure full
reproducibility of the analysis, both the construction project data and
the machine-readable constraints for each approach are available on
OSF.2

3.2. Compliance checking methods reviewed

For the proprietary tools, only Solibri Model Checker will be evalu-
ated, since this is the only one that is still available, is used in the AECO

2 https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
3

Table 1
Categories of requirements extracted from the Flemish building regulation on
accessibility (translated to English).

Category Constraint example

1. information
availability

Each door should have exactly one door width
property.

2. value Art. 22§2: The structural dimensions of entrances or
doorways must be at least 105 cm wide so that after
finishing, a free and level passage width of at least
90 cm is guaranteed.

3. relational Art. 20§4: A railing must be provided on both sides of
the staircase.

4. mathematical Art. 20§3: The sum of two times the riser and once
the tread of each step should be between 57 and
63 cm or a multiple thereof.

5. conditional Art. 19§1: The slope is at most 6.25 percent for level
differences between 25 cm and 50 cm.

industry, and supports advanced constraints for compliance checking.
As for the IFC-based approaches, the upcoming buildingSMART IDS
standard will be evaluated. The MVD standard will not be evaluated,
due to its replacement by IDS for end-users. QL4BIM and BIMRL will
not be investigated further, since they have not reached the level of
standardization of aforementioned approaches. For the general open
data standards, the XSD schema and JSON Schema will be evalu-
ated, while CSV is skipped due to its general limitation concerning
the definition of relationships. Lastly, all previously mentioned W3C
Standards regarding Linked Data approaches will be investigated, being
OWL, SWRL, SPARQL, and SHACL. This means N3Logic and ShEx are
considered out of scope for this paper.

The main differences with the comparative analyses discussed in
Section 2.3, are that this paper not only focuses on conventional
BIM datasets but also evaluates general data standards (XSD and
JSON Schema), provides all necessary pieces to reproduce each case
(datasets, machine-readable constraints and concrete steps to repro-
duce the checking programmatically), and takes the validation output
quality of the approaches into account.

3.3. Interpretation of regulation and categories of constraints

From a conceptual point of view, we identify five categories of
requirements to be tested: information availability, value, relational,
mathematical, and conditional constraints. To get a thorough sense of
the strengths and weaknesses of the different approaches, five require-
ments (one per category) were distilled from the Flemish regulation
on accessibility [44] as shown in Table 1. The interpretation of the
textual requirements to form machine-readable constraints will be done
manually by the authors in this analysis since a full automation of the
extraction of machine-readable requirements from building legislation
is out of scope for this paper. The first check should be to evaluate
if the required information is available in the construction data, to
ensure that a component is not skipped in the checking procedure if
the required property is not present. Secondly, value constraints allow
to check whether a value is more/less than or equal to a nominal
value as defined in the building regulations. Furthermore, relational
constraints (category 3) are a means of checking whether a component
is present in relation to another component. Moreover, building codes
often constrain the result of a mathematical formula that can be cal-
culated using several properties defined in the project data (category
4). If the result of the formula is already present in the construction
data, the constraint is a value constraint (category 2) rather than a
mathematical constraint. Lastly, conditional constraints (category 5)
are used to define multiple cases of boundary values of one property.
The legislation is often written in an ‘if...then...’ manner in such cases.

However, not every article of the building regulation can be repre-
sented by one of these categories of requirements, which leads to a sixth

https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.

f
e
f
g
a
p
I
t
f
m
c
a

4

d
t
o
d
O
b
a
i
p
l
a

s
c
L
I
a
o

category: expert intervention. This category covers e.g. performance-
based regulations, or complex energy analyses, and will not be eval-
uated in this paper. Furthermore, direct validation of the geometries
in construction datasets is also out of the scope of this paper. Al-
phanumeric properties can be derived from geometry using a sepa-
rate dedicated process. Consequently, a wider variety of commonly
used compliance checking methods can be considered. The compliance
checking tools do not need to be aware of the original geometry
descriptions that might exist in a wide variety of formats and geometry
representations (meshes, BREP, NURBS, etc.) [45].

3.4. Construction project data preparation

As an example of project data, a simple three-story, 18-room build-
ing model has been created in Autodesk Revit 2023. We created four
variants of the building model, to correctly evaluate different com-
pliance checking methods and realistic data scenarios. To start, we
created one Revit dataset that complies with all example require-
ments and one that violates each example requirement, both using
different units for numeric properties compared to the regulations.
Both variants (‘‘pass’’ and ‘‘fail’’) are also included in a simulated
preprocessing step to align the units of the dataset to the ones of
the requirements (resp. ‘‘pass_preprocessed’’ and ‘‘fail_preprocessed’’).
Since no constraint-executing mechanisms are tested in the authoring
tool as such, we export the four variants of the project dataset using the
IFC standard. An alternative method builds upon general Linked Data
standards, where domain-specific ontologies are introduced, concep-
tualizing the project data as interrelating objects with properties and
references to the respective geometrical models. We wanted to capture
the same content in a simple yet rich structure following the EN 17632-
1:2022 [46] standard, but since no such translation tool is currently
available,3 we manually translated the relevant content from the IFC
iles to RDF graphs. The result is a set of small but well-structured
xample datasets (one for each original variant) which suffices for our
urther analysis. The content of the same manually generated RDF
raph is used to generate example XML and JSON datasets using an
rbitrary XML and JSON structure that can represent the relevant
roject content. Instead of translating the full IFC-STEP file into an
FC-XML or IFC-JSON serialization, we end up with concise, easy-
o-understand, and well-structured XML and JSON example datasets
or our evaluation purposes. In all examples used in this paper, two
ain assumptions are made: the construction components are classified

orrectly, and the names of the classifications, properties, and units are
ligned between the project data and the constraints.

. Requirement execution

For the requirement execution, the selected approaches will be
efined for the five constraints, allowing a standardized comparison of
he methods, as shown in Fig. 2. The listings shown in this Section will
nly be exemplary snippets, but the full datasets (construction project
ata, constraints, and if applicable validation output) can be found at
SF.4 To keep the examples concise, units are not explicitly checked,
ut this can be done using a similar approach to the information
vailability constraint. The units should however be checked in a future
mplementation, to minimize the chance of incorrect results (false
ositives or false negatives). The prefixes used in the examples are
isted in Listing 1, in which self-defined prefixes are denoted with an
sterisk.

3 The existing converters that can turn IFC-STEP datasets in RDF graphs
tructure the graph using the complex ifcOWL ontology (e.g., the IFC-to-RDF
onverter [47]) or the more concise but less complete and not standardized
inked construction data ontologies BOT and BEO/MEP/FURN (e.g., the
FCtoLBD converter [48]). In the latter case, for instance, units are not included
nd URIs for properties are generated on the fly without being defined in any
ntology.

4

4

https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
Fig. 2. Comparative analysis methodology.

Listing 1: Prefixes used
ids <http://standards.buildingsmart.org/IDS>
ifcotl* <https://otl.buildingsmart.org/IFC4_ADD2_TC1/def/>
otl* <http://otl.company-x.com/def/>
owl <http://www.w3.org/2002/07/owl#>
rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
rdfs <http://www.w3.org/2000/01/rdf-schema#>
reg* <https://accessibility -regulations.org/shapes/>
sh <http://www.w3.org/ns/shacl#>
sml <https://w3id.org/sml/def#>
swrlb <http://www.w3.org/2003/11/swrl#builtin>
xs <http://www.w3.org/2001/XMLSchema >
xsd <http://www.w3.org/2001/XMLSchema#>

4.1. Requirement execution with approaches on IFC data

4.1.1. Solibri Model Checker (SMC)
Solibri Model Checker [11] is a proprietary BIM application that op-

erates on IFC, where construction models from different BIM authoring
tools can be imported into an IFC interface. The compliance checking
is based on both pre-defined and customizable rules within hard-coded
boundaries using a graphical user interface. The rules are however
not formalized in a standard manner and not available outside of the
application. The ruleset manager furthermore allows user input such as
the type of building, to complete the construction information stored in
the BIM model. This application differs in workflow implementation
from other approaches reviewed, since it allows for communicating
about issues through the BIM Collaboration Format (BCF) directly in
the interface. Furthermore, the checking process can be automated
using Solibri Autorun, ensuring that compliance is checked regularly
during the design process. The screen captures in this Section are from
Solibri Anywhere version 9.13.3.18.

The first type of constraint, the information availability constraint,
can be created using Property Sets, as shown in Fig. 3. This property
set defines that each entity of a component, doors in this example,
must have a specified property, such as OverallWidth. By using the
asterisk wildcard in the value condition, the constraint only checks if
the property exists and has a value.

https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.
Fig. 3. Information availability constraint using SMC.
Fig. 4. Value constraint using SMC.
Fig. 5. Relational constraint using SMC.
Fig. 6. Mathematical constraint using SMC.
The value constraint shown in Fig. 4 can be defined similarly to the
information availability constraint, except a value is specified instead
of the wildcard of the previous example.

Relational constraints, for example defining that a stair should have
a hand-rail on both sides, can also be checked. Fig. 5 shows that the
positioning of handrails on the sides can be set to ‘‘Both Sides’’. Next,
geometrical constraints on the handrail can be checked, such as the
minimum and maximum height or the extension beyond the stairs.

Furthermore, mathematical constraints can be defined, such as set-
ting the minimal and maximal values of the sum of a tread and two
risers of a staircase, as shown in Fig. 6. As with the handrail, Solibri
includes built-in algorithms to derive alphanumeric data from the
geometric representation.

Lastly, conditional constraints can be defined by providing the
values in the table shown in Fig. 7. Ramps can be checked by defining
a slope and a length, or with a rise and a gradient, depending on the
structure of the written building legislation. Furthermore, the minimal
5

space at the beginning of the ramp can be checked, which is a benefit
for assessing the turning circles of wheelchairs for example.

The Solibri Model Checker can define the five categories of con-
straints used for the comparison, in a user-friendly interface. The
rules included in the ruleset manager are already quite extensive,
and these just had to be customized with the correct values for this
implementation. However, a full automation of the workflow to go from
human-readable building legislation to Solibri rules will not be straight-
forward, since the rules are not available outside of the application and
it is not disclosed how they should be defined for bulk import.

4.1.2. Information Delivery Specification (IDS)
The Information Delivery Specification (IDS) [49] is a buildingS-

MART standard under development primarily targeted at checking
information requirements from IFC models. An IDS file contains a
list of specifications in XML syntax, which can be used to evaluate
IFC models. IDS uses facets, which describe information that a single

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.
Fig. 7. Conditional constraint using SMC.
entity (e.g. wall, door, etc.) in the model may have. Different kinds of
facets can be created using IDS, such as entity facets, attribute facets,
classification facets, property facets, material facets, and partof facets.
Since the standard is still under development, only a few IDS validators
were available at the time of writing. The examples in this paper
are created and validated using usBIM.IDS version 2.4.68 of ACCA
software [50]. The construction data represented in IFC and the IDS
constraints can be found at OSF:IDS.5

The information availability constraint can be created using either
attribute or property facets. Attributes are defined as a limited set of
fundamental data for an IFC model, while properties are defined as
additional data that describes an IFC element. Whether an attribute or
property facet is needed, thus depends on the type of IFC data that
needs to be validated. Listing 2 shows how the attribute facet for the
width of a door is created. The applicability is an IfcDoor, which is
required to have an attribute named OverallWidth. This attribute can
only occur exactly once, which is defined by setting both minOccurs
and maxOccurs to one.

Listing 2: Information availability constraint using IDS
<ids:applicability >

<ids:entity>
<ids:name>

<ids:simpleValue >IfcDoor </ids:simpleValue >
</ids:name>

</ids:entity>
</ids:applicability >
<ids:requirements >

<ids:attribute minOccurs = "1 " maxOccurs ="1" >
<ids:name>

<ids:simpleValue >OverallWidth </ids:simpleValue >
</ids:name>

</ids:attribute >
</ids:requirements >

The same pattern of attribute and property facets can be extended to
evaluate the value constraint, as shown in Listing 3. In addition to the
previous constraint, the constraint now contains a value restriction,
defining that the minimal OverallWidth of the IfcDoor should be 900
(assuming millimetres). This is done with the xs:minInclusive
construct. For other value constraints, xs:maxInclusive,
xs:minExclusive, and xs:maxExclusive can be used.

5 https://osf.io/jkh2z/?view_only=f8c94f79e0e14c5e8134486fd81b0e62
6

Listing 3: Value constraint using IDS
<ids:applicability >

<ids:entity>
<ids:name>

<ids:simpleValue >IfcDoor </ids:simpleValue >
</ids:name>

</ids:entity>
</ids:applicability >
<ids:requirements >

<ids:attribute minOccurs = "1 " maxOccurs ="1" >
<ids:name>

<ids:simpleValue >OverallWidth </ids:simpleValue >
</ids:name>
<ids:value>

<xs:restriction base =" xs:decimal " >
<xs:minInclusive value ="900" />

</xs:restriction >
</ids:value>

</ids:attribute >
</ids:requirements >

Lastly, relational constraints can be defined using a partof facet, in
which IDS supports four types of relationships: IfcRelAggregates, IfcRe-
lAssignsToGroup, IfcRelContainedInSpatialStructure, and IfcRelNests.
The constraint in Listing 4 ensures that each stair contains two railings,
by using the IfcRelAggregates relation in combination with setting both
minOccurs and maxOccurs equal to two. However, this kind of
constraint cannot check the relative placement of the railing, meaning
the assumption is made that two railings cannot be placed on the same
side of the staircase.

Listing 4: Relational constraint using IDS
<ids:applicability >

<ids:entity>
<ids:name>

<ids:simpleValue >IfcStair </ids:simpleValue >
</ids:name>

</ids:entity>
</ids:applicability >
<ids:requirements >

<ids:partOf relation =" IfcRelAggregates " minOccurs = "2 "
maxOccurs =" unbounded " >
<ids:entity>

<ids:name>
<ids:simpleValue >IfcRailing </ids:simpleValue >

</ids:name>
</ids:entity>

</ids:partOf>
</ids:requirements >

https://osf.io/jkh2z/?view_only=f8c94f79e0e14c5e8134486fd81b0e62
https://osf.io/jkh2z/?view_only=f8c94f79e0e14c5e8134486fd81b0e62

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.

e
p
m
p
t

t
s
2
p
w

Since the first version of IDS targets basic information and relationships
in IFC, more advanced information requirements such as mathematical
and conditional constraints are currently out of scope [51]. Since this
standard is currently under development and software implementations
are scarce at the time of writing, the ease of implementation in archi-
tectural workflows will have to be investigated further. However, the
XML syntax allows for automation from written building legislation to
machine-readable constraints.

4.2. Requirement execution with general open data standards

4.2.1. XML Schema Definition Language (XSD)
The XML Schema Definition Language (XSD) [25] is standardized by

the W3C and used to define the structure, datatypes, and constraints
of XML documents. It provides a standardized way to describe the
allowed elements, attributes, and their relationships within an XML
document. XSD is useful for defining the structure of XML documents,
i.e. defining an XML schema for a certain purpose. It focuses on
describing the devised XML format and validation of XML data against
the schema rather than capturing the semantics or meaning of the data.
XSD provides a way to specify constraints such as required elements,
datatypes, and cardinalities of relations and properties, but it does
not support reasoning or logical axioms. Since XSD is used in many
more domains than the AECO industry, multiple implementations can
be found. An online XSD validator [52] based on the Apache Xerces-J
library [53] was used to validate the five exemplary constraints in this
paper, however, any validator that supports XSD 1.1 can be used. The
construction data represented in XML and the XSD constraints can be
found at OSF:XSD.6

The information availability constraint is defined by stating that
ach door component should have a property OverallWidth. This
roperty should occur exactly once, which is defined by setting both
inOccurs and maxOccurs to one, as shown in Listing 5. This exam-
le clearly shows XSD was developed with this purpose in mind since
he constraint is defined with a relatively straightforward construct.

Listing 5: Information availability constraint using XSD
<xs:element name =" door " maxOccurs =" unbounded " >

<xs:complexType >
<xs:sequence >

<xs:element name =" OverallWidth " type =" xs:double "
minOccurs = "1 " maxOccurs = "1 " />
</xs:sequence >

</xs:complexType >
</xs:element>

To define a value constraint on the door width, a similar approach is
used. However, as shown in Listing 6, the OverallWidth property now
has an additional restriction, stating with xs:minInclusive that the
minimal value should be 900 (assuming millimetres). In parallel with
IDS, similar constraints can be defined using xs:maxInclusive,
xs:minExclusive, and xs:maxExclusive.

Listing 6: Value constraint using XSD
<xs:element name =" door " maxOccurs =" unbounded " >

<xs:complexType >
<xs:sequence >

<xs:element name =" OverallWidth " >
<xs:simpleType >

<xs:restriction base =" xs:double " >
<xs:minInclusive value ="900" />

</xs:restriction >
</xs:simpleType >

</xs:element>
</xs:sequence >

</xs:complexType >
</xs:element>

6 https://osf.io/3dxag/?view_only=077f44c956c54e1f82b8a6ed13ba4bda
7

For the relational constraint, the structure of the XML dataset is im-
portant. In the prepared XML project dataset, the railing is nested in
the stair component, leading to a similar construct as the information
availability constraint. However, in this case, there should be two
railing components present, as shown in Listing 7, which is defined by
setting both minOccurs and maxOccurs equal to two. Once more,
the constraint is simplified to evaluate the presence of two railings,
and their relative placement on opposite sides of the staircase is not
checked.

Listing 7: Relational constraint using XSD
<xs:element name =" stair " maxOccurs =" unbounded " >

<xs:complexType >
<xs:sequence >

<xs:element name =" railing " minOccurs = "2 "
maxOccurs =" unbounded " />
<xs:element name =" riserHeight " type =" xs:double " />
<xs:element name =" treadLength " type =" xs:double " />

</xs:sequence >
</xs:complexType >

</xs:element>

For mathematical (and conditional) constraints, the xs:assert tag
is needed. This XSD 1.1 technique allows for defining a test that the
defined properties should fulfill. Listing 8 shows the test defining that
the result of two times the riser height plus the tread length should be
between 570 and 630. It is important to note that some characters in
the test should be encoded, such as encoding < as < to ensure a
correct validation.

Listing 8: Mathematical constraint using XSD
<xs:element name =" stair " maxOccurs =" unbounded " >

<xs:complexType >
<xs:sequence >

<xs:element name =" railing " minOccurs = "2 "
maxOccurs = "2 " />
<xs:element name =" riserHeight " type =" xs:double " />
<xs:element name =" treadLength " type =" xs:double " />

</xs:sequence >
<xs:assert test ="(riserHeight * 2 + treadLength) >=
570 and (riserHeight * 2 + treadLength) <= 630" />

</xs:complexType >
</xs:element>

Conditional constraints also make use of the test in the xs:assert
ag, however now an if-then statement is needed. Listing 9 shows the
lope should be less than 6.25% if the height difference lies between
50 and 500. In this example, it is once more important to encode
articular characters, and to let a non-inclusive if-then statement end
ith ‘else false()’.

Listing 9: Conditional constraint using XSD
<xs:element name =" ramp " maxOccurs =" unbounded " >

<xs:complexType >
<xs:sequence >

<xs:element name =" heightDifference " type =" xs:double "
/>
<xs:element name =" slope " type =" xs:double " />

</xs:sequence >
<xs:assert test =" if (heightDifference > 250 and
heightDifference < 500) then slope < 0.0625 else
false() "/ >

</xs:complexType >
</xs:element>

The XSD schema was able to define all five categories of constraints.
Furthermore, since this standard was developed almost two decades
ago and has been integrated in many domains since then, the docu-
mentation and examples to be found online are quite extensive.

https://osf.io/3dxag/?view_only=077f44c956c54e1f82b8a6ed13ba4bda
https://osf.io/3dxag/?view_only=077f44c956c54e1f82b8a6ed13ba4bda

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.
4.2.2. JavaScript object notation (JSON) schema
JSON Schema [29] is a language to describe the structure of JSON

data. It provides a standardized way to define requirements and vali-
dations for JSON documents, allowing for compliance checking against
those requirements. It supports defining a set of constraints that the
JSON data must adhere to, such as datatypes, required fields, allowed
values, and more complex validations. To validate the constraints
against a given set of requirements, a JSON Schema validator should
be used. Since this standard has been around for quite some time and
is adopted in many domains, multiple validators can be found, just
like with the XSD schema. The examples in this paper are validated
using the JavaScript Ajv library [54]. The construction data represented
in JSON and the JSON Schema constraints can be found at OSF:
JSONSchema.7

An information availability constraint is defined by stating that a
property of a component is required. As Listing 10 shows, a door com-
ponent has a property OverallWidth, which is a number. The property
is then declared as required for each door.

Listing 10: Information availability constraint using JSON Schema
" door ": {
" type ": " object " ,
" properties ": {
" OverallWidth ": {
" type ": " number "

}
},
" required ": [" OverallWidth "]

}

A value constraint is specified similarly to the information availability
constraint, however, the OverallWidth property now gets a minimal
value of 900 assigned, as shown in Listing 11. The minimum keyword is
defined as being less or equal to the specified number. For similar con-
straints, maximum, exclusiveMinimum and exclusiveMaximum
can be used.

Listing 11: Value constraint using JSON Schema
" entrance ": {
" type ": " object " ,
" properties ": {
" OverallWidth ": {
" type ": " number " ,
" minimum ": 900

}
}

}

Similar to the XSD schema, the definition of relational constraints is
dependent on the used JSON structure. In the exemplary JSON file,
the railings are nested in the staircase component. This structure leads
to the JSON Schema definition in Listing 12, which defines that each
staircase should have an array of railings, with a minimal length of two.
The nesting of the railings inside the staircase object is compulsory,
since JSON Schema does not allow for referring to other objects. Once
again, the relative placement of the staircase and the railings is not
explicitly checked.

Listing 12: Relational constraint using JSON Schema
" staircase ": {
" type ": " object " ,
" properties ": {
" railing ": {
" type ": " array " ,
" minItems ": 2

}
}

}

7 https://osf.io/n4389/?view_only=4ed6ece691db42e2b7a6df36198a41d6
8

The JSON Schema does not allow for mathematical operators to be
defined, meaning the fourth type of constraint cannot be defined with
this approach. Conditional constraints however are possible, by using
an if-then statement. The schema in Listing 13 defines that if the height
difference property of the ramp has a minimal value of 250 and a
maximal value of 500, the slope should have a maximal value of 6.25%.

Listing 13: Conditional constraint using JSON Schema
" ramp ": {
" type ": " object " ,
" if ": {
" properties ": {
" heightDifference ": {
" type ": " number " ,
" minimum ": 250,
" maximum ": 500

}
}

},
" then ": {
" properties ": {
" slope ": {
" type ": " number " ,
" maximum ": 0.0625

}
}

}
}

JSON Schema provides a standardized way to express only four cate-
gories of constraints since the mathematical calculation could not be
defined. The schema is however fully defined by the structure of the
construction data, which is not standardized in the AECO industry. This
is particularly important to create relational constraints since there are
no methods to reference other objects. Furthermore, the JSON Schema
specification describes a standardized validation output, however, it is
not compulsory for JSON Schema validators to implement this.

4.3. Requirement execution with Linked Data approaches

4.3.1. Web Ontology Language (OWL)
The W3C standardized Web Ontology Language (OWL) can be used

to describe concepts in an ontology, which in turn can be published
as an RDF graph to enhance reuse and extensions in other ontologies.
OWL operates under the Open World Assumption (OWA) and No
Unique Name Assumption (NUNA). Consequently, it cannot say what
is ‘‘correct’’ and ‘‘wrong’’ data in a dataset as all it can do is (1)
detect an inconsistency for the dataset and ontology as a whole and (2)
derive additional statements if there are no inconsistencies detected.
In essence, OWL is not a language for defining actual constraints,
but thanks to usage in inferencing processes it can help to simplify
query patterns used in actual validation tests, e.g. applying the SPARQL
query language. The examples in this paper are validated using Protégé
v5.6.1, after which an inferencing process is started using the Pellet
reasoner v2.2.0. The construction data represented in LBD and the OWL
constraints can be found at OSF:OWL.8

The information availability constraint is defined with an OWL
statement that flags the individuals that have an attribute Overall-
Width, due to the lack of support for NAF rules. Listing 14 shows this is
done by using a owl:Restriction construct. Next, a SPARQL query
is defined to find the objects that violate this requirement, by querying
for all individuals of type Door and looking for an absence of the OK
flag, shown in Listing 15.

Listing 14: Information availability constraint using OWL
[

owl:intersectionOf

8 https://osf.io/vzw65/?view_only=9f486dea16f34e53a5647eefd3ac00c5

https://osf.io/n4389/?view_only=4ed6ece691db42e2b7a6df36198a41d6
https://osf.io/n4389/?view_only=4ed6ece691db42e2b7a6df36198a41d6
https://osf.io/n4389/?view_only=4ed6ece691db42e2b7a6df36198a41d6
https://osf.io/n4389/?view_only=4ed6ece691db42e2b7a6df36198a41d6
https://osf.io/vzw65/?view_only=9f486dea16f34e53a5647eefd3ac00c5
https://osf.io/vzw65/?view_only=9f486dea16f34e53a5647eefd3ac00c5

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.
(
ifcotl:Door
[

rdf:type owl:Restriction ;
owl:onProperty ifcotl:attribute_overallWidth ;
owl:someValuesFrom [

rdf:type owl:Restriction ;
owl:onProperty rdf:value ;
owl:someValuesFrom xsd:decimal

]
]

) ;
rdf:type owl:Class ;
rdfs:subClassOf otl:Req01_ok

] .

Listing 15: SPARQL query to retrieve all components minus the ones
that are correct

SELECT ?failedIndividual
WHERE {

?failedIndividual a ifcotl:Door .
MINUS { ?failedIndividual a otl:Req01_ok . }

}

To define a value constraint, an owl:withRestrictions construct
is used in combination with xsd:maxExclusive, as shown in Listing
16. Similar constraints can be created using constructs explained in
Section 4.2.1. To retrieve the violating individuals, a SPARQL query
as shown in Listing 17 can be used.

Listing 16: Value constraint using OWL
[

owl:intersectionOf
(

ifcotl:Door
[

rdf:type owl:Restriction ;
owl:onProperty ifcotl:attribute_overallWidth ;
owl:someValuesFrom [

rdf:type owl:Restriction ;
owl:onProperty rdf:value ;
owl:someValuesFrom [

rdf:type rdfs:Datatype ;
owl:onDatatype xsd:decimal ;
owl:withRestrictions (

[xsd:maxExclusive "900"^^ xsd:decimal]
)

]
]

]
) ;
rdf:type owl:Class ;
rdfs:subClassOf otl:Req02_nok

] .

Listing 17: SPARQL query to retrieve all components that violate the
requirement

SELECT ?failedIndividual
WHERE {

?failedIndividual a otl:Req02_nok .
}

The relational constraint needs a validation process that returns in-
dividuals of type Stair that do not have at least two individuals of
type Railing connected. This is done by using owl:minQualified
Cardinality in combination with owl:onProperty and
owl:onClass, as shown in Listing 18. In parallel with the informa-
tion availability constraint, is this pattern not directly possible with
OWL due to the lack of support for NAF axioms. The SPARQL query
shown in Listing 15 can be used to retrieve the violating instances.
Once more, the relative placement of the railing and the stairs is not
9

explicitly checked.
Listing 18: Relational constraint using OWL
[

owl:intersectionOf
(

ifcotl:Stair
[

rdf:type owl:Restriction ;
owl:minQualifiedCardinality

"2"^^ xsd:nonNegativeInteger ;
owl:onProperty sml:hasPart ;
owl:onClass ifcotl:Railing

]
) ;
rdf:type owl:Class ;
rdfs:subClassOf otl:Req03_ok

] .

Since OWL does not define any mathematical operators, it cannot
define the mathematical constraint. Conditional constraints however
can be created using OWL, by defining the restriction on the height
difference and the slope in an owl:intersectionOf construct, as
shown in Listing 19. Similar to the value constraint, the SPARQL query
of Listing 17 can be used to find the individuals that violate the
requirement.

Listing 19: Conditional constraint using OWL
[

owl:intersectionOf
(

ifcotl:Ramp
[

rdf:type owl:Restriction ;
owl:onProperty otl:property_heightDifference ;
owl:someValuesFrom [

rdf:type owl:Restriction ;
owl:onProperty rdf:value ;
owl:someValuesFrom [

rdf:type rdfs:Datatype ;
owl:onDatatype xsd:decimal ;
owl:withRestrictions (

[xsd:maxExclusive "500"^^ xsd:decimal]
[xsd:minInclusive "250"^^ xsd:decimal]

)
]

]
]
[

rdf:type owl:Restriction ;
owl:onProperty otl:property_slope ;
owl:someValuesFrom [

rdf:type owl:Restriction ;
owl:onProperty rdf:value ;
owl:someValuesFrom [

rdf:type rdfs:Datatype ;
owl:onDatatype xsd:decimal ;
owl:withRestrictions (

[xsd:minExclusive "0.0625"^^ xsd:decimal]
)

]
]

]
) ;
rdf:type owl:Class ;
rdfs:subClassOf otl:Req05_nok

] .

The OWL language on its own is not sufficient for a validation process
as it is in essence a language for describing concepts with OWL axioms
that rely on a set of predefined logical constructs that operate under the
Open World Assumption (OWA) and the No Unique Name Assumption
(NUNA). A validation process involving OWL still relies on a second
step using a SPARQL query engine for retrieving individual objects that
violate certain requirements. Nevertheless, OWL can help to reduce the
complexity of SPARQL queries thanks to the inferred knowledge. In
addition, when using a capable OWL reasoning engine, one can ask the
inferencing engine for precise explanations of why a certain inference
(e.g. an inferred ‘‘flag’’ for signaling a certain requirement violation

or pass) was made. A disadvantage of using OWL in a data validation

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.

A
t
a
a
p
t
s
a
t
t
e
r
r
r
i
S

S
r
r
O
t
t

process is that it is not straightforward as many people find it counter-
intuitive to work with the OWA and NUNA since they expect to be
writing closed-world constraints for a set of project data containing
disjunct individual objects.

4.3.2. Semantic Web Rule Language (SWRL)
The Semantic Web Rule Language (SWRL) [33] is a language for

expressing inferencing rules for reasoning on RDF datasets. The primary
documentation of the language, its abstract notation and its binding to
the RDF data model is the subject of a W3C member submission doc-
ument dating back to 2004. This implies that it was never elevated to
the level of a formal W3C standard. Since SWRL (in parallel with OWL)
works under the No Unique Name Assumption (NUNA), one also needs
to be explicit about the similarity and disjointness of things in a dataset,
using respectively the owl:sameAs or owl:disjointFrom axioms.

nother challenge are so-called Negation as Failure (NAF) rules. Since
hese kinds of rules are not supported by SWRL, a workaround is to
ct on all individuals which are correct instead and assuming during
nalysis that the other side contains all individuals which are not
assing the requirement. Different syntaxes for SWRL exist, such as
he abstract syntax, the XML concrete syntax, and the RDF concrete
yntax. The examples in this paper will be defined using the concise
bstract syntax. The SWRL rules were first created and tested using
he SWRLTab5 v2.1.0 [55] in Protégé v5.6.1 [56]. In a follow-up step,
he RDF dataset and the SWRL rules were loaded in a fresh Protégé
nvironment to start an inferencing process with the plugin Pellet
easoner v2.2.0. A user can then use SPARQL or the Protégé GUI to
etrieve individual objects which violate or respectively pass certain
equirements, by querying over the combination of the asserted and
nferred statements. The construction data represented in LBD and the
WRL constraints can be found at OSF:SWRL.9

The information availability constraint cannot be defined with
RWL due to the lack of support for NAF rules. As a solution, a SWRL
ule that flags the correct doors is devised, as shown in Listing 20. The
ule flags all doors that have the attribute OverallWidth with a value of
K. Similar to OWL, the SPARQL query in Listing 15 is needed to find

he objects that violate this requirement, by querying all individuals of
ype Door and looking for an absence of the OK flag.

Listing 20: Information availability constraint using SWRL
ifcotl:Door(?x) ^ ifcotl:attribute_OverallWidth(?x, ?y) ^

rdf:value(?y, ?z) -> otl:Req01_ok(?x)

The value constraint can be defined using a SWRL built-in (swrlb)
for the numeric operator, to infer a flag for individuals that violate
the requirement. Listing 21 shows that all doors with an attribute
OverallWidth less than 900 are flagged as NOK. A SPARQL query as
shown in Listing 17 is needed to retrieve all individuals that violate
the value constraint, just like with OWL.

Listing 21: Value constraint using SWRL
ifcotl:Door(?x) ^ ifcotl:attribute_OverallWidth(?x, ?y) ^

rdf:value(?y, ?z) ^ swrlb:lessThan(?z, 900) ->
otl:Req02_nok(?x)

The relational constraint needs a validation process that returns all
stairs that are not connected to two railings. In parallel with the
information availability constraint, this pattern is not directly possible
due to the lack of support for NAF rules. As shown in Listing 22,
stairs that are connected to two railings are flagged as OK. Due to the
NUNA under which SWRL operates, similar to OWL, the rule explicitly
checks that the two individual railings are different, however omitting
to check the relative placement of the railings and the stair. The dataset
furthermore needs to explicitly state that the two railings are disjoint
using owl:differentFrom. A similar SPARQL query as in Listing
15 is needed to retrieve the objects that violate the requirement.

9 https://osf.io/f4j8t/?view_only=7183de5cc177400893037c01b8f0f2fa
10
Listing 22: Relational constraint using SWRL
ifcotl:Stair(?x) ^ sml:hasPart(?x, ?y) ^ sml:hasPart(?x,

?z) ^ ifcotl:Railing(?y) ^ ifcotl:Railing(?z) ^
differentFrom(?y, ?z) -> otl:Req03_ok(?x)

Mathematical constraints can be defined in SWRL using built-ins such
as multiply, divide, add, and subtract in combination with logical
operators such as lessThan, greaterThan, and (not)Equal. As shown in
Listing 23, the riser is doubled, after which the sum with the tread is
calculated. If the result is less than 570, the stair is flagged as NOK. A
similar rule is needed to verify the staircase is not too steep, by using
greaterThan(?sum2, 630). In parallel with the value constraint,
a simple SPARQL query is needed to find the individual objects that
violate the requirement, as shown in Listing 17.

Listing 23: Mathematical constraint using SWRL
ifcotl:Stair(?x) ^ ifcotl:property_riserHeight(?x, ?y) ^

rdf:value(?y, ?z) ^ ifcotl:property_treadLength(?x,
?a) ^ rdf:value(?a, ?b) ^ swrlb:multiply(?sum1, ?z, 2)
^ swrlb:add(?sum2, ?b, ?sum1) ^ swrlb:lessThan(?sum2,
570) -> otl:Req04_nok(?x)

For more complex constraints such as conditional constraints, it is not
possible to define a single SWRL inferencing rule due to the lack of a
logical OR construct in SWRL. A simple solution is to define multiple
SWRL inferencing rules and execute them together. Listing 24 shows
the constraint defining that if the height difference is less than 500 and
greater than or equal to 250, and the slope is greater than 6.25%, the
ramp should be flagged as NOK. The non-complying components are
retrieved using a similar query to the one shown in Listing 17.

Listing 24: Conditional constraint using SWRL
ifcotl:Ramp(?x) ^ otl:property_heightDifference(?x, ?y) ^

rdf:value(?y, ?z) ^ swrlb:lessThan(?z, 500) ^
swrlb:greaterThanOrEqual(?z, 250) ^
otl:property_slope(?x, ?a) ^ rdf:value(?a, ?b) ^
swrlb:greaterThan(?b, 0.0625) -> otl:Req05_nok(?x)

While SWRL was able to define the five categories of constraints, it
is not sufficient for a data validation process on its own, since it is,
in essence, a language for inferencing rules that operates under the
Open World Assumption (OWA) and the No Unique Name Assump-
tion (NUNA). A validation process involving SWRL still relies on a
second step using a SPARQL query engine for retrieving individual
objects that violate or pass certain requirements. Nevertheless, SWRL
can help to reduce the complexity of SPARQL queries thanks to the
inferred knowledge. In addition, when using a capable SWRL reasoning
engine, one can ask the inferencing engine for precise explanations of
why a certain inference (e.g. an inferred flag for signaling a certain
requirement violation or pass) was made. Writing SWRL inferencing
rules with its abstract syntax is actually pretty straightforward thanks
to the typical IF-THEN patterns. A drawback, however, is that SWRL
is not a W3C standard and only has limited support in existing Linked
Data tooling.

4.3.3. SPARQL protocol and RDF query language (SPARQL)
The SPARQL query language for RDF [37] has been the W3C

standard for querying RDF datasets since 2013. The language supports
four query forms: SELECT, CONSTRUCT, ASK, and DESCRIBE. Since
the query language furthermore supports negation, SPARQL queries
can be applied to retrieve objects in a dataset that violate certain
requirements using SPARQL SELECT. The result of a SPARQL SELECT
query is a standardized tabular structure in JSON, XML, or CSV for-
mat using the returned values for the query variables. Alternatively,
SPARQL CONSTRUCT queries can be used to return an RDF graph,
based on the demanded graph pattern. In this research, we work with

SPARQL SELECT queries, since they are sufficient for our evaluation.

https://osf.io/f4j8t/?view_only=7183de5cc177400893037c01b8f0f2fa
https://osf.io/f4j8t/?view_only=7183de5cc177400893037c01b8f0f2fa

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.

S
p
c
d
v

o
C
a
s
t
S
e

o
p
a
n

The construction data represented in LBD and the SPARQL constraints
can be found at OSF:SPARQL.10

Information availability constraints can be checked easily with a
PARQL query searching for all objects that do not contain certain
roperties, using FILTER NOT EXISTS. This results in a list of all
omponents that violate the given constraints. As shown in Listing 25,
oors that do not have an OverallWidth attribute with corresponding
alue are flagged as NOK and returned as the result.

Listing 25: Information availability constraint using SPARQL
SELECT ?invalidObjects ?req
WHERE {
BIND (" Req01_nok " AS ?req) .
?invalidObjects a ifcotl:Door .
FILTER NOT EXISTS {

?invalidObjects ifcotl:attribute_OverallWidth ?widthProp
.

?widthProp rdf:value ?widthPropVal .
}

}

Similar to the information availability constraint, the value constraint
can be checked using a FILTER NOT EXISTS. Listing 26 shows that
doors with an OverallWidth attribute of less than 900 are indicated as
NOK and returned as the result.

Listing 26: Value constraint using SPARQL
SELECT ?invalidObjects ?req
WHERE {
BIND (" Req02_nok " AS ?req) .
?invalidObjects a ifcotl:Door .
FILTER NOT EXISTS {

?invalidObjects ifcotl:attribute_OverallWidth ?widthProp
.

?widthProp rdf:value ?widthPropVal .
FILTER(?widthPropVal >= 900)
}

}

Relational constraints can be checked with SPARQL by querying all
objects of the hasPart aggregate, and defining that two of those
bjects should be railings with different URIs, as shown in Listing 27.
omponents that do not correspond to this requirement are indicated
s NOK and returned. The relative placement of the railings on both
ides of the stair is not explicitly checked, making the assumption that
wo railings cannot be placed on the same side of the staircase. Since
PARQL operates under a Unique Name Assumption (UNA), it assumes
ach railing (with a different URI) represents a different railing.

Listing 27: Relational constraint using SPARQL
SELECT ?invalidObjects ?req
WHERE {
BIND (" Req03_nok " AS ?req) .
?invalidObjects a ifcotl:Stair .
FILTER NOT EXISTS {

?invalidObjects sml:hasPart ?railing1, ?railing2 .
?railing1 a ifcotl:Railing .
?railing2 a ifcotl:Railing .
FILTER (?railing1 != ?railing2)
}

}

Mathematical constraints can be defined in SPARQL by using normal
mathematical operators (*, /, +, -). Logical operators can also be used
(=, <, >, >=, <=) to check if a computed value meets the requirements
f the constraint. Listing 28 shows that the sum of two times the riser
lus one tread is bound as a value, after which the incorrect values
re filtered out. Using the same construct as the other constraints,
on-complying components are returned by the query.

10 https://osf.io/yznrx/?view_only=4dda164d79e24132811969271647ac28
11
Listing 28: Mathematical constraint using SPARQL
SELECT ?invalidObjects ?req
WHERE {
BIND (" Req04_nok " AS ?req) .
?invalidObjects a ifcotl:Stair .
FILTER NOT EXISTS {
?invalidObjects ifcotl:property_riserHeight

?riserHeightProp ;
ifcotl:property_treadLength ?treadLenghtProp .

?riserHeightProp rdf:value ?riserHeightPropVal .
?treadLenghtProp rdf:value ?treadlengthPropVal .
BIND(((2*?riserHeightPropVal)+?treadlengthPropVal) AS

?value)
FILTER((?value >= 570) && (?value <= 630))

}
}

Lastly, conditional constraints can also be defined using SPARQL, by
using an IF statement. As shown in Listing 29 the result is set to true if
the height difference is between 250 and 500 and the slope is less than
6.25%. The query then filters out all components that comply with the
constraint and returns all other ramps.

Listing 29: Conditional constraint using SPARQL
SELECT ?invalidObjects ?req
WHERE {
BIND (" Req05_nok " AS ?req) .
?invalidObjects a ifcotl:Ramp .
FILTER NOT EXISTS {

?invalidObjects otl:property_heightDifference
?heightDifferenceProp ;
otl:property_slope ?slopeProp .

?heightDifferenceProp rdf:value
?heightDifferencePropVal .

?slopeProp rdf:value ?slopePropVal .
BIND (
IF((?heightDifferencePropVal > 250) &&
(?heightDifferencePropVal <= 500) && (?slopePropVal <=
0.0625), true, 1/0)

AS ?result)
FILTER (?result = true)

}
}

It is possible to define all five types of proposed constraints with
SPARQL, without the need for SPARQL extensions. However, this ap-
proach lacks a standardized validation report format, since it was not
originally designed for validation use cases. Another aspect is that,
while standardized, the results of a query are in practice not guaranteed
to be the same due to many aspects that implementers added over
time not included in the original specification. This is similar to what
happened with relational databases, where the evolving implementa-
tions resulted in a myriad of Structured Query Language (SQL) dialects
partially limiting portability [57].

4.3.4. Shapes Constraint Language (SHACL)
SHACL [40] is a W3C standard for validating RDF graphs against

a set of constraints, which are expressed as shapes. SHACL supports
the use of SPARQL queries inside shapes, leading to more expressivity.
The result of a SHACL validation process is a standardized RDF graph,
which contains the validation report in a machine-readable format.
The standardized report makes it easier to interpret the results and
retrieve contextual information about the non-complying components
in the validated project datasets. Lots of SHACL implementations can
be found, however, the support of SHACL-SPARQL is not mandatory.
Furthermore, the SHACL standard does not force tool developers to
signal when there is a lack of support for this feature, giving the
impression that all components are always passing the constraint since
it is not actually tested. The user thus needs to verify if the used
validator supports this functionality, to ensure a thorough checking
procedure. To validate the examples in this section, the pySHACL [58]

library was used, which supports the validation of SHACL-SPARQL

https://osf.io/yznrx/?view_only=4dda164d79e24132811969271647ac28
https://osf.io/yznrx/?view_only=4dda164d79e24132811969271647ac28

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.

D
p
a
v
m
t

c

constraints. The construction data represented in LBD and the SHACL
constraints can be found at OSF:SHACL.11

The information availability constraint is defined by targeting the
oor class, and defining that the OverallWidth property of this com-
onent should have exactly one value, by setting both minCount
nd maxCount to one, as shown in Listing 30. The non-complying
alidation report of this shape is shown in Listing 31. While the result
essage is quite generic in this example, it can be further specified in

he shape using sh:message.

Listing 30: Information availability constraint using SHACL
reg:DoorShape_req1 a sh:NodeShape ;

sh:targetClass ifcotl:Door ;
sh:property reg:Attribute_OverallWidth_req1 .

reg:Attribute_OverallWidth_req1 a sh:PropertyShape ;
sh:path ifcotl:attribute_OverallWidth ;
sh:minCount 1 ;
sh:maxCount 1 .

Listing 31: SHACL validation report
[

a sh:ValidationResult ;
sh:resultSeverity sh:Violation ;
sh:sourceConstraintComponent

sh:MinCountConstraintComponent ;
sh:sourceShape reg:Attribute_OverallWidth_req1 ;
sh:focusNode

<https://data.myexample.org/project-HS/id/doorA_fail01 >
;

sh:resultPath ifcotl:attribute_OverallWidth ;
sh:resultMessage " Less than 1 values " ;

] .

To define a value constraint, a similar construct as the information
availability constraint is used, although the OverallWidth path now has
an imposed minInclusive value, as shown in Listing 32. Similar
onstraints can be defined using maxInclusive, minExclusive,

and maxExclusive.

Listing 32: Value constraint using SHACL
reg:DoorShape_req2 a sh:NodeShape ;

sh:targetClass ifcotl:Door ;
sh:property reg:Attribute_OverallWidth_req2 .

reg:Attribute_OverallWidth_req2 a sh:PropertyShape ;
sh:path (ifcotl:attribute_OverallWidth rdf:value) ;
sh:minInclusive "900" .

SHACL furthermore allows the definition of relational constraints. List-
ing 33 shows that the stair class is targeted, after which it is defined
that this stair should have two subelements of the type railing, us-
ing sh:qualifiedValueShape and sh:qualifiedMinCount.
Similarly, sh:qualifiedMaxCount can be used for equivalent con-
straints. It should be noted that this shape does not check the relative
placement of the railings to the stair, since the assumption is made that
multiple railings cannot be placed on the same side of the stair. Since
SHACL, operates under the UNA, like SPARQL, it assumes each railing
represents a different railing.

Listing 33: Relational constraint using SHACL
reg:StairShape_req3 a sh:NodeShape ;

sh:targetClass ifcotl:Stair ;
sh:property [

sh:path sml:hasPart ;
sh:qualifiedValueShape [sh:class ifcotl:Railing] ;
sh:qualifiedMinCount 2

] .

11 https://osf.io/j7raf/?view_only=4b225ebc11114eab94bffb261ce29361
12
Mathematical constraints can be defined by embedding SPARQL queries
in the SHACL shape. As Listing 34 shows, the sum of two times the riser
plus a tread is bound as the calculated result, after which a filter defines
the allowed range of this result. The construct is similar to the one
defined using SPARQL (Listing 28), although the filter in this example
selects the values outside of the range due to the FILTER NOT EXISTS
construct. The prefix binding at the start of the sh:select construct
is omitted in the Listing 34, for conciseness.

Listing 34: Mathematical constraint using SHACL
reg:StairShape_req4 a sh:NodeShape ;

sh:targetClass ifcotl:Stair ;
sh:sparql [

a sh:SPARQLConstraint ;
sh:select " " "

[...]
SELECT $this ?value
WHERE {

$this ifcotl:property_riserHeight ?propHeight .
?propHeight rdf:value ?height .

$this ifcotl:property_treadLength ?propLength .
?propLength rdf:value ?length .

BIND(((2 * ?height) + ?length) AS ?value)
FILTER((?value <= 570) || (?value >= 630))

}
" " "

] .

Conditional constraints can be defined in SHACL using logical operators
such as OR, AND, NOT, and XONE. As shown in Listing 36, the ‘Between’
function shown in Listing 35 is needed to evaluate if the height differ-
ence lies in a specified range. If this is the case, the ramp should also
comply with the second shape defined with the node predicate, due to
the sh:and construct. This second shape defines that the slope should
be less than 6.25%.

Listing 35: SHACL-SPARQL function to evaluate if a value lies in a
range

reg:Between
a sh:SPARQLFunction ;
rdfs:comment " Returns True if op1 < op2 < op3 " ;
sh:parameter [
sh:path reg:op1 ;
sh:datatype xsd:double ;

] ;
sh:parameter [
sh:path reg:op2 ;
sh:datatype xsd:double ;

] ;
sh:parameter [
sh:path reg:op3 ;
sh:datatype xsd:double ;

] ;
sh:returnType xsd:boolean ;
sh:select " " "
SELECT ?result
WHERE {
BIND(IF(?op1 < ?op2 && ?op2 < ?op3, true, false) AS

?result) .
}
" " " .

Listing 36: Conditional constraint using SHACL
reg:RampShape_req5

a sh:NodeShape ;
sh:targetClass ifcotl:Ramp ;
sh:and (

[sh:expression [
reg:Between (

250
[sh:path (otl:property_heightDifference rdf:value)]
500

)

]]

https://osf.io/j7raf/?view_only=4b225ebc11114eab94bffb261ce29361
https://osf.io/j7raf/?view_only=4b225ebc11114eab94bffb261ce29361

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.

T
t
s
t
w
k

s
m
g
e
g
a
e
g
c

s
d
w
a
o
c
c
w
a
t
d
q
B

i
a
e
i
s

sh:node reg:SlopeShape_req5
) .

reg:SlopeShape_req5
a sh:NodeShape ;
sh:property [

sh:path (otl:property_slope rdf:value) ;
sh:maxInclusive 0.0625

] .

SHACL was able to define the five categories of constraints, mainly
due to the implementation of SHACL-SPARQL, the extension of SHACL-
Core. Furthermore, SHACL has a standardized validation report as
output, which is a benefit for use in compliance checking workflows.
However, the validation report only contains information about project
data that does not conform to the SHACL shapes, meaning it does
not explicitly mention which project data has passed certain SHACL
constraints. Additionally, low-level functions such as ‘Between’ are
necessary to check the outcome of a SHACL-SPARQL function, which
can result in quite complex shapes.

5. Discussion

Several approaches for compliance checking were checked, which
can be grouped into three parts:

• Methods operating on IFC data: Solibri Model Checker (a propri-
etary tool), and the upcoming IDS standard

• General data standards and their accompanying schema definition
languages: JSON Schema and XSD

• Linked Data approaches: OWL, SWRL, SPARQL, and SHACL

hese approaches were tested against five flavors of rules (informa-
ion availability, value, relational, mathematical, and conditional con-
traints), leading to the summary in Fig. 8. In this table, a means
he approach supports the corresponding requirement category fully,
hereas a # signifies that the requirement category, to the best of our
nowledge, cannot be defined with this approach.

From a functional point of view, all categories of constraints are
upported by SMC, XSD, SWRL, SPARQL and SHACL. SMC further-
ore includes built-in algorithms to derive alphanumeric data from

eometry, while the other approaches require a preprocessing step to
xtract alphanumeric data from geometrical project data. When the
eometrical analysis can be separated from the actual validation step,
certain amount of overhead is initiated while this separation is also

xpected to result in more flexibility regarding the geometry formats,
eometry types (BREP, CSG, meshes, etc.), and geometry modeling
onventions.

Secondly, when zooming in on the required input data formats, a
eparation can be made between methods requiring IFC data (i.e. a
ataset conforming to the IFC schema), JSON, XML, and RDF (in any
idely supported RDF serialization, e.g. .ttl, .jsonld, .nt, etc.). The
pproaches requiring IFC data (SMC and IDS) cannot be used to test
ther kinds of data, as they are specifically made for evaluating 3D
onstruction models in this format. This can be considered a downside
ompared to JSON Schema, XSD, and Linked Data-based approaches
hich are applicable in virtually any domain. Consequently, there is
much bigger chance that a software developer will know any of

hose more general data standards. Furthermore, JSON, XML, and RDF
atasets can stem from a plethora of sources (inspection tools, planning,
uantity surveying, etc.) while IFC files are only available through a
IM authoring tool.

A third angle for comparison is the degree of openness and standard-
zation for formally expressing requirements, which is important as we
im at a level playing field for compliance checking solutions. Ideally,
ach organization involved in a project can use the same formal rules
n the software application it prefers (e.g. concerning price, support,
peed, security, etc.). The only approach that is proprietary in the
13
Fig. 8. Summary of the approaches.

comparison is SMC. All other methods are based on open specifica-
tions, while some of them are even elevated to standards by IETF
(JSON Schema) and W3C (XSD, OWL, SPARQL, and SHACL). Note that
buildingSMARTs IDS method is still under development at the time of
writing and cannot yet be considered a standard.

Finally, if we also investigate the subject of standardized outputs of
a validation process, we noticed that, to the best of our knowledge,
only the JSON Schema, SPARQL, and SHACL specification define a
standard output format, where the JSON Schema and SHACL outputs
are in origin more oriented to the validation use cases. In the case of
SPARQL CONSTRUCT queries or SHACL, the report can thus be queried
together with the original project data and formal requirements, to add
additional context to humans. While this paper focused on automating
the compliance checking procedure, it is (for now) unimaginable to
create a fully automated checking workflow, since not all parts of the
regulation can be translated into computer-interpretable rules. Even
in the automated checking workflow, not only the accordance of the
written building legislation and the machine-readable rules will have
to be reviewed by a human in the loop, but also the dataset quality. For
quality improvements (e.g. quality of classification), approaches based
on Machine Learning could help a human reviewer to faster get an idea
of the quality of the data. For the harmonization, there is a need for
defining shared ontologies and/or alignments as well as preprocessing
procedures for e.g. units. In contrast to the rigid structure of IFC and
the unlimited structures of XML and JSON Schema, Linked Data-based
approaches can rely on the recent EN17632-1:2022 which defines basic
graph patterns for relations and dataset modeling.

6. Conclusion

This paper compares different approaches to capture requirements
derived from building regulations as machine-readable constraints, for
use in ACC. The different approaches are evaluated by defining con-
straints for the same set of five requirements with each approach. The
approaches can be distinguished as (1) methods operating on IFC data,
(2) general data standards, and (3) Linked Data approaches. While IFC
is commonly used in the AECO industry, it is not widely implemented
outside of this industry. This leads to less rapid development of the
IFC-based approaches. However, the opposite is true for general data

standards and Linked Data approaches. Since they are used in various

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.

A

a

R

domains, the approaches are generally better documented and more
implementations are available. Out of the eight approaches that were
investigated, the Linked Data-based SHACL approach was concluded to
be the best suited for use in compliance checking in the AECO industry.
The most apparent perk is that it supports a standardized validation
report, making it possible to implement it in a fully automated construc-
tion design workflow. However, the proposed methodology has some
limitations: first, we did not investigate the ease of creating constraints
by regulation authors or designers. Furthermore, direct validation of
geometries was out of scope, assuming alphanumeric properties were
derived using a separate process. Although there are limitations to
this research, we hope the provided listings make it easier for future
research to test, compare, and implement these approaches.

CRediT authorship contribution statement

Emma Nuyts: Conceptualization, Data curation, Investigation,
Methodology, Software, Validation, Visualization, Writing – original
draft. Mathias Bonduel: Conceptualization, Data curation, Funding
acquisition, Investigation, Methodology, Project administration, Soft-
ware, Validation, Writing – review & editing. Ruben Verstraeten:
Conceptualization, Funding acquisition, Investigation, Methodology,
Project administration, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

All data related to this article is publicly available at OSF12 under
the CC-By Attribution 4.0 license.

cknowledgments

This work was supported by the European Union’s Horizon Research
nd Innovation Program - Digichecks [grant number 101058541].

eferences

[1] R. Amor, J. Dimyadi, The promise of automated compliance checking, Devel.
Built Environ. 5 (2021) 100039, http://dx.doi.org/10.1016/j.dibe.2020.100039.

[2] A. Mowbray, P. Chung, G. Greenleaf, Representing legislative Rules as Code:
Reducing the problems of ‘scaling up’, Comput. Law Secur. Rev. 48 (2023)
105772, http://dx.doi.org/10.1016/j.clsr.2022.105772.

[3] J. Zhang, N.M. El-Gohary, Integrating semantic NLP and logic reasoning into
a unified system for fully-automated code checking, Autom. Constr. 73 (2017)
45–57, http://dx.doi.org/10.1016/j.autcon.2016.08.027.

[4] Y.-C. Zhou, Z. Zheng, J.-R. Lin, X.-Z. Lu, Integrating NLP and context-free gram-
mar for complex rule interpretation towards automated compliance checking,
Comput. Ind. 142 (2022) 103746, http://dx.doi.org/10.1016/j.compind.2022.
103746.

[5] ISO 16739-1:2018 - Industry Foundation Classes (IFC) for data sharing in the
construction and facility management industries, 2018.

[6] S. Daum, A. Borrmann, Processing of topological BIM queries using boundary
representation based methods, Adv. Eng. Inform. 28 (4) (2014) 272–286, http:
//dx.doi.org/10.1016/j.aei.2014.06.001.

[7] W. Solihin, J. Dimyadi, Y.-C. Lee, C. Eastman, R. Amor, The critical role of
accessible data for BIM-based automated rule checking systems, in: Lean and
Computing in Construction Congress - Volume 1: Proceedings of the Joint
Conference on Computing in Construction, Heriot-Watt University, Heraklion,
Crete, Greece, 2017, pp. 53–60, http://dx.doi.org/10.24928/JC3-2017/0161.

[8] L. Ding, R. Drogemuller, M. Rosenman, D. Marchant, J. Gero, Automating
code checking for building designs: DesignCheck, in: K. Brown, K. Hampson,
P.S. Brandon (Eds.), Clients Driving Construction Innovation: Moving Ideas Into
Practice, Cooperative Research Centre for Construction Innovation, Brisbane,
Qld., Australia, 2006.

12 https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
14
[9] B.-H. Goh, E-government for construction: The case of Singapore’s CORENET
project, in: L.D. Xu, A.M. Tjoa, S.S. Chaudhry (Eds.), Research and Practical
Issues of Enterprise Information Systems II Volume 1, Vol. 254, Springer US,
Boston, MA, 2008, pp. 327–336, http://dx.doi.org/10.1007/978-0-387-75902-9_
34, Series Title: IFIP — The International Federation for Information Processing.

[10] E. Hjelseth, Public BIM-based model checking solutions: lessons learned from
Singapore and Norway, Bristol, UK, 2015, pp. 421–436, http://dx.doi.org/10.
2495/BIM150351.

[11] Solibri, 2023, URL https://www.solibri.com/. Last visited 2023-08-05.
[12] J. Wix, N. Nisbet, T. Liebich, Using constraints to validate and check building

information models, in: A. Zarli, R. Scherer (Eds.), EWork and EBusiness in
Architecture, Engineering and Construction, CRC Press, 2008, http://dx.doi.org/
10.1201/9780203883327.

[13] buildingSMART, Model View Definitions (MVD), buildingSMART Technical, URL
https://technical.buildingsmart.org/standards/ifc/mvd/. Last visited 2023-07-04.

[14] T. Chipman, T. Liebich, M. Weise, mvdXML, 2016.
[15] Y.-C. Lee, C.M. Eastman, W. Solihin, Logic for ensuring the data exchange

integrity of building information models, Autom. Constr. 85 (2018) 249–262,
http://dx.doi.org/10.1016/j.autcon.2017.08.010.

[16] buildingSMART, IfcDoc: IFC doc toolkit, 2022, GitHub. URL https://github.com/
buildingsmart-private/IfcDoc. Last visited 2023-08-27.

[17] L. Van Berlo, Belangrijke update: MVD’s worden Vervangen door specificaties
voor informatielevering (IDS), 2023, buildingSMART Nederland. URL
https://www.buildingsmart.nl/nieuws/2023-02-07-belangrijke-update-mvds-
worden-vervangen-door-specificaties-voor-informatielevering-ids. Last visited
2023-08-06.

[18] A. Tomczak, L. Berlo, T. Krijnen, A. Borrmann, M. Bolpagni, A review of
methods to specify information requirements in digital construction projects,
in: IOP Conference Series: Earth and Environmental Science, Volume 1101,
W078: Information Technology for Construction, IOP Publishing Ltd, 2022,
http://dx.doi.org/10.1088/1755-1315/1101/9/092024, 092024.

[19] C. Preidel, S. Daum, A. Borrmann, Data retrieval from building information
models based on visual programming, Vis. Eng. 5 (1) (2017) 18, http://dx.doi.
org/10.1186/s40327-017-0055-0.

[20] J. Dimyadi, W. Solihin, C. Eastman, R. Amor, Integrating the BIM rule lan-
guage into compliant design audit processes, in: Proceedings of 33rd CIB W78
Conference: IT in Construction, Brisbane, Australia, 2016, pp. 1–10, Issue:
November.

[21] Y. Shafranovich, Common Format and MIME Type for Comma-Separated Values
(CSV) Files, Tech. Rep., 2005, http://dx.doi.org/10.17487/rfc4180, RFC4180.
RFC Editor.

[22] W3C, Metadata vocabulary for tabular data, 2015, URL https://www.w3.org/
TR/2015/REC-tabular-metadata-20151217/. 2023-08-29.

[23] CSV schema, 2022, URL https://digital-preservation.github.io/csv-schema/. Last
visited 2023-08-29.

[24] F. Standards, Table schema, 2023, URL https://specs.frictionlessdata.io//table-
schema/. Last visited 2023-08-29.

[25] W3C, XML schema definition language (XSD) 1.1 Part 1: Structures, 2012, URL
https://www.w3.org/TR/xmlschema11-1/. Last visited 2023-07-04.

[26] W3C, XML schema definition language (XSD) 1.1 Part 2: Datatypes, 2012, URL
https://www.w3.org/TR/xmlschema11-2/. Last visited 2023-07-04.

[27] W3C, XML schema Part 1: Structures second edition, 2004, URL https://www.
w3.org/TR/xmlschema-1/. Last visited 2023-08-05.

[28] Ecma, ECMA-404: The JSON data interchange syntax, 2017, Ecma International.
URL https://www.ecma-international.org/publications-and-standards/standards/
ecma-404/. Last visited 2023-07-04.

[29] JSON schema, 2020, JSON Schema. URL https://json-schema.org/. Last visited
2023-08-06.

[30] W3C, RDF 1.1 concepts and abstract syntax, 2014, URL https://www.w3.org/
TR/rdf11-concepts/. 2023-08-29.

[31] W3C, OWL 2 web ontology language document overview (second edition), 2012,
URL https://www.w3.org/TR/owl2-overview/. Last visited 2023-07-25.

[32] J. Tao, E. Sirin, J. Bao, D. McGuinness, Integrity constraints in OWL, in:
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 24, (1) 2010,
pp. 1443–1448, http://dx.doi.org/10.1609/aaai.v24i1.7525.

[33] W3C, SWRL: A semantic web rule language combining OWL and RuleML, 2004,
URL https://www.w3.org/Submission/SWRL/. Last Visited 2023-07-04.

[34] M. Uhm, G. Lee, Y. Park, S. Kim, J. Jung, J.-k. Lee, Requirements for compu-
tational rule checking of requests for proposals (RFPs) for building designs in
South Korea, Adv. Eng. Inform. 29 (3) (2015) 602–615, http://dx.doi.org/10.
1016/j.aei.2015.05.006.

[35] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, J. Hendler, N3Logic: A logical
framework for the world wide web, Theory Pract. Logic Program. (2007) http:
//dx.doi.org/10.48550/ARXIV.0711.1533, Publisher: arXiv Version Number: 1.

[36] P. Pauwels, D. Van Deursen, R. Verstraeten, J. De Roo, R. De Meyer, R.
Van De Walle, J. Van Campenhout, A semantic rule checking environment
for building performance checking, Autom. Constr. 20 (5) (2011) 506–518,
http://dx.doi.org/10.1016/j.autcon.2010.11.017.

[37] W3C, SPARQL 1.1 query language, 2013, URL https://www.w3.org/TR/sparql11-
query/. 2023-07-04.

https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
http://dx.doi.org/10.1016/j.dibe.2020.100039
http://dx.doi.org/10.1016/j.clsr.2022.105772
http://dx.doi.org/10.1016/j.autcon.2016.08.027
http://dx.doi.org/10.1016/j.compind.2022.103746
http://dx.doi.org/10.1016/j.compind.2022.103746
http://dx.doi.org/10.1016/j.compind.2022.103746
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb5
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb5
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb5
http://dx.doi.org/10.1016/j.aei.2014.06.001
http://dx.doi.org/10.1016/j.aei.2014.06.001
http://dx.doi.org/10.1016/j.aei.2014.06.001
http://dx.doi.org/10.24928/JC3-2017/0161
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb8
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb8
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb8
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb8
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb8
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb8
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb8
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb8
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb8
https://osf.io/5rwt6/?view_only=7637d2f2718341a59a5bd6635965e973
http://dx.doi.org/10.1007/978-0-387-75902-9_34
http://dx.doi.org/10.1007/978-0-387-75902-9_34
http://dx.doi.org/10.1007/978-0-387-75902-9_34
http://dx.doi.org/10.2495/BIM150351
http://dx.doi.org/10.2495/BIM150351
http://dx.doi.org/10.2495/BIM150351
https://www.solibri.com/
http://dx.doi.org/10.1201/9780203883327
http://dx.doi.org/10.1201/9780203883327
http://dx.doi.org/10.1201/9780203883327
https://technical.buildingsmart.org/standards/ifc/mvd/
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb14
http://dx.doi.org/10.1016/j.autcon.2017.08.010
https://github.com/buildingsmart-private/IfcDoc
https://github.com/buildingsmart-private/IfcDoc
https://github.com/buildingsmart-private/IfcDoc
https://www.buildingsmart.nl/nieuws/2023-02-07-belangrijke-update-mvds-worden-vervangen-door-specificaties-voor-informatielevering-ids
https://www.buildingsmart.nl/nieuws/2023-02-07-belangrijke-update-mvds-worden-vervangen-door-specificaties-voor-informatielevering-ids
https://www.buildingsmart.nl/nieuws/2023-02-07-belangrijke-update-mvds-worden-vervangen-door-specificaties-voor-informatielevering-ids
http://dx.doi.org/10.1088/1755-1315/1101/9/092024
http://dx.doi.org/10.1186/s40327-017-0055-0
http://dx.doi.org/10.1186/s40327-017-0055-0
http://dx.doi.org/10.1186/s40327-017-0055-0
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb20
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb20
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb20
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb20
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb20
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb20
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb20
http://dx.doi.org/10.17487/rfc4180
https://www.w3.org/TR/2015/REC-tabular-metadata-20151217/
https://www.w3.org/TR/2015/REC-tabular-metadata-20151217/
https://www.w3.org/TR/2015/REC-tabular-metadata-20151217/
https://digital-preservation.github.io/csv-schema/
https://specs.frictionlessdata.io//table-schema/
https://specs.frictionlessdata.io//table-schema/
https://specs.frictionlessdata.io//table-schema/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-1/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://json-schema.org/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/owl2-overview/
http://dx.doi.org/10.1609/aaai.v24i1.7525
https://www.w3.org/Submission/SWRL/
http://dx.doi.org/10.1016/j.aei.2015.05.006
http://dx.doi.org/10.1016/j.aei.2015.05.006
http://dx.doi.org/10.1016/j.aei.2015.05.006
http://dx.doi.org/10.48550/ARXIV.0711.1533
http://dx.doi.org/10.48550/ARXIV.0711.1533
http://dx.doi.org/10.48550/ARXIV.0711.1533
http://dx.doi.org/10.1016/j.autcon.2010.11.017
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

Advanced Engineering Informatics 60 (2024) 102443E. Nuyts et al.
[38] B. Zhong, C. Gan, H. Luo, X. Xing, Ontology-based framework for building
environmental monitoring and compliance checking under BIM environment,
Build. Environ. 141 (2018) 127–142, http://dx.doi.org/10.1016/j.buildenv.2018.
05.046.

[39] Z. Zheng, Y.-C. Zhou, X.-Z. Lu, J.-R. Lin, Knowledge-informed semantic alignment
and rule interpretation for automated compliance checking, Autom. Constr. 142
(2022) 104524, http://dx.doi.org/10.1016/j.autcon.2022.104524.

[40] W3C, Shapes constraint language (SHACL), 2017, URL https://www.w3.org/TR/
shacl/. 2023-07-04.

[41] R.K. Soman, M. Molina-Solana, J.K. Whyte, Linked-data based constraint-
checking (LDCC) to support look-ahead planning in construction, Autom. Constr.
120 (2020) 103369, http://dx.doi.org/10.1016/j.autcon.2020.103369, Publisher:
Elsevier.

[42] W3C, ShEx - shape expressions, 2019, URL https://shex.io/. 2023-08-05.
[43] P. Pauwels, S. Zhang, Semantic rule-checking for regulation compliance checking:

An overview of strategies and approaches, in: Proceedings of the 32nd CIB W78
Conference, Eindhoven, Netherlands, 2015, pp. 619–628.

[44] Besluit van de Vlaamse Regering tot vaststelling van een gewestelijke steden-
bouwkundige verordening betreffende toegankelijkheid, 2009, URL https://www.
toegankelijkgebouw.be/Regelgeving/Downloads/tabid/328/Default.aspx.

[45] M. Bonduel, A. Wagner, P. Pauwels, M. Vergauwen, R. Klein, Including
widespread geometry schemas into Linked Data-based BIM applied to built
heritage, Proc. Inst. Civ. Eng. - Smart Infrastruct. Construct. 172 (1) (2019)
34–51, http://dx.doi.org/10.1680/jsmic.19.00014.

[46] NBN EN 17632-1:2022 Building information modelling (BIM). Semantic
modelling and linking (SML). Generic modelling patterns, 2022.

[47] P. Pauwels, IFCtoRDF, 2023, GitHub. URL https://github.com/pipauwel/
IFCtoRDF. Last visited 2023-08-27.
15
[48] J. Oraskari, IFCtoLBD, 2023, URL https://github.com/jyrkioraskari/IFCtoLBD.
Last visited 2023-08-27.

[49] buildingSMART, Information Delivery Specification IDS, buildingSMART
Technical, 2020, URL https://technical.buildingsmart.org/projects/information-
delivery-specification-ids/. Last visited 2023-07-04.

[50] Accasoftware, IDS BIM, 2023, URL https://www.accasoftware.com/en/
information-delivery-specification-ids. Last visited 2023-08-16.

[51] buildingSMART, Advanced information requirements, 2022, URL https:
//github.com/buildingSMART/IDS/blob/master/Documentation/specifications.
md#advanced-information-requirements.

[52] XML Schema validation service, 2022, URL https://www.softwarebytes.org/
xmlvalidation/. Last visited 2023-08-16.

[53] Apache, Xerces2 Java XML parser readme, 2023, URL https://xerces.apache.org/
xerces2-j/. Last visited 2023-08-27.

[54] Ajv JSON schema validator, 2021, URL https://ajv.js.org/. Last visited
2023-08-16.

[55] Swrltab-plugin, 2023, Protégé Project. URL https://github.com/protegeproject/
swrltab-plugin. original-date: 2014-06-29.

[56] Protege desktop, 2023, URL https://github.com/protegeproject/protege. Last
visited 2023-08-27.

[57] D. Chamberlin, SQL, in: L. Liu, M.T. Özsu (Eds.), Encyclopedia of Database
Systems, Springer US, Boston, MA, 2009, pp. 2753–2760, http://dx.doi.org/10.
1007/978-0-387-39940-9_1091.

[58] A. Sommer, N. Car, pySHACL, 2023, http://dx.doi.org/10.5281/ZENODO.
4750840, Zenodo.

http://dx.doi.org/10.1016/j.buildenv.2018.05.046
http://dx.doi.org/10.1016/j.buildenv.2018.05.046
http://dx.doi.org/10.1016/j.buildenv.2018.05.046
http://dx.doi.org/10.1016/j.autcon.2022.104524
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
http://dx.doi.org/10.1016/j.autcon.2020.103369
https://shex.io/
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb43
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb43
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb43
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb43
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb43
https://www.toegankelijkgebouw.be/Regelgeving/Downloads/tabid/328/Default.aspx
https://www.toegankelijkgebouw.be/Regelgeving/Downloads/tabid/328/Default.aspx
https://www.toegankelijkgebouw.be/Regelgeving/Downloads/tabid/328/Default.aspx
http://dx.doi.org/10.1680/jsmic.19.00014
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb46
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb46
http://refhub.elsevier.com/S1474-0346(24)00091-0/sb46
https://github.com/pipauwel/IFCtoRDF
https://github.com/pipauwel/IFCtoRDF
https://github.com/pipauwel/IFCtoRDF
https://github.com/jyrkioraskari/IFCtoLBD
https://technical.buildingsmart.org/projects/information-delivery-specification-ids/
https://technical.buildingsmart.org/projects/information-delivery-specification-ids/
https://technical.buildingsmart.org/projects/information-delivery-specification-ids/
https://www.accasoftware.com/en/information-delivery-specification-ids
https://www.accasoftware.com/en/information-delivery-specification-ids
https://www.accasoftware.com/en/information-delivery-specification-ids
https://github.com/buildingSMART/IDS/blob/master/Documentation/specifications.md#advanced-information-requirements
https://github.com/buildingSMART/IDS/blob/master/Documentation/specifications.md#advanced-information-requirements
https://github.com/buildingSMART/IDS/blob/master/Documentation/specifications.md#advanced-information-requirements
https://github.com/buildingSMART/IDS/blob/master/Documentation/specifications.md#advanced-information-requirements
https://github.com/buildingSMART/IDS/blob/master/Documentation/specifications.md#advanced-information-requirements
https://www.softwarebytes.org/xmlvalidation/
https://www.softwarebytes.org/xmlvalidation/
https://www.softwarebytes.org/xmlvalidation/
https://xerces.apache.org/xerces2-j/
https://xerces.apache.org/xerces2-j/
https://xerces.apache.org/xerces2-j/
https://ajv.js.org/
https://github.com/protegeproject/swrltab-plugin
https://github.com/protegeproject/swrltab-plugin
https://github.com/protegeproject/swrltab-plugin
https://github.com/protegeproject/protege
http://dx.doi.org/10.1007/978-0-387-39940-9_1091
http://dx.doi.org/10.1007/978-0-387-39940-9_1091
http://dx.doi.org/10.1007/978-0-387-39940-9_1091
http://dx.doi.org/10.5281/ZENODO.4750840
http://dx.doi.org/10.5281/ZENODO.4750840
http://dx.doi.org/10.5281/ZENODO.4750840

	Comparative analysis of approaches for automated compliance checking of construction data
	Introduction
	Related work
	Processing normative data
	Previously studied compliance checking methods
	IFC-based approaches
	General open data standards
	Linked Data approaches

	Similar comparative analyses

	Research methodology
	Comparative analysis
	Compliance checking methods reviewed
	Interpretation of regulation and categories of constraints
	Construction project data preparation

	Requirement execution
	Requirement execution with approaches on IFC data
	Solibri Model Checker (SMC)
	Information Delivery Specification (IDS)

	Requirement execution with general open data standards
	XML Schema Definition Language (XSD)
	JavaScript Object Notation (JSON) Schema

	Requirement execution with Linked Data approaches
	Web Ontology Language (OWL)
	Semantic Web Rule Language (SWRL)
	SPARQL Protocol and RDF Query Language (SPARQL)
	Shapes Constraint Language (SHACL)

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

