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Background: The occurrence of surgical site infections (SSIs) is associated with increased risk of mortality, devel-
opment of other infections, and the need for reintervention, posing a significant health burden. The aim of this
review was to examine the current data and guidelines around the use of antiseptic povidone‑iodine (PVP-I)
for the prevention of SSIs at each stage of surgical intervention.
Methods: A literature search for selected key words was performed using PubMed. Additional papers were iden-
tified based on author expertise.
Results: Scientific evidence demonstrates that PVP-I can be used at every stage of surgical intervention: preoper-
ative, intraoperative, and postoperative. PVP-I is one of themostwidely used antiseptics on healthy skin andmu-
cous membranes for preoperative surgical site preparation and is associated with a low SSI rate. For
intraoperative irrigation, aqueous PVP-I is the recommended agent and has been demonstrated to decrease
SSIs in a range of surgical settings, and for postoperative wound healing, there is a growing body of evidence
to support the use of PVP-I.
Conclusions: There is a need for more stringent study designs in clinical trials to enable meaningful comparisons
between antiseptic agents, particularly for preoperative skinpreparation. The use of a single agent (PVP-I) at each
stage of surgical intervention could potentially provide advantages, including economic benefits, over agents that
can only be used at discrete stages of the surgical procedure.
Key message: Evidence supports the use of PVP-I at all stages of surgical intervention, from preoperative
measures (including skin preparation, preoperative washing, and nasal decolonization) to intraoperative
irrigation, through to postoperative wound management. However, there is a need for more stringent
study designs in clinical trials to enable meaningful comparisons between antiseptic agents, particularly
for preoperative skin preparation.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

The clinical and economic impact of surgical site infections. Surgical
site infections (SSIs), defined as postoperative infection occurring
within 30 days of a surgical procedure (or within 1 year for permanent
implants), are one of the most frequent types of healthcare-associated
infections [1,2]. The occurrence of SSIs is associated with increased
risk of mortality, reintervention, organ-space infection, and other
healthcare-associated infections [3].

Patients in low-income countries have an increased risk of SSIs ver-
sus those in high-income countries; however, the incidence of SSIs in
middle- and high-income countries is still notable (14 % and 9 %, respec-
tively, in a study of patients undergoing elective or emergency gastroin-
testinal resection) [3]. This poses a significant healthcare burden: in
an England-based study, SSIs were responsible for 4694 hospital
bed-days over 2 years, which is the equivalent of 6.4 beds per day
[4]. Additionally, the United States (US) Centers for Disease Control
and Prevention (CDC) guidelines evaluated the mean cost of SSI
treatment to range from US $10,443–US $25,546 per SSI [5]. How-
ever, it has been suggested that the economic burden associated
with SSIs has been underestimated due to under-reporting of the
true rate of SSIs [6].

As antibiotic resistance is one of the biggest threats to global
health today [7], the use of antiseptics may be preferable to antibi-
otics for the prevention of SSIs, thanks to their lower tendency to in-
duce bacterial resistance and cross-resistance and their broader
spectrum of antimicrobial activity [8]. Some antiseptics, for example
specific povidone‑iodine (PVP-I)-based products, can be used at all
stages of surgical intervention, from preoperative measures includ-
ing skin preparation, preoperative washing, and nasal methicillin-
resistant Staphylococcus aureus (MRSA) decolonization, to intraoper-
ative irrigation, and ultimately postoperative management of
Table 1
Properties of chlorhexidine and povidone-iodine [130].

Mechanism of action Bactericidal activity

CHX Alters the permeability of the
microorganism cell membrane
and causes leakage of cellular
constituents [128]

Effective against most ESKAPE pathogens
(variable/limited activity against Klebsiella
pneumoniae and Pseudomonas aeruginosa) [129];
less effective than PVP-I in the presence of organic
material [18,129]; less effective at eradicating
Acinetobacter baumannii, Escherichia coli, MRSA,
and P. aeruginosa in biofilms than free-form
bacteria; higher efficacy in young versus mature
biofilms [129]

PVP-I Penetrates microorganisms
and oxidizes key proteins,
nucleotides, and fatty acids,
leading to cell death [66]

Effective against all ESKAPE pathogens [129];
shortest time to efficacy against Staphylococcus
aureus, Enterococcus faecium, and P. aeruginosa in
the presence of blood (compared with CHX,
polyhexanide, and octenidine) [18,129]; highly
effective at eradicating biofilms, including MRSA,
K. pneumoniae, P. aeruginosa, and Candida
albicans [129]

CHX, chlorhexidine; ESKAPE, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia
resistant Staphylococcus aureus; PVP-I, povidone-iodine.

a Daptomycin has activity against most Gram-positive pathogens, including vancomycin-res
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surgical wounds [9]. This could potentially provide an economic
advantage over the use of multiple different agents that can only be
used at discrete stages of the surgical procedure. Future health eco-
nomics and outcomes studies would be beneficial to investigate
these potential economic advantages, particularly in low- and
middle-income countries.

Properties and activity of commonly used antiseptics. There are sev-
eral major classes of antiseptics, including biguanides (eg, chlorhex-
idine [CHX]), iodine derivatives (eg, PVP-I), chlorine derivatives (eg,
sodium hypochlorite), and alcohols. Each antiseptic has a different
mechanism of action, antimicrobial spectrum, and resistance profile.
Table 1 shows the properties of two of the most commonly used
antiseptics, CHX and PVP-I.

Antimicrobial activity can be influenced by physical factors (eg, pH
of the skin, ambient temperature, interfering organic materials), chem-
ical factors (eg, antiseptic concentration),microbiological factors (quan-
tity and nature of microorganisms), and mode of application [10,11].

Numerous studies have been published investigating the antimicro-
bial activity of antiseptic agents [12–17]. In vitro, 0.05 % and 0.1 % PVP-I
were microbicidal against methicillin-sensitive S. aureus (MSSA) and
MRSA within 20 s [8,17], while 0.05 % CHX required between 2 and
20–30 min to kill the various strains of MSSA and MRSA [8,16]. Most
of the data on antimicrobial activity have been derived from in vitro
studies using suspensions of microbial cells [12]; however, phase 2/
step 2 studies have been proposed as a progression from cell suspension
tests [18]. In one such study, the activity of a variety of antiseptics was
assessed in vitro in the presence of organic material. The antiseptics
were tested againstmicrobial test suspensions pre-dried on ametal car-
rier; this method was suggested to be more representative of antiseptic
treatment of awound than cell suspension tests [18]. Using thismethod,
the effect of organic material on PVP-I, CHX, polyhexanide, and
Antimicrobial spectrum Resistance profile

Broad spectrum of activity
against Gram-positive bacteria.
Incomplete spectrum of
activity against
Gram-negative bacteria, fungi,
and viruses. No activity against
spores [8]

CHX resistance observed in Staphylococcus
epidermidis, A. baumannii, and Mycobacterium
abscessus. Cross-resistance to colistin,
vancomycin, and daptomycina has been observed
[130–135]

Broad spectrum of activity
against Gram-positive bacteria,
Gram-negative bacteria, fungi,
viruses, and spores [8]

No observed
antimicrobial resistance/
cross-resistance [136,137]

e, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.; MRSA, methicillin-

istant enterococci and MRSA [138].
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octenidine activity was tested. PVP-I had the shortest time to efficacy
(≤30 min) against S. aureus, Enterococcus faecium, and Pseudomonas
aeruginosa, even in the presence of blood. Octenidine also displayed
rapid activity: its efficacy against S. aureus was similar to PVP-I; how-
ever, against E. faecium and P. aeruginosa, octenidine required longer ex-
posure times ranging between 30 min and 10 h. Conversely, the effects
of CHX and polyhexanidewere generally less rapid (ranging from5min
to >24 h depending on the species and presence of bioburden) [18].

While in vitro activity studies can be informative, it should be noted
that environmental laboratory factors can influence observations
[19]. Selection of the most appropriate antiseptic in real-world prac-
tice should therefore be based on clinical data and evidence-based
guidelines.

Methods

This narrative review was guided using information derived from a
virtual focus meeting, attended by the authors (October 2021), and a
subsequent literature search of the PubMed database using selected
search terms. Search terms were chosen based on discussions during
the focus meeting, and no date restrictions were included in the
searches. Additional papers were identified based on authors' expertise.
Only papers deemed directly relevant were included in this review.

Results

Antiseptic skin agents in the prevention of SSIs: current scientific
data. SSI prevention is complex and requires the integration of preven-
tive measures before, during, and after surgery [2]. Here, we discuss ev-
idence for the most appropriate use of antiseptic preparations at each
stage of surgical intervention.

i) Preoperative antisepsis
Guideline Recommendations for the Use of Antiseptics in Preoperative

Skin Preparation
PVP-I is one of themostwidely used antiseptics for the prevention of

SSIs, and is associated with a low SSI rate [20]. However, in 2016, the
WorldHealthOrganization (WHO) published newguidelines: consider-
ing the available evidence, the WHO Guidelines Development Group
recommended the use of an alcohol-based antiseptic solution based
on CHX for surgical site preparation in patients undergoing surgical pro-
cedures [21]. This recommendation was sustained in the 2018 WHO
guidelines update (strong recommendation, low-to-moderate quality
of evidence) [2].

The meta-analysis that contributed to the WHO recommendation,
concluding that alcoholic CHX is beneficial in reducing SSI rates com-
pared with alcoholic PVP-I, was based on studies rated as low-quality
evidence [2]. Furthermore, discrepancies in the trials concerned have
led to questions over the validity of the recommendation. These dis-
crepancies included the comparison of alcoholic CHX versus aqueous
PVP-I, small sample sizes, and antiseptics used in the trials having un-
known or suboptimal alcohol concentrations [20,22,23]. Furthermore,
the body of evidence supporting the WHO recommendation focused
on adult patients and no studies were available in the pediatric popula-
tion. Therefore, the effectiveness of alcoholic CHX is not proven for pe-
diatric patients [2].

In a repeated meta-analysis by Maiwald et al. after an updated sys-
tematic literature search and exclusion of the trials using antiseptics
with inadequate or unknown alcohol concentrations, CHX was no lon-
ger shown to be superior to PVP-I for preventing SSIs, indicating that
theWHO recommendationwas premature [20]. The authors of the orig-
inal meta-analysis cited by the WHO have published a response to
this criticism, in which they stand by the findings of their study but
acknowledge that the availability of alcoholic CHX-based prepara-
tions remains limited and can be an additional cost in developing
countries [24].
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Other organizations, including the international Orthopaedic Re-
search Society [25], the international Institute for Healthcare Improve-
ment [26], the US CDC [5], and the French Society of Hospital Hygiene
[27], do not align with the WHO's recommendation, and continue
to recommend alcohol-based antisepsis with either CHX or PVP-I.
This more neutral and balanced position between the two agents,
recommending the use of alcohol-based antisepsis with either CHX
or PVP-I, may be more appropriate.

Current scientific data on antiseptics for preoperative skin preparation
Despite cumulative evidence in favor of alcoholic CHX [28–31],

the most appropriate preoperative skin antiseptic has not yet been
definitively established. Studies publishing evidence in favor of alco-
holic CHX versus PVP-I as a skin antiseptic have received criticism
due to inconsistencies in study design [22,23,32].

One of these inconsistencies was the use of alcoholic versus aque-
ous preparations: in a 2010 meta-analysis [28] and a separate sys-
tematic review of the same year [31], alcoholic CHX preparations
were directly compared with aqueous PVP-I in the majority of the
evaluated trials [22,23]. However, alcohol alone was described by
the CDC as “the most effective and rapid-acting skin antiseptic”
[33] and alcoholic PVP-I is associated with a lower incidence of cath-
eter colonization and infection than aqueous PVP-I [34]; thus, com-
paring alcoholic CHX with aqueous PVP-I is not an appropriate
comparison [22,23].

Another inconsistency, exemplified by the CLEAN [29] and CLEAN 3
[30] studies, was application technique. These studies compared the ef-
ficacy of alcoholic CHX with alcoholic PVP-I prior to catheter insertion
and concluded that alcoholic CHXwas associatedwith a lower incidence
of catheter-related infections [29,30]. In both studies, alcoholic CHX
applied with a pre-filled applicator using the back-and-forth friction
technique was compared with alcoholic PVP-I applied with a compress
using the concentric circles technique [29,30]. While the Summary of
Product Characteristics (SmPC) for alcoholic CHX specifically recom-
mends its application using a back-and-forth technique [35], the PVP-I
SmPC does not explicitly recommend the concentric circles technique
used in CLEAN and CLEAN 3 [36]. Historically, skin antiseptics have
been applied using the concentric circles technique; however, there is
no guarantee that this method results in aseptic skin, and no evidence
was found in the literature to support this technique [37,38]. Applying
friction, as in the back-and-forth friction technique (but not in the con-
centric circles technique), is beneficial for skin preparation, as it ensures
cleaning through the top five dermal layers of skin, which harbor a large
proportion of the skin's bacterial load, and removesmost of the bacteria
from this region [37,38]. Furthermore, in a randomized, open-label
study, a significantly greater reduction in colony-forming unit count
was achieved when applying PVP-I using the back-and-forth friction
technique versus the concentric circles technique to back skin of healthy
volunteers [39]. Therefore, given the potentially beneficial effect of the
back-and-forth friction technique compared with the concentric circles
technique, the use of different methods of antiseptic application in the
CLEAN studies could have influenced the conclusions [37,38].

Furthermore, the use of a pre-filled applicator with CHX could have
had greater antiseptic activity compared with the use of a compress
with PVP-I; a single-use pre-filled applicator could result in greater
consistency in the volume of antiseptic used and less heterogeneity
in the way it was applied by healthcare professionals, as well as
offering reduction of the risk of cross-contamination during antisep-
tic application [38].

Finally, a further factor in study design that has received criticism
relates to study endpoints: the CLEAN 3 primary outcome was a
composite endpoint of “catheter-related infectious complications”,
incorporating catheter colonization, local infection, and catheter-
related bloodstream infection (CRBSI). However, catheter coloniza-
tion, while appropriate for small exploratory pilot studies, has been
suggested to be inappropriate for establishing definite patient-
oriented benefit or harm of an intervention [30,32]. In a meta-



S.J. Monstrey, K. Govaers, P. Lejuste et al. Surgery Open Science 13 (2023) 9–17
analysis, catheter colonization showed poor agreement with CRBSI
at the individual patient level and poor “capture” at the study level
(“capture” was defined as the degree to which treatment effects on
CRBSI were captured by the surrogates) [32]. The authors concluded
that, although catheter colonization and CRBSI were correlated, anti-
septic effects on CRBSI may not be adequately captured by catheter
colonization [32]. As such, the primary outcome in the large CLEAN
3 trial may not be appropriate for definitively determining the
patient-oriented benefit or harm of the antiseptics tested.

Conversely, evidence has been published in favor of alcoholic PVP-I
versus alcoholic CHX preparations for the prevention of SSIs in various
surgical settings; for example, Dörfel et al. demonstrated that on the
shoulder region of healthy volunteers, alcoholic PVP-I showed a certain
degree of benefit versus alcoholic CHX in reducing aerobic flora counts,
but more substantial benefits in reducing anaerobic flora counts [40].
One of the main constituents of anaerobic flora is Cutibacterium acnes
(formerly Propionibacterium acnes) [40]. C. acnes is frequently detected
as a cause of SSIs, particularly in prosthetic joint infections andmost fre-
quently in shoulder prosthetic joint infections [41,42]. In addition,
C. acnes can be involved in infections after hip and knee joint replace-
ments [43], polyurethane-coated breast implants [44], and various
other implants [45]. C. acnes is primarily located in the deeper layers
of the skin, in hair follicles, and pilo-sebaceous glands; therefore, the
findings of Dörfel et al. indicate that alcoholic PVP-I may be a promising
option for preoperative antisepsis on skin with a high density of seba-
ceous glands [40]. Indeed, compared with alcoholic CHX, alcoholic
PVP-I is hypothesized to have a greater antimicrobial effect against the
deep resident skin flora due to the capacity for iodine to penetrate the
deeper layers of the skin [40]. This hypothesis is based on experiments
with excised human skin in diffusion chambers, showing that aqueous
CHXpenetrates relatively poorly into deep skin layers [46], while iodine
released from PVP-I can pass through the skin in clinically relevant
amounts [47].

Further evidence in favor of alcoholic PVP-I includes a study in pa-
tients undergoing hip or knee arthroplasties. Patients were randomized
to receive surgical site preparation with either alcoholic CHX or alco-
holic iodine. There were increased odds of SSI in the alcoholic CHX
group compared with the alcoholic iodine group: 3.1 % versus 1.0 %, re-
spectively; odds ratio (95 % confidence interval): 3.06 (1.26–7.46); P=
0.014 [48]. In this study, although the original trial protocol stipulated
10 % PVP-I (with 1 % available iodine) in 70 % alcohol, the protocol
was amended to 1 % iodine in 70 % ethanol, based on institutional pref-
erence and experience [48].

Importantly, aqueous-based iodine solutions, such as PVP-I, are one
of the few antiseptics that can be safely used onmucousmembrane sur-
faces and therefore should be the antiseptic of choice for procedures
such as transurethral and transvaginal surgery [49]. Any alcohol-based
solutions should not be applied to mucous membranes because of
the risk of burns [49,50].

Thus, due to the conflicting evidence summarized above, practi-
tioners may consider other characteristics (eg, safety and cost)
when selecting a preoperative antiseptic agent.

Safety
With regards to safety, while all antiseptics have irritant properties

[51], the WHO guidelines for SSI prevention note that CHX may cause
skin irritation, delayed reactions such as contact dermatitis and photo-
sensitivity, and, in some very rare cases, hypersensitivity reactions
such as anaphylactic shock [2]. In a position statement on anaphylaxis
guidance, the World Allergy Organization identified “disinfectants like
CHX” as “novel substances inducing anaphylaxis” [52], while a review
by Rose et al. stated that CHX is a “known irritant in high concentra-
tions” [53]. Irritant contact dermatitis with CHX causing localized tran-
sient irritation, which disappears spontaneously on avoidance, has
been reported in doctors and other healthcare workers [53]. Further-
more, spillage of CHX into the eye when used as an antiseptic for facial
procedures, such as aesthetic injections, can lead to significant chemical
12
burns in the form of keratitis [54–56]. CHX, when used as an antiseptic
eardrop, has also been shown to damage themiddle ear, with thepoten-
tial to cause permanent sensorineural deafness if it penetrates a perfo-
rated ear drum [56].

When the safety of alcoholic CHX (n = 1044) and alcoholic PVP-I
(n = 1011) was directly compared in the CLEAN study, skin reactions
of all severity were more frequent with alcoholic CHX than with alco-
holic PVP-I (17.5 % vs 14.4 %, respectively; P = 0.011) [29]. Severe skin
reactions were also more frequent with alcoholic CHX versus alcoholic
PVP-I (2.6 % vs 0.7 %, respectively; P=0.002), and led to CHX discontin-
uation in two of the 1044 patients [29]. Conversely, in the CLEAN3 study
(N = 989), minor skin reactions were uncommon (1.6 % overall), with
no significant difference between alcoholic CHX and alcoholic PVP-I
(1.8 % and 1.4 %, respectively; adjusted relative risk [95 % confidence
interval]: 1.06 [0.77–1.35]) [30]. There were no severe skin reactions
reported [30].

Cost
PVP-I dressings and solutions are relatively inexpensive compared

with other antimicrobial therapies [57]. CHX is more expensive than
PVP-I, potentially leading to issues with affordability in low-income
countries [20]. The authors of the meta-analysis cited by the WHO ac-
knowledged that the availability of alcoholic CHX-based preparations
remains limited and could be an additional cost in developing countries
[24]. Furthermore, it has been suggested that dressings that change
color (eg, iodine dressings containing 10 % PVP-I, which decolor as the
iodine is absorbed) may be more cost-effective in that they provide an
indicator of how frequently dressings should be changed. This may pre-
vent unnecessary dressing changes and save both dressing costs and
nursing time [57,58]. Based on this, the cost of antiseptic preparations
may impact clinical decisions surrounding antiseptic agent.

Preoperative washing
Preoperative washingwith an antiseptic agentmay also be a benefi-

cial measure for SSI prevention. The WHO recommends that either a
plain or antimicrobial soap may be used by patients for bathing or
showering prior to surgery to ensure that the skin is as clean as possible
and to reduce the bacterial load, especially at the site of incision [2]. At
the time of publishing the guidelines, the only evidence available for
preoperative washing with an antimicrobial soap was of moderate
quality and showed that preoperative bathing with antimicrobial
soap containing CHX had neither a positive nor negative impact on
reducing the rate of SSIs compared with plain soap. As no other stud-
ies were available, either plain or antimicrobial soap was recom-
mended [2]. In a recent modeling study in France using a healthcare
infection database, preoperative showering with antimicrobial soap
was predicted to prevent 209 SSIs per year compared with no antimi-
crobial soap, leading to a potential saving of €632,210 per year based
on the price of PVP-I [59].

Preoperative nasal decolonization
Nasal carriage of S. aureus at the time of surgery has been shown to

increase the risk of SSIs [60,61]. Furthermore, positivity for MRSA is as-
sociated with higher rates of mortality following infection compared
with methicillin-susceptible S. aureus [62]. Thus, screening and decolo-
nization of S. aureusin carriers prior to surgery is a promisingmethod for
reducing surgical site staphylococcal infections and their associated
risks. The WHO guidelines recommend intranasal applications of
mupirocin 2 % ointment with or without CHX body wash for patients
with known nasal carriage of S. aureus who are undergoing cardiotho-
racic or orthopedic surgery; patients with known S. aureus carriage un-
dergoing other types of surgery should also be considered for this
regimen [2].

However, mupirocin is expensive and is not currently universally
available [63]. Additionally, there are growing concerns about decoloni-
zation failures due to mupirocin resistance [64]. In particular, the effect
of CHX body wash in combination with mupirocin on the development
of resistance is unknown. In an 8-year surveillance study, 1.8 % of the
nasal MRSA isolates tested contained both CHX- and mupirocin-



S.J. Monstrey, K. Govaers, P. Lejuste et al. Surgery Open Science 13 (2023) 9–17
resistance determinants. Additionally, MRSA isolates positive for qacA/B
(CHX tolerance genes) were more likely to be mupirocin-resistant than
MRSA isolates negative for qacA/B (ie, CHX-susceptible isolates) (25.0 %
vs 5.6 %, respectively; P = 0.003) [65]. While this may suggest that the
use of CHX and mupirocin regimens could lead to selection of co-
resistant strains, further study is required to confirm this hypothesis.

Due to these concerns over mupirocin, several studies have investi-
gated the use of intranasal PVP-I solution for preoperative nasal decolo-
nization [66–70]. Preoperative intranasal PVP-I has been shown to have
similar efficacy to intranasal mupirocin in preventing SSI in patients
undergoing orthopedic surgery, with or without screening for MRSA
[67,68]. Patients who appliedmupirocin were also more likely to report
headache, rhinorrhea, congestion, and sore throat than those who ap-
plied PVP-I [67]. In a randomized controlled trial in patients with posi-
tive nasal cultures for MRSA, single-dose application of 10 % PVP-I to
both nasal vestibules was associated with a statistically significant re-
duction in mean MRSA concentrations at 1 and 6 h after dosing com-
pared with the saline control (P < 0.050), but not at 12 or 24 h. These
results suggest that PVP-I may be effective for short-term suppression
of S. aureus during the perioperative period [69]. Furthermore, one
study showed significantly lower SSI rates in patients using topical in-
tranasal PVP-I combined with CHX-impregnated wash cloths and CHX
oral rinse compared with those not using these measures [70].

ii) Intraoperative wound irrigation
The WHO, CDC, and Infectious Diseases Society of America (IDSA)

recommend irrigation of the incisional wound with an aqueous PVP-I
solution before closure to prevent SSIs [2,5,71]. This is particularly rec-
ommended in clean and clean-contaminated wounds (ie, wounds
showing no signs of infection that may or may not involve repairing
or removing an internal organ) [2].

A decrease in SSIs has been reported when diluted aqueous PVP-I is
used forwound irrigation in a range of surgical settings, including crani-
otomy, cesarean delivery, breast surgery, and intraperitoneal irrigation
during laparotomy and spinal surgery [72–79]. Conversely, for knee
and hip arthroplasties, there is conflicting evidence both in favor and
against the use of aqueous PVP-I for wound irrigation [80–83]; for ex-
ample, in a systematic review and meta-analysis including seven stud-
ies and 31,213 patients undergoing total joint arthroplasty, Kim et al.
found no difference in postoperative infection rates between patients
who underwent PVP-I lavage before wound closure versus those with-
out PVP-I lavage [81]. However, in a retrospective study of 31,331
total joint arthroplasty cases between 2009 and 2019, dilute PVP-I irri-
gation was associated with a 2.34-times lower rate of periprosthetic
joint infection compared with saline (0.6 % vs 1.3 %, respectively).
Using multiple regression analysis, this reduction was statistically sig-
nificant (P < 0.001) [83].

In breast augmentation surgery, the US Food and Drug Administra-
tion (FDA) placed a ban on the use of PVP-I for pocket irrigation in
2000, due to the suggestion of a possible degradative effect on the sili-
cone elastomer shell [79]. However, the evidence that led to this deci-
sion was subsequently questioned [84]. Following the FDA ban,
Zambacos et al. published an in vitro experiment which showed that
PVP-I had no significant effect on the tensile strength of the silicone
elastomer shell after 4 weeks of incubation, when comparedwith saline
[85]. Several further studies have shown no structural effect of PVP-I
on breast implants; in fact, a significant decrease in the incidence
of capsular contracture has been observed with the use of PVP-I
[84]. In 2017, the FDA implemented a change in the 'Directions for
Use' for one of the implant brands that removed the ban on PVP-I
use in breast augmentation, which is widely thought will benefit
patients through reducing the risk of bacterial contamination of im-
plant surfaces [79,86].

Although aqueous PVP-I is the recommended agent for wound irri-
gation according to theWHO, CDC, and IDSA guidelines, other irrigation
preparations, including 0.9 % saline, castile soap, antibiotic solutions,
and antiseptics like hydrogen peroxide, have been proposed in the
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literature [87]. In a study into surgical site irrigation during total hip or
knee arthroplasties, no significant difference was seen in infection
rates between the CHX irrigation protocol and protocols using di-
lute PVP-I (for total hip arthroplasty) or 0.9 % saline (for total
knee arthroplasty) [87].

For orthopedic surgery, the chondrolytic effects of antiseptics must
also be taken into consideration when selecting the most appropriate
agent for irrigation. Intra-articular irrigation with even dilute concen-
trations of CHX for short periods of time can have toxic effects on
collagen-producing cells and might result in delayed wound healing
[88]. Additionally, 1 min exposure to 0.05 % CHX in vitro significantly
altered the metabolism of osteoarthritic cartilage, but not non-
osteoarthritic cartilage, and prolonged exposure for 1 h markedly
affected the metabolism of both types of cartilage [89]. Several case
reports have demonstrated that exposure of human articular carti-
lage to CHX for prolonged periods or at high concentrations results
in severe chondrolysis and subsequent joint damage [90–92].

Treatment with polyhexanide, hydrogen peroxide, or taurolidine
also induces cell death of human chondrocytes in vitro [93]. However,
there is conflicting evidence regarding the chondrolytic effects of aque-
ous PVP-I: in an in vitro study, bovine cartilage explantswere exposed to
different concentrations of PVP-I for 1, 3, or 6 min. Aqueous PVP-I solu-
tion at all tested concentrations (0.35 %, 1.40 %, 3.50 %, and 5.00 %) also
had a chondrotoxic effect on the superficial cartilage layer when used
for longer than 1min [94]. Conversely, in bovine sesamoid bones in vitro,
aqueous PVP-I had no negative feedback on cartilage metabolism and
actually stimulated chondrocyte metabolism [95]. Further research is
needed to determine the chondrolytic effects and associated risks of
each antiseptic agent to further facilitate the selection of the most ap-
propriate agent for wound irrigation, particularly in orthopedic surgery.

Antisepsis for preventing biofilm-associated infections
Biofilms are an important consideration across all surgical and

wound care settings. It has been reported that at least 80 % of bacterial
infections are associated with biofilms [96], and many of the microbial
populations associated with SSIs have been observed to exist primarily
within a biofilm matrix [97]. Biofilms can promote bacterial survival in
the presence of antimicrobial therapies and delay wound healing [98].

Intraoperative irrigation is a suitable method to prevent the forma-
tion of biofilms during surgery [99]. Furthermore, the World Union of
Wound Healing Societies 2016 Position Document recognizes iodine
as a suitable antimicrobial agent to prevent biofilms, as well as acetic
acid, honey, polyhexanide, and silver [100]. The efficacy of aqueous
PVP-I in eradicating biofilms has been described in numerous in vitro
studies [101–109] and has been extensively reviewed [110,111].
The in vitro efficacy of PVP-I against Staphylococcus epidermidis and
S. aureus growth was demonstrated by Oduwole et al., as was the inhi-
bition of staphylococcal biofilm formation at sub-inhibitory concentra-
tions of PVP-I (low concentrations of antiseptics at which biofilm
development can be triggered) [107]. Additionally, low-dose (0.25 %)
PVP-I in vitro completely eliminated established biofilms of multi-drug
resistant S. aureus, Klebsiella pneumoniae, P. aeruginosa, and Candida
albicans [103]. Using a basally perfused biofilm consortium model
consisting of P. aeruginosa, MRSA, Bacteriodes fragilis, and Streptococcus
pyogenes, 10 % PVP-I produced the largest overall reduction in bacterial
count comparedwith 0.5 % polyhexanide and 0.05 % silver acetate [106].
However, none of the antiseptics tested eradicated P. aeruginosa or
MRSA from the biofilms [106]. A further in vitro model showed that
Candida auris biofilms had reduced susceptibility against CHX and
hydrogen peroxide, with eradication achieved only using PVP-I [105].
Iodine-containing wound dressings have also demonstrated greater
antimicrobial efficacy against mature biofilms of P. aeruginosa and
S. aureus compared with silver-based dressings using an in vitro static
diffusion model [109].

Rapid onset of PVP-I antibiofilm efficacy has been demonstrated
in vitro, with complete eradication of mature biofilms of S. aureus and
P. aeruginosa achieved after only 15 min exposure [104]. Conversely,
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Schmidt et al. suggested that while PVP-I was effective for
S. epidermidis eradication in vitro, high concentrations or long expo-
sure times may be required for biofilm penetration (10 % for 1 min or
3.5 % for 10 min) [108].

Alves et al. have recently proposed an algorithm for the manage-
ment of chronic, non-healingwounds due to critical colonization (a spe-
cific phase of the infection continuum, characterized by the presence of
a bacterial biofilm without overt infection) and/or biofilms to prevent
the progression of a wound toward infection [111]. The algorithm in-
cludes guidance on mechanical washing of the wound with soap or
PVP-I scrub solution, debridement, disinfection with PVP-I dermic solu-
tion on gauze, and control of biofilm regrowth using PVP-I gel with or
without PVP-I tulle with secondary dressings [111]. Currently, there
is no such algorithm or guidelines for biofilm prevention or manage-
ment during surgery. Given the clinical significance of biofilms in
surgery and their role in the development of SSIs, a common protocol
for the prevention of biofilms during surgery across all surgical spe-
cialties would be beneficial.

PVP-I concentration for intraoperative wound irrigation
The optimal concentration of aqueous PVP-I for intraoperative irri-

gation is not clear [112]: concentrations used in published literature
range from 0.35 %–3.5 % [80,113]. The concentration of PVP-I deter-
mines its antimicrobial activity [114]: povidone is hydrophilic and acts
as a carrier of iodine to cellmembranes. Once the PVP-I complex reaches
the cell wall, free iodine is released and is rapidly cytotoxic [115], with a
broad spectrum of antimicrobial activity irrespective of the pathogen
type (ie, Gram-positive bacteria, Gram-negative bacteria, fungi, viruses,
or spores) [8]. The free iodine concentration increases with more dilute
concentrations of PVP-I, with a maximal free iodine concentration of
24 ppm at 0.7 % [116]. This paradoxical effect follows a “bell curve”:
concentrations <0.05 % lose their PVP-I complex characteristics and
behave like aqueous iodine [116]. Thus, the in vitro bactericidal effi-
cacy of PVP-I has been shown to increase correspondingly at more
dilute concentrations of 0.1 %–1 % [115,117].

Several studies have investigated the activity of different aqueous
PVP-I dilutions, including a seminal study comparing the potency of
PVP-I and CHX against MRSA [17]. In this study, the bactericidal activity
of the two antisepticswasmeasured using logarithmic reduction factors
(LRFs) obtained over a range of exposure times and bacterial strains (33
MRSA isolates). Full antiseptic efficacywas defined as 30 s LRF>5. PVP-I
achieved a significantly higher LRF than CHX, indicating highermicrobi-
cidal activity, when averaged over all dilutions, exposure times, and
bacterial strains (PVP-I: 4.550–4.879; CHX: 2.735–3.004, depending on
the suspension test method used). After 5 min of exposure, CHX did
not reach an LRF>5 at any dilution. The activity of CHX reduced linearly
with increasing dilution factor from theminimumdilution factor tested.
In contrast, PVP-I had a 5-min LRF > 5 at dilution factors 25–200; PVP-I
activity was diminished only at dilution factors higher than 200, thus
differing significantly from the linear relationship that was seen with
CHX (P < 0.001). Compared with CHX, PVP-I had a higher microbici-
dal activity and remained active at greater dilution factors. Most im-
portantly, PVP-I had the capacity to achieve a 30-s LRF > 5, while
CHX did not [17].

In an in vitro study, bacteria (S. aureus and S. epidermidis) and human
cells (fibroblasts and mesenchymal stromal cells) were exposed to
aqueous solutions of polyhexanide, hydrogen peroxide, octenidine,
PVP-I, and CHX at various dilutions for 2 min. Except for polyhexanide,
all the antiseptics were bactericidal and cytotoxic at the commercially
available concentrations. When diluted, only PVP-I was bactericidal at
a concentration that showed remaining cell viability (minimumbacteri-
cidal concentration = 1.32 g/L), thus the authors concluded that PVP-I
diluted to this concentration could be the optimal antiseptic for intraop-
erative irrigation [118]; however, clinical studies are required to vali-
date this finding. Prospective clinical studies are required to determine
the optimal concentration of PVP-I for intraoperative irrigation and to
produce evidence to support a guideline statement on the topic.
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iii) Postoperative antisepsis
Postoperative surgical wound management with antiseptics is not

included in the WHO or CDC guidelines for SSI prevention [2,5]; how-
ever, in contaminated and dirty wounds requiring surgical attention,
antisepsis is warranted, combined with systemic antibiotics [9]. Of
note, surgical wounds healing by secondary intention (ie, without the
use of sutures, staples, adhesives, or clips) have an increased risk of in-
fection that may impact wound healing. Antiseptic or antibiotic agents
may be used with the aim of preventing or treating such infections
[119]. Antisepsis may also be beneficial for surgical skin graft wounds
[9].

Historically, a limited range of antimicrobial products have been
available to treat wound infections and reduce bacterial burden
[120]. One of them is a dressing containing 10 % PVP-I (INADINE™)
[58]. Today, there are several alternative antimicrobial wound prod-
ucts available, including CHX, silver, benzalkonium chloride, triclo-
san, octenidine, and polyhexanide [9,121].

When using antiseptics for wound healing, their cytotoxic effects
must be considered. All antiseptics may have a certain level of cytotox-
icity due to nonspecific effects [9]. Given that any cytotoxic effect could
potentially affect normal tissue repair [122], selection of a topical anti-
septic for wound repair must balance its bactericidal activity and its po-
tential cytotoxicity, in order to create an optimal environment for
wound repair [123]. Studies have shown that PVP-I has very low cyto-
toxicity compared with other antiseptics when tested on skin and
oromucosal cell lines [9]. A study of patients with chronic leg ulcers
found that application of PVP-I did not alter the microvasculature, nor
significantly reduce the density of dendrocytes or fibroblasts; PVP-I
was not associated with dendrocytoclasis [124].

Fundamentally, it is also important to confirm that postoperative
antisepsis will not impede the wound-healing process. In a clinical
trial of patients undergoing split skin grafts, the use of PVP-I
ointmentmedicated gauze did not delay wound healing compared
with simple Vaseline® petrolatum gauze. Evidence also suggested a
possible earlier onset of epithelializationwith PVP-I, and a trend toward
lower bacterial counts versus the petrolatumgauze controls [125]. Inter-
estingly, Eming et al. proposed a novel mechanism for PVP-I action in
promoting wound healing: in vitro, PVP-I was shown to reduce the ac-
tivity of plasmin and neutrophil elastase, as well as overall metallopro-
teinase activity [126]. Metalloproteinases, plasmin, and elastase are all
proteases that contribute to perturbation of tissue repair in chronic
wounds [126]. Low doses of PVP-I significantly inhibited purified plas-
min and neutrophil elastase activity; when tested in wound fluid,
there was a dose-dependent inhibition of neutrophil elastase activity
by PVP-I. As a strong oxidative agent, iodine can cause denaturation of
enzymes by reacting with the amino, phenol, and sulfhydryl groups
of their composite amino acids [126]. The resultant loss of enzymatic
function may represent PVP-I's mechanism of action. Based on these
findings, the authors recommended using PVP-I in impaired wound
healing when healing is poorly progressing, strongly exudating,
and excessive protease levels predominate [126].

Further evidence for PVP-I's ability to promote healingwas provided
by investigations in an animal model: the application of 0.5 % PVP-I to
acute skin wounds on the dorsal skin of rats for 1 h per day for the
first 5 days after injury enhanced healing through upregulation of
transforming growth factor beta (TGF-β), which suppressed the inflam-
matory response and promoted the formation of “more organized”
granulation tissue [127]. Here the authors suggested that topical appli-
cation of PVP-I may be suitable to promote healing, even in the absence
of infection [127].

Conclusions

Due to the growing global incidence of antibiotic resistance, greater
emphasis should be placed on the use of antiseptics in the prevention of
SSIs, given their lower tendency to induce bacterial resistance and
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cross-resistance. This review has highlighted the body of evidence
supporting the use of PVP-I for SSI prevention at every stage of surgical
intervention, from preoperative measures (including skin preparation,
preoperative washing, and nasal decolonization) to intraoperative
irrigation, through to postoperative woundmanagement. Furthermore,
aqueous-based iodine solutions, such as PVP-I, are one of the few anti-
septics that canbe safely used onmucousmembrane surfaces. However,
there is a need for more stringent study designs in clinical trials to
enable meaningful comparisons between antiseptic agents, particularly
for preoperative skin preparation. Until then, the WHO guidelines for
surgical site preparation may benefit from a more neutral and balanced
position between PVP-I and CHX, recommending the use of alcohol-
based antisepsis with either agent. The use of a single agent (PVP-I)
for antisepsis throughout each stage of the surgical procedure could
be economically beneficial compared with agents that can only be
used at discrete stages, and could be advantageous in countries with
limited access to other agents.
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