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Nederlandse Samenvatting
–Summary in Dutch–

De neurowetenschap heeft de afgelopen jaren opmerkelijke vooruitgang geboekt.
Nieuwe technieken en hulpmiddelen hebben frisse perspectieven geboden. Ondanks
deze vooruitgang blijven neurologische ziektes nog steeds een aanzienlijke uitda-
ging vormen. Een groot deel van de bevolking wordt getroffen door deze ziektes,
wat leidt tot een daling van hun levenskwaliteit. Bovendien is de economische last
die gepaard gaat met deze aandoeningen aanzienlijk. Dit benadrukt de noodzaak
voor voortdurende klinische vooruitgang en de nood aan innovatieve therapieën.
Technieken zoals cochleaire implantaten, visuele prothesen, hersen-computer inter-
faces en diepe hersenstimulatie bieden hoop voor de toekomst van patiënten. Deze
technieken hebben reeds aangetoond de levenskwaliteit van patiënten te kunnen
verbeteren. Echter, volledige herstel of genezing van ziekten is momenteel nog niet
mogelijk. Veel van deze technologieën bevinden zich nog in hun beginstadium,
waardoor uitdagingen aangepakt moeten worden die leiden tot potentiële verbete-
ring. Ook neuromodulatietechnieken die momenteel alleen in preklinische setting
gebruikt worden, zoals optogenetica, zijn veelbelovend. Echter, vertaling naar klini-
sche toepassing komt met extra moeilijkheden. Toch maken de potentiële voordelen
van deze geavanceerde technieken ze het nastreven waard, ondanks de complexi-
teiten die ermee gepaard gaan. Daarnaast is er een opmerkelijke verschuiving van
open- naar gesloten-lussystemen, waarbij overbodige stimulatie wordt beperkt door
realtime aanpassingen. Om met deze systemen specifieke controle te verkrijgen,
is de opmeting van elektrofysiologische activiteit met een hoge ruimtelijke en
temporele resolutie van cruciaal belang.

Computationele neurowetenschap, een snel evoluerend deelgebied van neuro-
wetenschappen, bestudeert deze uitdagingen aan de hand van wiskundige model-
len. Het integreert technieken uit verschillende domeinen, waaronder elektrische
ingenieurswetenschappen, informatica, geneeskunde en natuurkunde. Het voor-
deel ten opzichte van experimenteel onderzoek is de volledige controle over de
parameterruimte. De toenemende rekenkracht van computers en de komst van
supercomputers maken snel en systematisch onderzoek mogelijk. Dit is waardevol
voor het ontrafelen van de complexiteit van het zenuwstelsel en het verkennen van
neuromodulatieparameters om therapieën te verbeteren. Het brein bevat 86 miljard
neuronen en is extreem complex samengesteld. De huidige modellen en reken-
middelen staan nog niet toe om dit uitgebreid systeem gedetailleerd te modelleren.
Daarom moeten modellen vaak een balans vinden tussen biologisch realisme en
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eenvoud. Bovendien kunnen modellen niet op zichzelf staan. Een voortdurende
cyclus van modelvalidatie en het testen tegen experimentele data is noodzakelijk.

Dit proefschrift bevat zes hoofdstukken. In het eerste hoofdstuk wordt het vak-
gebied van de neurowetenschap geı̈ntroduceerd met een basis van hersenanatomie
en neurofysiologie. In het bijzonder wordt het actiepotentiaal (AP) beschreven dat
de fundamentele eenheid in neuronale communicatie is. Ook wordt een overzicht
gegeven van huidige en veelbelovende neuromodulatiestrategieën, allemaal met
een bijzondere focus op hun potentiële toepassing bij de behandeling van temporale
kwabepilepsie (TKE). In het laatste deel van dit hoofdstuk worden de fundamenten
van de computationele neurowetenschap geı̈ntroduceerd. Twee type modellen wor-
den in meer detail besproken: de modellen gebaseerd op het Nobelprijs-winnende
werk van Hodgkin en Huxley, en de dipoolmodellen. Deze modellen worden
gedurende het hele proefschrift gebruikt met als doel de kennis van de optoge-
netische technologie, het modelleren van de hippocampus en TKE-pathologieën,
en de potentiële toepassing van ultrasone golven voor functionele neurologische
beeldvorming te verbeteren.

Hoofdstuk 2 bespreekt de optogenetische technologie. Optogenetica is een
veelbelovende techniek met precieze controle over neurale activiteit. Deze controle
wordt bereikt door lichtgevoelige eiwitten, genaamd opsines, genetisch tot expressie
te brengen in hersencellen. Vervolgens kan de neuronale activiteit met hoge tempo-
rele precisie worden gecontroleerd door middel van een optische bron. Er bestaan
reeds talloze opsines met verschillende eigenschappen. Twee belangrijke klassen
zijn de inhiberende en exciterende opsines. Het doel van de eerste is om neuronale
activiteit te onderdrukken, terwijl de laatste de generatie van actiepotentialen bevor-
dert. Gecombineerd in een enkele neuronpopulatie maakt dit bidirectionele controle
mogelijk, een unieke eigenschap van optogenetica in tegenstelling tot alle andere
neuromodulatiemodaliteiten. Optogenetica wordt momenteel alleen gebruikt in
preklinische studies, behalve voor de behandeling van retinitis pigmentosa met twee
lopende klinische onderzoeken. Twee belangrijke uitdagingen voor de translatie
naar klinische toepassing in de menselijke hersenen zijn de langetermijnveiligheid
van gentherapie en implantatie van de optische bron. Een andere uitdaging is het
verschil in grootte tussen knaagdier en de menselijke hersenen (×1000) waardoor
een opschaling van de techniek noodzakelijk is. Computationele modellen kunnen
worden gebruikt om strategieën te bestuderen met als doel om efficiëntere technie-
ken te bekomen. Daarom is een wiskundig model van de stroom door het opsine
vereist. Een nieuw dubbel tweestaten opsinemodel is ontworpen om de computa-
tionele efficiëntie en nauwkeurigheid in het modelleren van de opsinekinetiek te
verbeteren. Bijkomend is een autonome procedure ontworpen die gebruikt werd om
twee verschillende opsines, ChR2(H134R) en MerMAID, binnen een acceptabel
tijdsbestek en met beperkte rekencapaciteit te fitten.

In hoofdstuk 3 bestudeer ik strategieën om de exciteerbaarheid van optogene-
tische stimulatie te verhogen. Deze zijn belangrijk voor de overgang van muis
naar menselijke hersenen. De exciteerbaarheid van geı̈soleerde cornu ammonis
1-cellen (CA1) met ChR2(H134R) wordt onderzocht in geavanceerde computatio-
nele modellen. De opsinestroom wordt gemodelleerd met het ontwikkelde dubbele
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tweestaten opsinemodel dat in hoofdstuk 2 is beschreven. De resultaten tonen aan
dat het beperken van de expressie van het opsine tot specifieke neuronale mem-
braancompartimenten de exciteerbaarheid aanzienlijk verbetert. Bovendien zijn
de simulaties gekoppeld aan een gesimuleerd lichtveld. Hierdoor is bepaling van
de optimale en slechtste optrodeposities mogelijk. De lichtvelden worden bepaald
via Monte Carlo-simulaties in grijs hersenweefsel. De optimale configuratie is een
lichtbron loodrecht op de meest prikkelbare celgebieden, zoals, de basale dendrieten
in piramidale cellen of de soma in de interneuronen. Ook wordt de simulatiefout
gekwantificeerd door het uitsluiten van het lichtprofiel op het neuronale niveau. Op-
merkelijk benadrukken de resultaten het belang van neuronendegeneratie dat wordt
waargenomen in de variabiliteit tussen de verschillende celmodellen. Ten slotte
wordt een algemene gevoeligheidsanalyse uitgevoerd om zes onzekere parameters
te testen, namelijk de optische veldeigenschappen (absorptie- en gereduceerde ver-
strooiingscoëfficiënten), locatie en expressieniveau van het opsine, cel en optische
vezel oriëntatie en de driedimensionele structurele morfologie van de cellen. De
studie identificeert locatie en expressieniveaus van het opsine als belangrijkste
parameters op de resultaten. Aan de andere kant is nauwkeurige bepaling van de
exciteerbaarheidsdrempels door deze onzekerheden moeilijk. Samenvattend biedt
dit hoofdstuk nieuwe inzichten in de optogenetische exciteerbaarheid van CA1-
cellen die nuttig kunnen zijn voor de ontwikkeling van verbeterde optogenetische
stimuleringsprotocollen voor de behandeling van neurologische aandoeningen zoals
TKE.

Hoofdstuk 4 bespreekt de ontwikkeling van een netwerkmodel van de epilep-
tische hippocampus. Dit model maakt het testen van neuromodulatiestrategieën
binnen een meer realistische netwerkcontext mogelijk met als doel inzichten te
verkrijgen in ziektepathologieën en om stimulatieparameters te verbeteren. De
natuurlijke hippocampale activiteit kan effectief worden gemodelleerd met vereen-
voudigde compartimentele neuronmodellen. Echter, vanwege deze vereenvoudi-
gingen kunnen niet alle vormen van neurale activiteit worden gereproduceerd met
een enkel model. Bovendien worden twee epileptische modellen getest. Verhoogd
extracellulair kalium wordt in-vitro gebruikt om epileptische activiteit te induceren.
Hoewel het model niet is gemaakt met het oog op verhoogde kaliumniveaus, is
het wel in staat om overeenkomsten met experimentele gegevens te reproduceren.
Voorbeelden zijn het optreden van spontane activiteit pas na een 2.61-voudige
verhoging en de waarneming van oscillerende activiteit in de CA1 na Schaffer
collaterale stimulatie. Ten tweede worden histopathologische veranderingen, aan-
wezig bij mesiale temporale kwab epilepsie, getest. De resultaten tonen aan dat
terugkerende verbindingen cruciaal zijn voor het opwekken van epileptische aanval-
achtige activiteit afkomstig uit de hippocampus. Het verlies van de korrelcellen en
CA1-cellen resulteert in verminderd burstgedrag. Echter, dit zijn eerste resultaten
en verdere validatie is vereist. Niettemin zijn de huidige bevindingen veelbelovend
en suggereren de potentiële bruikbaarheid van dit epileptische netwerkmodel als
een hulpmiddel voor het onderzoeken van technieken voor het onderdrukken van
epileptische aanvallen zoals optogenetica.

Hoofdstuk 5 introduceert het concept van akoesto-elektrofysiologische neurolo-
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gische beeldvorming (AENB), een potentieel transformerende techniek met slechts
millimeters ruimtelijke en minder dan milliseconde temporele resolutie. Deze tech-
niek kan van cruciaal belang zijn voor de ontwikkeling van gesloten-lussystemen.
AENB maakt gebruik van gerichte ultrasone golven om hersengebieden te mar-
keren. Vervolgens wordt hun elektrische activiteit gemoduleerd naar de ultrasone
frequentie. Het onderliggend mechanisme dat wordt onderzocht, is signaalmodula-
tie ten gevolge van mechanische vibratie ten opzichte van de meetelektroden. De
haalbaarheid van deze techniek wordt geëvalueerd aan de hand van simulaties met
dipoolmodellen in een sferische benadering van muizen- en menselijke hoofden. Er
worden drie verschillende radiale elektrodeposities getest, het equivalent voor natte
en droge transcraniale, en corticaal geplaatste elektroden. Het intensiteitsprofiel
voor de stroom lopende in het dipool is afgeleid van een opgelegde machtsfunctie
voor het spectraal vermogensprofiel, dit vanwege de onzekerheid op de natuurlijke
activiteit van de hersenen bij ultrasone frequenties. In het hoofdstuk werd aange-
toond dat mechanische trillingen effectief endogene hersenactiviteit op de ultrasone
frequentie moduleren. De signaalsterktes zijn echter niet-lineair afhankelijk van
de uitlijning tussen de dipooloriëntatie, trillingsrichting en elektrodeposities. De
signaalsterktes zijn laag, met sterktes slechts in de picovolt grootteorde voor een
dipoolmoment van 5 nAm en ultrasone drukken binnen FDA-limieten. Bijgevolg
is de haalbaarheid van de techniek afhankelijk van de natuurlijke hersenactiviteit
op ultrasone frequenties, een momenteel onbekende factor, en de vooruitgang in
elektrodetechnologie om pV-orde signalen te kunnen opmeten. Het scannen van
hyperactieve zones zou een meer veelbelovende toepassing kunnen zijn, aangezien
de signaalsterkte lineair schaalt met de activiteit in de gemarkeerde zone.

Samenvattend, demonstreert dit doctoraat de rol van computationele neurowe-
tenschap in het uitbreiden van de kennis over neuromodulatietechnieken, neurale
circuits en functionele neurologische beeldvorming. De bevindingen bieden in-
zichten die de ontwikkeling van effectievere behandelingen voor neurologische
aandoeningen kunnen bevorderen, met als uiteindelijk doel om de levenskwaliteit
van de patiënten te verbeteren.



English Summary

Neuroscience has made remarkable progress over recent years. Novel techniques
and tools have offered fresh perspectives on neural circuitry. However, despite these
advancements, neurological disorders continue to pose a significant challenge. A
substantial part of the population is affected, causing a decline in their quality of
life. Moreover, the economic burden associated with these disorders is substantial,
underscoring the need for continued clinical progress and innovative therapies.
Techniques like cochlear implants, visual prostheses, brain-computer interfaces,
and deep brain stimulation hold promise for the future of patients. At their current
state, they are able to improve patients’ quality of life but do not offer complete
restoration of natural functions or cure diseases. Many of these technologies
are still in their early stages, with multiple improvements yet to be explored and
challenges to be tackled. Also, neuromodulation techniques that are currently
only being used in preclinical setting, like optogenetics, have shown promising
results. However, clinical translation awaits its own set of difficult challenges. Still,
the potential benefits of these advanced techniques make them worth pursuing,
despite the complexities involved. Additionally, there is a notable shift from open-
to closed-loop systems, mitigating redundant stimulation by providing real-time
adjustments. In order for these systems to achieve on-demand control, the recording
of electrophysiological activity with high spatial and temporal resolution will be
pivotal.

Computational neuroscience, a rapidly evolving subfield of neuroscience, offers
a unique approach to tackle these challenges by utilizing mathematical tools. It inte-
grates techniques from various domains, including electrical engineering, computer
science, medicine, and physics. Its advantage over experimental research is the full
control over the parameter space. Together with the increasing computation power
and arrival of supercomputers, computational models enable rapid and systematic
investigations, valuable for unraveling the complexities of the nervous system
and exploring neuromodulation settings to improve therapies. However, with its
86 billion neurons, the brain is extremely complex. Models and computational
resources do not allow detailed modeling of such a vast system yet. Therefore,
models have to strike a balance between biological realism and model simplicity.
Additionally, models cannot stand on their own. A continuous cycle must exist of
model validation and testing against experimental data.

This dissertation contains six chapters. In the first chapter, the field of neuro-
science is introduced, including the basics of brain anatomy and neurophysiology.
In particular, the action potential (AP) is described, being the fundamental unit of
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neuronal signaling. Moreover, an overview of current and promising neuromodula-
tion strategies is provided, all with a particular focus on their potential application
in treating temporal lobe epilepsy (TLE). In the final part of this chapter, the field
of computational neuroscience is introduced. Conductance-based models, which
are based on Hodgkin and Huxley’s Nobel Prize-winning work, and dipole models
are described in more detail. The concepts of these models are used throughout
the whole dissertation with the goal of improving our understanding of optogenetic
technology, modeling of the hippocampus and TLE pathologies, and the potential
application of ultrasound in functional neuroimaging.

Chapter 2 delves into a promising technique offering precise control over neural
activity called optogenetics. This precise control is achieved due to genetically
expressing light-sensitive proteins, called opsins, in brain cells. Subsequently,
neuronal activity can be controlled with high temporal precision by an optical
source. To date, numerous opsins with a variety of properties exist. Two major
classes are the inhibitory and excitatory opsins. The purpose of the former is to
inhibit neuronal firing, while the latter promotes AP generation. Combined in a
single neuron population, this enables bidirectional control, a unique property of
optogenetics compared to all other neuromodulation modalities. Except for the
treatment of retinitis pigmentosa with two ongoing clinical trials, optogenetics is
currently only being used in a preclinical setting. Long-term safety concerns of
gene therapy and implantation of the optical source form two major challenges for
clinical translation towards treatment of disorders in the human brain. Another
challenge is upscaling from rodent to human brain due to the difference in size
(×1000). Computational models can be used to investigate strategies in improv-
ing the technique’s efficiency. Therefore, a computational model of the opsin’s
photocurrent is required. Chapter 2 introduces my novel double two-state opsin
model designed to enhance computational efficiency and accuracy in modeling of
opsin kinetics. Furthermore, an autonomous fitting procedure is presented that is
used to efficiently fit two distinct opsins, ChR2(H134R) and MerMAID, within an
acceptable time frame and with limited computational resources.

Chapter 3 attempts to identify strategies to increase excitability that could aid
the transition from mouse to human brain. The excitability of isolated CA1 cells
expressing ChR2(H134R) is investigated in state-of-the-art computational models.
The photocurrent is modeled with the double two-state opsin model described in
chapter 2. The results reveal that restricting opsin expression to specific neuronal
membrane compartments significantly enhances excitability. Moreover, the neuron
simulations are coupled with light propagation, enabling identification of optimal
and suboptimal optrode positions. The light intensity fields are determined via
Monte Carlo simulations for gray matter tissue. Optimal results are achieved by
aligning the light beam perpendicular to the most excitable cell regions, such as the
basal dendrites and soma in pyramidal cells and interneurons, respectively. Also
the simulation error by excluding the irradiance profile at the neuronal level is
quantified. Notably, the results underscore the importance of considering neuron
degeneracy observed in the inter-cell variability. Finally, a global sensitivity study is
performed to test six uncertain parameters, i.e., optical field properties (absorption



ENGLISH SUMMARY xxv

and reduced scattering coefficients), opsin expression level and location, cell-to-
fiber orientation, and cellular 3D structural morphology. The study identifies opsin
location and expression levels as key determinants of simulation outcomes. On
the other hand, uncertainties in these parameters limit precise determination of
the irradiance thresholds. This chapter provides valuable insights on optogenetic
excitability of CA1 cells useful for the development of improved optogenetic
stimulation protocols for neurological disorders like TLE.

Chapter 4 expands the scope to include network modeling, specifically creating a
network model of an epileptic hippocampus. This model serves as a valuable tool for
testing neuromodulation strategies within a network context, fine-tuning stimulation
parameters, and gaining insights into disease pathologies. The native hippocampal
activity can be effectively modeled with simplified compartmental neuron models.
However, due to the simplifications made, not all forms of neural activity can
be replicated with the single model. Two epileptic models are tested. Elevated
extracellular potassium is used in-vitro to induce epileptiform activity. Although
the model was not initially fit to data with elevated potassium levels, it is able to
reproduce similarities with experimental data under these conditions. Examples
include the occurrence of spontaneous activity only after a 2.61-fold increase and the
observation of oscillatory activity in the CA1 after Schaffer collateral stimulation.
Second, histopathological changes present in mesial temporal lobe epilepsy are
tested. The results show that recurrent connections are crucial for inducing epileptic
seizure-like activity originating in the hippocampus. The loss of granule cells
and CA1 cells results in reduced burst behavior. However, these are preliminary
results and further validation is required. Nevertheless, the current findings are
promising and suggest the potential utility of this epileptic network model as a tool
for investigating epileptic seizure suppression techniques such as optogenetics.

Chapter 5 introduces the concept of acousto-electrophysiological neuroimaging
(AENI), a potentially transformative technique with millimeter spatial and sub-
millisecond temporal resolution. This technique holds the potential to be pivotal
for the development of closed-loop systems. AENI leverages focused ultrasound
(FUS) to tag brain regions, modulating their electrical activity onto the ultrasonic
frequency. The underlying mechanism investigated is signal modulation due to
mechanical vibration relative to the measuring electrodes. The feasibility of this
technique is evaluated through comprehensive simulations with dipole models in a
spherical approximation of mouse and human heads. The simulations are solved for
three different radial electrode positions, replicating wet and dry transcranial, and
cortically placed electrodes. The current intensity profile of the dipoles is drawn
from an artificial power-law power spectral density profile, due to the uncertainty
in the brain’s inherent activity at ultrasonic frequencies. In the chapter it is revealed
that mechanical vibration effectively modulates endogenous brain activity onto
the ultrasonic frequency. Signal strength, however, depends non-linearly on the
alignment between dipole orientation, vibration direction, and recording positions.
Still, the signal strengths are low, being only in the pV-range for a dipole moment of
5 nAm and ultrasonic pressures within FDA-limits. Consequently, the technique’s
feasibility relies on the inherent activity of the brain at ultrasonic frequencies, a
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currently unknown factor, and the advance in electrode technology to measure
pV-order signals. Scanning for hyperactive zones could be a more promising
application, as signal strength scales linearly with the probed zone’s activity.

In summary, this dissertation demonstrates the role of computational neuro-
science in advancing our understanding of neuromodulation techniques, neural
circuitry, and functional neuroimaging. The findings offer insights that can inform
the development of more effective treatments for neurological disorders, ultimately
improving the quality of life of those who are affected.



1
Introduction

Neuroscience has witnessed remarkable advancements in recent years. Various
new techniques, with different underlying physics, have joined the classical

biochemical and electrophysiological toolbox. These innovations have led to new
insights into neural circuitry. However, approximately one in three individuals is
still anticipated to experience a neurological disorder at some point in their life.
Having such a disorder results in a substantial decline of their quality of life due
to increased adverse psychosocial, behavioral and cognitive consequences, excess
injury risk, and mortality [1]. Moreover, they impose an enormous economic
burden, with an estimated cost of $1.7 trillion in the USA and Europe combined [2].
Encouragingly, clinical progress continues, leading to an improved understanding
of disease pathologies and the development of innovative therapies. For instance,
deaf patients are able to hear again with cochlear implants, blind people regain sight
with visual prostheses, paralyzed people are able to walk again with brain-computer
interfaces, and deep brain stimulation (DBS) relieves the symptoms of patients with
neurological disorders like Parkinson’s disease and epilepsy. It is important to note
that currently these techniques do not fully restore lost functions to a natural state
or cure diseases. However, they do enhance patients’ quality of life by partially
reinstating certain functionalities.

This dissertation falls within the field of computational neuroscience, a subfield
of neuroscience that aims to unravel the complexities of the nervous system with
mathematical tools. This initial chapter serves as an introduction to the field of
neuroscience, focusing on aspects such as brain anatomy, neuron electrophysiology,
and temporal lobe epilepsy (TLE). Following this, a comprehensive overview of
current and promising neuromodulation techniques for TLE treatment is provided.
The subsequent section elucidates the fundamental principles in computational neu-
roscience. The chapter concludes by outlining the research objectives, presenting a
structured overview of the dissertation, and including a list of relevant publications.



2 CHAPTER 1

1.1 Neuroscience
Neuroscience is a multidisciplinary field dedicated to the study of the nervous
system. It is a complex system with a crucial role in controlling and coordinating
physiological processes and behaviors in organisms. In order to understand the
concepts discussed in this dissertation, I provide below a concise introduction
to brain anatomy and neuron electrophysiology. Furthermore, I will discuss the
hippocampus and its significance in temporal lobe epilepsy.

1.1.1 The Brain Anatomy
The nervous system can be divided into two main components: the central nervous
system (CNS) and the peripheral nervous system (PNS). The PNS comprises the
nerves that transmit signals between the CNS and the rest of the body. The CNS
consists of the brain and the spinal cord. The brain is the central organ with
anatomically distinct regions, each specialized for specific functions. These regions
include the cerebrum, diencephalon, midbrain, pons, medulla and cerebellum. The
latter, also known as little brains, is essential for motor coordination. The midbrain,
pons and medulla form the brainstem. It links the spinal cord with the forebrain
and is responsible for regulating vital functions, e.g., heart rate, breathing and sleep.
The forebrain encompasses the cerebrum and the diencephalon. The diencephalon
consists of the thalamic structures, with the thalamus being a critical relay for
sensory information and the hypothalamus regulating homeostatic functions (e.g.,
hunger, thirst and temperature). The cerebrum can be subdivided as well. The
outermost layer of the brain is called the cerebral cortex. It is responsible for higher
cognitive functions, including thought, sensation and voluntary muscle movement.
It exhibits a folded structure with gyri (crests) and sulci (grooves). Beneath the
cortex lies white matter composed of myelinated axons, while the gray matter
(cerebral cortex) houses the cell bodies. The cerebrum can further be subdivided
into four lobes: frontal, temporal, parietal and occipital. A particularly important
structure located in the temporal lobe is the hippocampus, known for its role in
memory storage. The interested reader can find a detailed overview of all structures
in Purves and Dale [3].

At the cellular level, the brain primarily comprises two types of cells: neurons
and glia. The human brain is estimated to contain approximately 86 billion neurons
and as many glial cells [4]. Moreover, each neuron can have thousands of connec-
tions. Neurons serve as the primary signaling units, transmitting electrical impulses
throughout the nervous system. Despite variations in neuron morphology, they
share common structures: the cell body (soma), dendrites, axons, and synapses,
each with a specific functionality. In contrast, glia play essential support roles: astro-
cytes maintain chemical balance and provide structural support, oligodendrocytes
myelinate axons, and microglia participate in immune responses [5, 6].
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1.1.2 Neuron Electrophysiology
A phospholipid bilayer of approximately 5 nm thickness forms the cell membrane of
a neuron, separating the intra- and extracellular space. It is permeable to lipophilic
substances, limited permeable to water and impermeable to ions or other charged
molecules. Consequently, there exist electrochemical gradients across the mem-
brane due to differences in ion concentrations between the intra- and extracellular
space. The extracellular space is seawater like, meaning high sodium and chloride
concentrations are present. Intracellularly, potassium is more prevalent. There is
also a Ca2+ gradient, with a higher concentration extracellularly. This ion concen-
tration imbalance results in the establishment of a negative potential across the
membrane, typically around -70 mV (with the outside, by conventional, defined as
zero, see box 1.1).

Scattered across the membrane are numerous transmembrane proteins (see
figure 1.1). These proteins enable movement of ions through the membrane. Ion
channels and transporters (pumps) are two examples. Transporters use energy to
transport ions against their electrochemical gradients, while ion channels form
aqueous pores that permit the high fluxes of ions down their electrochemical
gradients. Ion channels typically contain a charge filter, determining a cation or
anion selectivity, with an additional size filter, making the channels highly selective
for one specific ion.

Neurons are commonly seen as integrators [7], processing information in a
unidirectional flow. They receive inputs from other neurons at their dendrites,
evoking post synaptic potentials. These propagate along the dendritic tree towards
the soma. At the axon hillock, these inputs are integrated over space and time. If
the result surpasses a certain threshold, an action potential is initiated. This action
potential subsequently travels down the axon towards the synapses. The membrane
depolarization associated with the action potentials triggers calcium ion influx at
the presynaptic bouton. This initiates neurotransmitter release into the synaptic
cleft. These neurotransmitters then diffuse and bind to receptors located on the
postsynaptic membrane, opening ligand-gated ion channels. A schematic depicting
synaptic connectivity is presented in figure 1.1.

The action potential (AP) is the fundamental unit of neuronal signaling (see
figure 1.5). It is this all-or-nothing event driven by opening and closing of voltage
gated channels. Alan Hodgkin and Andrew Huxley were the first to record the
membrane potential changes during an action potential in a giant axon of a squid
using the voltage clamp technique. They quantitatively described the AP in terms
of voltage-gated sodium and potassium channels [8]. A scientific breakthrough that
was awarded with a Nobel Prize in Physiology and Medicine in 1963. Membrane
depolarization increases the open probability of voltage-sensitive channels. Sodium
channel opening causes an influx of sodium ions, further depolarizing the cell
initiating a positive feedback loop. Conversely, potassium channel opening leads
to potassium efflux, resulting in repolarization (a negative feedback loop). An
action potential is initiated when the positive feedback loop dominates the negative
feedback. Sodium channels have faster kinetics. At a strong initial depolarization,
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Figure 1.1: Schematic representation of a motorneuron with myelinated axon and the phos-
pholipid bilayer. The synaptic cleft is shown in the inset. Depicted on the cell
membrane are voltage gated sodium and potassium channels, and a sodium-
potassium transporter. Figure created with Biorender

sodium channels open first, further depolarizing the cell towards the sodium rever-
sal potential. Simultaneously, potassium channels open, slowing depolarization
and eventually initiating repolarization. Sodium channels inactivate, driving the
membrane potential back to rest. Finally, delayed closing of the potassium chan-
nels results in hyperpolarization before the neuron returns to its resting state (see
definitions in box 1.1) [3, 5, 9].

1.1.3 Hippocampus and Temporal Lobe Epilepsy
The hippocampus, named for its seahorse-like shape, is situated within the medial
temporal lobe (see figure 1.2). As aforementioned, it has a pivotal role in memory
consolidation. The hippocampus can be subdivided into separate regions: the
dentate gyrus, CA3 (Cornu Ammonis 3), CA2, CA1, and the subiculum. Unlike
in other brain regions with extensive reciprocal connections, the hippocampus is
predominantly unidirectional. Information from the entorhinal cortex arrives via
the perforant path in the dentate gyrus. Then travels over the mossy fibers (i.e.,
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the axons of the granule cells) towards the CA3 region. Subsequently, the CA3
pyramidal cells project onto the CA1 region via the Schaffer collaterals. This
pathway is commonly referred to as the trisynaptic circuit (see figure 1.2 (bottom)).
The CA1 then projects onto the subiculum. Finally, the CA1 and subiculum convey
processed information back to the enthorinal cortex. While the actual connectivity
is more complex, with the perforant path projecting to CA3 and CA1, and CA3
forming associational connections with itself, the trisynaptic circuit serves as the
fundamental pathway for information processing in the hippocampus.

Both the Cornu Ammonis and the dentate gyrus exhibit a laminar structure
characterized by distinct cell layers. In the CA subfields, the stratum pyramidale
contains the pyramidal cell bodies along with a subset of basket and bistratified
interneurons. The basal dendrites and the axon of the pyramidal cells reside in the
stratum oriens. It also houses the O-LM interneuron whose axons extend toward
the most distal end of the pyramidal apical dendrites in order to mediate inputs
from the enthorinal cortex. This layer is called the stratum lacunosum-moleculare.
The stratum radiatum, positioned between the stratum pyramidale and lacunosum-
moleculare, is where the Schaffer collateral or mossy fiber connections (in CA1 or
CA3, respectively) are found. The dentate gyrus comprises three layers: stratum
granulosum, the hilus (polymorphic layer), and the stratum moleculare. Granule
cell bodies are located in the stratum granulosum, with their unipolar dendrites
extending towards the stratum moleculare. Their axons reside in the hilus together
with the majority of the interneurons. The general structure of the hippocampus
is conserved across species. However, substantial differences exist, particularly in
size (×100, see figure 1.2) and thickness of pyramidal cell layer (×6) [10].

Temporal Lobe Epilepsy

Epilepsy is with a prevalence of 0.5-1%, one of the most common neurodegenera-
tive diseases worldwide [11, 12]. Patients with uncontrolled epilepsy experience
recurrent, unprovoked seizures. Seizures are defined by the International League
Against Epilepsy (ILAE) as “transient occurrences of signs and/or symptoms due
to abnormal excessive or synchronous neural activity in the brain” [13]. Tempo-
ral lobe epilepsy (TLE) is the most common type of focal epilepsy in adults and
most difficult to treat with antiepileptic drugs. In TLE, seizures primarily origi-
nate in the mesial temporal lobe structure (mTLE) indicating involvement of the
cortico-hippocampal circuit [14].

Two main histopathologies are observed with mTLE: hippocampal sclerosis
(HS) and mossy fiber sprouting. HS is the most prevalent, characterized by the
(severe) loss of hippocampal neuronal cells and pronounced astrogliosis. The
CA1 region often exhibits the most significant cell loss, with over 80% reduction.
The primary targeted cells are the pyramidal neurons situated within the CA1
and CA3 regions. Additionally, extensive granule cell loss is observed, up to
50%, accompanied by granule cell dispersion [15]. The second histopathology is
mossy fiber sprouting, i.e., the formation of recurrent connections between granule
cells [16].
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Figure 1.2: The hippocampal anatomy. 3D and coronal section views of the human and
mouse hippocampus, left and right, respectively. (Bottom) The detailed laminar
structure of the hippocampus, including the dentate gyrus (DG) with the molec-
ular (ml), granule cell (gcl) and polymorphic (pl) layers; the Cornu Ammonis 3
and 1 (CA3, CA1) with the oriens, pyramidal (pyr), radiatum and lacunosum-
moleculare (lm) layers. Additionally, the figure illustrates the trisynaptic circuit
originating from the entorhinal cortex (EC) in teal, with arrows indicating the
flow of information. Scale bars are provided for reference. The coronal sections
are generated with Biorender. The 3D mouse view is adopted from the Blue
Brain Cell Atlas. The 3D head view is generated with the MIDA head in S4L
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1.2 Neuromodulation
Millions of people suffer from neurological disorders such as stroke, migraine,
Parkinson’s disease, and epilepsy. Several techniques exist to treat these disorders,
attempting to restore the healthy brain state. One option is surgical removal of
affected brain regions. For instance, in the case of TLE, removing the hippocampus
can lead to long-term seizure freedom. However, this approach is not viable for
numerous patients due to multifocality or the risk of cognitive impairments [17].
Alternatively, neuromodulation techniques aim to reversibly alter the neuronal
activity (see figure 1.3). They can be categorized by their corresponding physics.
These techniques fall into four main categories: chemical or pharmacological, elec-
trical, ultrasonic, and optogenetic neuromodulation. Each of these neuromodulation
modalities offers unique advantages and challenges, paving the way for innovative
approaches to treat neurological disorders. Here, I provide an overview of each
category’s primary techniques, with a focus on their application in treating epilepsy.

1.2.1 Chemical or Pharmacological Neuromodulation
The initial line of treatment for many neurological disorders involves drug admin-
istration. Drugs have various mechanisms of action, primarily involving channel
blocking or opening. For the treatment of epilepsy, more than 20 antiseizure drugs
have been approved [18]. Approximately 70% of epilepsy patients treated with
these drugs achieve seizure freedom, while the remaining 30% are categorized
as having refractory or drug-resistant epilepsy. Moreover, the drugs affect the
whole brain (figure 1.3 (A)), often resulting in side effects such as fatigue, nausea,
dizziness, and cognitive or behavioral problems [17].

Chemogenetics is an innovative approach that allows for targeted neuromod-
ulation by utilizing designer receptors exclusively activated by designer drugs
(DREADD, figure 1.3 (B)). These are modified endogenous receptors responsive to
exogenous ligands. Gene therapy is used to express DREADDs, offering specificity.
The gene expression techniques are similar for optogenetic neuromodulation with
some options discussed in section 2.1.2. While currently a research tool, chemoge-
netics has shown promise in preclinical seizure suppression. The main challenge
for clinical translation is the long-term safety of both the gene therapy and the
exogenous ligands [19–21].

Alternatively, improved spatial as well as temporal resolution can be obtained
with photopharmacology (figure 1.3 (C)). It involves light sensitive drugs that
can be activated with visible light. There are two mechanisms: photocages and
photoswitches. Photocages are compounds that include a photocleavable protecting
group. Upon illumination the drug is activated as a result of the photocleavage
reaction. The second group are photoswitches. Unlike with photocages, the process
is reversible with activation upon illumination and deactivation after a long enough
dark period. It is an emerging technique with only preclinical results to date.
Challenges for clinical translation will be the long-term safety of light sensitive
compounds and the need for optical stimulator implantation due to limited light
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penetration depth [22, 23].

1.2.2 Electrical Neuromodulation
Electrical neuromodulation techniques modify brain activity using electrical cur-
rents. These are either directly induced by a voltage difference over stimulation
electrodes or indirectly generated by alternating magnetic fields. The existing
techniques can be classified based on invasiveness. Transcranial direct current
(tDCS) and alternating current stimulation (tACS) are non-invasive approaches with
electrodes placed on the scalp. They provide subthreshold modulation with tDCS
affecting neuronal excitability and tACS cortical oscillations. Their limitations are
having a low spatial resolution, difficulty to reach deep structures and causing skin
irritation. According to Boon et al. (2018), there is only low-to-moderate quality
evidence that tDCS is effective in treating epilepsy [24]. Another non-invasive
technique is transcranial magnetic stimulation (TMS). Here, a coil is placed near the
head that creates strong alternating magnetic fields up to 1T over 100 µs, inducing
counter currents in the cortex (figure 1.3 (D)). Some studies have demonstrated sig-
nificant seizure reductions but insufficient data is available to support efficacy [24].
TMS is, however, FDA approved for the treatment of migraine, major depressive
and obsessive-compulsive disorder (OCD) [25]. Temporal interference stimulation
is a non-invasive technology currently under investigation. By applying two slightly
shifted high frequency electric fields to the brain, it is postulated that deep brain
stimulation could be achieved at the beat frequency (i.e., the difference of the
two frequencies) where the two fields interfere, without stimulating the overlying
cortex [26, 27].

With invasive modalities, the stimulation devices are implanted inside the body.
Vagus nerve stimulation (VNS) targets the afferent vagus nerve fibers (figure 1.3 (E))
that are thought to modulate among others the brainstem, thalamic and limbic
regions. Moreover, it has been shown to increase norepinephrine concentrations,
believed to be responsible for the antiseizure effect [28]. VNS is FDA approved
for treatment of epilepsy and depression [25] and could potentially be used to treat
many other disorders (for example Alzheimer’s disease and stroke). Extensions are
transcutaneous (figure 1.3 (F)) and percutaneous vagus nerve stimulation, where
the auricular branch of the vagus nerve is stimulated non-invasively and minimally-
invasively, respectively [29, 30]. Although less invasive alternatives are promising,
according to Boon et al. (2018), there is currently insufficient data to support their
efficacy in treatment of drug resistant epilepsy [24].

A second invasive modality is deep brain stimulation (DBS). It involves im-
plantation of an electrode lead in the brain to specifically target deep brain areas
(figure 1.3 (G)). Initially FDA approved in 1997 for Parkinson’s disease and es-
sential tremor, DBS has garnered approval for various other disorders, including
dystonia, OCD, and epilepsy. In case of epilepsy, DBS of the anterior nucleus of the
thalamus (ANT-DBS) and responsive neurostimulation (RNS) in the seizure focus
are approved techniques. ANT-DBS is an open loop modality, meaning its stimula-
tion paradigm is preset, fixed and continuous. Its antiseizure effect is believed to
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Figure 1.3: Illustration of the different neuromodulation techniques. A Classical drug ad-
ministration. B Chemogenetics with AAV injection containing the DREADD
genetic material. C Photopharmacology with implanted optical fiber. D Tran-
scranial magnetic stimulation with transcranial stimulator coils. E Vagus nerve
stimulation with implanted cuff electrodes. F Transcutaneous vagus nerve stim-
ulation. G Deep brain stimulation with implanted electrode. H Ultrasonic
neuromodulation with a transcranial single element focused transducer. I Op-
togenetic neurostimulation with AAV injection containing the opsin genetic
material and implanted optic fiber

result from reinforced GABAergic neurotransmission in the epileptic hippocam-
pus [28]. In contrast, RNS is a closed loop system developed by Neuropace, where
stimulation is triggered upon detection of ictal activity via intracranial EEG elec-
trodes. Both techniques have demonstrated seizure reduction and responder rates
of more than 50%, with also more than 10% becoming seizure free for several
months [28, 31]. Furthermore, DBS of the hippocampus of drug-resistant TLE
patients has shown promising results, as well [24].

1.2.3 Ultrasonic Neuromodulation
Ultrasonic neuromodulation (UNMOD) has emerged as a notable and promising
technique over the past decade. It uses mechanical waves (sound waves) with
frequencies above 20 kHz (20 kHz being the upper limit of the human hearing
window). Ultrasonic waves are generated by either a single element focused
transducer (figure 1.3 (H)) or a transducer array positioned on the scalp. Low
intensity focused ultrasound (LIFU) is postulated to have the unique ability to
non-invasively, selectively, and reversibly modulate brain activity. Moreover, it can
achieve transversal and axial resolutions in the order of millimeters and centimeters,
respectively, because of the millimeter wavelength of the ultrasonic wave in the
brain tissue. Notably, this is all achieved without requiring genetic modifications of
the target neurons. However, despite its promise, the precise underlying mechanisms
remain incompletely understood. Proposed mechanisms encompass intramembrane
and extracellular cavitation, acoustic radiation force, mechanosensitivity of ion
channels, flexoelectricity and localized heating [32]. Encouragingly, certain studies
exploring the use of LIFU for epilepsy treatment have shown promising results [33].
Nevertheless, it is imperative to acknowledge the limited scope of current research,
while also carefully considering potential confounding factors arising from the
auditory pathway in the evaluation of UNMOD’s efficacy [32].

1.2.4 Optogenetic Neuromodulation
Optogenetics allows precise control of neuronal firing using light. This is achieved
by genetically expressing opsins, typically light sensitive ion channels or pumps, in
cells or cell subtypes. The merger of this genetic expression and optical stimulation
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results in superior spatiotemporal resolution with respect to the other neuromod-
ulation modalities described above. Moreover, the mechanism of action is clear
with the selected opsin either being excitatory or inhibitory. However, due to the
limited penetration depth of visible light, implantation of the optical devices will be
necessary (figure 1.3 (I)). Moreover there are long-term safety concerns associated
with gene therapy [19, 21]. The optogenetic toolbox with its challenges and possible
solutions is discussed in more detail in chapter 2.

1.3 Computational Neuroscience
Computational neuroscience, a subfield of neuroscience, uses mathematical tools
and theories to study the nervous system. It integrates various disciplines, including
electrical engineering, computer science, medicine and physics, with the aim to
understand how information is processed by the nervous system. Computational
models are constructed to test hypotheses or to postulate new ones. It enables
researchers to explore experimentally inaccessible aspects systematically. However,
due to the complexity of the nervous system, limited computational resources, and
in order to have sufficient interpretability of the model outcome, a trade-off needs
to be made between biological realism and simplicity. Computational neuroscience
should serve as a complementary tool to experimental research. It is essential
that a continuous cycle exists of model validation and prediction testing against
experimental data [34, 35].

Models can span a wide range of levels of complexity. They encompass spatial
scales ranging from the single molecular scale towards the entire brain. Compu-
tational neuroscience often adopts a bottom-up approach. For example, network
predictions are based on an ensemble of neuron models whose behavior is dictated
by a set of individual channel models. This structure is applied in this disseration.
The smallest scale addressed is modeling of a single ion-channel (see chapter 2),
followed by the effect at the neuronal level (chapter 3) and hippocampal network
level (chapter 4). The models used in these chapters are conductance-based mod-
els. In chapter 5, neurons are represented as dipoles, a simplification, to predict
whole-brain activity. I will discuss these two types below.

1.3.1 Conductance-Based Neuronal Modeling
With conductance-based modeling, the structures of the neuronal membrane are
represented by their electrical equivalent components. An example of the electri-
cal network of a neural fiber is given in figure 1.4. It can be modeled by three
components: a capacitor, a conductance/resistor and voltage sources, being the
cell membrane, the ion channels or axial resistance, and equilibrium potential,
respectively [7, 36]. The equilibrium potential is the transmembrane potential at
which the net flux of ions is zero. For a single ion this is given by the Nernst
equation. The Goldman-Hodgkin-Katz voltage equation is an extension for a set of
monovalent ions, with more generalized forms available for multivalent ions [37].
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Figure 1.4: Electric equivalent network of a neuronal fiber separated into two compartments.
Variable resistances are indicated with arrows

Given this electrical circuit (figure 1.4), the total transmembrane current at a
specific location (x) can be calculated as follows (sign conventions are given in
box 1.1):

im = cm
dV

dt
+ gK(V − EK) + gNa(V − ENa) + gl(V − El)− iinj (1.1)

where Ex and gx = 1/rx, for x ϵ {Na, K, l}, are the reversal potential and specific
ion conductance, respectively, with l denoting the leak current. cm is the specific
membrane capacitance (F/m2), im the total membrane current and iinj an injection
current per unit area (A/m2). The intracellular space is a lossy medium, with its
axial resistivity (ρa [Ωm]) assumed to be homogeneous in a single compartment.
The spatial variation of the membrane potential is modeled via the cable equation
(equation (1.2)). A detailed derivation is given in Dayan and Abbot (2008) [36].

λ2
∂V 2(x, t)

∂x2
− τ

∂V (x, t)

∂t
− (V (x, t)− Vr) = 0 (1.2)

with the space constant λ =
√
d/4 rm/ρa and time constant τ = rmcm. Vr is the

equilibrium rest membrane potential and rm the transmembrane specific resistance.
These constants set the scale of spatial and temporal variations in the membrane
potential. In other words, after a local perturbation of the membrane potential, it
converges back to equilibrium over a time of the order τ , and space of the order λ.

The conductance of many ion channels is variable. They depend on factors like
membrane potential, ion concentration, ligands, or light intensity. An example of
the latter is given in chapter 2. The voltage-gated channels are responsible for the
active response of the neuron. Most well known examples are the transient sodium
channel and the delayed rectifier potassium channel, enabling the generation of
the action potential as discussed below. Examples of ligand-gated channels are
the primary post-synaptic receptors: AMPA, GABAa and NMDA. These receptors
are typically modeled with an event-triggering scheme. After a presynaptic action
potential, their open probability is increased, following a double exponential with a
decay and rise time constant (τdecay and τrise) [35]. The post synaptic current is
then:

is = gs(exp(−t/τdecay)− exp(−t/τrise))(V − Es) (1.3)
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Figure 1.5: An action potential generated with the Hodgkin-Huxley equations as reported
in Hodgkin and Huxley (1952) [8]. (left) The generated action potential under
current conventions. (right) Evolution of the gating units during the action
potential.

Hodgkin-and-Huxley model

For the field of computational neuroscience, the descriptive model of the action
potential formulated by Hodgkin and Huxley was groundbreaking. They derived
that an action potential could be explained with an equivalent electric circuit
containing a fast transient, a delayed long-lasting, and a passive leakage current.
Furthermore, they identified this fast transient and delayed long-lasting currents to
be sodium and potassium carried, respectively. The Hodgkin-Huxley model [8] for
an electrotonically compact single compartment model of the unmyelinated giant
axon of the squid is given by:

cm
dV

dt
= −

(
ḡNam

3h(V − ENa) + ḡKn
4(V − EK) + ḡl(V − El)

)
(1.4)

with ḡx the maximum channel conductance. The open probability of the sodium and
potassium channels is voltage-dependent. This is modeled by the activation gating
units m and n, and inactivation unit h. A generic unit’s transition is described by a
simple first-order kinetic scheme between open (a) and closed form (1− a; with
a ϵ {m,n, h}):

1− a
αa

⇌
βa

a

Subsequently, the transition rate is given by:

da

dt
= αa(V )(1− a)− βa(V )a (1.5)

with αa(V ) and βa(V ) the voltage-dependent opening and closing rates. Often
the rate equation is expressed in another form containing a voltage-dependent
steady-state (a∞) and time constant (τa):

da

dt
=
a∞(V )− a

τa(V )
(1.6)
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Figure 1.6: The current dipole model. (left) Illustration of the current sink (-) and sources (+)
induced by synaptic transmembrane currents. (right) Schematic of the equivalent
dipole and its parameters. Left figure created with BioRender

with

a∞(V ) =
αa(V )

αa(V ) + βa(V )
τa(V ) =

1

αa(V ) + βa(V )
(1.7)

An action potential generated with the Hodgkin-Huxley equations, given in Hodgkin
and Huxley (1952) [8], is displayed in figure 1.5. The equations of the original
paper were modified to match the current transmembrane potential conventions
(see box 1.1).

1.3.2 Dipole Model
The conductance-based models discussed in the previous section reflect the activity
that can be recorded intracellularly. In contrast, recording techniques such as
electroencephalography (EEG), electrocorticography (ECoG), and extracellular
field (often called local field potential (LFP)) recording with implanted electrode
arrays, measure the activity of the extracellular space. These recordings detect
electrical potential changes resulting from all active cellular processes, which can
be expressed by a multipole expansion. The signal strength is inversely proportional
to the distance from the measuring electrode. Moreover, at the electrode, there
is spatial averaging of the activity of all the sources. Although there are many
contributors to the extracellular fields (for an overview see Buzsaki et al. (2012)
[38]), only highly synchronous activity in both space and time will give rise to
measurable deflections at distant electrodes. Consequently, the major contributors
are the post-synaptic potentials produced by synaptic transmembrane currents. In
case of AMPA and NMDA synapses, this will give rise to a local influx of ions
resulting in an extracellular sink, which is balanced by extracellular current sources
along the neuron.

Especially in modeling of EEG activity, these currents are modeled with a
current dipole. Here, the dipole represents the electrical activity of a small volume
of parallel neurons. The model is characterized by: its position (rdp = [x, y, z],
which is halfway between the current source and sink), its orientation (defined by
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unit vector edp), the current intensity (I) and the distance between the monopoles
(d), see figure 1.6. The dipole moment density is then

d(rdp) = I ddp(rdp) (1.8)

with ddp = d δ3(rdp) edp

with δ the Dirac delta [39, 40]. Subsequently, the field propagation of the current
dipole to the scalp is modeled. This is obtained by solving Poisson’s equation. A
numerical solver is needed to obtain the result for accurate head geometries. In
contrast, an analytical solution can be obtained in simplified head models. An
example is given in chapter 5.

Box 1.1. Conventions and Definitions

transmembrane potential The transmembrane potential is the electrical
potential difference of the intracellular with respect to the extracellular
potential (V = Vi − Ve).

equilibrium potential The equilibrium potential (Vr) is the transmem-
brane potential for which there is no net conductive current across the
membrane (dV/dt = 0).

depolarization The change in transmembrane potential is positive
(dVdt > 0).

repolarization The current transmembrane potential is above the equilib-
rium potential and the change is negative (V > Vr, dV

dt < 0).

hyperpolarization The current transmembrane potential is below the
equilibrium potential and the change is negative (V < Vr, dV

dt < 0).

current sign conventions The current is positive in case of: an outward
transmembrane current, an inward electrical or injection current, and an
arriving axial current.

seizures Transient occurrences of signs and/or symptoms due to abnormal
excessive or synchronous neural activity in the brain ∼ ILAE

seizure states

– ictal period during a seizure

– interictal period between seizures
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1.4 Research Aims
Neuromodulation techniques still face numerous challenges. Their efficacy is often
limited due to incomplete understanding of their underlying mechanisms. Computa-
tional models emerge as ideal tools for addressing these unresolved questions. The
neuromodulation technique studied in this dissertation is optogenetics. A signifi-
cant hurdle in its clinical translation is the transition from rodent to human brains,
marked by a substantial size difference (×1000). Another challenge involves the
open-loop operation of neuromodulation systems, leading to redundant modulation.
The future of neuromodulation technologies leans towards closed-loop systems.
These hold the promise of real-time adjusting stimulation, based on clinically rele-
vant physiological signals. A technique able to record (deep) electrophysiological
activity minimally- to non-invasively with high spatial and temporal resolution is
therefore imperative.

The aim of this dissertation is to leverage computational modeling to gain
insights in the optogenetic excitation of CA1 cells, hippocampal modeling, and
functional neuroimaging, all with the overarching goal of advancing the treatment
of temporal lobe epilepsy. The following research questions are posed:

• What are the dominant uncertainty variables in and strategies to increase the
optogenetic excitation of CA1 cells? (chapter 3)

• Can a conductance-based network model of the hippocampus, though not full-
scale, produce seizure-like activity under high potassium or mesial temporal
lobe epilepsy histopathological conditions? (chapter 4)

• Can electrophysiological activity of deep regions be recorded non-invasively
and with high spatial resolution by probing brain tissue with ultrasound under
the mechanical vibration hypothesis? (chapter 5)

To address the first research question effectively, an accurate yet computationally
efficient model of the opsin under investigation is essential. Consequently, an
additional research question is posed initially:

• Is it possible to model the opsin’s photocurrent more efficiently, and can the
model be autonomously fitted to the data? (chapter 2)

1.5 Outline
In chapter 2, I delve into the optogenetic toolbox, addressing trends, modulation
strategies, challenges, and potential solutions. This chapter also provides a sum-
mary of the computational models utilized for modeling an opsin’s photocurrent.
Furthermore, I elaborate on our contribution to the state-of-the-art, specifically the
development of a computationally efficient double two-state opsin model accom-
panied by an autonomous parameter inference procedure. The results presented
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stem from our paper titled Double Two-State Opsin Model with Autonomous Pa-
rameter Inference [RS1]. I draw comparisons with conventional models and fit two
distinctive opsins

(
ChR2(H134R) and MerMAID

)
, followed by an evaluation of

the proposed model’s computational efficiency.
Chapter 3 employs the model introduced in chapter 2 to explore the optogenetic

excitability of CA1 neurons. I present the findings of our study titled Quantitative
Analysis of the Optogenetic Excitability of CA1 Neurons [RS2]. Our investiga-
tion combines simulations of light propagation and neuronal modeling to identify
optimal and suboptimal stimulation positions, quantify simulation errors when
changes in the light field at the neuronal level are omitted, and determine the most
excitable neuronal membrane compartments. Additionally, an uncertainty analysis
is conducted to pinpoint the most impactful uncertain parameters, including optical
field properties, cell-to-optical fiber orientation, and 3D structural cell morphol-
ogy. These insights hold significance for the development of improved stimulation
protocols.

Chapter 4 outlines the development of a network model of an epileptic hip-
pocampus, encompassing the dentate gyrus, CA3, and CA1 regions. This model
evolves from a healthy baseline to incorporate in-vitro model pathologies and mesial
temporal lobe epilepsy (mTLE) pathology. The emphasis is placed on the evoked
potentials generated by stimulating the Schaffer collaterals, a commonly utilized
marker for ongoing brain excitability. Preliminary results from this research were
presented at the 44th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society [RS14] and at the Joint 3R Symposium, September
2023.

In the final research chapter, chapter 5, I shift the focus to neural activity record-
ing. Here, I leverage dipole models to assess the feasibility of using ultrasound to
probe the electrophysiological activity of deep brain areas with high spatial and
temporal specificity. The hypothesis of neural tissue vibration being responsible
for heterodyning neural activity with the ultrasonic frequency (i.e., upconverting
the low frequency electrophysiological activity to higher ultrasonic frequencies) is
investigated. The results presented originate from our work titled, Simulation Study
on High Spatio-Temporal Resolution Acousto-Electrophysiological Neuroimag-
ing [RS3].

The dissertation concludes with a summary of the conclusions drawn from my
research and outlines prospective directions for future investigations in chapter 6.
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of The Bioelectromagnetics Society and the European BioElectromagnetics
Association (BioEM2022), Nagoya, Japan, 2022.

[RS10] T. Plovie, R. Schoeters, T. Tarnaud, L. Martens, W. Joseph, E. Tanghe,
“Influence of Temporal Interference Stimulation Parameters on Point Neuron
Excitability”, 44th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC’ 22), Glasgow, Scotland, United
Kingdom, 2022. doi: 10.1109/EMBC48229.2022.9871641
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2
Optogenetics

In this chapter, I will elaborate on the optogenetic technology and computational
models of the opsin’s current kinetics. First, I summarize the popular options

for the three crucial components of the optogenetic toolbox, i.e., gene expression,
opsins and illumination. Next, potential applications and the remaining challenges
for clinical translation are discussed.

In the previous chapter, it was denoted that computational models are a valuable
tool to tackle these challenges. To this end, an accurate yet computationally efficient
model of the to-be-investigated opsin is required. I proposed a double two-state
opsin model as an alternative to the conventional three and four-state Markov models
used for opsin modeling. This double two-state opsin model comprises only two
differential equations, rendering it computationally more efficient. Additionally,
I developed an autonomous model fitting procedure commencing from a vast
parameter space. The structure of the proposed model and the fitting procedure
are discussed in this chapter, as well. The outcomes of our paper titled Double
Two-State Opsin Model With Autonomous Parameter Inference [1] are discussed in
section 2.6.
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2.1 The Optogenetic Toolbox
Optogenetics is a technique that can be used to manipulate cellular activity with
light [2–4]. Specific cell types are sensitized to light via the introduction of gene
constructs that encode for optogenetic actuators. There are many different types
of optogenetic actuators. An overview of these is given by Rost et al. (2017) [5].
In this book, I will focus on membrane-spanning actuators [5]. These opsins are
light-gated ion channels, pumps or receptors that when illuminated allow hyper- or
depolarizing currents through the cell membrane [3].

The idea of using light as a neuromodulation tool was already postulated by
Francis Crick in 1979 [6]. Also the discovery of the first opsins originates in
the 70’s. The first opsin, i.e., bacteriorhodopsin, was discovered by Oesterhelt
et al. (1971) [7], being an excitatory proton pump. Followed by halorhodopsin,
an inhibitory chloride pump by Matsuno-Yagi and Mukohata (1977) [8]. It took
25 years before channelrhodopsin (ChR), the first light-gated ion channel, was
reported [9], but has since revolutionized neuroscience [10–12].

To ensure the proper functioning of the optogenetic toolbox, three components
are necessary. First, the optimal optogenetic actuator must be chosen, taking into
account selection criteria such as ion selectivity, kinetics, spectral band, subcellular
target and conductance. Second, a delivery method is essential, with viral vectors
like adeno-associated or lentivirus commonly adopted. Last, a light source, e.g.,
LED or a laser, is required to activate the genetically modified cells [5, 11].

2.1.1 Opsins
The most well-known opsin is channelrhodopsin-2 (ChR2), responsible for pho-
totaxis and photophobic responses in the green algae Chlamydomonas reinhardtii
[13, 14]. Since the discovery of ChR2, the range of available options has signif-
icantly expanded. This expansion is attributable to the discovery of new natural
opsins and genetic engineering of existing ones. Consequently, this has presented
a large number of possibilities with a wide spectrum of characteristics, including
conductance, kinetics, spectral bands, and selectivities [15].

The available opsins can be divided into two large groups: the microbial opsins
(type I) and G-protein coupled receptors or the vertebrate opsins (type II). Activation
of the latter group results in a cascade of neural activity with slower responses
as a consequence. They are mainly used in optogenetics for biochemical control.
Consequently, most effort is put into the use of type I opsins for neural control
[12, 15, 16] and will thus be further revised in this book. Below, I will discuss the
most commonly used, with different interesting properties. Extensive overviews
of available opsins are given by Zhang et al. (2022) [17] and Gordeliy et al.
(2022) [18]. A selection of common opsins, both excitatory and inhibitory, is given
in figure 2.2.
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2.1.1.1 Natural opsins

As already denoted, the first light sensitive ion channel was discovered in the
green alga Chlamydomonas reinhardtii. However, ChR2 is only one of the seven
opsin-related genes of the alga. Of these genes, Chlamyopsins 3 and 4 encode
light-gated ion channels, respectively ChR1 and ChR2 [19]. Both these channels
comprise seven transmembrane helices combined with all-trans retinal chromophore.
Upon light illumination, retinal undergoes a 13 trans-to-cis isomerization, which
activates a cascade of conformational changes resulting in the opening of the
channel pore [20]. Although there exists a 65% sequence homology between ChR1
and ChR2, there are significant differences concerning kinetics, action spectra and
conductance. Research has shown that ChR1 is highly selective for protons (H+),
while being almost impermeable for other cations resulting in a lower conductance
than its counterpart, ChR2, which is permeable for most cations. On the other hand
ChR2 limits fast pacing due to its rapid inactivation, whereas this is reduced in
ChR1. At last, the peak activation wavelength is more red shifted for ChR1 (500 nm)
in comparison with ChR2 (460 nm). Due to the red shift and faster kinetics, ChR1
could be more interesting for certain clinical applications than ChR2, though its
low conductance excludes it for neuronal depolarization [9, 14, 21].

Next to ChRs of the alga Chlamydomonas reinhardtii, homologues were
found in other chlorophycean algea, such as Volvox carteri (VChR), Mesostigma
viride (MChR), Stigeoclonium helveticum (ShChR), Chlamydomonas noctigama
(CnChR1) and up to 60 more [20]. Combination of the final two, for the activation
of two distinct neural populations with different colors of light, has been proven
to be possible. Multiple trials have been conducted to achieve this feature. This
by creating red shifted mutants of ChR2 and decreasing blue light sensitivity or
increased sensitivity of the counterpart, with the intention that low intensity blue
stimulation would drive spiking in neurons, with the blue light version, and sub-
threshold spiking in neurons with the red shifted mutant. However, altering the
blue light sensitivity of ChR2 has led to a decrease of the opsin’s temporal reso-
lution. Nevertheless, the combination of these properties is exactly what enables
multi-population stimulation with Chronos and Chrimson. Irradiance with red light
(625 nm) causes only spike activity in cells containing Chrimson (spectral peak
at 590 nm), up to 10 Hz, whereas irradiance with blue light (470 nm) and power
between 0.05 mW/mm2 and 0.5 mW/mm2 causes spike activity up to 60 Hz in
Chronos (spectral peak at 500 nm) containing cells [22].

2.1.1.2 Bioengineered opsins

To optimize the properties of opsins, extensive genetic engineering efforts have
been dedicated to their optimization. Even machine learning has been used to
guide the engineering of channelrhodopsins [24]. Different optimization strategies
that have been followed are point mutations and codon optimization. Additionally,
attempts have been made to combine the complementary properties of ChR1 and
ChR2 leading to chimeric structures [16]. It was the crystal structure of the C1C2
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Figure 2.1: High resolution crystal structure of Channelrhodopsin 2 with four main cavities.
Retinal is the structure in red. Adapted from Vokov et al. (2017) [23]

chimera that led to a breakthrough in protein engineering of ChR2 [25, 26]. Five
years later, Volkov et al (2017) successfully derived the protein structure of the
native ChR2 with a 2.4 Å resulotion (see figure 2.1) [26].

Red-shifted opsins The need for red-shifted opsins emerged from the need
for enhanced light penetration, necessary when transitioning optogenetics from
small animal models to non-human and human primates with larger brain volumes.
Red light is subjected to less scattering and less absorption, hence resulting in
deeper penetration and less heating. Additionally, it enables multi-population
stimulation [16]. The bathochromic shift in red-shifted opsins primarily results
from altered retinal conformation and the interaction of the retinal Schiff base
(RSBH+) with counter ions (E123 or Ci1 and E253 or Ci2). These interactions are
formed due to the covalent bonding between retinal and the K257 lysine residue (see
figure 2.1). For example, mutations such as E123Q and D253N in ChR2 result in a
bathochromic shift, while Ci1 mutation (E162T) in C1V1 induces a hypsochromic
shift [20]. Other more recently discovered or developed red-shifted opsins with
improved properties are bReaChES, CsChrimson and ChRmine [27–29]
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Step-function opsins Step-function opsins (SFOs) offer unique bistable, step-like
control capabilities, making them suitable for modulating spontaneous firing rates.
However, they are not suitable for single action potential control. The most popular
SFO is the ChR2(C128S) mutant. The C128 and D156 residue form together the
DC-gate (see figure 2.1). A mutation results in a remarkable decrease in kinetics,
extending the lifetime of the channel’s open state. Furthermore, a mutation affecting
the entire DC-gate(C128S/D156A) produces a stabilized SFO with a deactivation
time approaching thirty minutes [15, 20, 30].

Ultrafast opsins A complementary class to the SFOs are the ultrafast opsins.
These opsins contain faster kinetics, particularly off-kinetics. This allows for single
spike control, whereas multiple spikes per stimulus are typically obtained with
other opsins. Their fast recovery permits the use of higher stimulation frequencies
over prolonged periods without compromising action potential firing. A subset
of ultrafast opsins are termed ChETAs. Here the Ci1 glutamate (E) residue is
substituted for a threonine (T) or alanine (A), resulting in an acceleration of the
off kinetics from τoff = 10ms to τoff = 4ms. However, this improvement comes
at the cost of reduced light sensitivity [15, 16, 20, 31–33]. There exist chimeric
ultrafast opsins as well. Examples are ChEF, a chimera with a crossover site at
loop E-F (this is C1C2 in figure 2.1), and ChIEF, where isoleucine 170 in ChEF is
mutated into valine. Whereas ChIEF contains faster kinetics, the light sensitivity
is reduced but still within the range of (∼ 10mW/mm2). ChIEF allows for high-
fidelity stimulation, achieving frequencies of up to 50 Hz, surpassing the precision
of stimulation attainable with ChR2, which upper limit is typically 15 Hz [21].
Native opsins, such as Chronos from the ShChR channelrhodopsin, also fall within
the category of ultrafast opsins [22].

Ion selectivity Another characteristic that has been modified is the ion selectivity.
In most natural opsins, proton selectivity typically surpasses that of other ions. For
instance, ChR2 exhibits a relative proton conductance estimated to be 105 − 106

times higher than that for sodium ions, raising concerns about potential host cell
acidification. The ChR2(L132C-T159C) mutant, however, displays increased
sodium and magnesium conductance, and enhanced calcium selectivity [20, 30].
Furthermore, this mutation has an increased light sensitivity at the expense of
reduced temporal kinetics, with an increase of 1.5 to 2 orders of magnitude [31].
Also a mutation of H134, which is part of the inner gate and sodium binding site,
results in a Na+ carried current. A well known and frequently used example is
ChR2(H134R) [12, 20].

2.1.1.3 Inhibitory opsins

In addition to excitatory opsins, inhibitory opsins also play a significant role in
optogenetics. They can be used for action potential inhibition, achievable via both
anion and cation conducting opsins.
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Figure 2.2: Overview of available opsins with their activation peak wavelength, decay
kinetics and advantages. Adapted from Gerits and Vanduffel (2013) [16]

Anion Conducting Among the inhibitory opsins, the yellow-light-activated chlo-
ride pump halorhodopsin (NpHR) from the archaeon Natronomonas pharaonis,
stands out as one of the most widely used. Similar to their excitatory counterparts,
efforts have been made to genetically modify inhibitory opsins, altering properties
like spectral sensitivity, as seen with eNpHR3.0. Furthermore, research is focused
on engineering chloride channels, although some residual cation conductance may
persist [34]. Recent discoveries include natural light-gated anion channels found
in the genome of Guillardia theta, such as GtACR1 and GtACR2 [35, 36]. Addi-
tionally, a metagenomically family of phylogenetically distinct anion-conducting
channelrhodopsins, termed MerMAIDS, have been identified, exhibiting intense
desensitization and rapid closing kinetics [37].

Cation Conducting Disruption of the chloride homeostasis can drive anion
conducting opsins to become excitatory. Although cation-conducting channels
are mainly associated with excitation, cell inhibition is possible as well. The
archaerhodopsin-3 (Arch) from the Halorubrum sodomense is a proton pump that
causes hyperpolarization by pumping protons out of the cell [38]. A notable recent
discovery is WiChR from the Wobblia lunata. It is a potassium-conducting channel
with improved K+ selectivity, elevated light sensitivity, and minimal photocurrent
inactivation [39].
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2.1.1.4 Bidirectional control

Furthermore, bidirectional control can be achieved through the concurrent expres-
sion of both excitatory and inhibitory opsins within the same cell population. To
realize this, it is imperative that both opsins exhibit comparable expression levels
while having distinct activation spectra to prevent unwanted cross-activation. Two
challenges that have been shown to be difficult to overcome. In a recent study,
Vierock et al. (2021) [40] combined GtACR2, an inhibitory opsin activated by
blue-light, with Chrimson, an excitatory opsin responsive to red light, resulting in a
novel construct referred to as BiPOLES. This combination yields promising results,
demonstrating successful bidirectional control across various (in)vertebrate model
organisms [40].

2.1.2 Gene expression
The second step involves introducing the genetic material of opsins into the target
cells, commonly achieved through viral vectors. A viral vector construct typically
contains four primary components (see figure 2.3). The initial component is the
viral expression system itself, with lentivirus and adeno-associated virus (AAV)
being the most prevalent choices. The lentivirus has a larger packaging capacity
(8 kb) compared to AAV (4 kb), but incorporates into the host genome. While
this causes permanent expression, it also increases the carcinogenic risk. The
packaging capacity limits the promoter possibilities and thus reduces the diversity
of specific targeted cells. However, AAV can be more effective due to its lower
temperature sensitivity, broader distribution due to its smaller size and higher titers,
and reduced immunogenicity [4, 12, 15, 16]. Cell-type specificity can be achieved

Figure 2.3: Example viral vector construct used for opsin expression. Adapted from Gerits
and Vanduffel (2013) [16]

through the vector’s inherent tropism, spatial targeting strategies, or the selection
of a specific promoter. The latter is the second component of the vector construct.
Some possibilities are denoted in figure 2.3. The third component encompasses the
genetic information of the opsins themselves, as discussed in section 2.1.1. Finally,
the fourth component usually comprises a reporter gene, encoding fluorescent
proteins for quantifying opsin expression [16].



32 CHAPTER 2

To overcome packaging capacity limitations, alternative techniques exist. Trans-
genic or knock-in animals, while offering high specificity, are restricted to research
applications and cannot be extend to humans. Additionally, generating these trans-
genic lines demands substantial time and effort. Furthermore, the introduction of
a new opsin necessitates the creation of a new animal line. Finally, spatial local-
ization specificity is compromised. A combination of transgenic mice, such as cre
recombinase-based mouse lines, with viral vector system, combines the best of both
worlds enhancing specificity [15]. Stauffer et al. (2016) circumvented the need for a
transgenic animal line by injecting a mix of two viral vectors. The first contains the
Cre recombinase whereas the second vector delivers a Cre-recombinase-dependent
opsin construct [41].

Other techniques include electroporation, gene gun [42], cell-to-myocyte electri-
cal coupling using donor cells [43], lipofection, and optoporation [4]. Optoporation,
employing an ultra-fast near-infrared laser beam in conjunction with micro-injection
of opsin genes, is particularly promising in reducing tissue damage and enhancing
site-specificity [4].

2.1.3 Illumination
Finally, the genetically modified cells require illumination. Several methods exist
with their respective advantages and limitations. Light sources such as mercury
or xenon bulbs, light-emitting diodes (LEDs), µLEDs, continuous-wave lasers, or
ultrafast pulsed lasers can be employed [44, 45]. Mercury or xenon bulbs emit a
broad spectrum of light, necessitating filtration. Moreover, they generate substantial
heat and degrade quickly, resulting in infrequent use [45]. In optogenetics, it is
advisable to use light wavelengths near the opsin’s peak absorption. In this case,
lower intensities are needed, reducing the chance of phototoxicity, photobleaching
or spontaneous activation of the cells itself. Furthermore, it reduces the possibility
for multicolored simultaneous activation. Also high temporal control is desired.
These requirements make LEDs and lasers, especially ultrafast lasers which can
emit light pulses of tens to hundreds of femtoseconds long, more suitable candidates.
Lasers offer coherent light production, higher coupling efficiency, and superior
temporal resolution but entail increased complexity and cost [4, 42, 45].

2.2 Clinical Translation
The discovery of optogenetics has revolutionized neuroscience. Due to its optimal
temporal resolution, cell specificity and potential bidirectional control it is an
ideal investigative tool. The latter property has simplified behavioral studies,
where causality needs to be investigated in terms of necessity and specificity.
Consequently, optogenetics has proven to be very useful for investigating disease
mechanisms. Although there are still many challenges along its path to be an
effective clinical application, several studies have already shown its benefits and
high potential [5, 42, 46–49].
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2.2.1 Epilepsy
As aforementioned in section 1.1.3, epilepsy is a devastating disorder with 30% of
patients having refractory epilepsy [50–52]. Focal epilepsies are particularly percep-
tive for optogenetic neuromodulation. Studies have already shown its effectiveness
in treating epileptic seizures in animal models. There are two strategies [48]. First,
there is seizure control through optogenetic inhibition of the excitatory subpopula-
tions. Proof of principle was provided by Tonnesen et al. (2009), where successfully
burst attenuation in pyramidal neurons with stimulation of NpHR was obtained [53].
Several studies have followed showing decreased seizure activity via inhibition
of, for instance, the hippocampus [54–56] or thalamus [57]. A second approach
is excitation of the inhibitory interneurons using cation conducting opsins, such
as channelrhodopsin-2 (ChR2) and variants, which has also yielded promising
results [54, 58–60]. Furthermore, optogenetics can be employed in studies on the
initiation and propagation of seizures, and to investigate the role different neuronal
populations play in the seizure dynamics [42, 55, 61, 62]. An overview of optoge-
netic approaches in epilepsy research is given by Cela and Sjöström (2019) [63].

2.2.2 Beyond the brain
Optogenetics extends beyond the central nervous system. Potential applications
lie in the peripheral nervous system, as well as other excitable tissues such as
cardiac tissues and muscle cells. The use of optical tools in the cardiovascular field
is widely embraced, ranging from optogenetic sensors to optogenetic arrhytmia
management [64]. Optical defibrillation, for instance, offers the advantage of pain
alleviation by avoiding stimulation of surrounding skeletal muscles [43]. Moreover,
prolonged stimulation is possible due to the lack of electrochemical reactions
associated with electrical stimulation. Bruegmann et al. (2010) provided already an
in-vivo proof-of-concept by optogenetically altering the PQRS-complex [65].

Translating optogenetics to the spinal cord and peripheral nervous systems
does not make it necessarily more accessible. They contain more complex and
heterogeneous tissues, are very motile and the immune response is more prominent.
However, it also opens up possibilities for diverse illumination techniques, including
cuff implants and non-invasive transdermal illumination. The latter holds promise
for somatosensation and pain modulation, however with current successes only
demonstrated in in-vitro and ex-vivo settings [66]. Furthermore, optogenetics
holds potential for therapeutic interventions in motor circuit control, offering the
prospect of restoring function to damaged spinal circuits and modulating lower
motor neurons [67]. Successes have been shown in rodents and recently in non-
human primates [68, 69]. In case of the latter, optogenetics offers advantages over
electrical stimulation, due to the physiological order of recruitment with less muscle
fatigue as result [66, 70].

The currently most promising clinical application of optogenetics is the treat-
ment of retinitis pigmentosa. The eye is easier to access and there is no need for im-
planted light sources [71]. Consequently, it is the first disease for which optogenetic
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therapy has reached clinical trial. Two trials, NCT02556736 and NCT03326336,
are ongoing. The latter, being the Gensight therapy, utilizes biomimetic goggles in
order to enhance delivered light-intensities [47, 69, 72]. Although preliminary, the
results of a first patient look promising [49].

2.2.3 Challenges
The previously mentioned applications represent only a fraction of the potential
possibilities with optogenetics. However, the translation into clinical applications
faces numerous challenges. The human brain is approximately 1000 times bigger
than the brain of rodents, complicating translation from rodents to primates [48].
Diester et al. (2011) constructed an optogenetic toolbox for primates with stimula-
tion of the motor cortex [74]. Although there was clear proof of optogenetic control
of the neurons, no movements were evoked. This may be attributed to the small
size of the stimulated region. Optic frequencies exhibit poor penetration in brain
tissue, necessitating in-vivo implantation of the illumination source. In order to
minimize structural damage due to intrusion, the light source’s dimensions are con-
strained [44]. As a result, only a small volume is illuminated using a single optical
fiber. Furthermore, light absorption by the brain tissue causes heating. Therefore
the light intensity should be limited in order to prevent brain damage [81–85].

Effectively illuminating a sufficiently large volume without causing irreversible
effects poses a primary challenge. One potential solution is the adoption of red-
shifted opsins [12, 22]. (Infra)red light gets less absorbed resulting in greater
illumination volumes and less heating [29, 82, 86, 87]. Alternatively, enhancing
efficiency to generate higher photocurrents at lower irradiances could be achieved
by improving single channel conductance or altering channel kinetics [12, 30, 88].
Augmenting membrane expression [5, 89, 90] or spatially confining the opsin to
specific neuronal membrane compartments [5, 91–93] offer potential strategies, as
well.

Another challenge is having a good understanding of the optogenetic effect itself.
Prolonged activation of inhibitory opsins may disrupt the chloride balance, resulting
in excitation instead of inhibition. For instance, Mahn et al. (2018) observed
GtACR2-mediated axonal excitation [92]. Excessive activation of GABAergic
interneurons could yield similar outcomes [48, 94, 95]. Moreover, the complex
connectivity of interneuron networks can lead to disinhibition [46, 48], emphasizing
the importance of precise targeting of the right interneuron subset. However, subset
targeting remains challenging [42]. Inhibition via cation conducting channels such
as WiChR could be a more robust solution [39]. Moreover, optogenetic modulation
should not be restricted to silencing or a single strategy. Like with electrical
deep brain stimulation, the excitation could be used as counter-irritation [96] with
various modes of action [97] that can be tested. Ultrafast opsin are good choices
to achieve high frequency stimulation. Moreover, stimulating multiple cell types
could potentially restore the excitation-inhibition balance [46].

Lastly, long-term consequences must be carefully identified. On the one hand
there is the possible immune response to the viral vectors and the transgene foreign
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Advantages Challenges Possible Solutions

Cell specificityall Toxicity of opsin
expression2,3,6,16

Alter promoter vector
combination3

High temporal resolution
(ms)all

Heterogeneous light
delivery and
attenuation2,3,6,7,14,16

Branched fiber
illumination13, red-shifted
opsins2,5,6,13 or synthetic
retinal analogues1

Rapid reversibility5,6 Heterogeneous opsin
expression2,3,6,7,14,16 Multi site injection10

Co-expression and
bidirectional
control3,5,6,15

Small capacity of viral
vectors limits
co-expression5,17

viral vector mixture with
Cre-recombinase18

No electrochemical
reactions2,15 No subset specificity6,7 INTERSECT∗6,

optoporation9

True electrical and fMRI
recordings14

Reliable high frequency
spiking8,17 Ultrafast opsins5,6,8

No extra need for cofactors
(retinal) in mammals17

Non physiological
behavior6,7,16

Control studies are easy17 Antidromic activation6,7

Silent in the dark (no
effect on cell properties)13

Phototoxicity and
bleaching17

High light sensitive
opsins17

Minimally invasive beyond
the brain2,14,15

Invasivennes of
optrodes3,16,17

Two photon
stimulation9,10,
Nanoparticle
upconversion12,
sono-optogenetics19

Synchronization of
cells6,7 SFOs6,7

Heating17
High light sensitive
opsins17, red-shifted
opsins2,5,6,13

Rapid evolution and
discoveries delay clinical
trials14

1: [73] 2: [43], 3: [74], 4: [75], 5: [16], 6: [15], 7: [76], 8: [21], 9: [4] 10: [45] 11: [57]
12: [77] 13: [48], 14: [78], 15: [79], 16: [46], 17: [12], 18: [41] and 19: [80]
*intron recombinase sites enabling combinatorial targeting

Table 2.1: Advantages and challenges with possible solutions for the translation of opto-
genetic neuromodulation to clinical application.
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proteins. Also transgene down-regulation may occur, necessitating repetitive viral
vector injection, which is a complex surgical procedure in order to target the same
area [46, 49]. On the other hand, foreign body reactions to implanted optical sources
can affect functionality already after weeks post-implantation. Engineering efforts
are directed towards developing soft and flexible optrodes that match mechanical
properties of brain tissue to limit this immune response [44]. This problem can be
circumvented with non-invasive light delivery methods. A possible method uses
upconversion nanoparticles which are capable of transforming near-infrared into
visible light [98]. Another option are mechanoluminescent nanotransducers that are
activated by ultrasound; a technique termed sono-optogenetics [80] .

2.3 Ethical Considerations
Although optogenetics is pursued with therapeutic intent, aiming to enhance pa-
tients’ quality of life, it is crucial to consider ethical implications. Notably, there
are no inherently new ethical considerations unique to optogenetics that do not
apply to other techniques. Similar to gene therapy and electrical deep brain stimu-
lation (DBS), it is essential to carefully assess risks and benefits. Safety concerns
associated with gene therapy include immune system reactions, pleiotropic effects,
insertional mutagenesis, and recombination potential. Implanting the light source
also entails risks, such as local heating, tissue and acute vascular damage, localized
blood-brain barrier breakdown, and potential toxicity, including the formation of
reactive oxygen species [99].

Furthermore, optogenetic stimulation may result in unintended effects that could
lead to personality changes, although this risk is expected to be lower compared
to DBS due to the increased cell-type specificity of optogenetics. Given this risk-
benefit analysis, it is imperative to ensure that patients are well-informed to provide
informed consent. Moreover, considering that the neurological diseases targeted
for treatment could potentially cause cognitive impairments, developing clear and
understandable informed consent processes is crucial [100].

Efforts are being made towards non-invasive optogenetics, mitigating several of
the aforementioned safety concerns. However, this approach introduces the risk of
cells becoming susceptible to other light sources of sufficient power, posing a risk of
unconsented manipulation. Additionally, there is a moral concern regarding the use
of optogenetics to enhance cognitive functioning, raising subsequent concerns about
fair and equal access. Finally, the feasibility of the technique requires the allocation
of additional resources and (pre)clinical trials, introducing ethical concerns such
as fair subject selection, the use of animals, and the allocation of computational
resources [100].
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2.4 The ChR2 Photocycle
In chapter 3, I explore the optogenetic excitability of CA1 neurons using a compu-
tational model of ChR2(H134R). Developing this model necessitates a thorough
understanding of the opsin’s photocycle. Below, I will begin by describing the
ChR2 photocurrent, followed by an overview of conventional model structures and
existing opsin models.

In its initial dark-adapted (IDA) state and under voltage clamp conditions,
ChR2’s photocurrent exhibits a peak (Ipeak) followed by a steady-state current
(Iss) [101]. The peak is reached within 1-2 ms and is succeeded by fast decay
onto a steady-state plateau due to light adaptation (figure 2.4). Post-illumination, a
bi-exponential decay back to baseline occurs, rendering the channel in an apparent
dark-adapted state (DAapp). This is observed when a second stimulation after a
short period of time (< 10 s) is applied, resulting in a reduced transient response
while maintaining the steady-state current (figure 2.4) [101, 102].

Figure 2.4: The opsin photocurrent for a single light pulse on the left. (Right) The response
to a S1-S2 pulse protocol with variable inter-pulse intervals. Light pulses are
indicated with blue bars and target features with black arrows.

ChR2 comprises seven transmembrane helices. These are covalently bound to a
retinal chromophore forming a protonated retinal Schiff base (RSBH+). In its IDA
(D470), retinal is in an all-trans configuration [101]. Upon illumination, a 13-trans-
cis isomerization is triggered that initiates a cascade of conformational changes,
leading to pore opening (P520). Before returning back to the dark adapted state, the
channel converts to a non-conducting state P470. This happens on a millisecond
timescale, while complete recovery takes seconds [19, 23, 103]. There is substantial
evidence supporting a second photocycle with similar intermediates: (i) existence of
four kinetic intermediates identified with a short flash experiment [104], (ii) changes
in selectivity between early and late photocurrents [19, 20], (iii) the presence
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Figure 2.5: The ChR2 photocycle and previously proposed computational model structures.
A The unifying photocycle model as proposed by Kuhne et al. (2019) [107]. B
A three state cycle model with second light dependent step (dotted or dashed
step) [108]. C A four state branching model [78]. D A six state model with
two extra activation intermediates [109]. DA and LA indicate dark and light
adapted molecule states, respectively. O means open, C is closed and D is the
desensitized state. Blue arrows indicate light dependent rates.

of multiple retinal isoforms and (iv) a bi-exponential, post-illumination current
decay [19, 101, 105, 106]. However, the transition between the two photocycles
remains a topic of debate [101, 106]. Recently, Kuhne et al. (2019) [107] proposed
a unifying ChR2 photocycle model consisting of two parallel photocycles with
three reaction pathways as shown in figure 2.5 (A).

2.4.1 Computational Opsin Models
In computational modeling, the photocurrent is commonly represented using either
a three- or four-state Markov model (figure 2.5 (B, C)). This is in accordance with
the single and double photocycle hypothesis, respectively. The opening is reduced
to a single state transition. This is because the D480 → P500 and P500 → P390
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transitions occur on a much faster timescale. However, to account for fast closure,
slow recovery, and a steady-state current, a second photon absorption step is
proposed for the three-state model [14, 19, 20, 102, 110]. The photochemical
transition either increases the recovery rate or acts as equilibrium modulator between
the open and desensitized state. The six-state model, as depicted in figure 2.5 (D),
is an extended version of the four-state model. The additional two intermediates are
to correctly account for the activation time after retinal isomerizations and to avoid
explicit-time dependent rates [109]. The four-state model aligns with the second
photocycle hypothesis, involving modeling of two open and closed states. The
transition as depicted in figure 2.5 (C) is according to the older transition hypothesis,
not to the latest unifying photocycle model proposed by Kuhne et al. (2019) [107].

Several studies have been published that leverage these and other more accu-
rate and efficient models in combination with neuron models to design in-silico
experiments. Some existing three-state models are of the native ChR2 with a voltage-
dependent inward rectification [10, 111] and a model of the fast Chronos opsin with
an increased recovery rate as a second photon absorption step [112]. Efforts have
also been made to model the native ChR2 with a four-state model [113–115]. How-
ever, in these models, only the activation rates are irradiance-dependent while the
transition rates between the photocycles are fixed. Grossman et al. (2011, 2013) in-
corporated voltage-dependent inward rectification along with irradiance-dependent
transition rates [109, 116]. Bansal et al. (2020, 2021) fitted multiple light-gated
ion channels, including ChR2H134R, ChETA, Chronos, CheRiff, Vf-Chrimson,
GtACR2, ChRmine, bRaeches and CsCrimson, with a four-state model incorporat-
ing irradiance-dependent transition rates but without inward rectification [27, 117].
They furthermore developed three-state models for light-gated ion pumps [117].
Williams et al. (2013) identified a positive correlation between the transmembrane
potential and the opsin time constants. They, therefore, created an improved model
of the ChR2(H134R) mutant that includes voltage-dependent rates and added tem-
perature dependence, as well [78]. Schneider et al. (2013) developed models of
ChR2, ChR2(L132CT159C) and C1V1 using an enzyme kinetic algorithm that
takes the effective ion concentrations into account [105].

In summary, four-state models are commonly favored. The model of Williams
et al. (2013) further incorporates an extra state variable to account for the non-
instantaneous response of the retinal complex to light [78]. Modeling a single
channel with such a model, therefore requires solving a set of four differential
equations. This significantly increases the computational burden, especially in
case of multi-compartment or network studies. Additionally, the selection of the
correct opsin is crucial to ensure an optimal optogenetic tool. The four-state Markov
models are not easily fitted, as they require prior knowledge of the parameter space
and its intricate interactions. Furthermore, obtaining optimal parameters can be
time-consuming, as the set of differential equations must be evaluated at each step
within the chosen optimization algorithm.
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2.5 Double Two-State Opsin Model
A double two-state opsin model structure (22OM) is proposed as alternative for
opsin modeling (figure 2.6). Below, the model is described in full. I elaborate
on the the link between parameters and certain features used in the fitting proce-
dure. A fit is created of the ChR2(H134R) mutant and compared to the 4SB model
of Williams et al. (2013) [78]. The performance of both models are tested in a
regular spiking neuron [118]. The difference in computation speed is assessed as
well, this in the aforementioned regular spiking neuron for different stimulation
patterns and in the sparse Pyramidal-Interneuron-Network-Gamma (sPING) net-
work model [119, 120] with increasing number of transfected neurons. Finally, the
versatility of the proposed model is evaluated with a fit to a MerMAID opsin [37].

O

C

R S

Figure 2.6: The newly proposed double two-state opsin model (22OM) with separation of
open-closing mechanism and conductance change due to dark-light adaptation.
The latter is captured in the mathematical R and S model state pair. The model
overlays the unifying photocycle model as proposed by Kuhne et al. (2019) [107].
Blue arrows indicate light dependent rates.

2.5.1 The Model
The proposed model is based on the original voltage gated sodium model of Hodgkin
and Huxley [121]. It consists of two independent two-state pairs as depicted
in figure 2.6. In contrast to the sodium model, where the second two-state pair
represents the inactivation gate, it represents here the change in conductance due to
dark-light adaptation.

After a long enough dark period, the molecules are assumed to be all in a closed
dark-adapted state. Upon stimulation, the channel opens with a transition C → O.
On a slightly slower time scale the equilibrium between dark and light adapted
molecules is reached. Light adapted molecules have a lower conductance than those
that are in the dark adapted state. This change in conductance is captured by a
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transition R → S. The relationship between these mathematical model states and the
physical dark and light adapted states of the opsin molecules is obtained via a linear
transformation, i.e., R = (gChR2 ·DA+gLA ·LA)/gChR2. Consequently, R (S) is
one (zero) when fully dark adapted and gLA/gChR2 (respectively, 1− gLA/gChR2)
when fully light adapted, with gLA the conductivity of a light adapted channel.
DA and LA are the possibilities of the opsin molecules being in a dark or light
adapted state, respectively. By using the R state in the model, gLA does not
need to be determined, therefore reducing the number of model parameters. The
established equilibria of both state pairs depend on the level of optical excitation.
After photostimulation, the channels close (O → C). Moreover, they all return to
the dark adapted state after a long enough recovery period, which is on a much
slower time scale than the other temporal kinetics. Because of this slower time scale,
the transition S → R has to be light dependent as well. Otherwise the equilibrium
would be completely on the side of S for every optical excitation level. The ChR2
photocurrent can thus be determined as follows:

iChR2 = gChR2G(V ) (O ·R) (V − EChR2) (2.1)

with

dO

dt
=
O∞(Irr, V )−O(t)

τO(Irr, V )
(2.2)

dR

dt
=
R∞(Irr, V )−R(t)

τR(Irr, V )
(2.3)

where gChR2 is the maximal specific conductivity of the fully dark adapted channel,
G(V ) is a rectification function, V the membrane potential, Irr the light irradiance,
EChR2 the equilibrium potential and O the fraction of molecules in the open state,
with O∞ and τO its corresponding equilibrium and time constant. R∞ and τR are
the respective equilibrium and time constants of the R state.

Under voltage clamp conditions and a rectangular optical pulse with constant
light intensity, the photocurrent can be expressed in a closed form analytical
expression:

iChR2 = gChR2G(V )(Oon
ChR2(t) +Ooff

ChR2(t))

· (Ron
ChR2(t) +Roff

ChR2(t))(V − EChR2) (2.4)

with

Oon
ChR2(t) =

[
O∞ − (O∞ −O0) exp

(
− t− ton
τO(Irr, V )

)]
·Θ(t− ton)Θ(toff − t)

(2.5)

Ooff
ChR2(t) = Oon

ChR2(toff) exp

(
− t− toff
τO(0, V )

)
Θ(t− toff) (2.6)
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Ron
ChR2(t) =

[
R∞ − (R∞ −R0) exp

(
− t− ton
τR(Irr, V )

)]
·Θ(t− ton)Θ(toff − t)

(2.7)

Roff
ChR2(t) =

[
1− (1−Ron

ChR2(toff)) · exp
(
− t− toff
τR(0, V )

)]
Θ(t− toff) (2.8)

with Θ the Heaviside function, O0 and R0 the initial values of O and R at t = ton
(respectively, 0 and 1 when fully dark adapted) and, ton and toff , respectively, the
onset and offset of the optical pulse.

This is of particular use during the fitting procedure as the model is fit to ex-
perimental data, recorded under the same aforementioned conditions. Moreover,
strong correlations between the model time constants and experimentally deter-
mined features (figure 2.4) are observed. These can be exploited to obtain a first
approximation of the model’s parameters (see section 2.5.2). When τO ≪ τR, the
transition rate time constant τO can be easily obtained from the activation (τon) and
deactivation (τoff ) time constants. Under the same conditions, τR strongly corre-
lates with the inactivation time constant (τinact) when Irr ̸= 0. The recovery time
constant needs to be scaled as shown in equation (2.10) to get a good approximation
of the dark-light adaptation time constant under dark (Irr = 0) conditions. This
relationship is obtained by evaluating the recovery time definition with the given
model equations, i.e., τrecov = ton,2 − toff,1 → Ip,2/Ip,1 = 1− exp(−1). Here,
ton,2 is the onset time of the second pulse, toff,1 the offset of the first pulse, and
Ip,2 and Ip,1 the current peak value of second and first pulse, respectively.

τO(Irr, V ) ≈ τon, τO(0, V ) ≈ τoff and τR(Irr, V ) ≈ τinact (2.9)

τR(0, V ) ≈ τrecov/

(
1− ln

1

1− Iratio

)
(2.10)

Furthermore, following conditions need to be met for the relationship to hold true:

tp,1 − ton,1 ≈ tp,2 − ton,2

tp,1 − ton,1 > τO (2.11)
toff,1 − ton,1 > τR

The first, tp,i − ton,i is the time required to reach the peak value since onset of
pulse i. This needs to be approximately the same in both first and second pulse,
while these need to be significantly larger than the activation time constant. The
last one requires that the steady-state value is reached at the end of the first pulse.

Unless specified, the time constants and time in this study are in seconds, the
membrane potential in mV and the intensity in W/m2. The units of the conductance
depend on the experimental data of each opsin, i.e., mS/cm2 and µS in case of the
ChR2(H134R) and MerMAID fit, respectively.
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2.5.2 The Fitting Procedure
Due to the dependency on both the potential and light intensity, more than twenty
parameters need to be inferred. This vast parameter space impedes finding the
optimal solution which is at a high computational cost. To alleviate this, the fitting
procedure can be divided into four steps.

The first step is the extraction of the features, which is described by Williams
et al. (2013) [78]. The peak current (Ipeak) is the maximal deflection from
baseline. The steady-state current (Iss) is the plateau value. The current ratio
(Iratio) is then Iss/Ipeak. The time constants are extracted using mono-exponential
curve fits. To this end, a nonlinear least-squares curve fit is performed, with a
trust-region-reflective algorithm. Furthermore, a multi-start algorithm with ten
starting points was used to ensure finding of the global solution. The variable and
function tolerance were set to 10−12. The recovery time constant, i.e., the time
necessary between two pulses to have a second peak current which is 63% of the
first peak (see definition in previous subsection), was determined from a set of
two-pulse experiments.

Next, τO and τR are fit to the obtained target data. Both are fit to the corre-
sponding time constants (see equation (2.9) and (2.10)) using the aforementioned
nonlinear least-squares method. Again, a multi-start algorithm is used but with
2000 starting points. For the intensity dependence, sigmoidal functions on the log-
scale are used while for the voltage dependence a logistic regression was selected.
The two dependencies are combined by either a multiplication or a reciprocal
addition. The relationships and combination schemes are given by equations (2.12)-
(2.16), with pi, i = 1 → 6 indicating the unknown parameters of each relationship
individually.

τO(Irr) =
p3

1 + exp(p1/p2) · I1/p2·ln(10)
rr

(2.12)

τR(Irr) = p1

(
1− p2

1 + exp(p3/p4) · I−1/p4·ln(10)
rr

− (1− p2)

1 + exp(p5/p6) · I−1/p6·ln(10)
rr

)
(2.13)

τX(V ) =
p1

1 + exp(−(V − p2)/p3)
(2.14)

τX(Irr, V ) = τX(Irr) · τX(V ) (2.15)
or [

(τX(Irr))
−1

+ (τX(V ))
−1
]−1

(2.16)
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O∞(Irr) =
1

1 + exp(p1/p2) · I−1/p2·ln(10)
rr

(2.17)

R∞(Irr) = 1− p3

1 + exp(p1/p2) · I−1/p2·ln(10)
rr

(2.18)

G(V ) =
p1 · (1− p2 exp(−(V − EChR2)/p3))

V − EChR2
(2.19)

In a third step, the parameters of the rectification function G(V ) and the equi-
librium constants O∞ and R∞ are fit. The used relationships are given in equa-
tion (2.19), (2.17) and (2.18), respectively. The potential dependence of O∞ and
R∞ are omitted because this is mostly covered by the rectification function. The
parameter values are determined by minimizing the cost function described below:

fcost =

(
1

N

[ ∑
i=1→N

∆Ipeak(Irr,i, Vi)
2 +∆Iss(Irr,i, Vi)

2 +∆Iratio(Irr,i, Vi)
2

])1/2

∆Ix(Irr,i, Vi) = wx

(
yx(Irr,i, Vi)− tx,Irr,i,Vi

)
,with x = peak, ss, ratio

(2.20)

Here, yx and tx,Irr,i,Vi are respectively the model output and target value at stim-
ulation values (Irr,V ), with ypeak = maxt(|ionChR2(t, Irr, V )|), yss = ionChR2(toff)
and yratio = yss/ypeak. ionChR2(t, Irr, V ) is the current during the photostimulation
pulse (t ϵ [ton, toff ]) for a certain irradiance Irr and voltage V . The current is calcu-
lated by evaluating equations (2.4)-(2.8) with the determined dependencies in the
previous step. N is the total number of stimulation sets (Irr,V ). The minimization
of fcost is performed with the MATLAB fmincon-function and multi-start algorithm
with 3000 starting points to increase chance of finding the global optimum. The
upper and lower boundaries as well as the initial conditions are summarized in
table 2.2. Extra nonlinear constraints are applied to assure that O∞ approaches
one for high intensities (see section 2.6.1 and 2.6.4) and G(V ) ≥ 0. A final con-
straint ensures a current decay back to baseline after the optical stimulation, i.e.,
ion(toff) > ioff(t) or Oon(toff) ·Ron(toff) > Ooff(t) ·Roff(t), resulting in:

R∞(Irr, V ) > 1− τR(0, V )

τR(0, V ) + τO(0, V )
(2.21)

Finally, a global optimization is performed with the parameters of all rate func-
tions included. First, a new parameter space is defined, which is 10% of the original
parameter space but centered around the values obtained in previous steps and
limited by the former. With the gathered dependencies, the ChR2 current is calcu-
lated according to equation (2.4). All model features are now extracted in the same
manner as performed on the experimental data. These are used to determine a cost
function which is the weighted root mean square error (equation (2.20)), with addi-
tional terms: ∆τon(Irr, V )2, ∆τoff(Irr, V )2, ∆τinact(Irr, V )2 and ∆τrec(Irr, V )2.
Subsequently, the problem is optimized with a bounded particle swarm optimiza-
tion [122–124], containing 1000 particles and with a time limit of 24 hours. The
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same solver settings and constraints are imposed as described in previous steps.
The single-pulse experiments are evaluated with a time step of 1.5 · 10−4 s, while
for the two-pulse experiments a step of 1 ms is used.

2.5.3 Performance Tests
In our study, two opsin fits were performed. First, a fit is made to the data reported
by Williams et al. (2013) of the ChR2(H134R) [78]. The model accuracy is
compared to the four state Markov model created by the same group. Four metrics
are used to analyze the goodness-of-fit, i.e. Root mean square error (RMSE),
Root mean square normalized error (RMSNE), Root mean square weighted error
(RMSWE) and root mean square Z-score error (RMSZE):

RMSWE =

(
1

N

∑
i=1→N

w2
x ·
[
yx(Irr,i, Vi)− tx,Irr,i,Vi

]2)1/2

(2.22)

where wx equals 1, 1/tx,Irr,i,Vi
or 1/σx,Irr,i,Vi

in case of RMSE, RMSNE or
RMSZE, respectively. yx(Irr,i, Vi), tx,Irr,i,Vi

and σx,Irr,i,Vi
are the model output,

target feature and standard deviation of target feature x under irradiance Irr and
voltage V of set i, and wx are the weights used in fcost. The metrics are also
determined in the overall, time constant features (τon+τoff +τinact+τrec) only and
current features (Ip + Iss + Iratio) only case. Here the squared errors of all features
are summed first before taking the root and mean. The RMSWE is equivalent to
the training error. However, it could not be used to compare the model fits as the
used weights were not equal across fitting procedures (different weights were used
in the 4SB fit, see Williams et al. (2013) [78]). Therefore, the other metrics were
defined as well. Where the RMSE is biased by high values, the RMSNE is biased
by values close to zero and RMSZE which includes the uncertainty of the target
features via σx,Irr,i,Vi

but could not be determined for the recovery time constant.
Both models are then implemented in a regular spiking neuron, described in

Pospischil et al. (2008) [118]. The strength duration curves (SDC) are determined.
When the irradiance is selected as strength for the SDC, a poor fit is obtained. This
is due to the assumption of an RC equivalent circuit and a rectangular stimulation
pulse in the Hill-Lapicque relationship equation (2.23) [79, 125]. Therefore, the
SDC fit is performed on the average inward stimulation current or temporal averaged
current (iChR2,avg, TAC), as described by [79].

iChR2,avg =
IChR2,rheo(

1− exp(− PD
τChR2,chron/ ln(2) )

) (2.23)

iChR2,avg =
1

PD
·
∫ Tend

0

iChR2(t)dt (2.24)

with PD the pulse duration and Tend one second after the end of the pulse. The
relationship between the irradiance and iChR2,avg is obtained through a power
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series fit, which allows calculation of the irradiance rheobase (Irheo) and chronaxie
(τchron) as follows:

Irheo = a · IbChR2,rheo + c (2.25)

τchron = −τChR2,chron

ln(2)
ln

(
1− IChR2,rheo

[(2 Irheo − c)/a]1/b

)
(2.26)

where a, b and c are parameters obtained in an empirically power series fit of the
irradiance curve versus the inward stimulation current (Irr = a · (iChR2,avg)

b + c)
[79].

Moreover, the simulation speed is determined for different stimulation para-
digms, i.e., simulation time (Tend)/runtime in a regular spiking neuron [118].
Therefore, I varied the pulse repetition frequency, stimulation time and duty cycle.
The intensity was fixed for each model and set to a value that elicited a firing rate
of 100 Hz in the regular spiking neuron in case of a two pulse stimulation of two
seconds with duty cycle 0.5 and pulse repetition frequency of 1 Hz. The models
were solved by the MATLAB Variable Step Variable Order solver (VSVO) ode113-
solver (order 1-13, Adams-Bashort-Moulton predictor-corrector pairs) [126], with
a maximum time step of 100 µs and default tolerances, i.e., relative and absolute
tolerance equal to 10−3 and 10−6, respectively.

Finally, computational gain with the proposed model compared to the 4 state
Markov model was tested in a network model with an increasing number of trans-
fected neurons. Therefore, I used the sparse Pyramidal-Interneuron-Network-
Gamma (sPING) [119], which was implemented via the DynaSim toolbox [120].
The ChR2(H134R) models were added to the pyramidal neurons. The number of in-
hibitory neurons was varied between 3 and 100 while the 4/1, pyramidal/interneuron-
ratio was maintained. The network was fully connected and the GABAa and AMPA
conductivities were scaled such that the total input per neuron stayed the same, i.e.,
gGABAa = 2/(Nintern)[mS/cm2] = gAMPA, with Nintern the number of interneu-
rons in the sPING-network. In each case a single pulse stimulation of 300 ms was
applied with a total simulation time of 500 ms. The irradiance was set such that the
firing rates were equal for both ChR2 models. The study was performed with both
a fixed step (10 µs) runge-kutta 4 solver and an ode15s-solver (stiff VSVO-solver,
order 1-5, based on numerical differentiation formulas) [126] with a maximum time
step of 100 µs, and a relative and absolute tolerance of 10−6.

The results shown in this chapter are computed with a 3.4 GHz clock rate, quad
core system and 8 GB RAM.

2.5.4 Versatility
The versatility of the proposed model structure is shown with a fit to the MerMAID1
opsin [37]. For more detail on the data set, I refer to the work of Oppermann et
al. (2019) [37]. The same metrics as aforementioned are used to assess the fit
accuracy.
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2.6 Results
The results of our study Double Two-State Opsin Model With Autonomous Parame-
ter Inference [1] are given in this section, followed by the discussion in the next
section (section 2.7).

To test the feasibility of the proposed double two-state opsin model structure
(22OM), it was fit to two data sets. First, it was fit to the data set of a ChR2(H134R)
opsin reported by Williams et al. (2013), which was collected in a ChR2(H134R)-
HEK293 stable cell line [78]. By the same group already a four state Markov
model was fit. This allowed detailed analyzes of the performance of my model.
To this end, a comparison of the response to optical stimuli was made in a regular
spiking neuron [118]. Moreover, the computational speed was determined for
different stimulation paradigms in the former neuron model as well as in the sPING
[119] network model with increasing number of transfected neurons. Finally the
versatility of the proposed modeling scheme was assessed with a fit to a MerMAID
opsin which is an anion-conducting and intensely desensitizing channelrhodopsin.

2.6.1 The ChR2(H134R) Fit
A 22OM fit of the ChR2(H134R) opsin was obtained by applying the fitting pro-
cedure, described in the materials and methods section 2.5.2, to the experimental
data. As Williams et al. (2013) [78] already reported the target features, the first
step could be omitted. The absence of differential equations in the fitting procedure
allowed for multiple fits to be made, due to the significant reduction of the com-
putational cost. Multiple weight sets, non-linear constraints and combinations of
dependency addition of the time constants (product (equation (2.15)) and reciprocal
sum (equation (2.16))) were tested. The parameters of the two best fits are shown
in table 2.2, where RSRS and PP is the fit with a double reciprocal sum and product
combination, respectively. Both results were obtained with wpeak = 10, wss = 20,
wratio = 50, won = 1000, winact = 1000, woff = 1000, wrecov = 20, and a con-
straint where O∞(Irr, V ) > 0.6 for Irr ≥ 5500 W/m2. The weights are chosen as
such to level the differences between features to the same order of magnitude. As a
result, all features have the same impact in the cost function with a slight preference
for the current features. The time constant features are all expressed in seconds,
while their values are in the order of milliseconds (except τrecov), explaining the
high weight values. The extra constraint is justified as the current peak already starts
to saturate for the highest intensity values, thus clamping the intensity dependence
of the open steady-state value above the bending point in the logistics curve.

The models’ accuracy according to the four goodness-of-fit metrics equa-
tion (2.22) are shown in figure 2.7. Overall, a positive effect of the final optimization
step can be observed. The largest impact is on the time constants, as expected.
In the second step of the fitting procedure, the transition rate time-constants (τO
and τR) are approximated with a one on one relationship of the target features
(see equation (2.9) and (2.10)). These approximations are true in case of high
differences in order of magnitude. However, when the differences are smaller some
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Figure 2.8: Comparison of model outcomes (4SB and 22OM: RSRS-final) with parameters
obtained from experiments. A The ChR2(H134R) current during a pulse of
0.5 s (indicated by blue bar) at a voltage clamp of -60 mV; according to the
4SB model (full lines) and 22OM model (dashed dotted lines). The colors
indicate the applied intensity and are valid in A-G. The dotted line and square
indicate respectively the experimental current peak and steady-state current
at corresponding intensity and potential. B, D and F Voltage dependence of
respective τon, τoff and τinact across four irradiance levels. C, E and G The
current-voltage curves of the peak, steady-state and current ratio, respectively.
The asterisks with errorbars indicate the experimental mean ± standard deviation.
H The recovery time constant as function of the membrane potential for three
different irradiance levels as depicted in the plot.
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cross correlations exist, for instance τR strongly affects τon as well, resulting in
an underestimation of τO. I denote that according to all metrics, the estimation
accuracy of τon and τinact increases, however, at the cost of τoff . Also, a significant
improvement is observed in case of τrecov. This deviation is due to the fact that the
conditions equation (2.11) are not fully met. Furthermore, an increased goodness-
of-fit of the inactivation time constant can be observed in case of the RSRS vs PP fit.
τR predominately defines both the inactivation and recovery time constant. In case
of the PP fit, a separation of variables is applied where independence is assumed.
However, as can be seen in figure 2.8 (F) and (H), a more clear voltage dependency
is present in τrecov compared to τinact. In other words, for low intensities (with
high time constants as result) the potential effect is high while the effect is low for
high intensities or small time constants. This interdependence is exactly obtained
with the reciprocal addition scheme. The same, however less pronounced, can be
observed in case of the activation and deactivation time constants (τon and τoff ).
Consequently, only the RSRS fit is used in further analysis.

Figure 2.8 shows a detailed comparison of the outcome of my model according
to the RSRS fit and the 4SB model, versus the experimentally determined target
features. Overall, it can be observed that the proposed model performs at least as
well as the 4SB model. Moreover, all features are well approximated. It can be seen
that with the 4SB model, the steady-state value is overestimated in case of negative
potentials (figure 2.8 (A) and (E)). However, a better representation is obtained for
positive potentials, which explains the lower root-mean-squared normalized error
(RMSNE, figure 2.7 (B)).

2.6.2 Neural Response in Regular Spiking Neuron
To analyze the neural response, the strength duration curves (SDC) are deter-
mined of the proposed 22OM model with RSRS fit and the 4SB model in a
regular spiking neuron, described in [118]. First, the Hill-Lapicque model fit
is performed on temporal average current (TAC), as described in section 2.5.3.
Very good fits were obtained for both models. The adjusted r2 (R̄2) of TAC ver-
sus PD are 0.9961 and 0.9953 for the 22OM and 4SB model, respectively. The
rheobase of the 22OM model (0.49 µA/cm2) is slightly higher than when the 4SB
is used (0.47 µA/cm2). Also the chronaxie is higher (47.51 ms vs. 39.45 ms).
Consequently, according to the 4SB model for any pulse duration, less charge is
injected optogenetically to excite a regular spiking neuron via a ChR2(H134R)
opsin. The difference between the models can be attributed to the difference
in deactivation time constant (τoff ). This is higher in the 22OM model result-
ing in a slower closing mechanism and thus increased current injection after the
AP. A good cell-type-specific empirical mapping of TAC to irradiance was ob-
tained as well (equation (2.25)), with R̄2 values of 0.9449 (22OM) and 0.9638
(4SB). The parameter values are respectively, a = 8.18, b = 1.26 and c = 1.68,
and a = 22.30, b = 1.51 and c = 12.32 in case of the 22OM and 4SB mapping.
The lower R̄2 of the 22OM mapping resulted also in a slightly lower value of
0.9298 for the irradiance to PD curve while this is 0.9509 in case of the 4SB fit.
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A B
I rr

Figure 2.9: The strength duration curves (SDC) of the 22OM RSRS and 4SB model in a
regular spiking neuron. A Irradiance versus pulse duration with a mapping
(dashed line) of the SDC in B according to a power series. B Temporal average
current or average injected current vs pulse duration. Dashed line represents the
Hill-Lapicque model fit. The rheobase and chronaxie are depicted in the figures.
The results of the 22OM and 4SB model are in purple and green, respectively.

Based on the mapping parameters and figure 2.9, it can be seen that lower intensity
level results in higher injected currents when the 22OM model is used. Indeed,
extrapolation of the model fit to low intensities results in higher open probabilities
than for the 4SB model, hence the difference in irradiance rheobase of 4.90 W/m2

versus 19.01 W/m2. Based on the higher peak values for high intensities in case of
the 4SB model, one could expect convergence of the irradiance SDCs. However,
due to the slow activation kinetics, the peak value is not reached at small pulse
durations. Even though the activation time constant is overall higher for the 22OM
model (figure 2.8 (B)), the bi-exponential current rise due to the extra state variable(
τChR2 · dp/dt = S0(Irr)− p, a time-dependent function reflecting the probabilis-

tic, non-instantaneous response of the ChR2-retinal complex to light [78]
)

in the
4SB model results in a lower current value at the end of the pulse.

2.6.3 Computational Speed
The proposed model in this study contains only two differential equations, which
is 50% less in comparison with the 4SB model. Consequently, a reduction of the
computational time is expected. Figure 2.10 (A-F) summarizes the computational
speed for different stimulation protocols in a regular spiking neuron. This for fixed
irradiances (22OM: 3162 W/m2 and 4SB: 1259 W/m2) set to a value that elicit a
firing rate of 100 Hz, as described in section 2.5.3. Subfigures 2.10 (A-D) show
an overall increase of the computational speed in favor of the 22OM model, with
a maximum of 25% for high frequency and duty cycle stimulation. On average
the relative difference of the simulation speeds, i.e., simulation speed with 22OM
minus simulation speed with 4SB with respect to the latter, is about 20%. Because
the simulations were solved using a variable step solver, the difference in firing
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Figure 2.10: The computational speed of optogenetic neuromodulation in a regular spiking
(RS) neuron and sparse Pyramidal-Interneuron-Network-Gamma (sPING). A-
F Simulation speed, i.e. simulation time/runtime, for different stimulation
protocols with varying pulse duration (PD) and pulse repetition frequency
(PRF) in a regular spiking neuron, described by Pospischil et al. (2008) [118].
A The absolute simulation speed with the 22OM-RSRS fit. B The simulation
speed with the 4SB model. Colorbar is valid for A and B. C The relative
difference, i.e., (22OM-4SB)/4SB. A-C The results are for a fixed duty cycle of
0.8. D The effect of the duty cycle on the simulation speed. E The difference
in firing rate in case of the 22OM model vs. 4SB. F The relative difference of
simulation speed normalized to the firing rate. G-I Runtime of a continuous
300 ms optical pulse in the sparse Pyramidal-Interneuron-Network-Gamma
(sPING), with increasing number of transfected neurons. G Runtime with a
variable step solver. H Runtime with a fixed step solver. I Relative computation
gain, i.e., -(22OM-4SB)/4SB. The used intensities are shown in the titles of A
and B, which give rise to a 100 Hz firing rate (see section 2.5.3).
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Figure 2.11: Comparison of the 22OM-Mermaid (final fit) model outcomes and experimental
data. A In gray, the photocurrent of a voltage clamp experiment during a 0.5 s
continuous illumination with an intensity of 3734 W/m2 (indicated with blue
bar on top) [37]; In red, the corresponding model outcome. Left inset is a
zoom of the current peak (0.045-0.075 s, indicated with black bar). Right
inset is a zoom of the current deactivation (0.45-0.7 s, indicated with a blue
square). B-G The voltage dependence of the target features (τon, Ipeak, τoff ,
Iss, τinact and Iratio) at an irradiance of 3734.4 W/m2 is shown in blue. The
light dependence at a holding potential of -60 mV is depicted in red. H Ratio
of the peak currents in response to a two-pulse stimulation protocol at -60 mV
and 3734 W/m2 as function of the inter-pulse interval. The recovery time (the
interval time necessary to have a ratio of 63%), is indicated with a black arrow.

rate could distort the effective simulation speed, as during an action potential a
smaller timestep is selected. Therefore, the relative difference of the simulation
speed normalized to the firing rate is depicted as well, with an increase of the gain
to 60% as result. The runtime versus number of transfected neurons is depicted in
figure 2.10 (G-I). The simulation outcomes were the same with the variable and
fixed step solver, validating the solver settings. Moreover, the firing rate was equal
for both opsin models, hence no normalization was necessary. A clear reduction
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can be observed when the 22OM model is selected instead of the 4SB model, both
with a fixed and variable step solver. The time gain by using the proposed model is
15% (5%) in case of 12 neurons and goes up to 40% (15%) and rising when 400
transfected neurons are included with a variable (fixed) step solver.

2.6.4 Versatility of the Proposed Model
Finally, I address the versatility of the proposed model and the fitting procedure.
Due to the increasing number of possible opsins, it is favorable that their kinetics can
be correctly modeled and a fit is easily obtained without preliminary knowledge. To
this end, I applied the fitting procedure to experimental data of a MerMAID opsin,
which has unlike classical ChR2 a very strong desensitization [37]. Starting from the
photocurrent traces, the target features had to be extracted first. Next the parameter
space was defined. The rectification function was omitted because this was not
observed in the experimental data. Aside from this, the lower bound and initial
condition of only the third parameter of R∞ was altered (table 2.2). This straight
forward adjustment was made due to the strong desensitization. The weights of
the cost function were set to wpeak = 0.04, wss = 1, wratio = 250, won = 10000,
winact = 10000, woff = 10000, wrecov = 10, again to level the errors to the same
order of magnitude. Because no saturation of the current was observed at high
intensity levels a constraint: O∞(Irr, V ) < 0.5 for Irr ≤ 4000W/m2, was added.

The result of the fit is shown in figure 2.11. The parameters of the final and
intermediate fit are summarized in table 2.2. The model here is with a double
product combination of the time constant dependencies. Because the recovery
time constant was only determined under one condition, there is no evidence on
the interdependence of the variables. This is also supported by the small voltage
dependence of the (de)activation time constants. Overall, it can be stated that a
good fit is obtained as all kinetics are expressed correctly. Only, the deactivation
time constant seems to be underestimated. This is a consequence of the constraint
in equation (2.21), which ensures a current decay back to baseline after optical
stimulation. Due to its strong desensitization, R∞ has to be small, thus inducing an
upper limit on τO(0, V ), which defines the deactivation time constant. The trade
off is justified due to the higher uncertainty of the deactivation time constant (see
figure 2.11 (D)). Moreover, the overall effect is expected to be low as can be seen
in the right inset of figure 2.11 (A).

2.7 Discussion
The proposed double two-state model structure for the modeling of opsins appears
to be a good alternative to the computationally more expensive four state Markov,
non-instantaneous models. All features are represented, with even some improved
fit accuracy in comparison with a four state Markov variant. Furthermore, with
the proposed fitting procedure, I was able to fit two opsins, ChR2(H134R) and
MerMAID. Although the prominent difference of the mutants kinetics, the fitting
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procedure allowed us to get these fits with only minor adjustments of the parameter
space and constraints. Therefore, creating the possibility for autonomous model
fitting based on photocurrent traces. Moreover, a good fit is obtained within an
acceptable time frame, due to the absence of differential equations in the fitting
procedure, which is not achievable in case of a four state Markov model. The
intermediate fit is obtained within three hours, while the final fit always flagged the
time limit of 24 hours. Increasing the limit improves the fit accuracy but only small
changes were observed. Fine tuning of the optimization settings, such as number of
particles or tolerances, could reduce the training error even more. However, this
was out of the scope of the study.

The proposed model is an empirical model. The fit is performed on a limited
dataset thus extrapolation should be treated with care. This is clear from the neural
response results in section 2.6.2. Although both the 4SB and my model were fit
to the same experimental data, a clear discrepancy between the fitted rheobase is
observed

(
4.90 W/m2 (22OM) versus 19.01 W/m2 (4SB)

)
. Unlike the chronaxie

where the difference can be attributed to the model’s structure, the difference in
rheobase is due to the discrepancy between opening rates after extrapolation to
low intensities, attributed to the fit and intensity dependence chosen in each model.
More experiments are required in order to validate this.

The dependencies chosen here are all, except the rectification, sigmoidal. There-
fore, they are all bounded and monotonic. This is in accordance with a channel’s
behavior, i.e., increased and faster opening at higher intensities but limited to an
open probability of one. I opted for a biphasic logistics function for τR(Irr) model-
ing. This is in agreement with the hypothesis of the necessity of two light dependent
rates

(
(R → S) and (S → R), see section 2.5.1

)
and the second and third photo-

chemical pathways described by Kuhne et al. (2019) [107] (figure 2.5 (A)). Other
functions were tested, e.g., weibull or asymmetric logistics with double intensity de-
pendence, however no improvement was observed. Initially, separation of variables
was assumed to suffice due to the lack of experimental evidence of complex channel
interdependence of both irradiance and potential of each feature separately. How-
ever, due to the models structure, τon and τoff share the same voltage dependency,
as well as τinact an τrecov. The voltage dependence of τrecov and τoff was clearly
more pronounced in the experimental data of the ChR2(H134R) mutant. Therefore,
the reciprocal addition (equation (2.16)) was tested as alternative, resulting in an
improved fit accuracy. However, this only scales down the voltage dependent effect
on τon and τinact while the same relationship is maintained. The necessity of more
complex relationships could be investigated in future work as well as the need for
voltage dependence of the rate functions steady-state values (O∞ and R∞), which
was omitted in this study.

Currently the model incorporates voltage and irradiance dependence. Stud-
ies have however shown the importance of pH on the channel kinetics in many
opsins. Furthermore, ion concentrations have an impact on the reversal potentials
and current rectification [19, 127]. Schneider et al. (2013) [105], postulated a
model based on the kinetics of multiple ion species interacting with the channel,
with an improved representation of the current rectification [78, 105]. While the
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photocurrent properties are unaffected by pH-changes, the MerMAID photocurrent
is strongly dependent on the Cl− concentrations. The fit performed here was on
experimental data recorded with an extracellular Cl− concentration of 150 mM
and intracellular Cl− of 120 mM, explaining the depolarizing currents (negative
sign in figure 2.11) as an anion conducting channel. By changing the extracellular
concentration to 10 mM, the channel’s reversal potential is shifted to the reversal
potential of Cl−. (The concentrations are exchanged with respect to a conventional
neuron, where the typical intracellular and extracellular concentrations are 10 mM
and 120 mM, respectively. This explains the experimentally measured depolarizing
currents (negative sign), while one would expect hyperpolarizing currents (positive
sign) from a Cl− conducting channel.) Evidence of the Cl− effect on channel
kinetics is still absent but further experiments are needed [37]. Consequently, the
model fit shown here can be used in computational studies but the reversal potential
should be adjusted accordingly.

With the current model structure, the model responds instantaneously to light
(see left inset figure 2.11 (A)). With the 4SB model this is circumvented by adding
a extra state variable with a time constant of 1.5 ms. It is clear that for long
(PD >> τon) continuous pulses its effect is negligible, as activation is dominated
by the activation time constant. However, with short bursts or pulses, this non-
instantaneous activation becomes prominent as observed in section 2.6.2. In future
work, it could therefore be interesting to incorporate this non-instantaneous response.
This could probably be obtained by adding an extra state variable, as performed
with the 4SB model, however at the cost of the computational speed. Another
possibility is to raise the open state, O(t), to a higher power, smoothing the transition
but without irradiance control. Modification of the model’s structure could be
circumvented by gradually increasing the intensity, instead of applying a rectangular
pulse.

2.8 Conclusion
In this chapter, I have extensively discussed the optogenetic toolbox. Optogenetics
exhibits remarkable properties that make it a promising neuromodulation tool,
offering selective control of excitation or inhibition with high spatial and temporal
precision. However, it is evident that clinical translation faces numerous challenges,
with long-term safety concerns regarding gene therapy and optrode implantation
being particularly challenging. Additionally, the transition from rodent models to
human brains presents its own set of challenges. Nevertheless, optogenetic research
continues to progress, with ongoing investigations into potential solutions.

Computational modeling can provide valuable insights into the capabilities of
these techniques. I have proposed a novel double two-state opsin model structure
as an alternative to the conventional three- and four-state Markov models, aimed
at facilitating the modeling of opsin current kinetics. In this proposed model,
the second state-pair represents conductance regulation resulting from dark-light
adaptation. This model offers a reduction in complexity, involving only two dif-
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ferential equations compared to four in the preferred, non-instantaneous four-state
Markov models commonly used for opsin modeling. Utilizing the provided fitting
procedure, I have successfully fitted two distinctive opsins, ChR2(H134R) and
MerMAID, within an acceptable timeframe. The absence of differential equations
and parameter space reduction associated with the multi-step approach contributed
to the efficiency of these model fits. Moreover, both models are able to represent
the experimental data with great accuracy. However, it is important to note that
this model structure yields an instantaneous response to light, which may result in
an overestimation of the injected current during very short pulses (< τon). Addi-
tionally, the model does not account for pH and ion concentration dependence. In
its current form, with only two differential equations, the computational speed is
increased up to 25% in a regular spiking neuron and up to 40% in a network of 400
transfected neurons.

In the next chapter, the double two-state opsin model will be used to test the
optogenetic excitability in CA1 cells. As discussed in section 2.2.1, optogenetic
excitation holds promise as a potential neuromodulation strategy for the treatment
of epilepsy.
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3
Quantitative Analysis of the

Optogenetic Excitability of Cornu
Ammonis 1 Neurons

Optogenetics has emerged as a promising technique for modulating neuronal ac-
tivity. In the previous chapter (chapter 2), I discussed its potential applications

in the treatment of neurological disorders, such as temporal lobe epilepsy, while
also addressing the challenges it faces in terms of clinical translation.

This chapter delves into the investigation of optogenetic excitability in cornu
ammonis (CA1) cells. The objective is to provide insights that could help guide
future optogenetic experiments aimed at suppressing seizures. The results presented
here stem from our article titled Quantitative Analysis of the Optogenetic Excitabil-
ity of CA1 Neurons [1]. The opsin’s kinetics are modeled with the double two-state
opsin model, specifically the RSRS-final variant, as discussed in section 2.5.
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3.1 Introduction
Optogenetics holds great promise for the targeted modulation of specific neuronal
populations, offering a potential avenue for the treatment of various neurological
disorders, including temporal lobe epilepsy [2, 3]. Possible strategies for TLE
seizure suppression, their challenges and possible solutions were discussed in
section 2.2.1. A significant challenge revolves around achieving effective illumi-
nation over a sufficiently large volume without causing irreversible effects. One
solution lies in enhancing the efficiency of generating higher photocurrents at
lower irradiances. This can be accomplished by improving single-channel con-
ductance or modifying channel kinetics [4–6]. Additionally, enhancing membrane
expression [7–9] and spatially confining the opsin to specific neuronal membrane
compartments [7, 10–12] offer potential strategies, as well.

Computational modeling provides a valuable tool for enhancing our under-
standing of optogenetic responses while minimizing the need for in-vivo animal
testing [13]. In-silico experiments allow for easy parameter manipulation and
exploration of the stimulation parameter space. Opsin expression can be spatially
constrained, expression in different cell types can be tested, and interaction with
the 3D light intensity profile can be evaluated. Monte Carlo-based simulations [14]
are employed to obtain this optical field, concurrently assessing the impact of tissue
optical properties [15–17]. These optical field studies have shown that the light
intensity spatial variation occurs on a neuronal scale.

However, studies combining optical field simulation with optogenetic neuron
responses remain limited. Foutz et al. (2012) investigated this interaction using a
multicompartment model of neocortical layer V pyramidal neurons [18]. Arlow
et al. (2013) conducted a study on a myelinated axon MRG model, revealing a
complex interplay of various simulation parameters on the activation threshold [19].
Additionally, Grossman et al. (2013) [20] showed that opsin spatial confinement
influences action potential generation and propagation. This non-uniform opsin
expression is also briefly addressed by Foutz et al. (2012) [18].

The novelty of our research (Quantitative Analysis of the Optogenetic Excitabil-
ity of CA1 Neurons [1]) lies in the utilization of morphologically reconstructed and
data-driven biophysical models of CA1 pyramidal neurons and interneurons [21].
These models are extended to include ChR2(H134R) dynamics and are subsequently
subjected to Monte Carlo-simulated optic fields. The effect of opsin expression lev-
els and spatial confinement on stimulation thresholds for multiple pulse durations is
determined. Furthermore, the impact of various uncertain parameters, e.g., optical
field properties, cell to optical fiber orientation and 3D structural cell morphology,
is quantified. Based on these findings, potential subcellular improvement strategies,
coupled with ideal optical fiber positioning, are identified.
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Figure 3.1: Graphical representation of the 3D reconstructed CA1 cell models used in this
study: two pyramidal cells (pyr1 and pyr2), 1 bistratified (int1) and 1 basket
cell (int2). The models are adopted from Migliore et al. (2018) [21]. This
reference frame is applicable throughout the whole study, i.e. the soma is at
z = 0 mm, and the somato-dendritic axis is parallel to the z-axis. As depicted,
three optrode pitch setups are tested. The color represents the different opsin
expression locations.

3.2 Methodology
The CA1 cell models used to test the optogenetic excitability are described below.
Next, the light intensity fields determined via the Monte Carlo (M.C.) method and
the opsin model are elaborated on. Finally, the methods and metrics used to analyze
the optogenetic response are explained.

3.2.1 Neuron Models
Four models from Migliore et al. (2018) [21] are used in this chapter: two models
of CA1 pyramidal cells and two CA1 interneurons located in the stratum pyra-
midale, i.e., a pravalbumin positive basket cell and a bistratified cell. All models
have a different three-dimensional structural morphology, see figure 3.1. The cell
identification number of the pyramidal cells pyr1 and pyr2 is mpg141208 B idA
and mpg141209 A idA, respectively. The bistratified cell (int1) has identification
number 980513B and the basket cell (int2) has number 060314AM2. Although the
pyramidal cells have a different structural morphology, they are classified under the
same morphological type (m-type, [22, 23]). To avoid confusion, in this chapter I
will talk about difference in cell instead of morphology when comparing pyr1 vs.
pyr2 (int1 vs. int2). Both pyramidal cells are continuous accommodating, while
the electrical type or e-type of the interneurons is continuous non accommodating
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(Petilla convention [23, 24]). The models include ten active conductances: a sodium
current, three types of potassium (KDR, KM, KA), three types of calcium (CaT, CaL,
CaN), two Ca2+-dependent potassium currents (KCa, KCagk) and a nonspecific cur-
rent. Moreover, a simple calcium accumulation mechanism is included with a single
exponential decay of 100 ms. The models were fitted to experimentally obtained
voltage traces using a genetic algorithm. For more details of the models and the
fitting procedure I refer to Migliore et al. (2018) [21]. The models themselves can
be found on modelDB (https://modeldb.science/) under accession num-
ber 244688. The center of cell’s soma is at the origin. The somato-dendritic axis of
the neurons is aligned to the z-axis. This somato-dendritic axis is the first principal
component determined via a principal component analysis on the 3D-positions of
all compartments except the axon. In case of the pyramidal cells, the apical trunk is
always directed in the positive z-direction.

3.2.2 Light Field in Gray Matter
To activate the opsins, the neurons are subjected to light. The light intensity
field produced by an optical fiber (100 µm radius, 0.39 numerical aperture (NA);
after the optrode in the study of Acharaya et al. (2021) [15]) is determined via
the Monte Carlo method. The used method is based on the direct photon flux
recording strategy of Shin and Kwon (2016) [17]. The Monte Carlo simulations
are solved in cylindrical coordinates for a homogeneous medium as in Stujenske
et al. (2015) [16]. Because the hippocampus is predominantly a gray matter
structure, the in-vivo optical properties of gray matter are selected. The absorption
coefficient (µa) at 470 nm is obtained by extrapolation of the data reported in
Johansson (2010) [25] via a third order polynomial fit on the points between 480
and 550 nm. The scattering coefficient (µs) and anisotropy factor (g) are obtained
via interpolation from Yaroslavsky et al. (2002) [26]. This is often combined into
the reduced scattering coefficient (µ′

s = µs(1−g)). The refractive index (n) is 1.36.
The simulations are run with 107 photons and a radial (dr) and axial discretization
(dz) of 5 µm. The result of the Monte Carlo simulation with parameters given in
table 3.1 is shown in figure 3.2, with corresponding irradiance at the neuron level
given in the inset. Throughout the study three pitch orientations with respect to the
CA1 cells are tested as depicted in figure 3.1.

3.2.3 ChR2(H134R) Opsin
The selected opsin is a genetically engineered Channelrhodopsin-2 (ChR2) variant:
ChR2(H134R). It has an enhanced steady-state photocurrent with a slower closing
mechanism than the wildtype ChR2. Its peak operation is at a wavelength of 470 nm
[4, 5]. The opsin’s kinetics are modeled with the double two-state opsin model,
more specifically the RSRS-final reported in the previous chapter (section 2.5),
because of its improved computational efficiency compared to alternative four state
Markov models. It consists of two independent two-state pairs: O (opening and
closing of the channel) and R (change in conductance due to dark-light adaptation).

https://modeldb.science/
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Figure 3.2: The light intensity profile in gray matter with µa = 0.42 mm−1, µs =
11.33 mm−1 and g = 0.88. The irradiance at the cell, with soma 400 µm
bellow the fiber, is shown in the inset.

Optical default C.V. M.C. settings

µa 0.42 mm−1 0.15 nphotons 107

µs 11.33 mm−1 0.15 dr 5 µm
g 0.88 0.03 dz 5 µm
n 1.36 - r x z [0, 5]x[-4, 6] mm2

Table 3.1: Parameters used in the Monte Carlo (M.C.) simulations. Default values and
coefficient of variation (C.V.).

The transmembrane current density (mA/cm2) at a single section are repeated here
for convenience:

iChR2 = gChR2G(V )(O(Irr, V ) ·R(Irr, V ))(V − EChR2) (3.1)

G(V ) =
1− 1.25 exp

(
−V−EChR2

44.52

)
V − EChR2

(3.2)
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dX

dt
=
X∞(Irr)−X(t)

τX(Irr, V )
(3.3)

τX(Irr, V ) =
[
τX(Irr)

−1 + τX(V )−1
]−1

,with X = O,R

τO(Irr) =
0.021

1 + exp(1.55)I0.37rr

, τO(V ) =
23.14

1 + exp (−(V + 0.39)/13.19)

τR(Irr) = 10

(
1− 0.56

1 + exp(−1.82)I−0.50
rr

− 0.44

1 + exp(17.82)I−3.95
rr

)
τR(V ) =

99.74

1 + exp (−(V + 38.69)/12.02)

O∞(Irr) =
1

1 + exp(5.45)I−0.70
rr

, R∞(Irr) = 1− 0.77

1 + exp(16.33)I−3.62
rr

with gChR2 the specific conductance (S/cm2), G(V ) the rectification function given
by equation (3.2), V the membrane potential (mV), Irr the irradiance (mW/mm2)
and EChR2 = 0 mV the equilibrium potential. The photocurrents for an optical
pulse with duration of 1 and 100 ms with increasing irradiance under voltage clamp
recording of -70 mV is shown in figure 3.3.

Figure 3.3: A The opsin current density at a voltage clamp of -70 mV for increasing irradi-
ance (light to dark: 10-3→10 mW/mm2) of a 1 (left) and 100 ms (right) optical
pulse, indicated in gray. B The peak (solid) and steady state (dashed) current
densities as function of irradiance for a 1 and 100 ms optical pulse in green and
blue, respectively.

The opsin is spatially confined to specific neuronal membrane compartments
(in this chapter further denoted as subcellular region). In case of the pyramidal
cells, it is located in the soma, or distributed over the axon, basal dendrites (basal),



QUANTITATIVE ANALYSIS OF THE OPTOGENETIC EXCITABILITY OF CORNU

AMMONIS 1 NEURONS 77

apical dendrites (apic), all dendrites (dend = basal∪apic) or all sections (allsec =
dend ∪ soma ∪ axon). In case of the interneurons, no distinction between apical
and basal dendrites is made. The different regions are illustrated via the color code
in figure 3.1. In each simulation, gChR2 is uniformly spread over the subcellular
region of interest. Its value is calculated from a preset total maximum conductance:

Gmax = gChR2,k ·Ak (3.4)

with Ak the total membrane surface area of a subcellular region k. The surfaces are
summarized in table 3.2. Gmax are 8 points spaced evenly on a log scale between
10−1 and 101.5 µS (for the uniform field 9 additional points are included between
10−1 and 102).

Finally, the total temporal averaged current at the excitation threshold (TAC)
[27] is calculated by:

TAC =
1

pd

∑
jϵk

Aj

∫ Tend

t0

iChR2,j(t) dt (3.5)

where pd is the pulse duration, t0 is the pulse onset time, Tend = max(500 ms, t0+
pd + 100 ms) (to ensure to include channel closure) and j is every compartmental
segment in region k. The pd varied over 5 points logarithmic evenly spaced between
0 and 100 ms (9 pds ϵ [10−1, 103] are used in the simulations with uniform light
field).

region pyr1 pyr2 int1 int2

soma 699.46 417.85 778.12 1 375.16
axon 1 640.70 1 051.43 106 424.01 25 256.23
basal 5 930.95 10 670.46 - -
apic 14 786.82 13 631.61 - -
dend 20 717.77 24 170.88 21 827.34 21 949.07
all 23 057.93 25 640.17 129 029.47 48 580.46

Table 3.2: Total membrane surface area of subcellular regions in µm2 of the 3D recon-
structed CA1 cell models

3.2.4 Analyses
The tests and metrics used to analyze the optogenetic response are described below.

3.2.4.1 Surface of Fiber Positions for the Activation of Neurons

As metric to assess the optogenetic excitability, the surface of fiber positions for
the activation of neurons (SoFPAN) is determined. This metric is similar to the
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more well-known volume of tissue activation (VTA) [28, 29]. In VTA, the frame
of reference is the position of the stimulation device, while here, the frame of
reference is the stratum pyramidale with the center of cell’s soma at origin. In other
words, SoFPAN encompasses the positions at which the optical fiber can be located
in order to activate the neuron of interest. This is chosen because of the layered
structure of the hippocampus, constraining the cell bodies of the considered neurons
to the stratum pyramidale. Because the optical fiber is limited to the plane shown in
figure 3.1 to reduce the number of simulations, only a 2D plane is explored resulting
in a surface instead of a volume being determined.

The intensity threshold (Ith) to elicit an action potential (V>-10 mV) recorded
in the soma for a given pulse duration and fiber position is determined first. This
threshold value is the intensity at the fiber surface (Ifiber). It is obtained with a
titration process using the bisection method for 7 iterations (i.e., ci = (ai + bi)/2,
with b0/a0 = 10). 121 fiber positions are evaluated with z taking on eleven linearly
spaced values in [-400, 700] µm. For a pitch of π/2, x ϵ [-1000, 4000] µm with ∆x
= 500 µm. For the fiber pitch of 0 and π, x ϵ [0, 2500] µm with ∆x = 250 µm. For
a given pulse duration, the SoFPAN is then determined as the union of the spatial
points for which the threshold is lower than the fiber intensity (true: Ith < Ifiber)
multiplied by the discretization surface (i.e., 110×250 or 110×500 µm2 depending
on the fiber pitch). A lower bound is determined by counting only the discretization
surfaces enclosed by four true-points. In case of the upper bound, the true-false
field is dilated first with a 3x3 mask before the enclosed-by-four-true-points regions
are counted. For the pitches of 0 and π, the obtained SoFPAN is multiplied by
two, such that the maximal SoFPAN for all pitches is equal to 5.5 mm2. The
SoFPAN is calculated for nine logarithmic evenly spaced fiber intensities 0.1 and
1000 mW/mm2.

If the cell’s dimensions are assumed to be negligible with respect to the spatial
variation of the intensity field, the irradiance is uniform over the whole neuron.
The cell can thus be represented as a single point in space. The estimated SoFPAN
under this assumption is denoted as SoFPANuniform.

3.2.4.2 Wilcoxon Signed-Rank Test

A single-sided, paired Wilcoxon signed-rank test is used to test whether the results
from two populations are significantly different. For the uniform field 20 classes
(cell and opsin location: 4×{all, axon, soma, dend} + 2×{basal, apic}) are mutually
compared. In case of the M.C. field there are 42 classes

(
pitch, cell and opsin

location: 3×
[
4×{all, axon, soma} + 2×{basal}

])
. A scoring system is used to

identify the most excitable setup. Here, a 1, 0.1 and 0.01 is given if the SoFPAN
is statistically greater with p-value below 0.001, 0.01 and 0.05, respectively. The
maximum score is consequently 41.
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3.2.4.3 Regression

A two step fitting procedure is performed to analyze the effect of pulse duration
and expression level on the intensity threshold as suggested by Williams and
Entcheva [27]. First Lapicque’s formulation is fit to the TAC. This gives the
strength-duration relationship like with electrical direct current stimulation [30].
Second a linear regression is performed with independent variables the log10 of
T̂AC (µA) and Gmax (µS).

T̂AC =
TAC0

1− exp(−pd/τTAC)
(3.6)

log10 Îth = aG log10Gmax + apd log10 T̂AC + c (3.7)

Here, TAC0, τTAC, aG, apd, and c are the regression parameters. Îth and T̂AC are
the estimators of the threshold intensity and total averaged current, respectively.

3.2.4.4 Optimal and Worst Fiber Position

The optimal and worst fiber positions for a given pulse duration are defined as
the z-position where the depth of activation (amount of positions along the x-axis
with Ith < Ifiber) is the highest or the lowest, respectively. As a tie-breaker, the
z-position is selected where the average of TAC along x is, respectively, the lowest
or the highest.

3.2.4.5 Elementary Effects

The inputs to the simulations can be divided into two categories (figure 3.4). On
the one hand, there are the parameters that are known (e.g, optrode radius, NA and
pitch) or controlled by the user (e.g., pd and Ifiber) in an optogenetic experiment.
On the other hand, there are variables that cannot be controlled and contain some
uncertainty, e.g., the tissue’s optical properties (µa, µ′

s), the neuron’s structural
morphology (cell: pyr/int1 vs. pyr/int2) and orientation (roll, yaw), and the opsin
expression (level (Gmax) and location). Because of the expected non-linear inter-
actions and high computational time (±12 hours for a 121 position sweep with 5
pulse durations), the elementary effects method is adopted for global sensitivity
analysis [31].

Six influential factors are investigated, i.e., µa, µ′
s, Gmax, cell, opsin location

and roll. The measure used (µ∗) is the mean of the absolute value of r = 16
elementary effects. Also, the standard deviation of the elementary effects (σ) is
calculated to track interactions and non-linear effects. The r repetitions are sampled
with the radial-based design using Sobol’s numbers [32]. µa, µ′

s and Gmax are
normally distributed with mean and coefficient of variation (C.V.) given in table 3.1.
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Figure 3.4: The simulation flowchart with input and uncertain parameters.

The mean and C.V. of Gmax are 1 µS and 0.15. The roll is uniformly distributed
between [-π, π[ radians. Cell and location are discretely uniformly distributed, with
{pyr1, pyr2} ({int1, int2}) and {all, axon, soma, basal} ({all, axon, soma}) classes,
respectively, for pyramidal (inter-) neurons.

3.2.5 Software
Simulations were done with NEURON 8.0.0 [33] and Python 3.9.12. on the
HPC system with AMD Epyc 7552 processing units, provided by the Flemish
Supercomputer Center.

3.3 Results
The results of this study can be subdivided into three sections. First, there is the
optogenetic response under a uniform field. This means that all cell sections receive
the same irradiance. This facilitates the analysis of the importance of subcellular
regions, pulse durations and expression levels. Next, the Monte Carlo simulated
light field is included. This allows us to indicate the effect of light propagation
on optogenetic excitability and provides information on optimal or worst fiber
positioning. Finally, an elementary effects study is performed to identify the most
sensitive parameters.
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Figure 3.5: The optogenetic response under a uniform light field. A The intensity threshold
(Ith) and corresponding total temporal averaged current (TAC, top and bottom,
resp.) as function of pulse duration. All lines shown are for a Gmax = 1 µS
except the circle markers (Gmax = 10 µS). B The intensity threshold and
corresponding total temporal averaged current (top and bottom, resp.) as func-
tion of Gmax for allsec-pyr1. C The p-value of the mutually, paired Wilcoxon
signed-rank tests. Single-sided test if class at the row is lower than class in the
column for the Ith (left) and TAC (right). The color code at the top and left
indicate the cell model. The cell opsin location combinations are sorted on their
excitability score (see section 3.2.4.2). D The results of the two step regression.
The goodness of fit is indicated with the adjusted R-squared measure: R̄2

TAC for
the Lapicque fit to the TAC and R̄2

tot for the linear regression fit to the threshold.
Box plots are shown for R̄2-values and regression parameters, calculated for the
different cell-types and opsin locations. E Summary of the input impedance at
0 Hz, (left) the local impedance of each section in pyr1, (right) the summarized
impedances of the four tested cells. The gray bars are 100 µm.
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3.3.1 The Optogenetic Excitability in a Uniform Light Field
Figure 3.5 (A) depicts the intensity threshold (Ith) and temporal averaged current
(TAC) curves as function of pulse duration (pd) of several subcellular and cell
combinations. Both decrease with increasing pd until a saturation value is reached.
For the same subcellular region (i.e., allsec), the threshold curve is shifted down
in case of pyr1 versus int2 (blue solid vs. blue dashed-dotted line). Staying within
the same cell, it can be seen that changing the subcellular region (all → basal or
soma) can result in a downward shift, as well. The same effects can be seen on the
TAC, but less pronounced. Increasing the expression level (Gmax) from 1 to 10 µS
(blue solid line with circle markers) results in an expected decrease of the threshold.
On the other hand, the TAC remains the same. This is highlighted in figure 3.5 (B)
where the TAC is constant for all pds for a Gmax > 1 µS in the allsec-pyr1 setup.
A linear relationship for Ith can be observed for Gmax ≥ 0.518 µS. No threshold
could be found for Gmax < 0.215 µS. This is because the photocurrent saturates
at high intensities (see figure 3.3) and therefore cannot compensate for the low
Gmax. At high pulse durations, a decrease in TAC is already observed at higher
Gmax (< 1 µS). For the corresponding Ith, the photocurrent is biphasic with
a peak and steady-state value. At these pulse durations (100 and 1000 ms) the
action potential (AP) occurs during the inactivation from peak to steady state. The
occurrence of the peak is much more efficient in eliciting an AP. A large part of
the total photocurrent occurs before the AP while this diminishes at higher Gmax

with monophasic photocurrents. Additionally, during the AP, the current drops
to zero due to channel shunting. Consequently, the net effect of this drop on the
TAC is larger here than in case of no biphasic photocurrents (at low irradiances) or
lower pulse durations, where the AP is elicited during the deactivation phase of the
photocurrent.

The Ith is determined for all pyramidal and continuous non-accomodating
interneuron models of Migliore et al. (2018) [21], along with virtual clones opti-
mized using HippoUnit [34]. The result of these additional 38 pyramidal and 39
interneuron cell models is shown in figure 3.6. Overall, for a given subcellular
opsin location, the variation is within one order of magnitude, except when the
opsin is expressed in the axon. This observation holds for both pulse durations of 1
and 100 ms and maximum total conductances of 1 and 10 µS. The selected cells
do not appear as outliers except for the axon of the bistratified cell. Therefore, it
can be concluded that the selected cells are representative for the population.

Mutually paired Wilcoxon singed-rank tests are performed to identify the most
excitable subcellular region. The p-values of a single-sided test are shown in
figure 3.5 (C) of the threshold intensity and TAC on the left and right, respectively.
Each compared population consists of 153 points (9 pds and 17 Gmax values). The
basal-pyr1 is the most excitable with a Ith significantly (p<0.001) lower than any
other location-cell combination. The same is true for the TAC. The pyramidal cells
are more excitable than the interneurons with pyr1 the most excitable (p<0.001).
Aside from the axon in pyr2, the order of the excitability scores is the same in both
cells (see section 3.2.4.2). The apical dendrites is the least excitable subcellular



QUANTITATIVE ANALYSIS OF THE OPTOGENETIC EXCITABILITY OF CORNU

AMMONIS 1 NEURONS 83

Figure 3.6: The threshold intensity (Ith) required for optogenetic excitation under uniform
light stimulation of all pyramidal and continuous non-accommodating interneu-
ron models of Migliore et al. (2018) [21], along with virtual clones optimized us-
ing HippoUnit [34]. The diamonds with a black outline represent the thresholds
of the models analyzed in through the whole chapter. The titles of each subplot in-
dicate the pulse duration (pd) and the total opsin conductance (Gmax). The opsin
is uniformly distributed over the subcellular regions, indicated on the x-axis.
The model files are available at https://wiki.ebrains.eu/bin/view/Collabs/live-
paper-2021-saray-et-al/Live%20Paper.
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region of the pyramidal cells (p<0.001). On average a lower Ith is required
for the basket cell than the bistratified cell (p<0.001). Overall a significantly
lower threshold is accompanied with a significantly lower TAC. Some exceptions
exist where the TAC is significantly greater (e.g., all-pyr1 versus soma-int2). The
median of the relative change in Ith of the location-cell combinations as ranked
in figure 3.5 (C) is shown in supplementary figure 3.9 (A). The average of the
medians is -22.76%. Therefore, the Ith drops every time on average with 22.76%
percent when moving from the least (axon int1) to the most (basal pyr1) excitable
location-cell combination. Optimal subcellular expression in a cell can result in
Ith drops of >75%. Compared to no subcellular specificity (opsin over the whole
cell), Ith reductions of >60% can be achieved in the pyramidal cells, increasing
towards 83% and 92% for the basket and bistratified cell, respectively (cf. table 3.3).
The full analysis of the median relative differences of all different subcellular-cell
combinations is shown in figure 3.10 (A).

The two step regression is performed on each location-cell combination sepa-
rately. The combined results are shown in figure 3.5 (D). The variability on TAC is
captured by Lapicque’s formulation resulting in a median adjusted coefficient of
determination (R̄2

TAC) value of 0.99978. The median rheobase (TAC0) is 3.17 nA
and the median time constant (τTAC) is 42.95 ms. The variability of Ith is well
explained by the two step regression model (median R̄2

tot = 0.96388). The median
parameter values of Gmax and pd (aG and apd) are -1.47 and 0.53, respectively.
Even though the latter is positive, Ith decreases with pd due to the Lapicque’s
formulation. Based on these values, Gmax has thus a stronger impact on Ith than
the pd.

The input impedance of the cell’s sections, measured after 100 ms after initial-
ization at -70 mV, are shown in figure 3.5 (E). The impedance is a proportionality
factor on the input current resulting in a given voltage change. Therefore, the
voltage change is higher for a higher input impedance given a constant input current.
The axons have on average the highest impedance but also the highest spread with
many outliers. At the left, it can be seen that the impedance increases from axon
hillock to the synapses. The soma has a low impedance compared to the median of
the other subcellular regions.

3.3.2 The Optogenetic Response in the Monte Carlo Light Field
In this section, the cells are subjected to an intensity field produced by a 100 µm
fiber. The 3D-profile is obtained via the Monte Carlo method in homogeneous
gray matter tissue with the default optical parameters as summarized in table 3.1.
Unlike in the previous section, the irradiance at the different neuron sections will
depend now on their relative position with respect to the fiber and its orientation.
Consequently, Ith now depends on the position in the reference frame as indicated
in figure 3.1. An example is shown in figure 3.7 (A), with the Ith map on the left
and corresponding TAC on the right, for an allsec-pyr1 with Gmax = 1.18 µS, pd
= 10 ms and a fiber pitch of π/2. A hotspot is observed around [x = 0.43 mm,
z = −0.036 mm], where the threshold is the lowest. Even when the neuron lies
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Ith SoFPAN
cell best worst % best worst %

pyr1 basal apic -81.23 basal π/2 axon 0 223.08
basal all -67.63 basal π/2 all π/2 33.33

pyr2 axon apic -76.03 axon π all 0 152.78
axon all -64.36 axon π all π 67.42

int1 alldend axon -99.89 soma π/2 axon 0 947.62
alldend all -91.58 soma π/2 all π/2 100.00

int2 soma axon -87.28 soma π/2 axon 0 233.33
soma all -82.84 soma π/2 all π/2 87.47

Table 3.3: Influence of subcellular opsin expression on the optogenetic excitability. Median
relative change between best and worst subcellular location, and best and no
subcellular specificity (all) of all pd and Gmax combinations. Excitability under
a uniform light field (Ith) and with light propagation (SoFPAN).

behind the fiber, i.e., x < 0 mm, it is still possible to excite the cell but at higher
Ith. Two islands can be observed for the TAC with a factor two difference between
minimum and maximum. The farther away from the cell the lower the variation in
TAC.

Based on these threshold maps, the surface of fiber positions for the activation
of neurons (SoFPAN) can be estimated. This is shown in figure 3.7 (B) for the
three investigated fiber pitches. The SoFPAN is a measure of the excitability
of the subcellular optogenetic configuration in the light field. The uncertainty
caused by the discretization on the SoFPAN is indicated by the shaded area (see
section 3.2.4.1). There is a larger uncertainty at lower intensities due to the rough
simulation grid. The soma appears to be more excitable than the opsin in all sections
(red vs. blue) with already a non-zero SoFPAN for a Ifiber of 0.1 mW/mm2. This is
true for all fiber pitches. The SoFPAN saturates due to the finite simulation domain.

An optimal and worst z-position for each fiber pitch can be determined, as
well. The result for the two cases as above are shown in figure 3.7 (C) and (D). It
can be seen that the positions vary with increasing Ifiber. At low intensities, the
optimal position is near the subcellular region (cf. soma, red) or the most excitable
region (cf. allsec, blue), which is the basal dendrites. At higher intensities, it is
better to illuminate the whole simulation domain, explaining the optimal positions
at -0.4 mm and 0.7 mm for the 0 and π pitches, respectively. Once the whole
simulation field is excited, the optimal position is completely determined by the
average TAC along the x-axis. This can be seen in the sudden changes at the highest
Ifiber (> 100 mW/mm2). In green the density distribution of all 560 combinations
(pd × Gmax × loc × cell) is displayed. The optimal position is more concentrated
with a 0 or π/2 pitch. On the other hand, the worst position is more concentrated
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Figure 3.7: The optogenetic response in a homogeneous Monte Carlo simulated light field.
A The threshold intensities (left) of the pyr1 cell, with opsin distributed over
all sections, and corresponding total temporal averaged current (right). In the
colormaps, the position of the optical fiber is varied with respect to the soma,
which is fixed at (x, z) = (0, 0). B, C and D The Surface of Fiber Positions for
the Activation of Neurons, the optimal and worst z-position for neuron activation,
respectively, as function of fiber intensity. The shaded area in B is enclosed
by the upper and lower bound. The lines are the result of the pyr1 cell with
opsin location shown in legend at the right top corner. Gmax = 1.179 µS and
pd = 10 ms in A-D. In C and D the scatter plots overlay the density, averaged
over all cell, location, Gmax and pd combinations. E Excitability score based
on paired Wilcoxon signed-rank tests. Each population consists of 360 (5 pd
× 8 Gmax × 9 Ifiber values) combinations. The pitch of the fiber is illustrated
by the orientation of the fiber icon on the left and valid for the whole row. F
Relative error of SoFPAN, if the light intensity is considered uniform over the
neuron: rel. error = (SoFPANuniform - SoFPANM.C.)/SoFPANM.C., the outliers
are not shown. The errors are calculated for all the Gmax, pd, pitch and Ifiber
combinations.

with the π/2 and π pitches. The optimal and worst fiber positions are most distant
with the π/2 pitch position.
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outliers [%] +20% [%] median max min IQR

allsec 17.42 23.96 -7.8e-16 ∞ -0.59 0.12
axon 18.60 34.60 0 ∞ -1 0.20
basal 20.44 18.17 1.3e-15 ∞ -0.53 0.09
soma 24.57 0.17 0 ∞ -1 5.4e-16

Table 3.4: Summary relative error SoFPAN Monte Carlo versus SoFPAN uniform (all cells
pooled together). +20% indicates amount of simulations with a relative error
above 20%

The excitability of the subcellular region is summarized in figure 3.7 (E). The
scores are based on the p-values of the single-sided, paired Wilcoxon signed-rank
test, as described in section 3.2.4.2. At each pitch individually, the subcellular
excitability order remains, generally, the same as under the uniform field (cf.
figure 3.11). Only the axons appear to be susceptible to the fiber pitch position. For
instance, the axon-pyr1 combination has an increased (decreased) excitability under
the π (0) fiber pitch. Also at pitch 0, the axon of pyr2 has a lowered excitability with
a SoFPAN significantly lower (p<0.001) than soma-pyr1. On the other hand, axon-
int2 has a higher SoFPAN than all-int2 under the π/2 and π pitches. Basal-pyr1 is
under all pitches the most excitable combination, with a score of 41 at pitch π/2.
Overall, pitch π/2 is significantly more excitable than π, which is in turn more
excitable than 0 (p<0.001). The axon-pyr2, however, has a significantly higher
SoFPAN (p<0.001) under pitch π than π/2. The median of the relative change
in SoFPAN of the location-cell-pitch combinations according to this ranking, i.e.,
lowest to highest score, is shown in figure 3.9 (C). The average of medians is now
10.45%. Therefore, the SoFPAN increases every time on average with 10.45%
percent when moving from least (axon int1, pitch = 0) to most (basal pyr1, pitch
= π/2) excitable location-cell-pitch combination. The same analysis is performed
when restricted to a single pitch. The average of medians of the relative changes
in SoFPAN increase towards 56.86, 25.89, 59.18% for a pitch = 0, π/2 and π,
respectively. Matching the ideal fiber location to the subcellular expression of a
single cell can result in doubling of the SoFPAN compared to the worst combination.
Even a tenfold increase is observed in case of the bistratified cell. Compared to
subcellular unspecificity (all), SoFPAN increases of 33-100% can be obtained by
specifying subcellular expression (cf. table 3.3). The full analysis of the median
relative differences of all different subcellular-pitch combinations for each cell
separately is shown in figure 3.10 (B).

The SoFPAN for a light field that is considered to be uniform over the whole
cell (SoFPANuniform, see bottom section 3.2.4.1) is calculated, as well. The relative
error compared to the SoFPAN under a Monte Carlo field, i.e., (SoFPANuniform-
SoFPANM.C.)/SoFPANM.C., is shown in figure 3.7 (F). The errors is calculated for
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all the Gmax, pd, pitch and Ifiber combinations. The error of the soma is negligible.
The outliers are not shown. Of these, only 0.85% produce a relative error above 5%.
These results validate the method as the soma should not depend on the M.C. field
as its section is only one point in the 3D-space. The SoFPAN of basal dendrites
gets overestimated, with 18.17% having a relative error above 20%. In case of the
pyramidal cells and with the opsin distributed over the whole cell, the SoFPAN
is predominantly underestimated and the interquartile range (IQR) of the relative
error is 60% of the IQR for the basal dendrites. The estimation for the axon of the
int1 cell is the worst with a median relative error of -50%. At least in one test case
of each subcellular region the error is either -100% or infinity (see table 3.4).

3.3.3 Parameter Uncertainties
There is uncertainty on various parameters used in this study. The optical parameters
depend on multiple factors, e.g., tissue and wavelength. The absorption coefficient is
extrapolated which introduces an uncertainty, as well. Moreover, the values of gray
matter are used while different gradations exist. The effect of a change in optical
parameters on the light field in homogeneous tissue, is illustrated in figure 3.8 (A).
On the left, the field as used in the section above is depicted. The effect of an
increased absorption and decreased reduced scattering coefficient is shown in the
middle. The result is a more conical field with higher degradation. A more round
field is obtained when the reduced scattering coefficient is higher (cf. right). Also
at the cell level, there are multiple sources of uncertainty. In experimental setting,
the opsin expression Gmax will not be exactly known. Moreover, the subcellular
location will probably not be discrete as used in these simulations. Finally, the
morphology of the tested cells and its orientation (cf. roll) are fixed. To address
the impact of these uncertainties on the output, a global sensitivity analysis is
performed. The used approach is a screening method: the Elementary Effects test.

The influence of these six parameters, i.e., cell roll, µ′
s, µa, opsin subcellular

location (loc), cell model (cell) andGmax, on the SoFPAN for the three fiber pitches
and two cell types (pyr and int) is investigated. For each fiber pitch and cell type,
the elementary effects test (EET) is repeated for 5 pd and 9 Ifiber combinations
(these 45 combinations correspond with 100% in figure 3.8 (B) and (D)). The rank
according to the µ∗-measure is summarized in figure 3.8 (B). For certain pd and
Ifiber no differentiation could be made based on the µ∗-measure, explaining the bar
height >100% at rank 0. The subcellular location has most frequently the highest
impact on the excitability for all six test cases. This is followed by Gmax in second
place (rank 4). The roll and µa have on average the lowest impact. However, in case
of the pyramidal cells and π fiber pitch, the roll has occupied the highest rank for
some (pd, Ifiber) combinations. On the other hand, µ′

s is more important when the
fiber pitch is 0 for the pyramidal cells. The µ∗ and σ measures of three cases of the
pyramidal cells with pd of 10 ms are shown in figure 3.8 (D). The circles indicate
the setup where the roll has the highest rank, i.e., pyramidal cell with π pitch and
1 mW/mm2. It can be seen that even though it has the highest rank, its measures
are in the same range as the other two cases. The diamonds represent the EET of a
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Figure 3.8: Results of the elementary effects study. A Intensity fields with different
optical parameters; from left to right µa = 0.42, 0.52, 0.35 mm−1 and
µ′
s = 1.36, 0.93, 2.06 mm−1. B and D The influential parameters on SoFPAN

and optimal fiber position, respectively, ranked for 5 pds and 9 fiber intensities
(in %). The fiber pitch and cell type are shown on top and left, respectively. C
The two measures of the elementary effects of three pyramidal cell setups, i.e.,
pitch = π, π/2 and 0, and Ifiber = 1, 1000 and 1000 mW/mm2 indicated by
circle, diamond and cross, respectively, for a pd = 10 ms. The legend between
B and D also applies on C. E Normalized optimal z-position over all results
with allsec subcellular location of the elementary effects study.

π/2 pitch at Ifiber = 1000 mW/mm2. Here, the reduced scattering coefficient has
the highest impact. The non-linear and interaction effects are higher in this case,
reflected by the higher σ. For the 0-pitch with Ifiber = 1000 mW/mm2 (cross), the
location is ranked highest with a clear difference in µ∗. The effect of cell appears
to be more linear than the other parameters indicated by its shift towards lower σ
values.

The same analysis is performed on the optimal position. The rank is summarized
in figure 3.8 (D). For the interneurons, the subcellular location stays dominant.
There is, however, a clear shift towards the optical parameters for the pyramidal
cells. Here, the reduced scattering and absorption coefficient are most often ranked
highest for the π and 0 pitch, respectively. Also, in case of the π/2 pitch, the
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absorption coefficient is more important for the optimal position than it is for the
SoFPAN. The cell and roll appear to have the lowest effect. While, on the other
hand, the cell is important in case of the interneurons. The optimal position for
both cell types normalized over all simulations with allsec subcellular location of
the EET study, is shown in figure 3.8 (E). These exclude the preset subcellular
selectivity. For the interneurons this is more smeared out and a focus towards the
stratum pyramidale is observed. On the other hand, for the pyramidal cells there
is a clear preference for a position such that the majority of the light reaches the
stratum oriens region. At pitch π this is more smeared out due to the possibility to
retract (z more positive) the fiber at higher intensities to illuminate a bigger region
in the stratum oriens. This is limited for the 0 pitch explaining the high peak at
−0.4 mm.

3.4 Discussion
The optogenetic excitability of CA1 cells is investigated in this chapter. I attempted
to not only gain more insight into the effect of the various stimulation and uncertain
parameters but also to identify strategies for increased optogenetic efficiency. These
insights are of interest for the development of better stimulation protocols that can
be used as treatment for TLE. A broad view is adopted where both the excitability
of pyramidal and interneurons is investigated. Even though excitation of inhibitory
neurons is one of the two main investigated strategies as treatment of TLE, insights
in the excitability of pyramidal neurons can be of interest as well. Like with
electrical deep brain stimulation, the latter could be used as counter-irritation [2]
with various modes of action [35] that can be tested. Moreover, stimulation of both
types could be beneficial for restoring the excitation-inhibition balance [36].

3.4.1 Excitability of Spatially Confined Opsin Expression
The results show that the optogenetic excitability of CA1 cells depends on various
parameters. The irradiance threshold ranges over multiple order of magnitudes. As
expected, an increase in expression level (Gmax) or pulse duration (pd) results in a
decrease of the intensity threshold (Ith). There is also a clear dependence on the
subcellular region of opsin expression and variance among different cells. There
is no single explanation for the relative excitability of the considered subcellular
opsin locations, due to the complex interplay of many non-linear relationships. By
comparing the membrane areas and impedances (cf. table 3.2 and figure 3.5 (E))
of the subcellular regions some observations can be made. For a fixed Gmax, the
specific channel conductance (gChR2) is locally higher for regions with a lower total
surface area. Thus, for the same Ifiber, there will locally be a higher depolarizing
current to elicit an action potential (AP). This combined with the fact that the
AP is measured in the soma (therefore does not have to travel through the cell),
explains why the soma-confinement is highly ranked in each cell. The observation
concerning the locally raised channel conductance also holds when comparing
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all alldend apic axon basal soma

pyr3 - pyr1 -0.32 -0.31 -0.28 0.83 0.14 -0.31
pyr4 - pyr2 0.29 0.23 0.47 0.92 -0.28 0.30

pyr3 - pyr2 -0.53 -0.53 -0.47 3.15 -0.50 -0.56
pyr4 - pyr1 1.06 0.97 1.07 -0.22 0.73 1.05

Table 3.5: Mean relative difference in Ith due to three-dimensional structural morphology
(top) or by changing channel distribution (bottom; relative with respect to original).

basal dendrites with apical, all dendrites and all sections. An argument for why
confinement to the basal dendrites is more excitable than the soma could be found
by comparing their input impedances. For a fixed depolarizing current, a higher
impedance results in a larger membrane depolarization. Because the impedance
of the basal dendrites is significantly higher than that of the soma (log-scale in
figure 3.5 (E)) it will facilitate AP initiation. However, this contradicts the rank of
axon-pyr1. Finally, there is the channel distribution inside the cell itself. The ratio
of depolarizing (e.g., Na+ and Ca2+) and hyperpolarizing (e.g., K+) channels defines
the membrane threshold for AP initiation. This ratio is double in the axon of pyr2
compared to pyr1, motivating the low rank of axon-pyr1. These observations are in
agreement with the findings of Foutz et al. (2012) [18].

Confinement to the basal dendrites of pyr1 is the most excitable, while the
highest Ith is required for the axon of int1 (cf. figure 3.5 (D)). Similar ranking is
observed in the SoFPAN calculations (cf. figure 3.7 (E)). To identify the effect of
endogenous channel distribution, the channel distributions of pyr1 were imposed
on pyr2 (pyr3) and vice versa (pyr4). The mean relative difference of all pd and
Gmax combinations is shown in table 3.5. The Ith of pyr3 drops with ∼30% and
∼50% versus pyr1 and pyr2, respectively, for all subcellular regions except for
the axon (both cases) and for the basal dendrites in pyr3 vs. pyr1. Contrarily, the
excitability of pyr4 drops (higher Ith), except for the basal dendrites for pyr4 vs pyr2
or axon in pyr4 vs pyr1. Switching 3D structural morphology while maintaining
endogenous channel distribution (top two) or vice versa (bottom two) impacts
optogenetic excitability. It is clear that the interaction of structural morphology and
channel distribution has an impact on optogenetic excitability. The axon subregion
appears to be the most susceptible with tripled excitation threshold of pyr3 vs.
pyr2. Neuron degeneracy, i.e., the ability to perform the same functioning whilst
being structurally different or having different ion channel distributions [21], is thus
something that should be taken into account in determining irradiance thresholds.
This is also observed in the variability of Ith in supplementary figure S1. Still, the
basal dendrites region is also the most excitable in pyr3 and pyr4. Combined with
rank 1 and 2 for pyr1 and pyr2, respectively, it can be concluded that this is the most
effective subcellular target region for opsin expression in CA1 pyramidal cells.
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This spatial dependence was also observed in the study of Grossman et al.
(2013) [20]. With the specific conductance (gChR2) as metric, they determined
whole cell illumination to be most efficient, i.e., uniform opsin distribution over
whole cell with a uniform light field compared to soma, axon initial segment or
apical dendrite confinement. They determined that for a 20 ms pulse and irradiance
of 1 mW/mm2 the required gChR2 when in all sections is only 6% of that when
restricted to the soma. On the other hand, Gmax was 60% higher. These values
are in agreement with our results where the ratio of the specific conductance of
all sections to soma targeted expression is 2-4% under the same conditions in the
pyramidal cells. However, in this study I argue that ranking should be based on
Gmax, i.e., where the number of opsin complexes is fixed. This translates towards
an equal comparison of total elicited photocurrent, while, on the other hand, for
a fixed gChR2 the total photocurrent is scaled by the surface area. As a result, the
confinement to the soma is classified here to be more excitable.

After correction for the difference in rectification function (i.e., G(V =
−68.83 mV) = 1 in Grossman et al. (2011) [37] vs. 0.07 in our study), the
absolute values of Gmax were slightly lower but in the same order as reported
in Grossman et al. (2013) [20]. For a Gmax of 1 µS (= 0.07 µS after correc-
tion) and with a single channel conductance of 40-100 fS this translates towards
expression of 0.71-1.77 106 opsin complexes. Spread over the whole cell this
is ±50 channels/µm2 but confined only to the soma this rises towards >1000
channels/µm2. This value is higher than the estimated 130 channels/µm2 based
on bacteriorhodopsin expression [18, 38] but lower than the indirectly estimated
4.4 104 channels/µm2 by Arlow et al. (2013) [19]. With our tested Gmax values up
to 100 µS especially when restricted to the soma, this could pose cellular toxicity
problems, if these channel numbers would be achieved [6, 7, 10]. This can be
avoided if single channel conductance is increased.

The opsin is in all conditions uniformly distributed but can be restricted to a
spatial region. In-vivo this highly specific and discrete separation is not possible.
Still, by merging the opsin with signaling and targeting constructs, localized en-
hancement can be obtained. For instance, the addition of the soma-targeting motif
of the soma- and proximal dendrite-localized voltage-gated potassium-channel
Kv2.1 improves somato-dendritic expression [7, 11]. The real distribution in those
cases is not known. A normal distribution could be imposed but this would come
with two more degrees of freedom. Therefore, the spatially restricted but uniform
distribution is used. Our results encourage localized enhancement and advances in
this research direction. A reduction of Ith with more than 64% can be achieved via
subcellular specificity. This is tempered towards, but still significant, increases in
SoFPAN of 33-100%, when light propagation is included. Consequently, if made
possible, spatial confinement of opsins to specific membrane compartments could
significantly increase optogenetic efficiency. On the other hand, more than 76%
reduction of Ith between optimal and worst subcellular regions is possible. This is
also reflected in SoFPAN, where an ideal subcellular-pitch combination can result
in a 1.5-10 fold increase compared to the worst combination (cf. table 3.3). A
good knowledge of the optogenetic interaction at the subcellular level is therefore
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required in order to achieve the optimal configuration.

3.4.2 Optimal Fiber Position
Due to the finite size and discrete nature of the test grid (121 points), the SoFPAN,
and optimal and worst positions could not be unambiguously determined. An
upper and lower bound of the SoFPAN is defined (cf. section 3.2.4.1), indicating
a larger uncertainty at lower intensities. In case of the optimal fiber position, a
tie-breaker based on the TAC is introduced. From a homeostatic point of view, it
is ideal that the required result is achieved via the lowest perturbation of normal
functioning. High/long transmembrane currents could lead to ion concentration
imbalance. Especially when using ChR2(H134R), which has a high H+ permeability,
this can result in neuron acidification, which in turn can result in decreased neuron
functioning or unexpected behavior [39–41]. Therefore, the positions that generate
the lowest TAC are preferred. The results in figure 3.7 (C) show that the optimal
position is at the depth of the region of subcellular expression or with a focus on the
most excitable region (in case of opsin distribution over the whole or majority of the
cell). Overall, the rank of excitability between uniform and M.C. field stimulation is
unchanged. Subcellular excitability appears to be dominant over spatial distribution.
This spatial preference was also observed in Foutz et al. (2012) [18]. In their L5
pyramidal model, they found the apical tuft and soma to be most excitable.

For the π/2 pitch, the optimal and worst position are the most stationary for
increasing intensities. For the other pitches (0 and π), either the optimal or worst
position is more smeared out while they are located more closely to each other for
low intensities. Consequently, there is a higher risk for sub-optimal fiber positioning.
Combined with the highest excitability according to the SoFPAN (cf. figure 3.7 (E)),
it can be conclude that π/2 is the better fiber position.

3.4.3 Contribution of Optical Field Simulation
This study combined simulations of light propagation and neuronal modeling. Light
propagation is simulated using the Monte Carlo method for a uniform medium.
The hippocampus is a predominantly gray matter structure. However, there is
uncertainty on the exact values of the optical parameters (amplified by inter- and
extrapolation). The effect of the uncertainty of these parameters is tested using
the elementary effects method. The influence of µ′

s on the excitability is ranked in
the middle, while µa is ranked lower. On the optimal position they were ranked
much higher. The median and maximum µ∗ on SoFPAN are respectively 0.14 and
1.71 mm2 (0.04 and 1.19 mm2) for µ′

s (µa). These parameters have some influence,
but are subordinate to the other uncertain parameters such as subcellular location,
expression level and cell morphology. Moreover, the need to include the light
intensity profile in the neuron simulation was addressed by calculating the SoFPAN
from excitation thresholds under uniform illumination, as well. Deviations of more
than 20% are observed in more than 25% of the tested setups (soma excluded).
Confinement to the basal dendrites result in the lowest percentage (18.17%) while
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the highest is achieved in case of the axon subcellular expression (34.60%). Overall,
investigating optogenetic excitability under uniform field conditions provides a
good initial approximation, but, accuracy drops for larger and asymmetrical section
distributions. The latter was also observed in the strong pitch dependence of axon
excitability in the pyramidal cells.

3.4.4 Limitations and Future Work
This study focused on single pulse excitation of CA1 cells. The occurrence of
other spiking behavior is excluded. Likewise, when calculating the SoFPAN
with high Ifiber, a cell near the fiber end may exhibit bursting or depolarization
block due to intense irradiance [20, 37]. Unlike with electrical stimulation, the
photocurrent saturates for high light intensities (see figure 3.3). Therefore, extreme
behavior is not expected when short pulses are applied. Additionally, the studied
ChR2(H134R) opsin exhibits light-dark adaptation, i.e., the photocurrent is higher
for a full dark adapted neuron but decreases towards a steady state value under
prolonged illumination. The recovery time is in the order of seconds. During
pulsed stimulation, the photocurrent of the first pulse will be higher than that of
the subsequent pulses. Therefore, higher irradiances will be required to reliably
elicit pulse-locked spiking [18]. Future work should test the capability of eliciting
reliable spiking when opsin expression is confined to a specific subcellular region.
Additionally, since this study focused on isolated cells that are at rest prior to
optogenetic stimulation, it is necessary to investigate if phase locking is possible in
a network setting, quantify its impact on excitation thresholds, observe subcellular
excitation’s effects on cellular and network responses [42], and evaluate its influence
on synaptic plasticity. Therefore, the interaction in neuronal networks will be of
interest in future work, particularly with a focus on hyperexcitable systems such as
those in temporal lobe epilepsy. Clearly, the cell’s optogenetic excitability depends
on multiple factors. The results in table 3.5 show both 3D structural morphology
and endogenous channel distribution dependencies. Still, the individual impact and
interaction effects are yet to be determined. Obtaining a better understanding will
be of interest in future work.

The effective level of opsin expression in-vivo is uncertain. Furthermore, to
account for potential improvements in plasma membrane expression [7, 11], Gmax

is treated as a free parameter. However, due to the presence of inward rectification,
it is unclear how the model parameter gChR2 relates to the actual opsin expression
level in-vivo. In our formulation of G(V ), all proportionality factors are absorbed
by gChR2 (see equations (3.1) and (3.2)). While in the formulation of Grossman
et al. (2011) [37] and Williams et al. (2013) [13], G(V = −68.83 mV) = 1
and G(V = −76.07 mV) = 1, respectively. These rectification functions cause
a reduction of gChR2 with a factor of 14.15 or 12.89 at those specific membrane
potentials, compared to our formulation in equation (3.2).

As aforementioned, there is still some uncertainty on the tissue optical properties.
Different studies have reported values that can differ up to an order of magnitude
[25, 26, 43, 44]. Furthermore, brain tissue is binary classified as either gray or white
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matter, while tissue gradation is more continuous. The impact of the uncertainty of
these parameters on the optogenetic excitability is tested in this study. However, it is
investigated only locally near the parameters’ reported means (see table 3.1), while
the reduced scattering coefficient of white matter is reported to be 7-times higher
than that of gray matter [26]. Additionally, tissue alterations due to foreign body
reaction occur. A fibrous capsule is formed around the implanted fiber as reaction
to blood-brain-barrier injury and gliosis caused by the presence of the implanted
fiber itself [45]. In future work light propagation in a heterogeneous medium and
its effect on excitability could be determined. Mesh and voxel based Monte Carlo
algorithms exist that can accurately compute the light field distribution in complex
tissues [46]. Moreover, modern deep learning algorithms can be utilized to reduce
the inherent stochastic noise of these Monte Carlo simulations [47]. Exploring
the propagation of light at different wavelengths, such as for the excitation of red-
shifted opsins, would also be of interest. The simulated fiber has a flat tip with fixed
diameter and numerical aperture. Fiber tapering, flat tip patterning and alteration of
the geometric properties can result in improved output coupling or broadened and
multi-site illumination. However, this is out of the scope of this research [45, 48].

New opsins, either natural or genetically engineered, are discovered on a yearly
basis [6, 39, 49–51]. While this is generally beneficial, it can hinder the development
of optogenetic tools. Dividing research among multiple opsins may limit the
understanding of a single opsin’s interactions with neurons and its capabilities. The
question arises whether the gathered insights here are transferable to other opsins
as well. Previous studies have demonstrated the influence of channel kinetics on
factors like irradiance thresholds, spike reliability, and behavior [4, 37, 49]. The
exact values of Ith will thus differ for another opsin. However, these values are
already uncertain due to multiple other uncertainties in other parameters like Gmax.
Furthermore, these differences will affect all tested cases equally. Therefore, I
expect that the observed trends and rankings regarding optogenetic excitability
will be applicable across different opsins. In future work, a similar study could be
performed focusing on optogenetic silencing with inhibitory opsins like GtACR2
and WiChr [51, 52].

Tissue illumination causes heating. To avoid permanent tissue damage, the local
temperature increase cannot exceed 6 ◦C [15]. Moreover, behavioral changes are
already possible at lower temperature changes (> 1 ◦C). Several neural parameters,
e.g., capacitance, ion channel conductance, and transmitter release and uptake, have
been shown to be temperature dependent [15, 53–55]. The reported SoFPAN values
are for fiber intensities up to 1000 mW/mm2. After extrapolation of the change
in temperature results reported in [15] (figure 3 (A)), this intensity corresponds
with an estimated temperature increase of 4.85 ◦C after 100 ms. Consequently,
temperature-induced changes in optogenetic excitability should be included in
future work.
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3.5 Conclusion
In this chapter, I presented the findings from our article titled Quantitative Analysis
of the Optogenetic Excitability of CA1 Neurons [1], which focused on the optoge-
netic excitability of four CA1 cells using the ChR2(H134R) model described in
chapter 2. Our findings revealed that, for a fixed amount of opsin channels (Gmax),
confining the opsin to specific neuronal membrane compartments significantly
enhances excitability. This confinement leads to threshold reductions exceeding
64% and up to 100% gains in the surface of fiber positions for the activation of
neurons. Additionally, I determined that the perpendicular orientation of the fiber
relative to the somato-dendritic axis yields superior results. Furthermore, a sub-
stantial inter-cell variability was observed, with differences in thresholds above
20%. The bistratified cell exhibited the least excitability, while pyramidal cell 1
demonstrated the highest excitability, especially when the opsin is confined to the
basal dendrites. These findings highlight the importance of considering neuron
degeneracy while developing optogenetic tools. By screening various uncertain
parameters, I identified opsin location and Gmax having the greatest impact on
simulation outcomes. Our study showed the advantages of computational modeling
coupled with light propagation. An increased excitability is seen with optimal fiber
positioning, i.e., perpendicular to the somatic-dendritic axis and focus on the most
excitable cell region. Spatial confinement and enhancements of opsin expression
levels are promoted strategies to improve optogenetic excitability. However, it
should be noted that uncertainty in these parameters limits determining the exact
irradiance thresholds.

The results presented in this chapter are based on isolated cell models. To inves-
tigate the potential of optogenetic excitation for seizure suppression, a conductance-
based network model capable of simulating TLE activity is needed. The next
chapter (chapter 4) will outline my efforts in developing a hippocampal model that
replicates TLE pathology.
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3.6 Supplementary Figures
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Figure 3.9: Median of relative change in optogenetic excitability of ranked metrics. A, B
Ranked Ith and TAC of the original four tested CA1 cells and with additional
pyramidal cells, respectively, under a uniform intensity field. C Ranked SoFPAN:
pitch specific at the top, all combined bottom. The gray shading indicates the
total variation due to the pulse duration and opsin conductancy in all subplots.
Values are same as the first offset anti-diagonal of figure 3.10
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Figure 3.10: Median of relative differences in optogenetic excitability between row and col-
umn classes with respect to column class. A The median of relative differences
in optogenetic excitation thresholds (Ith) under a uniform intensity field for
different cell-location combinations. The values shown are the median of the
relative differences calculated over all 153 combinations of pulse durations
(pd) and total opsin conductance (Gmax). B The median of relative differences
in SoFPAN under a Monte Carlo simulated light field for different combina-
tions of opsin locations and pitches. A separate plot is given for each of the
examined cells. Here, the values are the median calculated over all the 360
pd, Gmax and intensity at the fiber surface (Ifiber) combinations. The classes
are sorted based on their excitability score (section 3.2.4.2). The color code
indicates the cell or optical fiber pitch in A and B, respectively.
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Pitch:       0                                                  π/2                                                  π

> > >

Figure 3.11: The p-values of the mutually, paired Wilcoxon signed-rank tests for SoFPAN
comparison at a given fiber pitch. Single-sided test if class at row has higher
SoFPAN than class in the column. The color code at the top and left indicates
the cell model. Each population comprises 360 points: 5 pd × 8 Gmax ×
9 Ifiber values.
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4
Towards a Hippocampal Formation

Model

Temporal lobe epilepsy is the most common epilepsy in adults and the most
difficult to treat with antiepileptic drugs. In mesial temporal lobe epilepsy

(mTLE), seizures originate in the cortico-hippocampal circuit. Neurostimulation
techniques are widely investigated as an alternative to hippocampal resection. The
preceding chapter (chapter 3) delved into the exploration of optogenetic excitability
within isolated CA1 cells. This chapter aims to encapsulate my endeavors in
constructing a conductance-based network model of the hippocampal formation and
offers first findings on the modeling of mTLE activity. This in-silico model could
serve as a critical tool to enhance our understanding of the underlying mechanisms
of various stimulation techniques, including optogenetics and deep brain stimulation.
Such insights are pivotal in the quest to design more effective treatments for mTLE.
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4.1 Mesial Temporal Lobe Epilepsy
Mesial temporal lobe epilepsy (mTLE), as previously introduced in section 1.1.3, is
the generic term for epilepsy originating in the cortico-hippocampal circuit. This
form of epilepsy represents the most prevalent type of focal epilepsy in adults and
is the most difficult to treat with antiepileptic drugs [1]. Hippocampal sclerosis
(HS) and mossy fiber sprouting are the two main histopathologies observed with
mTLE. The former is characterized by severe cell loss up to 80% [2] while the
latter denotes the formation of recurrent connections among granule cells [3]. The
fundamental mechanisms underlying ictogenesis (the initiation and propagation
of a seizure) and epileptogenesis (the gradual transformation of the brain into a
state susceptible to spontaneous, episodic recurrent seizures) are extensively being
studied in-vivo, in-vitro and in-silico. Presented below is a selection of models
pertaining to seizures and epilepsy, with a more comprehensive overview available
in Pitkanen et al. (2017) [4].

4.1.1 In-Vivo Models
In-vivo models of epilepsy are attainable through genetic manipulation, kindling,
the use of chemical proconvulsants, or traumatic injury [5]. Kindling involves
repetitive brain tissue stimulation, leading to the development of after-discharges
and, eventually, seizures [6, 7]. This kindling process can be achieved chemically,
electrically, and optogenetically [7]. Nonetheless, electrical kindling is the most
commonly employed method, resulting in acute seizure models [8]. Prolonged
kindling, known as overkindling, can lead to the emergence of spontaneous seizures
in animal models. While these models exhibit some histopathological changes
similar to those observed in temporal lobe epilepsy, they are limited in replicating
the full spectrum of TLE pathologies [4, 5, 9].

Two frequently utilized chemoconvulsants are kainic acid and pilocarpine [5].
Systemic administration of these compounds results in models capable of generating
spontaneous seizures. These models also display hippocampal sclerosis and mossy
fiber sprouting. However, they come with notable drawbacks, including variability
and uncertainty in the timing of the first seizure initiation, as well as the potential
for off-target effects following systemic injection [10]. To address the latter concern,
direct injection of pilocarpine or kainic acid into the hippocampus has been proposed
as a more controlled approach [9, 11].

4.1.2 In-Vitro Models
Ex-vivo brain slice models, often categorized as in-vitro models, serve as invaluable
tools for gaining insights into the fundamental physiology of neuronal circuitry,
significantly enhancing our comprehension of epileptogenesis. These models offer
numerous advantages, including reduced animal experimentation, clear visualiza-
tion of the cytoarchitecture (especially in hippocampal slices), precise electrode
placement, and control over the extracellular space useful for the administration of
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test drugs due to the absence of the blood-brain barrier. However, it is important
to note that ex-vivo slices represent a simplified preparation compared to in-vivo
conditions. Additional limitations are cell damage due to the slicing procedure,
disruption of local circuitry, perturbation of ionic homeostasis, and the absence of a
blood supply [12, 13].

In the context of epilepsy, several ex-vivo slice models have been developed
to induce epileptiform activity. These models employ alterations in ion composi-
tion, the use of chemical proconvulsants, or high-frequency electrical stimulation
(kindling). Similar to in-vivo models, kainic acid serves as a reliable inducer of
seizure-like activity. Another often used chemical compound is 4-aminopyridine
(4AP), a blocker of voltage-gated potassium channels [14], which renders cells
hyperexcitable and augments neurotransmitter release. Unlike in-vivo models,
ex-vivo models offer precise control over ion concentrations in the extracellular
space. Two notable models involve low magnesium levels, which unblock NMDA
receptors, leading to interictal and seizure-like events, and elevated extracellular
potassium concentrations. The latter results in a less negative equilibrium potential
causing cell depolarization, increased neuronal excitability and elongated action
potentials. Impaired GABAergic inhibition is also observed possibly due to chlo-
ride accumulation arising from compromised extrusion by the K+-Cl- cotransporter
KCC2 [12, 13, 15].

Figure 4.1: Example of hippocampal slice recording with a multi electrode array (MEA).
Stimulation electrode is indicated by a yellow circle. The opacity of the stratum
pyramidale in the Cornu Ammonis and dentate gyrus granule cell layer has been
increased to enhance visibility.

Multielectrode arrays (MEAs, figure 4.1) are an ideal tool for recording extra-
cellular neuronal activity in ex-vivo brain slices. These systems include multiple
electrodes through which recordings from multiple sites can be received simultane-
ously. Consequently, they are ideal for the investigation of spatiotemporal dynamics.
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Moreover, they allow fast switching between recording and stimulation modes [16].

4.1.3 Computational Models
Over the last few years, substantial effort has been dedicated to the computational
modeling of the hippocampus and some of the pathologies associated with TLE [17].
Epileptic seizures manifest across various spatial and temporal scales. Researchers
have employed a spectrum of models to replicate and elucidate epileptiform activity,
spanning from macroscopic mean field models for investigating synchrony, to meso-
scopic neural mass models representing the collective activity of interconnected
subpopulations, and microscopic single cell models based on the Hodgkin-Huxley
biophysical framework [18]. Of the latter, detailed network models have also been
developed, albeit typically focused on specific hippocampal subregions [19–21].
Beyond neurophysiologically inspired models, mathematical models have also been
created, with the Epileptor model by Jirsa et al. (2014) [22] being a notable example.
This phenomenological model employs just five differential equations to abstractly
describe seizure dynamics [23, 24]. For a comprehensive overview of available
models, the interested reader is referred to sources such as Depannemaecker et al.
(2023) [25], Wendling et al. (2016) [18], Raikov and Soltesz (2017) [26], and Case
et al. (2012) [27].

As illustrated in chapter 3, computational studies are not only useful for the
investigations into epileptogenesis or ictogenesis but also serve as ideal tools for
exploring seizure suppression techniques. However, limited attention has been di-
rected toward the investigation of, for instance, electrical stimulation as a treatment
for TLE. Additionally, these studies have predominantly employed neural mass
models in localized subregions. Consequently, only local direct effects of electrical
stimulation have been investigated without the possibility for desynchronization of
the subregion (an intrinsic property of neural mass models) [28–30]. Biophysically
accurate models offer the advantage of incorporating detailed effects across multiple
scales [27, 31], such as changes in intracellular ion concentrations impacting neu-
ronal excitability and network activity. A great example is the recently developed,
pioneering full-scale model of the healthy CA1 region by Romani et al. (2023) [32].

As aforementioned, the models are often restricted to a certain subregion, limit-
ing the study of seizure propagation throughout the entire hippocampal formation.
In the context of investigating seizure suppression, a model capable of assessing
indirect effects is of considerable value. Therefore, this chapter discusses my
endeavors in constructing a biophysically conductance-based computational net-
work model of the entire hippocampal formation. Given the constraints of limited
resources and time, this model is not full-scale and is constructed using reduced
morphology neurons.



TOWARDS A HIPPOCAMPAL FORMATION MODEL 109

4.2 The Network Model
Cutsuridis and Poirazi (2015) [33] (CP15) constructed a model of the trisynaptic
circuitry (see section 1.1.3) to study how theta modulated inhibition can account
for long temporal windows. Their model can be found on modelDB (https:
//modeldb.science/) under accession number 181967. The code on mod-
elDB deviates from the description in the article. However, it provides a better
resemblance to their reported results. The model of the hippocampal formation
used here is derived from their model available on modelDB. It is translated to
NetPyNE [34], i.e., an open-source Python package to facilitate neuronal net-
work simulations using the NEURON [35] simulator. The overall structure and
modifications made on the original model are described below.

4.2.1 The Cell Models
The model includes three hippocampal subregions, i.e., the dentate gyrus (DG),
Cornu Ammonis 3 and 1 (CA3 and CA1). The dentate gyrus is represented by
100 granule cells (GC), 2 mossy cells (MC), 2 basket cells (BC) and one hilar
perforant path associated cell (HC). Both the CA3 and CA1 consist of 100 pyra-
midal cells (PYR), 2 basket cells and one axo-axonic cell (AAC). Furthermore,
the CA3 includes an extra oriens lacunosum-moleculare cell (OLM) while one
bistratified cell (BSC) is added to the CA1 region. The cells are modeled with multi
compartment conductance based models. The simplified morphologies and number
of compartments are shown in figure 4.2. The geometry of the compartments is
given in Tables S1-S3 of CP15 [33]. A summary of the ionic currents present in
each cell is given in table 4.1. The potassium and sodium concentrations are fixed
throughout the simulation while the internal calcium concentration varies over time.
All cells except for the CA3PYR follow a first order calcium accumulation given
by:

d[Ca]i
dt

= − iCa

zδF
+

[Ca]∞ − [Ca]i
τCa

(4.1)

with [Ca]i and [Ca]∞ the internal and equilibrium calcium concentration, respec-
tively, F the Faraday constant, z the valence of calcium ions, δ the specific depth,
τCa the calcium decay time constant and iCa the total specific calcium current.
The calcium reversal potential is then calculated with the Nernst equation or the
Goldman-Hodgkin-Katz formalism, with an extracellular concentration ([Ca]o)
equal to 2 mM. The passive parameters, active ionic conductances and reversal
potentials of each cell are given in Tables S4-S8 of CP15 [33]. Deviations from the
reported values are given in table 4.3.

4.2.2 Connectivity
The network connectivity is illustrated in figure 4.2. The arrow ends indicate the
synaptic location on the postsynaptic cells. Axons are not modeled. Therefore, the
pre- and postsynaptic cells are connected via an event-triggering scheme with a

https://modeldb.science/
https://modeldb.science/
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Figure 4.2: The hippocampal network model and synaptic projections. Top, the dentate
gyrus with a granule cell (GC) and three interneurons: a hilar perforant path
associated cell (HC), a basket cell (BC) and a mossy cell (MC). Middle, the
CA3 region with the pyramidal cell, an axo-axonic cell (AAC), BC and oriens
lacunosum-moleculare cell (OLM). Bottom, the CA1 with the pyramidal cell,
AAC, BC and bistratified cell (BSC).
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Figure 4.2: The cells’ simplified morphologies are displayed with the number of compart-
ments next to the cell name. The black cells are the principle cells each of which
100 cells are modeled. Blue cells are inhibitory interneurons while a green cell
depicts an excitatory interneuron. The model contains a maximum of 2 models
of each interneuron. The laminar layers are indicated on the left. The synaptic
projections are shown with green and purple arrows indicating excitatory and
inhibitory synapses, respectively. The Schaffer collaterals are shown in orange.
The external, excitatory enthorinal cortex and inhibitory medial septum inputs
are depicted by dashed arrows. Connections that are given by the dotted arrows
are not included in the original model but in the alternative model (conn2).

DG DG DG DG CA3 CA1 CA3,1 CA3,1 CA3 CA1
GC HC MC BC PYR PYR BC AAC OLM BSC

transient sodium gNa x x x x x x x x x x
delay rectifier
potassium

gfKdr f + s f f f x x f f x f

leak gl x x x x x x x x x x
A-type potassium gKA x x x x x x x x x x
N-type calcium gCaN x x x x x x x x
L-type calcium gCaL x x x x x x x x x
T-type calcium gCaT x x x
R-type calcium gCaR x
calcium
dependent
potassium

gCagK (SK) x x x x x x x x x

calcium and
voltage dependent
AHP potassium

gAHP (BK) x x x x x x x x x

non-selective
AHP

gh f+s f+s x x

muscarinic
potassium

gM x x

simple calcium
accumulation

x x x x x x x x

calcium buffering x

Table 4.1: Summary of ionic currents present in each cell model. f and s indicate a fast and
slow variant, respectively. AHP denotes after hyperpolarization.

certain delay. More specifically, when the action potential threshold (-10 mV) is
reached in the soma of the presynaptic cell an event with a certain delay is sent
towards the postsynaptic cell eliciting a synaptic current (see equation (1.3)). The
delay in the original model is fixed to 1 ms. The synaptic parameters, i.e. rise
time, fall time and reversal potential, are given in tables S10-S11 of CP15 [33].
Synapses illustrated to arrive at a dendritic compartment in figure 4.2 always arrive
on all dendritic branches at the same laminar level. For example, a GC-AAC
connection forms two connections, one on each distal radiatum compartment of
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the two dendritic branches extending towards the stratum radiatum. Similarly, 4
synapses are formed in case of the GC-CA3PYR connection. This rule differs for
the HC and MCs where a connection results in 4 synapses; one on each branch. This
is also the case for the GC-DGBC connections. The convergence, i.e., the number
of cell connections a postsynaptic cell receives, equals the number of presynaptic
cells modeled, excluding autapses. The convergence and number of synapses per
connection are given in figure 4.3. The synaptic weights are given in table 4.2.

Figure 4.3: The convergence and number of synaptic connections per cell connection in the
hippocampal network model. The convergence is given by the color-code while
the number of synapses is given by the number. Convergence values higher
or equal to 10 have a superimposed black text color. Red text color indicates
connections only present in the alternative connectivity (see also table 4.2 and
dotted arrows in figure 4.2)

The network receives input from the medial septum (SEP) and enthorinal cortex
layers II and III (ECL2 and ECL3). These inputs are illustrated in figure 4.2 with
dashed arrows. The inputs are theta modulated. Each input region is modeled as two
populations firing with an average firing rate of 7.14 Hz (140 ms inter-spike-interval
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(ISI)) with opposite phases (180° vs. 360°). The EC-layers and SEP-layers consist
each of 100 and 10 spike generators (the cells are not explicitly modeled, only spike
trains). The septal output consists of a small burst of action potentials with a max
burst length of 70 ms and at mean frequency of 7.14 Hz. The individual spike times
of the ECL2 and ECL3-180, and burst initiation times of the SEP are Gaussian
distributed with a standard deviation of 11.2 ms (noise of 8%). The ECL3-360
population is exponentially distributed with a rate parameter of 11.2 ms.

A distinction is made for the principle cell populations between pattern and non-
pattern cells. Pattern cells (* p) receive higher input currents from the preceding
region than non-pattern cells (* n) (see table 4.2). 4% of the DG and 20% of the
CA3- and CA1PYR cells are randomly selected to be pattern cells. The synaptic
weight is fixed for synaptic connections between two populations except for the
ECL2-GC p and ECL3-CA1PYR p connections. They receive a combination of
elevated and non-pattern weight inputs with a ratio equal to the ratio of postsynaptic
pattern and non-pattern cells.

4.2.3 Modifications
The model obtained from modelDB under accession number 181967 is translated to
NetPyNE. Moreover, the channel mechanics are updated from explicitly hard-coded
first order exponential Euler integration to a set of differential equations which can
be solved with the more efficient cnexp method of NEURON. This cnexp method
provides second order accuracy with elevated computational efficiency, appropriate
for solving stiff systems [35]. This change also allows usage of the more advanced
multi-order variable step (CVODE) integration. However, in all the simulations
shown in this chapter a fixed step of 25 µs is imposed. Results obtained with this
model are labeled original.

The calcium coupling is improved. Even though a calcium accumulation was
provided (see equation (4.1)), the calcium currents and total [Ca]i were decoupled
in the original model. Therefore the change in calcium concentration was not
tracked, hence not affecting the calcium currents and calcium dependent potassium
currents. Moreover, the internal and equilibrium calcium concentration is elevated
from 5e-6 mM to 5e-5 mM resulting in a shift of the initial calcium Nernst potential
from 170.71 mV to 140.24 mV. Finally, all cells are spatially discretized with the
d lambda rule [35] to reduce numerical errors. In the original model this was
omitted for the CA3PYR and all DG cells. The distance between two nodes is
limited by the length constant of a compartment at 100 Hz. Consequently, the
number of segments is defined by:

nseg = round
(
(L/(0.1

√
(D/(4π100 Ra cm))) + 0.9)/2

)
2 + 1 (4.2)

with L the compartment length, D the compartment diameter, Ra the axial resis-
tance and cm the specific capacitance. Results shown with these modifications are
labeled with the v2 suffix.
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The CA1 pyramidal cell is substituted by a model created by Tomko et al.
(2021) [31]. The Tomko model (CA1PYR TK21) has a slightly altered structural
morphology with three staggered obliques at the apical trunk instead of the current
2-by-2 symmetric configuration as shown in figure 4.2. Also the distal ends of the
basal dendrites are subdivided giving a total of 20 compartments. The CA1PYR -
TK21 outperformed the CA1PYR CP15 model in the standardized tests of the
HippoUnit battery [36]. The CA1PYR CP15 was shown to be weakly excitable and
does not enter depolarization block. However, more important differences, for the
study of the Schaffer collateral stimulation evoked potentials (EP, see below), are
the weak postsynaptic potential attenuation and strong backpropagation of action
potentials in the CP15-model compared to the TK21-model.

In the original model, the CA1PYR does not have any efferent connections.
Therefore, I tested an alternative connectivity with projections from CA1PYR
towards the CA1 interneurons. Additionally, the Schaffer collaterals branch on the
CA1 interneurons. These connections are depicted with dotted arrows in figure 4.2.
The alternative synaptic weights and number of connections are given in table 4.2
at the bottom and figure 4.3 in red, respectively. Simulations with this network
connectivity are labeled with conn2.

As aforementioned, axons are not physically modeled. Therefore, synaptic
connections are modeled with an event-triggering scheme with fixed delay of
1 ms between action potential detection in the soma and arrival of the event at the
postsynaptic receptor. Because the original model is densely connected, i.e., the con-
vergence equals the amount of cells in the presynaptic population (see figure 4.3),
all cells of a single population receive almost the exact same input (only excep-
tions are the recurrent connections within a population, e.g., CA1PYR-CA1PYR).
Consequently, the intra population activity is highly synchronized. In order to
introduce desynchronization, the delays are made distance dependent. The cells are
organized according to the laminar structure of the hippocampus (see section 1.1.3).
Except for compartment’s thickness, the models are 2D and placed parallel to the
XY-plane. The somato-dendritic axis is aligned with the y-axis. The principle
cells of each subregion are uniformly distributed over a region of 1 mm wide and
100 µm thick (x×z). The interneurons of each subregion are confined to a region of
100 µm×20µm around the center of the principle cells’ subregion. Subsequently,
the DG, CA3 and CA1 subregions are rotated around the z-axis with rotation angles
10, 0, 161°, respectively. Next, they are translated with respect to the center of
the Cornu Ammonis corner (indicated by blue asterisk in figure 4.4). The transla-
tion vectors of the DG, CA3 and CA1 subregions are [−1532.00, 263.25, 0] µm,
[−74.25,−850.50, 0] µm and [−810.00, 1329.75, 0] µm, respectively. The enthori-
nal cortex and septum spike generators are located at [−4443.00, 627.75, 0] µm.
Except for the Schaffer collaterals, all distances between two connected cells are
determined via the Euclidean distance. The Schaffer collateral distance is calcu-
lated following the orange path in figure 4.4. The propagation velocities are set to
300 µm/ms [37] except for the enthorinal cortex and septum inputs which are set
to 1000 µm/ms because of their myelination [38–40] . Results under this network
configuration are labeled HF.
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Figure 4.4: The network model according to the hippocampal formation’s anatomy. The
asterisk indicates the networks origin. Schaffer collateral distance follows the
orange line. All other connections are calculated via the Euclidean distance as
illustrated with green lines. The background figure is Nissl-stained horizontal
section through the rat hippocampal formation adopted from Andersen et al.
(2007) [41]

4.2.4 Derived Quantities
Extracellular Field Potentials

In order to compare the simulation results with experimental data recorded with a
multi-electrode array, the extracellular field potential needs to be determined. The
extracellular field potential, often called local field potential (LFP), arises from the
superposition of any type of transmembrane currents [42]. This can be obtained
with NetPyNE’s built-in method that utilizes the line source approximation [43] in
an Ohmic medium with conductivity σ = 0.3 mS/mm. For a recording electrode at
a radial distance r and longitudinal distance h from the end of a line source with
length l the extracellular potential (Ve) is estimated via:

Ve,k =
1

4πσ

∫ 0

−l

itmA

l
√
r2 + (h− s)2

ds (4.3)
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Ve,k =
itmA

4πσl
log

√
h2 + r2 − h√

(l + h)2 + r2 − (l + h)
(4.4)

where itm is the total transmembrane current of a neural segment k with length l
(l = L/nseg) and membrane surface A. For a total of N individual sources the total
Ve is given by:

Ve =

N∑
k

Ve,k (4.5)

Evoked Potentials

To study the responsiveness of a neuronal circuitry, afferent axons can be stimulated
to elicit evoked extracellular potentials in the postsynaptic region, in short evoked
potential (EP). The experimentally recorded EPs are measured in the CA1 region
after electrical stimulation of the Schaffer collaterals. Because axons are not
modeled, a current is injected into the CA3PYR soma in order to elicit an action
potential. A paired-pulse experiment is performed with a pulse repetition period of
20 ms and the first pulse given after 100 ms. Experimentally, the stimulation current
is increased step-by-step in order to obtain the input-output curves. In the model, a
single square-wave current is injected with a pulse duration of 3 ms and amplitude
of 7.8 nA that initiates an AP on each pulse. Because all CA3PYR cells have the
same excitation threshold, the increased recruitment experimentally obtained by
elevating the stimulus current is simulated by increasing the number of CA3PYR
cells that receive the current stimulus.

Figure 4.5: Feature extraction of the evoked potential (EP). The in CA1 stratum pyramidale
recorded extracellular potential of a paired pulse stimulation of the Schaffer
collaterals is shown with stimulation times indicated by the blue vertical lines at
50 and 70 ms. Extracted features are time-to-peak (t2p), EP start time (EPstart),
EP peak amplitude (EPamp), population spike amplitude (PSamp), PS surface
(PSsurf), the PS full width at half maximum (FWHM) and the EP slope (EPslope)

An example of the EPs in the stratum pyramidale of the CA1-region as a result
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of a paired-pulse stimulation of the Schaffer collaterals is shown in figure 4.5. Inter-
esting features are the EP peak amplitude (EPamp) and slope (EPslope), which are
measures for the strength of synaptic transmission. The slope is obtained by fitting
a linear function in a small window around the point of the EP’s derivative’s maxi-
mum. If the postsynaptic cells synchronously fire action potentials, a population
spike (PS) can be observed. This is a trough on the Ve due to the sodium influx into
the cells. The PS amplitude (PSamp) is determined as the maximal vertical distance
between the trough and the tangent connecting the two neighboring peaks [44].
The PS surface (PSsurf) is the area in the trough, confined by the tangent. The PS
surface and amplitude contain information on the excitability while the full width
at half maximum (FWHM) provides information on synchrony. Additionally, the
EPamp or EPslope ratios of the paired pulse experiment can give insights on short
term plasticity mechanism, e.g, in this example paired-pulse facilitation can be
observed.

4.2.5 Seizure-like Activity Modeling
High K+ modeling

Elevation of the extracellular potassium concentration (high K) has been shown to
introduce seizure-like epileptiform activity in-vitro. However, in the original model,
the Nernst potassium potentials are fixed and changes in potassium concentration
are not tracked. In order to include the elevated extracellular potassium effect, first
the extracellular Na and K concentrations are set two 140 and 2.5 mM, respectively.
Next, given these extracellular concentrations and the initial Nernst potentials, the
intracellular concentrations of both ions are determined in each compartment by
inverting the Nernst equation. Subsequently, the Nernst potassium potential is
updated upon extracellular K elevation. This method affects only K-specific ion
channels. The Na concentrations are determined as well in order to include the
effect on non-selective ion channels like for instance il, ih and iAMPA. Assuming
that sodium and potassium permeability are dominant for these channels, the
permeability ratio can be determined via the Goldman-Hodgkin-Katz relationship.

Ex =
RT

F
ln

[K]o +RNaK [Na]o
[K]i +RNaK [Na]i

(4.6)

RNaK = PNa/PK =
[K]i exp (ExF/RT )− [K]o

[Na]o − [Na]i exp (ExF/RT )
(4.7)

with Ex the reversal potential of channel x, R, T and F the universal gas constant,
the temperature and Faraday’s constant, respectively. PNa and PK are the sodium
and potassium permeabilities. Subsequently, given RNaK the new Ex can be
calculated with equation (4.6) for elevated [K]o.
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mTLE modeling

The two main histopathologies observed with mTLE are: hippocampal sclerosis
and mossy fiber sprouting. Mossy fiber sprouting is modeled by adding recurrent
connections between the DG granule cells arriving at the proximal dendrites. The
used synaptic weights are equal to the weights of the ECL-GC connections. Due to
the limited amount of cells in the network model, hippocampal sclerosis is included
by systematically reducing synaptic weights of all CA cells.

4.3 Experimental Data
The experimental data was provided by Erine Craey of the 4Brain lab. In brief,
transverse slices with a thickness of 350 µm were prepared from the ventral hip-
pocampus of male Wistar rats of 4-6 weeks old (Janvier Labs, France). The slicing
process was conducted using a VT1200S microtome (Leica Microsystems, Wetzlar,
Germany). The care and handling of the animals adhered to European guidelines
(directive 2010/63/EU), and were in compliance with protocols approved by the
Animal Experimental Ethical Committee at Ghent University (ECD 19/29). Extra-
cellular stimulation and recording were carried out using a planar multielectrode
array (MEA) provided by MCS in Reutlingen, Germany. The MEA features 60
electrodes coated with titanium nitride, each with a diameter of 30 µm and spaced
200 µm apart. The recorded data was pre-amplified through a high-bandwidth
MEA1060-BC pre-amplifier and subsequently digitized at sampling frequencies of
either 10 or 25 kHz. To stimulate the Schaffer collaterals, a monophasic negative
voltage pulse lasting 100 µs was applied to a nearby MEA electrode. Stimulation
amplitudes were varied within the range of -500 mV to -3500 mV, adjusted in
increments of -250 mV. Elevated extracellular potassium levels were induced by
adding KCl, progressively increasing the concentration from 3.25 mM to 8.5 mM.

4.4 Results and Discussion
In this section, I present the results from the hippocampal formation network model
and its applications. I begin by discussing modifications made to the original CP15
model. Following this, I analyze the response to Schaffer collateral stimulation
and compare it to MEA recorded data in hippocampal slices. Finally, I assess the
model’s capability to generate seizure-like activity in response to elevated extracel-
lular potassium levels and mesial temporal lobe epilepsy (mTLE) pathologies.

4.4.1 Network Response to Enthorinal Cortex and Medial Sep-
tum Input

To enhance the output of the evoked potential model (as discussed in next section,
section 4.4.2), I made modifications to the Cutsiridis and Poirazi (2015) original
model [33]. However, it is imperative that these improvements did not compromise
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Figure 4.6: Rastergrams of different models in response to entorhinal cortex and septum
input. A The original CP15 model. B Model with increased CA1 connectivity
(conn2).
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Figure 4.6: C Model with both alternative connectivity and improved calcium coupling,
spatial discretization, and elevated internal calcium (conn2, v2). D Model
with alternative connectivity and CA1PYR substitution with TK21 model. E
Model with alternative connectivity and distance-dependent synaptic delays
(HF). F Fully modified model. G Entorhinal cortex (layers 2 and 3) and medial
septum theta rhythm input, each modeled by two out-of-phase spike-generating
populations. A-F Subregion differentiation is provided on the right and applies
to all subplots. Each marker indicates the crossing of the -10 mV action potential
threshold.

the original model’s response. The original model is able to accurately simulate
firing of different hippocampal cells in response to theta rhythm input, as depicted
in figure 4.6 (A). It can be observed that only the pattern cells are able to fire action
potentials. Moreover, the pattern cells of a single population fire at exact the same
time. Also, the CA1PYR neurons fire predominantly phase-locked to the ECL3180
input, out of sync with the Schaffer collateral stimulation. This while CA3PYR
neurons do fire in response to the granule cells activity (synchronous firing).

A first alteration involves introducing additional connections within the CA1 mi-
crocircuit (referred to as conn2, see figure 4.3 and table 4.2) to establish interneuron-
mediated feedback loops and reduce single synaptic strengths. The effect on the
model output is given in figure 4.6 (B). Notable changes include a slight increase in
the firing rate of CA1PYR cells from 9.2 Hz to 10.3 Hz and the emergence of small
bursts (2-3 successive spikes) in CA1BC and CA1AAC cells. This leads to more
synchronized firing of CA1PYR and CA3PYR neurons, while the response from
the CA3 and DG regions remains unchanged.

Incorporating internal mechanism modifications (referred to as v2, see sec-
tion 4.2.3) in combination with conn2 primarily impacts interneuron firing, result-
ing in fewer small bursts (see figure 4.6 (C)). The firing of principal cells remains
largely unaffected. Substituting with the improved CA1PYR TK21 model signif-
icantly reduces CA1PYR firing and synchronizes it with the Schaffer collateral
input (CA3PYR action potentials, see figure 4.6 (D)).

The result of a model including both conn2 and distance dependent synaptic
delays (HF) is given in figure 4.6 (E). This introduces some interesting changes
in the model’s behavior. Still, only the pattern cells of the CA1PYR cell reach
excitation threshold. However, there is desynchronized activity with a few cells (<4)
firing ∼40 ms out-of-phase. A single similar occurrence is observed in the CA3PYR
cells. Additionally, non-pattern CA3PYR neurons are recruited. Combining all the
changes above returns the synchronized activity within a single population (see
figure 4.6 (F)). The individual cells fire with a small jitter (on average a 0.7 ms
standard deviation, see figure 4.15). This is within the expected range from the
introduced distance dependent synaptic delays. There is increased CA3PYR activity
resulting in synchronized firing of the CA1PYR cells. Moreover, there is a single
occurrence with recruitment of both pattern and non-pattern cells.

Overall, in the final model, the firing rate of the principle cells is increased,
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shifting from 9.2 to 11.2 Hz and 8.4 to 11.1 Hz for the CA1PYR and CA3PYR
pattern cells, respectively. Compared to the original model, there is a shift from pre-
dominantly ECL3180 phase-locked firing of the CA1PYR cells towards CA3PYR
phase-locked activity. This shift is attributed to the substitution with the TK21
model, which is less excitable due to its lower resting membrane potential (-72 mv
compared to -65 mV in the CP15 model). Notably, an increase of the ECL3180
synaptic weights did not revert to ECL3180 phase-locked activity. These modifica-
tions were aimed at enhancing biophysical realism. The combination of all changes
resulted in the best outcome, maintaining a theta rhythm response. However, the
mechanism behind the altered phase-locking of CA1PYR cells could be a subject
of future investigation.

4.4.2 Evoked Potentials
In this section, I assess the model’s ability to generate Schaffer collateral-stimulated
evoked potentials (EP). The Schaffer collaterals target the stratum radiatum of the
CA1 region. When an action potential arrives at the synapse, glutamate is released,
activating AMPA and NMDA postsynaptic receptors. This results in depolarizing
currents and the generation of excitatory postsynaptic potentials (EPSP). There-
fore, at the stratum radiatum, this current sink is expected to result in a negative
extracellular voltage (Ve) deflection. At the soma and basal dendrites, in the stra-
tum pyramidale and oriens, the return current should produce a current source
accompanied with a positive voltage deflection. This is observed experimentally in
hippocampal slice recordings, as is shown in figure 4.1 on the right. The lower row
illustrates the negative Ve in the stratum radiatum, while the upper row displays
the positive Ve change in the stratum oriens. In this example the electrodes of
the middle row are too close to the radiatum-pyramidale boundary, resulting in a
negative Ve deflection.

The original model’s prediction for an EP measured in the stratum pyramidale
and radiatum during a paired-pulse stimulation is presented in figure 4.7 (A). The
result is for the stimulation of 100% of the CA3PYR cells, as modeled as alternative
to axon stimulation (cf. section 4.2.4). Several discrepancies from the MEA
recorded EPs can be observed. In the stratum pyramidale, the positive Ve deflection
is negligible compared to the population spike (PS) amplitude. Moreover, the latter
consists of three troughs with only a positive Ve deflection observed prior to the PS.
The first two troughs correspond to the separate spiking of pattern and non-pattern
cells. The Ve recorded in the stratum radiatum initially exhibits a negative deflection
followed by a high positive peak, which deviates from the experimentally measured
EP. Following the second pulse, only CA1PYR pattern cells fire action potentials,
resulting in a smaller peak and trough in the radiatum.

To improve the EP outcome, I integrated the model modifications discussed
in the previous section. First, it was identified that the high peak in the stratum
radiatum and the third trough in the pyramidale were due to GABAergic input
originating from the CA1BSC. This led towards the adoption of conn2, where the
GABAergic weights on the CA1PYR cells are reduced. Despite a tenfold reduction
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Figure 4.7: The evoked potential in the CA1 stratum pyramidale and radiatum in response
to a paired-pulse Schaffer collateral stimulation for various model configura-
tions. A The original CP15 model. B Model with increased CA1 connectivity
(conn2). C Model with alternative connectivity, improved calcium coupling,
spatial discretization, and elevated internal calcium (conn2, v2). D Model with
alternative connectivity and CA1PYR substitution with the TK21 model.
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Figure 4.7: E Model with alternative connectivity and distance-dependent synaptic delays
(HF). F The fully modified model. The results are shown in response to the
firing of 100% of the CA3PYR cells. The response to the first (second) pulse is
presented in the two columns on the left (right). The EP measured in the stratum
pyramidale and radiatum is depicted in the odd and even columns, respectively.
The EP overlays a histogram of the spike count generated by CA1PYR cells
relative to the total number of CA1PYR cells.

in the GABAergic weights, the peak in the stratum radiatum only slightly diminished
and the positive Ve deflection in the stratum pyramidale became only slightly more
prominent (see figure 4.7 (B)). This marginal effect is due to the recruitment
of CA1BC, which was absent in the original model. The internal mechanism
changes (v2) affect primarily interneurons. As can be seen in the transition from
figure 4.7 (B) to (C), only the small ripples, generated by transmembrane currents
during an action potential in CA1 interneurons at 110 ms and 135 ms, disappear.

The substitution with the TK21 model aimed to increase somatic return currents,
as shown in Figure 2(D). The result is shown in figure 4.7 (D). However, the impact
on the EP measured in the stratum pyramidale is minimal. The peak in the stratum
radiatum decreases, primarily due to reduced action potential backpropagation in
the TK21 model, which decreases shunting of the AMPA currents. The remaining
peak is a result of a combination of GABA and potassium currents (see figure 4.8).
Importantly, the responses to the first and second pulse are now similar.

It is clear that the EP is dominated by the active transmembrane currents during
an action potential. This is illustrated in figure 4.8, with sodium currents being the
main contributors to the total transmembrane current (itot). In the radiatum, the
current sink created by high AMPA currents (dotted orange) is counteracted by
GABA and potassium currents. Additionally, the arrival of AMPA input from the
Schaffer collaterals at each cell at exactly the same time, decaying with a short time
constant of 3 ms, contrasts with the observed EP width of approximately 10 ms
(as seen in figure 4.5). To introduce desynchronization, I implemented distance-
dependent synaptic delays (HF), which results in broader and lower troughs and
peaks (see figure 4.7 (E) and (F)). However, this effect is only marginal, and
the expected gradual activation of CA1PYR cells was not achieved. As seen
in figure 4.10 (E), there is a discrete jump from 20% to 100% activation when
stimulating 60 CA3PYR cells. In the subsequent results, I exclusively used the
fully modified model (i.e., conn2 v2 TK21 HF).

The CA1 region is modeled with only 104 cells, all reaching activation thresh-
old when 100% of the CA3PYR cells are recruited. Considering that the active
currents during the AP dominate any other current, it is possible that the EP is
concealed due to the limited number of simulated cells that do not fire an AP. To
address this, I included 1000 dummy cells, i.e., CA1PYR cells with only passive
properties (see figure 4.8). These dummy cells receive the same synaptic input
as the regular CA1PYR cells. A comparison of the measured EP in the stratum
oriens, pyramidale, and radiatum, with these dummy cells included, is presented
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Figure 4.8: The CA1PYR transmembrane currents following the first Schaffer collateral
stimulation pulse in the fully modified model. The Schaffer collaterals are
stimulated at t = 100 ms.
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Figure 4.8: (Top) An approximation of the current sources and sinks is derived by summing
the total transmembrane (itot) currents measured at the center of each section, cat-
egorized into layers as indicated on the left. The bottom-right subplot illustrates
a weighted sum of the pattern cell (top-left), non-pattern cell (top-right), and
dummy cells (bottom-left), with weights of 20/1100, 80/1100, and 1000/1100,
respectively. (Bottom) Depiction of individual transmembrane currents. The
synaptic current of only a single synaps is displayed. The line color indicates the
matching scale bar. The height of the scale bar corresponds to the given value

in figure 4.9 (A). The EP shapes now more closely resemble the experimentally
measured EPs. Consequently, it could be argued that thousands of cells receive
the Schaffer collateral input, with only a limited number CA1PYR cells being
activated. A breakdown into the contribution of the regular CA1PYR cells and the
Ve due to the other cells is given in figure 4.9 (B) and (C). Notably, while the active
currents during an AP do contribute to the total EP (figure 4.9 (B)), they are not
solely responsible for the troughs and peaks, as evident in figure 4.9 (C). Further
examination of the transmembrane currents in the soma of the dummy cells (cf.
figure 4.8) reveals that the first peak is due to the capacitive return current, while
the second peak is entirely mediated by GABA. This is confirmed in figure 4.9 (D),
where the GABAergic currents are omitted, resulting in the disappearance of the
second peak.

In future research, it may be worth investigating whether these GABAergic
currents indeed contribute to the experimentally measured evoked potentials or
exploring ways to reduce their impact on the modeled EPs. Possible strategies
include increasing the number of interneurons to reduce the strength of individual
synapses. Together with distance-dependent synaptic delays, this would introduce
some additional temporal averaging. Alternatively, spatial spreading of synaptic
inputs and variance in synaptic gains could be considered. As depicted in fig-
ure 4.8 (top), the active current sources and sinks are currently highly localized,
with spatially smeared-out return currents. Hence, by spreading the synaptic inputs
spatially, which are currently limited to single points on the dendritic tree, it might
be possible to smear-out active sources and sinks, enabling the emergence of return
currents in the EP.

Finally, it is investigated whether the extracted EP features (see figure 4.5)
can effectively capture the anticipated trends with respect to increased Schaffer
collateral stimulation. The results are summarized in figure 4.10. In figure 4.10 (A),
a logarithmically shaped trend of the EP amplitude (EPamp) within the stratum
pyramidale is observed. This contrasts with the expected linear trend due to the
linearly increasing recruitment of CA3PYR cells. Notably, when GABAergic
connections are omitted, a reduction in the EPamp can be seen. This is indicative
for the selection of the GABA-induced peak as EPamp. This is further confirmed
in figure 4.10 (B), where the EPamps exceed the effective field EPSP amplitude
(fEPSPamp, i.e, the peak produced by the model prior to the PS), except in the
no gaba simulations. When all pyramidal cells are considered as pattern cells, an
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Figure 4.9: Evoked potential (EP) in the CA1 region of the fully modified model, where
100% paired-pulse stimulation is applied. Additional dummy cells are intro-
duced to amplify the contribution of the evoked postsynaptic potentials and
return currents to the recorded Ve at the electrode. The response is recorded
at three electrodes positioned in the stratum oriens, pyramidale, and radiatum,
with their exact locations depicted in the inset. A illustrates the EP response
of the model, including 1000 dummy cells. B shows the measured EP of only
CA1PYR transmembrane currents, dummy cells excluded. C represents the
response in A subtracted from the one in B. D depicts the model response with
dummy cells but without GABAergic connections on the CA1PYR cells.

upward shift in the EPamp is observed, suggesting contributions from both fEPSP
and GABAergic peaks on the measured EPamp.

Figures 4.10 (C) and (D) illustrate the fEPSPamp and population spike ampli-
tudes as functions of increased Schaffer collateral stimulation. The inclusion of
dummy cells results in smoother trends, yet the fEPSP amplitudes after the second
pulse are notably lower. Excluding the dummy cells leads to a more linear trend,
although it has outliers, particularly when non-pattern cells are recruited. This
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is evident in the CA1PYR spike count in figure 4.10 (E). The PSamp extracted
from the EP signal generated by the normal CA1PYR cells proves to be a better
metric for spike count than when the dummy cells are included, as evident in the
comparison between figures 4.10 (D) and (E). Although there is not a gradual
activation of CA1PYR cells, the cells fire more synchronously with increasing
Schaffer collateral stimulation (as shown in figure 4.10 (E, left)), which explains
the continuous increase in the measured PSamp in figure 4.10 (D). The change in
EP slope is depicted in figure 4.10 (F) when dummy cells are not included. Based
on these trends, the EP slope appears to be a more robust metric for the strength of
synaptic transmission in the model. Given these findings, the inclusion of dummy
cells, while visually more striking comparison with experimentally measured EPs,
should not be included. Therefore, dummy cells are excluded in the simulations of
sections 4.4.3 and 4.4.4

Although the shape differs from experimentally observed EPs, the calculation
of Ve and the extraction of EP features still hold merit in identifying synaptic
transmission strengths and cellular spiking. Nevertheless, it is clear that the model
output does not capture the experimentally observed short-term synaptic facilitation
(see figure 4.5 and figure 4.10 (G)). To address this discrepancy, the introduction of
plasticity mechanisms is essential. Additionally, no population spike is observed,
in-vitro, after the first pulse (cf. figure 4.10 (H)). However, these observations
are contrary to in-vivo behavior, where short-lasting reductions of the fEPSP and
population spike are observed [44].

4.4.3 Network Simulation with Elevated Extracellular Potas-
sium

In this section, the model’s predictions under elevated potassium conditions are
assessed. The effects on both K-specific ion channels and all K-dependent channels,
as outlined in section 4.2.5, are examined. Without any external input, elevation of
extracellular potassium up to a factor 3, affecting only the K-specific ions, results
in a transient burst of the OLM cells followed by depolarization block. Other
cell types experience an elevated resting membrane potential without spontaneous
firing. However, when all K-dependent channels are affected, spontaneous tonic
activity in mossy cells and hilar perforant path-associated cells, and basket cells
of the dentate gyrus is observed at a 1.5 and 2-fold increase, respectively. Fig-
ure 4.11 (top) displays the results for a 2.6-fold increase, affecting all K-dependent
ion channels without external stimulation. Here, transient activity is observed in the
CA1PYR and CA3PYR cells. Repetitive firing of the CA1PYR is evoked by the
collective firing of the CA3PYR cells. The CA3PYR cells fire once, followed by an
elevated plateau potential with superimposed oscillating activity. Further increases
in extracellular potassium results in continuous repetitive firing of the CA1PYR
cells until depolarization block occurs at a 5-fold potassium increase.

The effect on the theta-rhythmic enthorinal cortex and septum input is shown in
figure 4.11 (bottom). Elevated potassium levels render the system hyperexcitable,
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Figure 4.10: Characterization of the Schaffer collateral paired pulse stimulated evoked
potential (EP). A EP amplitude in response to the first pulse of the model,
including 1000 dummy cells, for an increasing number of recruited CA3PYR
cells. B The EP amplitude versus the effective fEPSP amplitude. The color
code in A-B indicates modifications to synaptic connectivity, with no gaba
representing the absence of GABAergic input on the CA1PYR cells, and all
pattern indicating that all CA1PYR cells receive elevated pattern cell inputs.
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Figure 4.10: C (D) The EPSP (population spike (PS)) amplitude as a function of an increas-
ing number of recruited CA3PYR cells, with dummy cells on the left (teal) and
without on the right (purple). E The standard deviation of the spike times (left)
and the effective spike count (right) of the CA1PYR cells. F The EP slope
measured in the stratum pyramidale (left) and stratum radiatum (right) without
dummy cells. G and H represent the measured EP amplitude and PS amplitude
in the stratum pyramidale of hippocampal slices for increasing stimulus inten-
sity. The shaded area indicates the 95%-confidence interval of 15 measured
EPs across two slices in the stratum pyramidale. Dotted lines represent results
in response to the first pulse, while crosses indicate the response to the second
pulse of the paired-pulse stimulation, which applies across the entire figure.

leading to the recruitment of non-pattern cells and bursting behavior in the CA1
region. At a 1.5-fold increase (not shown here), only doublets (two-spike bursts)
occur, while the overall theta-rhythm activity is preserved. Affecting only the K-
specific ion channels also results in bursting, albeit with shorter bursts and minimal
recruitment of non-pattern cells. At a 2.6-fold increase, the CA3PYR cells do not
exhibit bursting activity. They fire synchronously, followed by a short period of
depolarization block.

The impact of elevated potassium levels on the EPs is presented in figure 4.12
(top). At a 2-fold increase, the model predicts consecutive spiking of CA1PYR
cells, driven by a double spike in the CA3PYR cells. Furthermore, non-pattern cells
are recruited at lower stimulation levels, and increased jitter is observed. With a 2.6-
fold increase, the CA3PYR cells are pushed into depolarization block after the first
stimulus, not able to elicit a spike after the second stimulus. Notably, oscillations are
observed at 100% stimulation, similar to what is recorded experimentally, although
after the second pulse at the same increased potassium level. These oscillations
result from subthreshold spikes (i.e., spikes not reaching the -10 mV threshold
level) superimposed on an elevated plateau potential.

While not fit to elevated potassium levels, the model provides interesting pre-
dictions and demonstrates similarities with experimental data. Of particular interest
is the spontaneous activity observed at the 2.6-fold increase, consistent with experi-
mental findings, while absent at a 2-fold increase in both the model and experimental
data. This effect is only obtained by affecting both K-specific and non-selective
ion channels. This underscores the importance of considering multiple factors in
computational modeling, as changes in ion concentrations are usually modeled
to affect only ion-specific channels. However, my approximation of including all
K-dependent channels might be an overestimation. To accurately model the effect,
a more precise understanding of ion-specific permeabilities for each channel is
essential, though challenging. Additionally, other mechanisms such as potassium
pumps, which are absent in current models, could contribute in altering spiking
behavior. It is important to note that the depolarization block observed in CA3PYR
cells might indicate that the model is underfit for these high potassium changes.
Recovery from depolarization block could result in more spontaneous activity.



TOWARDS A HIPPOCAMPAL FORMATION MODEL 131

Figure 4.11: Elevated extracellular potassium simulations (top) involving a 2.6-fold increase
in extracellular potassium in the absence of external input, (bottom) with the
presence of entorhinal cortex and septum input for both the 2 and 2.6-fold
increases. (top) Extracellular potentials recorded in the stratum pyramidale
of CA1 and CA3, as well as in the granule cell layer. (bottom) Extracellular
potentials recorded in the stratum pyramidale of CA1. The respective regions
are indicated on the left. Each marker in the raster plots signifies the crossing
of the -10 mV action potential threshold.
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Figure 4.12: Evoked potentials in the CA1 region following Schaffer collateral stimulation
with elevated extracellular potassium. (top) The model’s response, with the per-
centage of stimulated CA3PYR cells shown above and extracellular potassium
increase to the left. (bottom) The MEA-recorded EP response in the stratum
pyramidale of the CA1 with a 2.6-fold increase in extracellular potassium. The
shaded area represents the 95%-confidence interval of multiple responses to
the same stimulus of -2350 mV, within a single hippocampal slice.

4.4.4 Network Simulation of Mesial Temporal Lobe Epilepsy
The model’s response to mTLE histopathological changes is presented in fig-
ures 4.13 and 4.14. As described in section 4.2.5, the limited number of modeled
cells requires modeling cellular loss by reducing synaptic weights. These reductions
are based on the ILAE classified type I of hippocampal sclerosis and are applied
equally to both interneurons and principal cells. When maintaining theta-rhythm
input from the entorhinal cortex and septum, the model does not exhibit seizure-like
activity. In fact, firing rates are even reduced.

The inclusion of mossy fiber sprouting induces bursting activity in the dentate
gyrus. This subsequently propagates towards the CA3 and CA1 regions, albeit with
shorter durations. Additional cellular loss in the CA3 region leads to prolonged
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Figure 4.13: Model predictions under varying levels of temporal lobe epilepsy pathologies
with entorhinal cortex and septum theta-rhythm input. Cellular loss and the
percentage of mossy fiber sprouting are indicated on the left. Cellular loss is
modeled through a reduction in synaptic strengths, while mossy fiber sprouting
is modeled by increasing the convergence between dentate gyrus granule cells.

bursting behavior in CA3 with minimal effects on CA1. This cellular loss also
causes additional bursting in the dentate gyrus due to a feedback loop via the mossy
cells. However, cellular loss in CA1 has only marginal effects on the model’s
output. Although not shown here, granule cell loss results in a reduction of bursting
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behavior. A simulation featuring a combination of all pathological changes is
presented in figure 4.13 (bottom). When mossy fiber sprouting is included, the
system becomes hyperexcitable, and bursts spread from the dentate gyrus towards
CA1. The corresponding Ve measured in the stratum pyramidale of CA1 and CA3,
as well as the granule cell layer, are depicted in figure 4.14, revealing seizure-like
activity.

In summary, these results suggest that mossy fiber sprouting is a critical factor
triggering seizure-like activity originating in the hippocampus. Notably, granule cell
and CA1 cell loss lead to a reduction in bursting activity, while CA3 cell loss renders
the system more excitable. These observations suggest that hippocampal sclerosis
in CA1 and the dentate gyrus may represent the system’s efforts to counteract
epileptic activity. In future work, it may be beneficial to explore the decoupling of
cellular loss in principle cells and interneurons.

Figure 4.14: Extracellular potentials recorded in the stratum pyramidale of the CA1 and
CA3, as well as the granule cell layer, in response to entorhinal cortex and
septum theta-rhythm input under conditions simulating mesial temporal lobe
epilepsy (mTLE). These conditions include 80% CA1, 50% CA3, and 0% DG
cell loss, along with 30% mossy fiber sprouting.
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4.5 Conclusion
In this chapter, I have presented the development and testing of a conductance-based
network model for the epileptic hippocampus, building upon the work of Cutsuridis
and Poirazi (2015) [33]. Several modifications are proposed and examined to
enhance the response of the Schaffer collateral stimulation evoked potential. These
changes effectively preserve the theta-rhythm response, albeit with CA1 activity
phase-locked to CA3PYR instead of ECL3180. Furthermore, these adjustments
improve the evoked potential response, particularly by reducing GABAergic peaks
and increasing jitter. However, it is important to note that an exact match with
experimental data is not achieved. Notable discrepancies include the absence of
a positive evoked potential with a population spike preceding the EP peak and
the presence of GABAergic peaks in the stratum radiatum. Potential avenues for
further improvement include spatially spreading of synaptic inputs, variance in
synaptic gains, increasing the number of interneurons, and decreasing convergence
levels, which could introduce more asynchronous firing and gradual cell recruitment.
Additionally, the inclusion of synaptic plasticity mechanisms may help to model
the experimentally observed paired-pulse facilitation, even though it is important to
note the presence of paired-pulse depression in in-vivo settings.

Furthermore, two epileptic models were tested. First, elevated extracellular
potassium is used in-vitro to induce seizure-like activity. Although the model is not
fit to elevated potassium levels, it is able to reproduce similarities with experimental
data, such as the occurrence of spontaneous activity only after a 2.61-fold increase
and the observation of oscillating activity in the CA1 following Schaffer collateral
stimulation. Second, mesial temporal lobe epilepsy histopathological changes are
tested. The results demonstrate that mossy fiber sprouting is crucial for triggering
of seizure-like activity originating in the hippocampus. However, the loss of granule
cells and CA1 cells results in reduced bursting activity. It has to be noted that these
are first results, and further validation is required. Nonetheless, the current findings
are promising and suggest the potential utility of this epileptic network model as a
tool for investigating seizure suppression techniques like optogenetics.



136 CHAPTER 4

4.6 Appendix

Mech Value Cell loc note
gNa 0.09 MC soma,

proximal
dendrites

gh 2 × 5e-6 MC, HC all both fast and
slow

Eh -40 MC, HC,
CA1-PYR

all

gl 5e-5 all 1/Rm
gKAp 0.0025 CA1-PYR oriens proximal KA
gKAd [0.0 12, 0.01,

0.015,
0.01625]

CA1-PYR radiatum prox,
med, dist and

lm

distal KA

gm [6e-6, 3e-6] CA1-PYR ∼ axon, axon
gh 1e-4 CA1-PYR all
Vhalf,h -73 CA1-PYR all time constant

inflection point
gAHPK 5e-5 CA1-PYR radiatum dist
gCagK 0.01 CA1-PYR

-BSC, CA1,3
-AAC -BC

all

gNa 0.2 CA1-BSC all
gl 5e-5 OLM all
gNa 0.0127 OLM dendrite
gKA 0.004 OLM dendrite
gKdr 0.033 OLM dendrite
gh 0.0005 OLM soma
EK 50 OLM all
ENa -77 OLM all
Eh 0 OLM soma

Table 4.3: Mechanism values that deviate from the values reported in Tables S4-S9 in
Cutsuridis and Poirazi (2015) [33]
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5
Acousto-Electrophysiological

Neuroimaging

In the pursuit of advancing neuromodulation modalities, the ultimate goal is the
development of closed-loop systems. These systems are designed to deliver

neuromodulation interventions only when necessary and in an adaptive manner.
Achieving this objective depends on the acquisition of precise neural activity
recordings. In the preceding chapters (chapters 2 and 3), I focused on utilizing
conductance-based models to investigate the stimulation component, specifically
exploring the potential applications of optogenetics.

In this chapter, I shift the focus towards the recording aspect, employing dipole
models to conduct research in this domain. Specifically, I will present our work on
acousto-electrophysiological neuroimaging (A Simulation Study on High Spatio-
Temporal Resolution Acousto-Electrophysiological Neuroimaging [1]), a functional
neuroimaging technique that leverages ultrasound to probe local electrophysio-
logical activity. Within this chapter, I delve into the hypothesis suggesting that
the modulation of endogenous activity onto the ultrasonic frequency (also called
acousto-electric heterodyning, i.e., upconverting the low frequency electrophys-
iological activity to higher ultrasonic frequencies) is facilitated by mechanical
vibrations relative to the recording source. The investigation in this chapter aims
to shed light on the validity of this hypothesis and assess the feasibility of the
technique based on this underlying mechanism.



144 CHAPTER 5

5.1 Functional Neuroimaging
Functional neuroimaging techniques are well established in the medical world.
They are used in disease diagnosis, monitoring and for signal acquisition in brain
computer interfaces [2–4]. The different methods can be categorized into two
groups based on the measured activity: direct electrophysiological and indirect
hemodynamic [5].

Functional magnetic resonance imaging (fMRI), functional near-infrared spec-
troscopy (fNIRS) and positron emission tomography (PET) are modalities among
the latter group. They are based on the neurovascular coupling, where changes in
neuronal activity result in, for instance, altered blood flow or metabolic changes [4].
Compared to the electrophysiological measuring modalities, they have typically a
better spatial resolution but a worse temporal resolution. fMRI performs best on
spatial resolution. This is in the mm-range for reasonable acquisition time (1-2 s)
and full brain coverage. It can even go sub-mm, however, at the cost of temporal
resolution, tissue coverage or the need for complex infrastructure [6, 7]. PET has
a slightly lower spatial resolution and a temporal resolution up to minutes. An
important advantage of both techniques is their ability to map activity of deep
regions. fNIRS is more restricted to the cortex with a maximal depth of 1-3 cm
below the skull. The spatial resolution is also lower with respect to PET and fMRI,
being in the upper mm-range (5-10 mm). On the other hand, the sampling rates are
around 10 Hz [2, 5, 8, 9].

Electroencephalography (EEG) and Magnetoencephalography (MEG) directly
and non-invasively measure the electrophysiological activity. Their spatial reso-
lution is in general lower than that of the hemodynamic modalities. Due to the
differences in electrical properties between biological tissues, such as scalp and
skull, the EEG-signal strongly smears out onto a larger scalp area (>10 cm2 [10],
3 cm2 [11]) [12]. The differences in magnetic permeability of the tissues are negli-
gible resulting in less dispersion. Consequently, it is argued that MEG performs
better in source localization with 1 cm and 2.5 cm error for MEG and EEG, re-
spectively [13]. On the other hand, the study of Klamer et al. (2015) [14] showed
a significantly lower localization error for high-density EEG (256 channels) com-
pared to MEG (275 channels) when individual head models were used. Thus,
by using realistic models to overcome the dispersion, better localization can be
obtained with EEG than with MEG for the same number of sensors [14, 15]. The
electropyhsiological activity can also be measured with implanted electrode arrays.
This can provide local information of a small volume of cells. Of course, they are
invasive, causing tissue damage. Furthermore, electrochemical reactions can affect
signal stability [5]. Finally, a less invasive approach is electrocorticography (ECoG)
where electrodes are subdurally implanted. By surpassing the skull, the spatial
resolution is improved with respect to EEG (5 mm) [10]. However, the coverage is
restricted to the region below the electrodes [16, 17]. All these electrophysiological
modalities have a superior sub-millisecond temporal resolution [13]. Furthermore,
they directly measure neuronal acitivity, while there is a latency of ∼ 5 s between
neuronal activity and hemodynamic changes [2, 8]. Moreover, a medio-lateral shift
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between hemodynamic and electrophysiological localization has been observed, as
well [14].

A single technique’s disadvantage could be overcome by adopting a multimodal
approach. For instance, fMRI and EEG have strong complementary strengths. A
hurdle, however, is the concurrent electromagnetic interference inducing artifacts
[4]. On this aspect fNIRS is promising because it can be coupled with EEG, MEG
or fMRI seeing it does not make use of metallic probes [8]. Although often thought
as competing, also EEG and MEG provide complementary information allowing
for better accuracies [12, 13].

Other important properties are cost, equipment size, and patient comfort, the
latter including, portability, noise and movement freedom. Here, EEG scores the
best (as well as fNIRS), making it together with its high temporal resolution an
attractive and therefore highly investigated technique [5, 9].

Advances in electrophysiological source imaging (ESI) have significantly im-
proved the localization errors of EEG. The goal is to find the underlying sources
responsible for the measured EEG signal, by solving the inverse problem. This
problem is strongly ill-posed due to the in theory billions of sources and only
limited number of electrodes. A summary of all contributing sources to the electric
field is given in [10]. A solution to this inverse problem is found by minimizing the
difference between measured and calculated signals, the latter obtained by solving
the forward problem. A review on the different ESI-algorithms is given in He et
al. (2018) [4] and Asadzadeh et al. (2020) [18]. It has to be noted that centimeter
differences in localization depending on the used ESI method exist [19, 20]. The
accuracy can be improved by increasing the number of electrodes. However, the
additional absolute improvement decreases with increasing number of electrodes.
Also, the localization error increases with depth, while the rate drops with a higher
number of electrodes [21].

The chosen forward head model strongly affects the localization accuracy,
as well. It translates the activity of a source in the brain to the electrode. As
aforementioned, the signals are strongly dispersed by differences in electrical prop-
erties between biological tissues. Realistic head models can improve accuracy
by including anisotropy and inhomogeneity of the tissues [18, 19, 22]. Klamer
et al. (2015) [14] also demonstrated a significant inter-subject variability. Con-
sequently, a patient specific head model needs to be constructed, which can be
obtained via magnetic resonance image of the head. On the other hand, this in-
creases computational complexity preventing real-time analysis. Also the need for
an MRI scan impacts the ease-of-use of EEG.

Aside from the conventional techniques discussed above, the use of ultrasound
for functional neuroimaging is receiving increased attention. Functional ultrasound
imaging is another hemodynamic technique with high spatial and temporal resolu-
tion (millisecond and millimeter). Although limited to two-dimensional imaging
planes, transition to 4D image acquisition is being investigated [23]. Alternatively,
by probing the brain with focused ultrasound (see figure 5.1 (A)), it has been
hypothesized that the electrophysiological activity in the ultrasound focus will be
modulated onto the ultrasound frequency. The endogenous signal can be retrieved
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after demodulation. In this manner a superior spatio-temporal resolution can be
obtained, where the spatial resolution depends on the size of the ultrasound focal
zone (mm-range) and the temporal resolution is sub-milisecond (like with EEG).
Moreover, no inverse problem needs to be solved, removing the hurdles mentioned
above. Bin He (2016) [24], postulated that modulation is achieved by relative mo-
tion of the source with respect to receiver due to mechanical vibration induced by
the ultrasonic field. This was tentatively called acousto-electrophyiological neu-
roimaging (AENI). Another possible underlying mechanism is the acousto-electric
effect (AE), i.e., a pressure induced change in conductivity [25, 26].

Other research groups (Witte et al. [27], Song et al. [28], Rintoul et al. [29])
already performed in-vitro experiments, proving that the electric signal gets modu-
lated onto the ultrasound carrier [30]. It was shown that the technique could be used
for 4D ultrasound current source density imaging (UCSDI) modality [31, 32]. The
spatial resolution was indeed in line with the full width at half maximum of the US-
focal zone. When applied to the brain this was termed transcranial acoustoelectric
brain imaging (tABI) [33, 34]. Barragan et al. (2020) confirmed that a broadband
EEG-like signal from deep within the brain (40 mm) could be retrieved [34].

5.2 Simulation Study on High Spatio-Temporal Res-
olution AENI

The framework used to test the mechanism as stated by He (2016) [24] is described
below. A quasi-static approach is adopted to model the displacement of the brain
regions. I opted for a simplified solution of the problem for mathematical conve-
nience, i.e., the head is modeled as a set of concentric spheres. Next, I elaborate on
the dipole moments and their time dependent signals, important for the static inter-
ference contribution. A synthetic ultrasonic field is applied to control the influence
of vibrational interference. Both are biological noise sources that interfere with the
signal of interest. The former originates from the static field. The latter is due to
vibrating regions not being the region of interest. Finally, the signal demodulation
method, metrics and FDA limits, used to test the method’s feasibility are described.
The full study was performed in MATLAB R2021b.

5.2.1 Spherical Four-Layer Head Model
The head is modeled as a set of concentric homogeneous spheres, figure 5.1 (B).
An analytical solution can be obtained by solving the general Poisson equation in
spherical coordinates. For a current dipole with moment Imaxf(t)ddp on the z-axis,
the induced electric potential Vl in volume l for an arbitrary point on the XZ-plane
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Figure 5.1: Concept of acousto-electrophysiological neuroimaging and used models A A
highly focalized ultrasonic field is applied to the brain to mark a specific region.
Mechanical vibration of the tagged region modulates the biological signal on
the ultrasound’s carrier frequency, spatially encoding the electrical brain activity.
Demodulation of the measured EEG signal should return the marked region’s
activity. B The spherical four-layer head model, with each layer specified by its
conductivity σl, permittivity ϵl and radius Rl. The electrical activity of different
brain regions are represented as dipoles (arrows) with the tagged region in red. C
Schematic of the equivalent dipole and its parameters. The potential is measured
at P in the xz-plane. The circle, asterisk and triangle indicate the corresponding
positions of the dry, wet and cortical electrodes.

can be determined via:

Vl(r, θ, ϕ = 0, t) =
Imaxf(t)ddp

4πσl
·

∞∑
i=1

[(
Al,i

ri+1
+Bl,ir

i

)
(
P 0
i (cos(θ)) er − P 1

i (cos(θ)) cos(ϕ = 0)et
) ] (5.1)

where σl is the conductivity of volume l. r, θ and ϕ are spherical coordinates. The
terms P 0

i (cos(θ)) er and P 1
i (cos(θ)) cos(ϕ)et correspond to radial and tangential

components of the dipole, respectively, with et = eθ for a point in the XZ-plane,
and P 0

i and P 1
i the associated Legendre polynomial of zeroth and first order [35, 36].

For an arbitrarily located dipole, the electric potential can be calculated using
equation (5.1) after linear transformation of the dipole onto the z-axis. Equivalently,
it is determined by splitting the dipole moment in a radial and tangential component
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in the plane defined by the dipole location and measuring point vectors. Here,
θ = cos−1 (rdp · rPOI/ (|rdp||rPOI|)) and et = (rdp×rPOI)×rdp/

(
|rdp|2|rPOI|

)
,

with rdp and rPOI the location of the dipole and measuring point, respectively (see
below) [36]. The Condon-Shortley phase is included in calculating the associated
Legendre polynomials, explaining the minus sign between radial and tangential
dipole terms (unlike in Arthur and Geselowitz (1970) [35]).

Three electrode types are of interest, i.e., cortical, and wet and dry scalp elec-
trodes. Although, no actual electrodes are modeled, these types can be associated
with different positions in the head. Therefore, the model consists of four concentric
shells, each defined by an outer radius Rl. From inside to outside: the first is brain
matter, followed by the skull, next the scalp and finally a layer of air. For the cortical
electrode, the point of interest is at the brain skull boundary (Rbrain). The wet scalp
measurement occurs at the scalp air boundary (Rscalp). The dry scalp is inside the
air shell (Rair). Under the following conditions, a solution for equation (5.1) can
be found.

Vl = Vl+1

σl
∂Vl
∂r

= σl+1
∂Vl+1

∂r
(5.2)

Vl(r) → 0 for r → ∞

Due to the interest in multiple radial positions, the solution to equation (5.1) cannot
be simplified. Therefore, it is not depicted here but the complete set of equations
to be solved can be found in section 5.6.2. The radius of each shell can be found
in table 5.1 [22]. The number of terms included in the numerical simulation in
equation (5.1) is regulated by an absolute and relative tolerance, i.e., 10−13 and
10−10, respectively, limited by a maximum of 5000 terms.

5.2.2 The Dipole Moment
The dipole model was already described in section 1.3.2. For the reader’s conve-
nience the description is repeated here. EEG response is caused by extracellular
neuron currents in response to transmembrane currents, also known as secondary
return, or volume currents. These currents can be modeled by a multipole ex-
pansion [3, 22]. However, typically only the first order expansion is used, i.e.,
the current dipole. Here, it represents the activity of a small volume of parallel
neurons [3, 22, 35, 36]. The dipole is characterized by: its position (rdp = [x, y, z],
halfway between the current source and sink), its orientation (defined by unit vec-
tor edp), the current intensity (I) and distance between the monopoles (d), see
figure 5.1 (C). The dipole moment density is then:

d(rdp) = I ddp(rdp) (5.3)

with ddp = d δ3(rdp) edp

and δ the Dirac delta. Unless otherwise specified, the dipoles are radially oriented
(i.e., edp = er). Moreover, they are uniformly distributed on n (= 3, 5 or 10)
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Figure 5.2: The time dependent current intensities of the different dipoles. Left, the power
spectral density (PSD) profile from which the time signals are reconstructed
(green line without noise). Right, the time dependent signals, with red and
orange (i.e., respectively, alpha-function and alpha-train) the time signal of the
tagged dipole and the gray lines the signal of the background dipoles derived
from the PSD-profile on the left.

concentric spheres in the brain. The layers are equidistant, with the most outer layer
at Rdp,max, and have the same dipole densities.

The current intensity varies over time. An appropriate time dependent signal
needs to be chosen to obtain an estimate of the noise level at the ultrasonic frequency
(fus). The time dependent signals of any dipole not being the dipole of interest is
derived from a power spectrum density profile:

PSD(f) =
1 + f/(ζf1)∏Nf

i=1 (1 + (f/fi)
αi)

(5.4)

with fi the ith cut-off frequency, αi the attenuation coefficient and Nf = 2 or 3, for
the vibrational and static interference analysis, respectively. ζ is randomly chosen
between [0.3, 1]. Consequently, the PSD reaches a maximum between ζf1 and f1.
Extra noise is added to increase the variance amongst the dipoles. This is drawn
from logN (0, 0.5). The time varying current intensity is then obtained via:

I(t) = Imax F−1
(√

PSD (|f |) exp(iΦ(f))
)
= Imax f(t) (5.5)

with Φ(f) an odd function of random phases, i the imaginary unit and F−1 the
inverse Fourier transform. The maximum current intensities are drawn from
N (IDOI, 3) uA. The parameter values are summarized in table 5.1. The time
signal for the dipole of interest (DOI, see section 5.2.3) follows an alpha-function
(equation (5.7)) or if explicitly specified an alpha-train (equation (5.8)).

g(t, τ) =
t

τ
exp

(
1− t

τ

)
Θ(t) (5.6)

IDOI(t) = IDOI g(t, τ = 5ms) (5.7)

or

IDOI(t) = IDOI

100∑
i=1

Bi g (t− t0,i, τi) (5.8)
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Head Model Dipoles
H M

Rbrain [mm] 70 4.6 edp,DOI [0,0,1]
Rskull [mm] 75 5.2 rdp,DOI [0,0,0 or Rdp,max]
Rscalp [mm] 82 5.9 IDOI [µA] 10
Rair [mm] 87 6.9 d [mm] 0.5
Rdp,max [mm] 65 4.1 f1 [Hz] 14
σbrain [S/m] 0.33 f2 [Hz] 103

σskull [S/m] 0.0132 f3 [Hz] 104

σscalp [S/m] 0.33 α1,2 2
σair [S/m] 5.5606 10−6 α3 10

Electrode positions Ultrasound

POI1 [1,0,0] fus [Hz] 106

POI2 [0,0,1] vus [0,0,1]
POI3 [0,1,0] fband [Hz] 2 · 103
POI4 edp,DOI Tsim [ms] 25
POI5 [1,1,1] Zac [Pa s/m] 1.5 · 106

Table 5.1: Summary of all parameters values used in the AENI simulations. Unless
otherwise specified, these values are used in each simulation. (H = Human, M =
Mouse)

with τi drawn from N (2, 0.2) ms, t0,i from |N (0, 6.5)| ms and Bi from N (0, 1.5).
Θ(t) is the Heaviside step function. Furthermore, Bi is normalized with respect to
the largest absolute Bi value. The maximum dipole moment of the DOI is set to
5 nAm, after the synchronous activity of 104 neurons with a single dipole moment
of 0.5 pAm. With a d = 500 µm, this results in a IDOI = 10 µA [37, 38]. An
example of the applied current intensities is shown in figure 5.2.

5.2.3 Ultrasonic Field
Application of the ultrasonic field causes brain regions to move with respect to the
EEG-electrodes. A synthetic ultrasonic field is used to provide more control of the
displacement field distribution.

A(r) = Amax exp

(
−|r− rdp,DOI|

κ

)
(5.9)

with κ the spatial constant in mm. Here, the displacement vector is always in the
z-direction. Therefore, rdp(t) = rdp,0 − A (rdp,0) sin (2πfust)ez , with rdp,0 =
rdp(t = 0). The field and effect of κ is illustrated in figure 5.3. The dipole of
interest (DOI) is the dipole at the location (rdp,DOI) where the displacement is
maximal (Amax). This is the tagged region.



ACOUSTO-ELECTROPHYSIOLOGICAL NEUROIMAGING 151

Figure 5.3: The one dimensional applied displacement field for decreasing values of the
spatial constant κ.

5.2.4 Quasi-Static Electromagnetic Field
Given the displacement of current dipoles, the conventional static solution for
the forward EEG problem will not suffice. A quasi-static electromagnetic field
approximation is selected. The decision is based on an order of magnitude analysis
using the Liénard-Wiechert fields (see section 5.6.1). The analysis showed that
quasi-static electric potential contributions dominate all relativistic components
(i.e., due to the Doppler effect, source acceleration and finite propagation speed of
light) for an angular ultrasonic frequency:

ωus ≪ 20.58/ddp,POI GHz (5.10)

with ddp,POI the distance between observer and oscillating source in cm. Under
quasi-static assumptions, the induced electric potential (ψ) for a displacement in
the z-direction is:

ψ(x, y, z, t) = V (x, y, z −A sin(ωust), t) (5.11)

with A the displacement amplitude, ωus the angular ultrasonic frequency and V the
induced electric potential in the reference frame of the source. A Taylor series for
A ≪ 1 yields:

ψ = V −A sin(ωust)
∂V

∂z
+O(A2) (5.12)

Consequently, given the Fourier transformation:

Ψ = Imaxf̂(ω)G

− i
AImax

2

(
f̂(ω + ωus)− f̂(ω − ωus)

) ∂G
∂z

+O(A2)
(5.13)

with separation of variables: V (x, y, z, t) = Imaxf(t)G(x, y, z), it is clear from
the second term that the measured signal (ψ) contains the information of the source
(f(t)) near the applied ultrasonic frequency, with f̂(ω) = F (f(t)). In other words,
it is modulated onto fus. ψ is obtained by evaluating equation (5.1) over a time
period Tsim with a sampling frequency of 20fus.
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5.2.5 Signal Processing
The electric potential is measured at 5 locations or positions of interest (POIs). The
POIs are defined as the location vector connecting the origin and the measurement
point (see table 5.1). Two additional POIs are included as well: mPOI and mPSO.
The former being the mean of all POIs, the latter is the mean of POIs that received
DOI’s signal within the same order of magnitude of the highest received signal. De-
pending on the electrode type of interest (see section 5.2.1), the POI is then located
at Rl · POIi/|POIi|. Subsequently, the signal at fus ± fband/2 is demodulated
following (figure 5.4):

1. Fourier transform: ψ (POIi, t) → Ψ(POIi, f)

2. bandpass filter (fus ± fband/2) followed by demodulation to baseband

3. zero order detrend, i.e., subtracting mean from real and imaginary parts.

4. compensate for phase shift due to sine (see equation (5.13))

5. inverse Fourier transform

Normalization of the obtained signal results in:

f̃(t) = f(t) + ϵ(t) (5.14)

where f(t) is the normalized time varying current intensity (see equation (5.5)) and
ϵ(t) the error due to interference of other dipoles. Finally, the root mean square error
(RMSE), with respect to the input signal is determined, to asses the reconstruction
accuracy.

RMSE =

√
1

Tsim

∫ Tsim

0

ϵ2(t) (5.15)

A titration process is used to determine the thresholds of the displacement amplitude
Amax and spatial constant κ to obtain a given RMSE-value. This process adopts the
bisection method where the midpoint is the logarithmic mean of the interval [a, b]
(i.e., log10 c = (log10 a+ log10 b)/2). At the start b/a = 10. To limit computation
time only a max of 5 iterations are evaluated.

Due to the interest of the signal at fus ± fband/2, the used conductivities in
equation (5.1) are the modulus of the complex conductivities (σ̃l) near fus. At fus,
the capacitive effects are negligible for the brain, skull and scalp conductivities.
Therefore, |σ̃l| ≈ σl. In the air layer, on the other hand, capacitive effects dominate,
resulting in |σ̃air| ≈ 2πfusϵair with ϵair the permittivity of air. The values are
summarized in table 5.1, taken from the IT’IS database [39].

5.2.6 FDA Limits
The FDA limits are used to asses the methods feasibility [40].
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Figure 5.4: The signal demodulation protocol. From left to right: Fourier transform, band-
pass filter and demodulation to baseband, zero order detrend followed by phase
shift correction and finally inverse Fourier transform.

• Pulsed average intensity:

Ipa = ZacA
2ω2

us/2 < 190W/cm2

• Temporal average intensity:

Ita = dc Ipa < 720mW/cm2

• Mechanical index:

MI[−] = PNP[MPa]/
√
fus[MHz]

= 2πZacA[Pa s]
√
fus[MHz] < 1.9

with Zac the specific acoustic impedance, PNP the peak negative pressure in [MPa]
and dc the duty cycle. Here, a plane wave approximation is applied in the fo-
cus (pus/vus = Zac), which is valid under the assumption of a small transducer
convergence angle [41].

5.3 Results
Below the results of this simulation study are shown. First the measurable signal
strength of a single dipole is investigated. This led to a preferred displacement
direction and dipole orientation combination that is further maintained in following
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Figure 5.5: Measurable signal strength for a single dipole with constant dipole moment of
5 nAm. The dipole is located in the yz-plane, and is moved radially (rdp) and
with changing co-elevation (θdp). A Distribution of the amplitude of the fus
component measurable at the scalp-air interface (Rscalp). The tagged dipole is
indicated by a red arrow. The point of interests (POIs) are displayed by black
discs. B The displacement of the tagged dipole. x and y do overlap at 0 nm.
C The signal measured at the different POI-locations as indicated in A for two
periods of the ultrasonic wave. POI4 has the highest amplitude. D The absolute
difference between co-elevation of optimal POI location (θPOI, i.e., point where
highest signal amplitude is measured) and θdp. E, F and G The signal strength
at the optimal POI for POIs at the cortex (Rbrain), the scalp (Rscalp) and with
extra air-layer (Rair), respectively. The gray horizontal line indicates the radial
location of the POI.

subsections. Next, two different interference sources are addressed. The vibra-
tional interference is investigated followed by the static interference. Finally, the
importance of the imposed reconstruction accuracy and dipole current waveform is
analyzed.

5.3.1 Measurable Signal Strength of Single Vibrating Dipole
The relationship between dipole position (rdp), orientation (edp), measurement
position (POI) and displacement direction (ez) is investigated first. A single dipole
is used, with a constant dipole moment of 5 nAm. The dipole is moved radially
(rdp) from 0 to Rdp,max. Moreover, it is rotated in the yz-plane for a varying polar
angle (θdp) from 0 to π radians. At each position, the dipole is oriented radially
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outwards (edp = er). The displacement amplitude (Amax) is 10 nm. The results
are shown in figure 5.5.

For a dipole at rdp = 20 mm and θdp = tan−1(1/2), the signal strength
measurable at the scalp is shown in figure 5.5 (A). Here signal strength denotes
the magnitude of the measured signal’s frequency component at fus (i.e., |Ψ(f =
1 MHz)|). A hotspot between POI2 and POI4 can be observed. The signal strength
does not monotonically decrease away from the hotspot. This is highlighted in
figure 5.5 (C), where the signal at POI5, although closer to the hotspot, is lower
than that at POIs 1 and 3. Furthermore, a clear oscillation of the signal can be
seen at each POI. The oscillation is either in phase or antiphase with the ultrasonic
displacement and has a period equal to 1/fus. For this setup, the maximal signal
amplitude is only 0.1 pV.

For aforementioned dipole positions, the center of the hotspot is located in the
yz-plane. The optimal polar angle (θPOI) depends both on rdp and θdp, as can be
seen in figure 5.5 (D). When the dipole is close to the center, the optimal angle is
between the dipole’s orientation and the displacement direction. At the center itself,
this is the mean vector of both directions. On the other hand for a dipole closer to
the outer surface, the optimal θPOI is closer or equal to θdp.

The maximal signal strengths measurable at the cortex, scalp or with an extra
5 mm thick air layer are shown in figures 5.5 (E), (F) and (G), respectively. As
expected, the highest signals are measured with POIs at the cortex level (Rcortex),
while the lowest are measured with POIs in the air layer (Rair, the dry electrode).
The absolute maximum is 340.604 pV while the minimum is only 0.047 pV. For
a cortical electrode, there is a three orders of magnitude difference between the
lowest and highest measurable signal strengths. At the scalp (Rscalp), this reduces
to a difference of a factor 40. The lowest measured signal is half the one measured
at the cortex. This while the maximum is more than a 100 times lower. The extra
air layer reduces the maximum further with a factor 2, while the minimum is only
reduced with 16%. For θdp = 0, introduction of the skull and scalp (and air) layer
results in a signal reduction of 68% and 30% (11% and 7%) for a fixed distance
of 22 mm and 70 mm with respect to the measuring electrodes, respectively. This
slightly increases to 70% and 36% (11% and 9%) when the dipole orientation is
perpendicular to the vibration direction. For all electrode setups, the minimum
is for a dipole at the center with an orientation perpendicular to the displacement
direction. The absolute maximum is found near the surface (rdp = Rdp,max) and
for a θdp = 0. Consequently, maximal signal strength is obtained when the dipole
orientation, displacement direction and POI position are perfectly aligned.

5.3.2 Vibrational Interference
The applied ultrasonic waves propagate through the whole brain. A spatially dis-
tributed displacement field arises. In the focus, the displacement is maximal. The
dipole located at this maximum is called the tagged region or dipole of interest
(DOI). Although lower in amplitude, the dipoles outside the focus will vibrate as
well. This will induce some interference on the signal of interest, as also these
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Figure 5.6: The effect of the displacement field’s spatial constant (κ) on vibrational in-
terference and reconstructed signal quality. A Simulation setup for dipole of
interest (DOI) at the center (deep) indicated by a red arrow. Blue arrows are the
surrounding dipoles responsible for the vibrational interference. The POIs are
indicated by black discs. The color code indicates the actual measured potential
at a single time point. B The demodulated signal measured at indicated POIs for
different spatial constants. The applied current intensity to the DOI is shown
in gray. C The root mean square error (RMSE) of the demodulated signals
measured at indicated POIs. mPOI, demodulation after the mean of the signals
at the five POIs is taken first. mPSO, the mean of POIs with same order of
magnitude before demodulation.
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Figure 5.6: D Simulation setup for DOI at rdp = 65 mm (cortex). E and F Similar to B and
C, respectively, but for DOI at the cortex. G and H The required spatial constant
to get an RMSE of 5% on at least one POI for indicated models and number of
dipole layers (n) with increasing number of surrounding dipoles, for a deep and
cortex DOI, respectively. I and J The required relative spatial constant, i.e., κ
divided by the distance between DOI and its nearest neighbor. In B, C, E and F
The result shown is for 105 dipoles and n = 3 layers, measured in the human
scalp setup. To remove static interference, a PSD with three cut-off frequencies
is used for the surrounding dipoles current intensity.

signals will be modulated onto fus. This type of interference is called vibrational
interference. Moreover, the displacement field linearly scales with the transducer
outputs. As such, only the displacement field profile itself is of importance for
the vibrational interference generated by the surrounding dipoles. A synthetic
displacement field is used, see equation (5.9). Manipulation of the spatial constant
κ allows for the investigation of the displacement field decay. The used PSD, see
equation (5.4), for the surrounding dipoles consists of three cut-off frequencies with
attenuation factors α1,2 = 2 and α3 = 10. This to remove static interference (see
section 5.3.3).

The results of the κ analysis are shown in figure 5.6. For a DOI at the center
(see figure 5.6 (A)), reducing κ to 1 mm results in almost perfect reconstruction of
the input signal (see figure 5.6 (B)). Also for κ = 5 mm, resemblance to the input
signal is observed. In case of the cortex DOI (DOI at Rdp,max, see figure 5.6 (D)),
no and rather small resemblance between input signal and reconstructed is observed
for κ = 5 and 1 mm, respectively. This is reflected in the RMSE as depicted in
figures 5.6 (C) and (F). The RMSE is below 3% at almost all POIs for a deep DOI
and κ = 1 mm. This increases to values between 20 and 40% for a κ = 5 mm. It
increases above 60% for a cortex DOI (κ = 5 mm), with only values of 30% for
κ = 1 mm. Also a difference in optimal POI position can be observed, for the deep
DOI the optimal is POI3 and the worst is POI5. While the best POI for the cortex
DOI is POI2 (equal to POI4). This being in agreement with the conclusion from
section 5.3.1. Inclusion of the artificial POIs, mPOI and mPSO, does not result in
significant improvement. It is clear that even smaller κ is required for the signal of
interest to be higher than the vibrational interference, in case of the cortex DOI.

The required κ to get on at least one POI an RMSE ≤ 5% is shown in fig-
ures 5.6 (G) and (H), for a deep and cortex DOI, respectively. It can be noted that
the measurement position, i.e. at the scalp, cortex or air, has little to no effect on the
required κ for the deep DOI in the human head model. In case of the mouse model
this is one order of magnitude lower. For a cortex DOI, in comparison with a deep
DOI, a higher κ is acceptable for a relatively small number of dipoles. However,
κ drops more quickly with increasing number of dipoles. The number of layers
(n) has a clear influence in case of the deep DOI, as well. With a higher number
of layers, a lower κ is required for all model setups. For the cortex dipole, this is
overall opposite with a lower required κ for the lowest amount of layers.



158 CHAPTER 5

nr. layers (n) 3 5 10

POI | DOI deep cortex deep cortex deep cortex

humanscalp 1.76 0.050 1.176 0.119 0.711 0.089
humancortex 1.758 0.089 1.236 0.089 0.676 0.119
humanair 1.758 0.089 1.176 0.050 0.748 0.119
mousescalp 0.089 0.005 0.050 0.005 0.005 0.005

Table 5.2: Used spatial constants (κ) in displacement amplitude simulations. Half of κ to
get RMSE of 5% for 105 dipoles.

A slightly decreasing and no clear trend can be observed for the relative κ
shown in figure 5.6 (I) and (J), respectively. Here, relative κ (rel. κ) equals to κ
divided by the distance between DOI and its nearest neighbor. For the deep dipole,
the layer, and human versus mouse models differentiation disappears. From these
relative κ plots, it is clear that the most important factor defining the required spatial
constant is the distance between the DOI and its nearest neighbor. The mouse model
is smaller. Therefore, for a same number of dipoles, it is more densely packed than
the human models. The difference, for a changing number of dipole layers, between
the deep and cortex DOI plots can be explained by this, as well. The n layers are
distributed equidistant from 0 to Rdp,max (0 excluded). In case of the deep DOI
and for a higher n, the closest neighbor is thus much closer than for a lower n. As
a result, the required κ decreases with n for a deep dipole. In contrast, for a cortex
dipole, the κ-threshold tends to increase with n, because the dipoles are uniformly
distributed onto these layers. For a fixed number of dipoles, each layer will thus
be occupied more in case of low layer count, reducing the distance between the
DOI and the nearest neighbor on the same layer. The sudden drop between 103

and 104 dipoles indicates the shift from nearest neighbor on another layer to the
same layer. The strong decreasing trend for a cortex dipole is thus explained by the
decreasing distance to the nearest neighbor at the same layer. This while in case of
the deep DOI (figure 5.6 (G)), the slight decrease is due to combined contribution
of all vibrating dipoles because the distance to the nearest neighbor, located at the
next layer, is fixed.

5.3.3 Static Interference
A second type of interference originates from the electrical activity in the brain
itself. This is called the static interference. Because the EEG energy at MHz-range
is not known, the applied current intensities to the dipoles are based on a power-law
power spectral density, see equation (5.4). Unlike in the previous section, the PSD
only consist of two cut-off frequencies. For α2 = 2, this results in a drop of 110 dB
at f = 1 MHz, with respect to DC (f = 0 Hz). To minimize the vibrational interfer-
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Figure 5.7: Analysis of the necessary displacement amplitude (Amax) to overcome the static
interference. A and B The root mean square error (RMSE) between target and
demodulated signal measured at indicated POIs with different Amax, for deep and
cortex DOI, respectively (n = 3 layers and nr. of dipoles dps = 105, measured in
human scalp setup). mPOI, demodulation after the mean of the signals at the
five POIs is taken first. mPSO, the mean of POIs with same order of magnitude
before demodulation. C The required Amax to obtain an RMSE of 5% on at least
one POI for indicated models and number of dipole layers (n) with increasing
number of surrounding dipoles. Results are for a deep DOI. D DOI at the cortex.
The plotted lines indicate the linear regression for each model and POI position
combination. E, F, G and H Effect of the second attenuation coefficient (α2) on
the required Amax (n = 3 dipole layers). The used model and electrode position
is shown in the title.

ence, half of the required κ to achieve an RMSE of 5% with 105 dipoles is used.
The values are summarized in table 5.2. Increasing the displacement amplitude
(Amax) increases the signal-to-noise ratio with respect to the static interference.
The results of the Amax analysis are shown in figure 5.7.

The RMSE of the reconstructed signals obtained at the different POIs for the
human scalp setup, are shown in figures 5.7 (A) and (B). As expected, with increas-
ing Amax, the RMSE drops at almost all POI positions. POI2 is the best location,
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nr. dipoles 1000 10000 100000

DOI POI α2 −LP α2 −LP α2 −LP

deep humanscalp 4.58 184 4.93 194 5.20 202
humancortex 5.05 198 5.24 203 5.41 209
humanair 4.54 183 4.93 194 5.38 208
mousescalp 3.76 159 4.19 172 4.45 180

cortex humanscalp 3.57 154 3.93 164 4.34 177
humancortex 2.57 123 2.99 136 3.24 144
humanair 3.73 158 4.02 167 4.41 179
mousescalp 3.02 137 3.38 148 3.70 157

Table 5.3: Summary of the second attenuation coefficient needed to have an RMSE < 5%
with a displacement amplitude of 50 nm. LP denotes the level of dipole moment
power LP[dB] = 10 log10 (PSD(f = 1 MHz)/PSD(f = 0 MHz)).

both for deep and cortex DOI. The necessary Amax to get an RMSE < 10% is 1 to
2 orders of magnitude lower for the cortex than the deep DOI.

The Amax to obtain an RMSE = 5%, for a deep and cortex DOI, are shown
in figure 5.7 (C) and (D), respectively. For each model setup, the required Amax

increases linearly on the log-log scale, with increasing number of dipoles, i.e.,
log10Amax = a log10(nr. dipoles) + b. The different model setups have similar
slopes, around 0.54. Except the cortex measurements, these have a slope around
0.75. Interesting is the different order of model setups between the deep and cortex
DOI. In case of the former, the highest displacement amplitude is required for a
human cortex setup, while this requires the lowest amplitude when the DOI is at the
cortex. The extra air layer has negligible effect for the deep DOI with an intercept
difference of only 0.0021. On the other hand, there is a significant effect when the
DOI is at rdp = Rdp,max, leading to an intercept difference of 0.2439. Moreover,
there is a 1 (2) order(s) of magnitude difference between the mouse and human
model in case of the deep (cortex) DOI. Finally, It can be seen that the number of
layers (n) has no effect on Amax.

The static interference is strongly governed by α2. As the real value is unknown,
the effect of this parameter was further investigated. As shown in figure 5.7 (E-H),
the required Amax, to have an RMSE = 5%, decreases with increasing α2 for each
model setup and fixed number of dipoles. Moreover, a similar slope around -1.5 is
observed in case of all model setups and DOI locations. From equation (5.4), the
relationship between α2 and the level of dipole moment power LP at fus compared
to DC is roughly:
LP [dB] = 10 log10 (PSD(f = 1 MHz)/PSD(f = 0 MHz)) ≈ −30α2 − 50. Conse-
quently, log10(Amax) ≈ −1.5α2 + b ≈ 1

20LP + b + 2.5, where b depends on nr.
dipoles, DOI position and model setup. The signal strength increases linearly with
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Figure 5.8: The effect of an altered intensity current (alpha-train) and changed cut-off
RMSE level (10%). A The relative change in spatial constant κ with respect to
simulation with original target settings, i.e., alpha-fun and RMSE of 5%, for the
different models. The dipole of interest (DOI) is at rdp = 0 mm. The results
shown are for different number of surrounding dipoles. B a DOI at rdp = 65mm
(cortex). C and D The relative change in required displacement amplitude (Amax)
with respect to simulation with original target settings, i.e., alpha-fun and RMSE
of 5%.

Amax (see equation (5.12)) Therefore, the power increases with 20 log10Amax,
explaining the obtained relationship.

For the technique to be safe, the FDA limits (see section 5.2.6) may not be
exceeded. The minimal α2 to have an RMSE < 5% for a displacement amplitude of
50 nm is determined via interpolation and summarized in table 5.3. For this Amax,
the corresponding MI and Ipa are 0.45 and 7.4 W/cm2, respectively. Consequently,
a maximal dc of 9.74% is allowed in order to meet the Ita limit for our pulse active
time of 25 ms. The corresponding power LP (in dB) is shown as well. It is clear
that for a deeper DOI the static interference should be much lower.

5.3.4 Reconstruction Accuracy and Dipole Current Waveform
Finally, the effect of the chosen target parameters is addressed. The results above
were for a target RMSE of 5%. Ideally, a perfect reconstruction of the target’s
current intensity profile could be obtained. Due to the aforementioned interferences,
this can only be achieved with an infinitesimal small κ and infinitely high Amax.
Capturing the general trend on the other hand can be informative as well. To
investigate the effect of the imposed reconstruction accuracy, the required κ and
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Amax for 105 dipoles are determined for an RMSE of 10%. Also, the current
intensity profile of the DOI is switched from an alpha-function to an alpha-train
(see equation (5.8) and figure 5.2). The relative change in parameters are shown in
figure 5.8 (i.e., the required κ (Amax) for the new target settings, either altered input
current intensity (alpha-train) or altered RMSE target value (10%), divided by the
required parameter value for the alpha-function intensity profile and RMSE = 5%).

The change of target function is expected to give values of 1 for both A′
max and

κ′. In case of some simulation setups, there is a large deviation from this value.
From figure 5.6 (B), it was already concluded that the RMSE is a very strict metric
for the alpha-function input. Moreover, due to the interferences, the reconstructed
signal will be noisy. This can potentially favor highly time-varying signals such as
the alpha-train.

For a target RMSE of 10%, an increase in κ and a decrease in Amax is expected.
Overall, this is observed although for some setups less pronounced. In case of
the deep DOI, only small changes (< 1.5) in κ are observed. These go up to 2.5
for the cortex dipole. For almost all setups and DOI locations, Amax is halved or
lower. It is clear that the opposed restrictions can have significant effect but do not
result in differences in several orders of magnitude, which is more of interest in this
simulation study.

5.4 Discussion
The results showed that it is possible to reconstruct the input intensity profile current
of a mechanically vibrating dipole from the frequency content near the ultrasonic
frequency. In the used model, the head is represented as a set of concentric spheres
and the signal generators as dipoles. An optimal signal strength is obtained when
dipole orientation, vibration direction and POI are perfectly aligned. When perpen-
dicular, this is minimal. Inclusion of a skull and scalp layer causes a reduction in
maximal signal strength of two orders of magnitude. An extra air layer causes an
extra reduction of a factor 2. The smallest signals only decrease by a factor two and
16% by including a skull-scalp and air layer, respectively. It is clear that that there is
a large signal reduction due to the extra distance between source and receiver. The
introduction of extra layers account for large additional losses (both propagation
and conductive). Conductive loss is more prominent with the introduction of the
skull and scalp tissues. The signal strengths are, however, small. For a fixed dipole
moment of 5 nAm and a vibration amplitude within FDA limits, the strength is in
the order of pV.

Two interference types are identified and investigated. First, the vibrational in-
terference which originates from a vibrating region excluding the dipole of interest.
Second, the static interference that comes from the electrical activity of the regions
itself. Concerning the vibrational interference, it was found that lower spatial
constants are needed to achieve accurate reconstructed signals (i.e., RMSE<5%)
with increasing number of dipoles. The κ in the mouse model is on average an
order of magnitude lower than that in the human head model setups. Although
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opposite for the deep and cortex DOI, there is also a clear effect of the number of
layers (n) modeled. As aforementioned (section 5.3.2), these three aspects can be
explained by taking into account the distance between DOI and nearest neighbor,
as also indicated by rel. κ. It should be noted that all dipoles vibrate in phase.
Consequently, the current vibrational interference reflects the upper limit. For the
cortex DOI, also an effect of the electrode position is observed. This is due to the
strong non-linear dependence between dipole vibration direction, orientation and
POI position as is shown in figure 5.5. This is more pronounced if the dipole is
closer to the POI than further away. Meaning that the contributions of neighboring
dipoles are relatively lower for the cortex setup than for the scalp and air setups
(see cortex versus scalp or air POI in figure 5.6 (G) and (H)).

The difference in Amax between the deep and cortex DOI is completely ex-
plained by the signal drop due to increasing distance between source and observer
(see figure 5.5). This holds also for the deep mouse scalp setup. The reason for the
mouse scalp setup to require a larger Amax than human cortex is attributable to the
relative distance difference between the DOI and the surrounding dipoles to the POI.
Finally, the increased slope of the required Amax with increasing number of dipoles
for human cortex measurement can be explained by the increasing density of dipoles
near the POI. This due to the 1/ri dependence as seen in equation (5.1). When the
distance is small (cortical electrode), a small change has relatively a higher impact
than when initial distance is larger (scalp electrode). Consequently, a steeper slope
is expected for the scalp versus air setup but this is below the simulation setup’s
accuracy limits.

Focusing an ultrasonic beam is complicated by the distortion imposed by cross-
ing the skull [42]. Although, adaptive focusing techniques exist, determining the
field for each setup is too tedious and therefore out of the scope of the study. More-
over, a field induced by a transducer array is not monotonically decreasing but
contains sidelobes. The sidelobes’ characteristics strongly depend on the transducer
setup [43]. To avoid dipoles to be located at the trough of a sidelobe, a mono-
tonically exponential decaying field was selected (see equation (5.9)). With its
spatial constant, the selected field distribution allows for systematic investigation,
capturing the essential spatial decay from the ultrasonic focus, which could be
used as guideline for transducer development in the future. Moreover, the spatial
constant is strongly correlated to the spatial resolution that be obtained by acousto-
electrophysiological neuroimaging, however, limited by the ultrasonic field. As
discussed above, the closer the nearest neighbor, the lower the required κ. Or
in other words, for a fixed κ the distance to the nearest neighbor is defined, this
being the spatial resolution. For the cortex DOI in the human (mouse) model, this
is 0.36(0.023) ·

√
105/nr. dipoles mm. In case of the deep DOI, this is 6.5 mm

(0.41 mm).
The dipole is an anatomically constraint representation of current generators,

a model that is typically used in ESI. Murakami 2015 showed that, in the brain,
the dipole density has a maximum value between 1-2 nAm/mm2 across different
species. The dipole moment itself can vary over 1-3 orders of magnitude depending
on the volume of active tissue. A cortical column comprises around 105 cells/mm2.
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Consequently, with a single neuron’s dipole moment between 0.1-1 pAm [44] this
results in a synchronously active fraction of 1-20% [37].

For the investigated method to be safe, the FDA limits cannot be exceeded.
The important parameter here is Amax. The required Amax is determined by the
static interference and thermal or instrumental noise. The latter is not included
in the study as it is defined by the recording device (EEG-instrumentation). As
the frequency content of the brain at US-frequency range is not known, the input
current intensities were drawn from a power-law power spectral density profile.
This has been studied in literature as this 1/fα-like power spectrum is observed at
many spatio-temporal scales. Power-laws with α between 0-4 have been reported
depending on the measured scale for frequencies below 1 kHz [45–47]. Dipole
moment calculation were performed on morphologically accurate neuron mod-
els [48, 49] to gain more insight in the energy content of realistic current dipoles
for f > 1 kHz [50]. Our calculations showed fitted power law coefficients of 4 to
5 for f ϵ [1, 25] kHz (see section 5.6.3). This corresponds to an α2-value of 3 to 4.
Although not conclusive, it justifies the tested PSD profiles but further investigation
is necessary. The results shown in table 5.3 showed that if the level of dipole
moment power (LP) is -210 dB at 1 MHz, good signal reconstruction (RMSE = 5%)
can be obtained for all tested model setups with only a displacement amplitude of
50 nm. This amplitude is well within FDA limits, if a dc of 9.74% is used with
our pulse active time of 25 ms. As expected, the LP correlates with the number
of dipoles. These dipoles represent a small volume of neurons. Therefore, the
number of dipoles and their strength Imax is limited, depending on the represented
volume. Although the static interference level depends on the number of dipoles in
this simulation setup, the static interference will be fixed in the brain. On the other
hand, the strength of the tagged region decreases with increasing spatial resolution
as the represented volume decreases. Consequently, the signal-to-noise ratio still
drops with increasing nr. dipoles and the same effect on the required Amax is thus
expected. Therefore, because the number of dipoles dictates the spatial resolution,
retrospectively, if the static interference is known, a decision can be made whether
or not and at which resolution the technique will be safe, within FDA limits.

5.4.1 The Acousto-Electric Effect
Witte et al. experimentally validated that indeed the electrophysiological activity
gets modulated on the harmonic frequency when selectively probed with ultrasound.
This was shown in numerous experiments, e.g., in a rabbit heart [32, 51], lobster
nerve [27], bath with 0.9% NaCl solution [31, 52] and a human head phantom
[33, 34]. Broadband-EEG like signals can be retrieved and current sources localized
with high spatial accuracy. The latter is defined by the US focal zone, being only a
couple of millimeters, not only for superficial but also for deep regions [34]. By
scanning with the ultrasonic beam, a 4D image can be made with unprecedented
spatiotemporal resolution. Results of this group and others are summarized in
Zhang et al. (2022) [30]. The postulated underlying mechanism, the acousto-
electric effect, i.e., a pressure induced change in resistivity, differs from the one
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hypothesized here. The mathematical formulation of modulation due to the AE is
as follows:

∆ρ = −Kρ0∆P

V EEG
i =

∫∫∫
(JL

i · JI)(x, y, z)ρ0dxdydz (5.16)

V AE
i =

∫∫∫
(JL

i · JI)(x, y, z)(−Kρ0∆P )dxdydz

with ρ0 the direct current resistivity, K the acousto-electric interaction constant,
∆P the ultrasound pressure field, and JL

i and JI the lead field of lead i and cur-
rent source density field, respectively. For the derivation I refer to Olafsson et al.
(2008) [52]. In the literature on the acousto-electric effect, the potential term V AE

i

is caused by ultrasound-induced oscillations of the electrical resistivity ∆ρ, while
the lead field JL

i and the current source JI are implicitly assumed to be undisturbed
by the pressure field. However, I argue that the AE-induced resistivity oscillations
will cause direct changes to the current density fields (JL

i and JI). Conversely, in
this chapter, modulation of the DOI current on the ultrasonic sine occurs due to the
relative motion of the dipole of interest. Consequently, both the acousto-electric
effect and the vibration of dipoles (or equivalently, the oscillation of current sources
JI and lead fields JL

i ) can be interpreted as complementary tentative underlying
mechanisms of acousto-electrophysiological neuroimaging. Furthermore, the re-
sults clearly show that the latter mechanism (vibrating dipoles) also suffices to
modulate the endogenous signal onto the ultrasonic frequency.

Wang et al. (2011) [31] reported a 27 nV/mA peak signal strength with
500 kPa pressure, and 5 mm distance between current source and sink, mea-
sured at 5 mm from current source. This equals to 10.8 pV/(nAm ·MPa). Per-
forming an equivalent simulation, i.e., dipole at [0, 0, 0], orientation [0, 1, 0],
vibration direction [0, 0, 1], d = 5 mm and electrode at [0, 7.50, 0] mm, results
in 6.1 10−6 pV/(nAm ·MPa). However, our results showed a strong nonlinear
dependence on the alignment between the dipole, displacement direction and elec-
trode position. Subsequently, a 1% misalignment (electrode at [0, 7.50, 0.075] mm)
gives 1.8 pV/(nAm ·MPa). It should be noted, that the dipole vibrates as a whole.
Moreover, d only affects the dipole moment as no distinction between current
source and sink is made (see equation (5.1)). Taken this into account, still, a
comparable strength is expected for a vibrating current dipole. A maximum of
91.0 pV/(nAm ·MPa) is obtained with an electrode at the optimal POI location
[0, 5.3, 5.3] mm.

5.4.2 Limitations and Future Work
As already mentioned in section 5.3.4, the used RMSE metric is prone to random-
ness in the results. It is very strict in the sense that only low values are returned
when almost perfect profile match is obtained. As visible in figure 5.6 (B), already
a clear peak is observed for κ = 5mm, while only a minimum RMSE of 20%
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was calculated. Consequently, more favorable spatial constants or displacement
amplitudes than the ones determined for RMSE = 5% could already give feasi-
ble reconstructions, for instance when scanning for hyperactive regions, like in
epilepsy. Here, the dipole moments will be 1-2 orders of magnitude higher as well,
increasing the signal strength with the same amount [37]. On the other hand, as
depicted in figure 5.8, sometimes no clear trends can be observed. This is due to
the randomness introduced in the simulations (e.g., the current intensity profile and
strength, and dipole positions). Simulations could be repeated for different random
seeds. However, it was deemed not feasible due to the need for large computational
resources and the expected change only being in same order of magnitude.

There was opted not to use frequency dependent electrical properties for the
different tissues. This is because the frequency dependence for the sub-MHz range
is not clearly established [53]. Moreover, the small changes do not outweigh the
big increase in computation time. A single test was performed with the frequency-
dependent values obtain from [39], which resulted in a 20% increase of the signal
strength received from a single dipole. Also, the electrical properties were set to
be homogeneous, confined to each sphere, and isotropic. However, experiments
have shown those to be inhomogeneous and anisotropic [10]. This will clearly
impact the signal strength. However, the effect was deemed to be inferior to the
spherical approximation with respect to the correct morphological shape. Moreover,
the in-vivo values are still under debate [22]. While this impacts ESI greatly, with
possible localization errors up to several centimeters, here this will only impact the
signal strength without affecting the achievable resolution.

In our study the AE-effect is not taken into account (i.e., the conductivity is
assumed to be non-oscillating). In future research, the acousto-electric effect could
be included and other possible mechanisms (e.g., acoustic streaming, radiation force
and charge displacements in the Stern layer) should be investigated. Moreover,
further research is necessary to determine the interaction effects of these various
underlying mechanisms and investigate their dominance in the brain for given
conditions (e.g., waveform, transducer placement, dipole location). The brain
regions are modeled as rigid dipoles. As such, the current source and sink vibrate
in phase. The contribution of stretching and rotation could be further investigated.
Also, the dipole assumption itself compared to discrete monopoles or a multipole
expansion could be of interest in future work. The ultrasonic frequency was kept
constant throughout the whole study. Lowering the frequency will both lower the
MI and the Ipa for a fixed displacement amplitude, but this will increase the static
noise.

In future work, the added value of modulated focused ultrasound [54] can be in-
vestigated with the goal of reducing the MI. This would be beneficial, if the acoustic
particle velocity amplitude is proportional to the beat frequency fb (vus ≈ 2πAfb)
due to the low-pass filter property of the constitutive equation of the viscoelastic
brain. In this case, the mechanical index is

(
MI = PNP[MPa]/

√
fc[MHz] =

(2πAZacfb)/
√
fc
)
. In other words, a small ratio of beat to carrier frequency

fb/
√
fc, results in a smaller mechanical index.
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Finally, a limit on possible neuromodulation should be considered, as well.
Ultrasound has been demonstrated to modulate brain activity in animals and hu-
mans [55, 56]. The underlying mechanisms of ultrasound neuromodulation are not
well understood with multiple mechanisms being postulated to be active simultane-
ously (e.g., radiation force, intramembrane cavitation, thermal effects, ion channel
mechanosensitivity [56–62]). However, the goal of AENI is to record endogenous
activity, i.e., the intrinsic activity and not the activity induced by ultrasonic activa-
tion. In future work, computational modeling of ultrasonic neuromodulation can
be used to determine the region of the parameter space in which AENI is feasible
without significant modulation of the endogenous activity [62–64]. Although a
single 25 ms ultrasonic pulse was adopted in our study, signal reconstruction is still
possible with pulsed ultrasonic fields with a signal period of 25 ms. In the current
literature, relatively large duty cycles are adopted in order to achieve neuromod-
ulation [65]. Moreover, an exponential increase of neuromodulation thresholds
is observed with lowering the duty cycle [66], while only a linear relationship is
expected concerning the signal-to-noise ratio with respect to the static interference.

With pulsed fUS, a rise in recorded activity at the pulse repetition frequency (prf)
was also observed in [67]. It is expected that the measured signal at the prf is either
the signal induced by neuromodulation (as stated by the authors of [67]) [66, 68]
or by hearing confounds [69, 70]. It is hypothesized in [67] that also endogenous
activity of the targeted area could be modulated on the recorded signal at the pulse
repetition frequency. However, based on the mechanism described above, the
relative signal strength at f = prf with respect to the strength at fus should be
sinc((prf − fus)/(prf/dc)). Using the values reported in Darvas et al. (2016) [67]
this results in ≈ 5 · 10−5, implying that demodulation of endogenous activity at
the repetition frequency is unlikely, at least for the vibrating dipole mechanism of
AENI.

Feasibility of acousto-electrophysiological neuroimaging will depend on the
currently unknown biophysiological activity at ultrasonic frequencies. Unlike with
high-density EEG, accurate reconstruction of a tagged region’s signal is possible,
with just one electrode (and one reference electrode). Moreover, no MRI or complex
ESI algorithm is necessary to solve the ill-posed inverse problem. On the other hand
4D imaging with UCSDI currently takes up several hours in experimental setups.
This could probably be dramatically improved with modern scanners. Additionally,
B-mode ultrasound and normal EEG could be coregistered with AENI [31]. Finally,
spatially encoding the brain with different ultrasonic frequencies could be an
interesting path to investigate in the future.

5.5 Conclusion
In this chapter I showed that mechanical vibration, introduced by an ultrasonic
field, modulates the endogenous signals onto the ultrasonic frequency. In this
spherical representation of the head where the active brain is discretized into a set
of dipoles, the signal strength strongly depends on the alignment between dipole
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moment, displacement direction and point of measurement. Inclusion of extra
layers results in a signal reduction, attributable to the extra distance between source
and receiver and conductive losses. For a displacement amplitude of 10 nm and
a dipole moment of 5 nAm the signal strengths are low, with a maximal signal
strength of 341.60, 2.36 and 1.24 pV that can be measured with a cortical, wet and
dry scalp electrode, respectively. For a dipole at the center, the strengths are below
0.16 pV. Accurate reconstruction of a tagged region’s activity can be obtained if
two interference sources are overcome. The vibrational interference originates from
other vibrating regions. This can be decreased by decreasing the spatial constant
of the ultrasonic field. It was shown that the dominant factor is the distance to the
nearest neighboring dipole. Therefore, the spatial resolution is strongly correlated
to this spatial constant. The static interference comes from the endogenous activity
of non-vibrating brain regions self at the ultrasonic frequency. The signal-to-noise
ratio increases with increasing displacement amplitude. This is, however, limited
by the mechanical index and average pulse intensity limits set by the FDA. Log-log
relationships are observed between the required displacement amplitude and the
power of the static interference at fus, and the number of dipoles. For a deep region
of interest, dry and wet electrodes deliver similar and best results. An accurate signal
reconstruction (RMSE < 5%) can be obtained if the level of dipole moment power
≈ −154− 10 log10(nr.dipoles) dB. This under safe conditions with only 50 nm
displacement amplitude. For the cortex region, cortical electrodes give the best
result, with a required level of dipole moment of ≈ −94−10 log10(nr.dipoles) dB.
With the mouse model, lower vibration amplitudes are required for detection, but a
spatial constant in the order of 10 µm is required. Depending on the spatial constant,
resolutions up to millimeter could theoretically be achieved in humans but will
completely depend on the ultrasonic field.

5.6 Appendix

5.6.1 The Liénard-Wiechert Fields
The Liénard-Wiechert field, which is the time varying electromagnetic field for a
point charge (q) at position (rs) in arbitrary motion, is given by:

E(r, t) =
q

4πϵ0

(
n

γ2(1− n · β)3|r− rs|2

− β

γ2(1− n · β)3|r− rs|2
+

n×
(
(n− β)× β̇

)
c(1− n · β)3|r− rs|

)
tr

(5.17)

with ϵ0 the vacuum permittivity and c the speed of light. n(t) = (r − rs(t))/|r
−rs(t)|, β(t) = v(t)/c, where v(t) is the source’s velocity. β̇ is the charge’s
acceleration with respect to c (i.e., a(t)/c, with a(t) = dv(t)/dt), γ(t) is the
Lorentz factor

(
1/
√
1− |β(t)|2

)
and tr = t− |r− rs|/c is the time retardation.
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It can be divided into five components:

E = Es +Eqs +Ev +Ea +Etr (5.18)

where

1. The static field:
Es = E when v = 0 and a = 0

2. The quasi-static field:
Eqs = E−Es when v << c and aq

ϵ0
<< c|r− rs|

3. Relativistic effects due to velocity (Doppler):
Ev = E−Es −Eqs when aq

ϵ0
<< c|r− rs|

4. Relativistic effects due to acceleration (Electromagnetic Radiation):
Ea = E−Es −Eqs when v << c

5. Relativistic effects due to finite propagation speed:
Etr = E−Es −Eqs −Ev −Ea when t ̸= tr

For a oscillating movement in the x-direction (A sin(ωt)ex) and an observer on
the y-axis or x-axis, the dominant term of th Taylor expansion for A→0 is given in
table 5.4. The quasi static contribution dominates if |Ev|

|Eqs| ≪ 1 and |Ea|
|Eqs| ≪ 1. A

critical frequency can be found form y(2ω2
cy+3cωc)
3c2 = 1 ⇒ ωc = 20.58/y[cm] GHz.

For an overestimation of y = 20 cm, ωc = 1.029 GHz. Thus, for ultrasonic
frequencies in the MHz range the quasi-static contributions dominate (ωus ≪ ωc).

5.6.2 Solution to General Poisson Equation Spherical 4-Layer
Head Model

A semi-analytical solution can be obtained by solving the general Poisson equa-
tion in spherical coordinates. Values for Al,i and Bl,i of equation (5.1) can be
determined under following boundary conditions, i.e., the potential needs to be
continues (i) with reference at infinity (iii) and there is conservation of charge at
the interface (ii):

1. Vl = Vl+1

2. σl ∂Vl

∂n = σl+1
∂Vl+1

∂n

3. Vl(r) → 0 for r → ∞
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Observer y-axis x-axis
Component ex ey ex

Es - 1
y2

1
x2

Eqs
A
y3

3
2
A2

y4
2A
x3

Ev
Aω
cy2

A2(2ω2y+3cω)
2c2y3

Aω
cx2

Ea
Aω2

c2y
A2ω2

c2y2
0

|Ev|
|Eqs|

ωy
c

y(2ω2y+3cω)
3c2

ωx
2c

|Ea|
|Eqs|

(
ωy
c

)2 2
3

(
ωy
c

)2 0

Table 5.4: Dominant term of Taylor expansion (A→0) of each component of the electromag-
netic field. Motion is in x-direction: A sin(ωt)ex. All values divided by q/4πϵ0

Due to iii, B4 has to be zero. A1 is defined by the unbound solution. This gives
A1 = bi−1p, where b = |rdp| and p = |d|. Next, i provides a set of 3 equations:

bi−1pR−i−1
brain +B1R

i
brain

4πσ1
=

A2R
−i−1
brain +B2R

i
brain

4πσ2

A2R
−i−1
skull +B2R

i
skull

4πσ2
=

A3R
−i−1
skull +B3R

i
skull

4πσ3

A3R
−i−1
scalp +B3R

i
scalp

4πσ3
=

A4R
−i−1
scalp

4πσ4

Finally, the last set of equations is given by ii:

bi−1pR−i−2
brain −

iB1R
i−1
brain

(i+ 1)
= A2R

−i−2
brain −

iB2R
i−1
brain

(i+ 1)

A2R
−i−2
skull −

iB2R
i−1
skull

(i+ 1)
= A3R

−i−2
skull −

iB3R
i−1
skull

(i+ 1)

A3R
−i−2
scalp −

iB3R
i−1
scalp

(i+ 1)
= A4R

−i−2
scalp

Consequently, the set of equations is defined and a solution can be found. The
solution was obtained in Maple 2021.
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Figure 5.9: Dipole moment calculated using morphologically accurate neuron models (y-
label) in response to a pulsed synaptic input. (Left) signals in time domain.
(right) corresponding power spectral density profile. The fitted power law coeffi-
cients for fixed frequency range are displayed in the legend. αl : fϵ[0, 500[ Hz,
αm : fϵ[0.5, 5[ kHz and αh : fϵ[5, 40[ kHz

5.6.3 Time-Dependent Dipole Moment
In the model, dipoles are used to model the endogenous activity sources. Due to the
interest in measured signal content at the ultrasonic frequency (fus), an appropriate
dipole’s current intensity profile needs to be chosen to correctly capture the static
interference (see section 5.3.3). The simulations are solved with an sampling
frequency Fs = 20 fus. To avoid distortion of the frequency content due to linear
interpolation in the time domain, the time dependent signals are derived from a
power spectral density profile (PSD). The formulation of the PSD (equation 5.4), is
repeated here for convenience.

PSD(f) =
1 + f/ζf1∏Nf

i=1 (1 + (f/fi)αi)
(5.19)

with fi the ith cut-off frequency, αi the attenuation coefficient and Nf = 2 or 3, for
the vibrational and static interference analysis, respectively. ζ is randomly chosen
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between [0.3, 1]. Consequently, the PSD reaches a maximum between ζf1 and
f1. This formulation was chosen based on the power-law (1/fα) power spectrum
observed at many spatio-temporal scales inside the brain [45–47, 71]. The reported
power-law coefficients in literature are typically fit for frequencies below 1 kHz.
To obtain insights in the behavior at the higher frequencies (> 1 kHz). Dipole
moments were calculated using morphologically accurate neuron models.

The used neuron models are multi-compartmental. Two hippocampal pyramidal
models (morphologies: mpg141208 B idA and mpg141209 A idA) from Migliore
et al. (2018) [49] were tested, and one L2/3 cortical pyramidal cell from Aberra
et al. (2018) [48]. The models were obtained from ModelDB [72]. The accession
numbers are 244688 and 241165, respectively. The transmembrane voltage V of a
single compartment can be determined by:

Cm
dV

dt
= −Im + Iax − Isyn (5.20)

where Cm is the membrane capacitance, Im the transmembrane current flowing out
of the considered compartment, Iax the axial current flowing into the considered
compartment and Isyn an AMPA-like synaptic current. The latter is modeled as
follows:

Isyn = Gsyn A (exp(−t/τ2)− exp(−t/τ1))(V − Esyn) (5.21)

Synapses were randomly allocated to half of the apical dendritic compartments.
A synaptic event was triggered every 2 ms. The rise time (τ1) equals 0.4 ms, the
decay time (τ2) 1 ms and the weight Gsyn 3 nS. A is a normalization factor in
order to have a peak conductance of Gsyn. The simulations are performed with the
NEURON simulation software [73] for 100 ms and with a fixed time step of 25 µs.
According to Murakimi et al. (2003) [50], the time dependent current dipole (d(t))
is calculated as follows:

d(t) = [dpx,dpy,dpz](t) (5.22)

dpj(t) =
∑
k

dpkj (t) (5.23)

dpkj (t) = IkaxL
k
j (5.24)

with Qk
j the current dipole and Lk

j the length in direction j = x, y, z of compart-
ment k.

Next, the PSD of the current dipole magnitude (|d|(t)) is determined. The
frequency domain is divided into three regimes: low (f ϵ [0, 500[ Hz), medium
(f ϵ [0.5, 5[ kHz) and high (f ϵ [5, 40[ kHz). A power-law is fit to each regime for
each model via linear regression of the PSD at the log-log scale. The results and
corresponding α coefficients are shown in figure 5.9.
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[19] Gwénael Birot, Laurent Spinelli, Serge Vulliémoz, Pierre Mégevand, Denis
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6
Conclusions and Future Perspectives

6.1 Conclusions
Neuroscience has made remarkable progress in recent years. Despite these ad-
vancements, a significant part of the population remains vulnerable to neurological
disorders. These disorders severely impact a patient’s quality of life and impose
a substantial economic burden. Encouragingly, new insights into neural circuitry
emerge daily, and promising techniques for the treatment of neurological disor-
ders are being investigated. Additionally, there is a notable shift from open- to
closed-loop systems, aiming to reduce redundant stimulation by enabling real-time
adjustments. For these systems to achieve on-demand control, the recording of
electrophysiological activity with high spatial and temporal resolution is crucial.
Nonetheless, further research and development is necessary to unlock the full
potential of current systems and make clinical translation possible.

This dissertation falls within the field of computational neuroscience, aiming to
contribute to unraveling the complexities of the nervous system using mathematical
models. The chapters within this dissertation explored optogenetic neuromodula-
tion, hippocampal modeling, and functional neuroimaging, all with the overarching
goal of advancing the treatment of temporal lobe epilepsy.

In chapter 2, I extensively discussed the optogenetic toolbox. Optogenetics is a
promising neuromodulation technique, offering precise control over neural activity
with high spatial and temporal precision. While theoretically offering the ideal
properties for effective neural control, practical challenges, including gene therapy
safety concerns, invasiveness of optical stimulators, and the transition from rodents
to humans hinder its clinical translation. I also introduced a novel double two-state
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opsin model, improving computational efficiency and accuracy in opsin modeling.
Furthermore, an autonomous fitting procedure was described, which was used to
successfully fit two distinctive opsins, ChR2(H134R) and MerMAID, within an
acceptable timeframe and with acceptable computational resources.

Chapter 3 presented the results from my study on the optogenetic excitability
of CA1 neurons. I coupled opsin modeling with light propagation to study the
effect of various uncertain parameters. Moreover, it allowed me to pinpoint optimal
fiber positions. I showed that confinement of the opsin to a specific neuronal
membrane compartment can significantly enhance excitability. Notably, the findings
demonstrated threshold reductions exceeding 64%, with up to 100% gains in the
surface area of fiber positions for neuronal activation. Additionally, the simulations
showed that the perpendicular orientation of the optical source relative to the somato-
dendritic axis yielded the highest excitability when aligned towards the neuron types
most excitable regions, i.e., the basal dendrites and soma in the pyramidal cells and
interneurons, respectively. My study also identified significant inter-cell variability,
highlighting the importance of considering neuron degeneracy in optogenetic tool
development. The results shown in this chapter contribute towards the development
of more effective stimulation protocols.

Chapter 4 outlined my efforts to create a network model of an epileptic hip-
pocampus. Such a model is a valuable tool for testing neuromodulation strategies
within a network context, fine-tuning stimulation parameters, and gaining insights
into disease pathologies. In the chapter, I showed that native hippocampal activity
can be effectively modeled with a limited number of simplified compartmental
neuron models, and seizure-like activity can be partially replicated by incorporat-
ing epileptic pathologies. Two epileptic models are tested: the in-vitro elevated
extracellular potassium model and mesial temporal lobe epilepsy histopathologies.
Although the model was not fit to data with elevated potassium levels, it success-
fully reproduces similarities with experimental data. Examples include spontaneous
activity occurring only after a 2.61-fold increase and the observation of oscillatory
activity in the CA1 following Schaffer collateral stimulation. Subsequently, the
results of histopathological changes characteristic of mesial temporal lobe epilepsy
indicate that recurrent connections play a crucial role in inducing epileptic seizure-
like activity originating in the hippocampus. Moreover, the loss of granule cells and
CA1 cells results in reduced burst behavior. However, these findings are preliminary,
requiring further validation. Additionally, the study highlights the limitations of
simplifications in reproducing all forms of neural activity. Nevertheless, it sug-
gests the potential utility of this epileptic network model as a tool for investigating
epileptic seizure suppression techniques, such as optogenetics.

In chapter 5, I explored the potential of ultrasound-based functional neuroimag-
ing, termed acousto-electrophysiological neuroimaging, by investigating the feasi-
bility of using mechanical vibration to probe local electrophysiological activity. It
is hypothesized that such an approach allows recording of activity, minimally to
non-invasively, with high spatial and temporal resolution. This would be an impor-
tant advancement for the development of closed-loop neuromodulation systems.
The study was performed using dipole models in a simplified head model consisting



CONCLUSIONS AND FUTURE PERSPECTIVES 183

of concentric spheres. I showed that endogenous activity gets modulated onto
the ultrasonic frequency via mechanical vibration. Moreover, the signal strengths
strongly and non-linearly depend on the alignment between the dipole, vibration
direction, and measuring positions. For a displacement amplitude of only 10 nm (a
US-field amplitude well within FDA-limits) and a 5 nAm dipole moment, only sig-
nal strengths of 1.24 pV can be measured at the scalp. For a dipole at the center of
the brain, these drop even below 0.16 pV. My study showed that feasibility strongly
depends on the inherent, currently unknown, activity of the brain at ultrasonic
frequencies. Given these results, the technique is likely not feasible with current
technology given the low signal strengths of normal activity. However, scanning
for hyperactive zones could be more promising, as signal strength scales linearly
with the activity of the probed zone.

In conclusion, this dissertation demonstrated the role of computational neu-
roscience in advancing our understanding of neuromodulation techniques, neural
circuitry, and functional neuroimaging. The results of this dissertation can aid in
the development of more effective treatments for neurological disorders, ultimately
improving the quality of life for those who are affected.

6.2 Future Work and Perspectives
The roots of computational neuroscience trace back to 1952 with Hodgkin and
Huxley’s pioneering work on the descriptive model of the action potential. However,
the field’s exponential growth has only been realized in the past two decades, driven
by the surge in computational power. Construction of a biophysically accurate
conductance-based model of a cortical column, and the ongoing development of a
full CA1 mouse region model, are now achievable due to the arrival of supercom-
puters [1, 2]. While the ambitious vision of the Human Brain Project to create a
detailed model of the entire brain still faces criticism, recent developments like
EBRAINS (ebrains.eu) and modelDB (modeldb.science), offering open access to
models, tools, and data, have the potential to further propel the field by enhancing
accessibility and lowering entry barriers.

The results in this dissertation only scratch the surface. To truly refine and
expand therapies and interventions in neuroscience, continued investigation is im-
perative. Limitations and interesting aspects for future work were already presented
at the end of each chapter. I reiterate some of the key aspects here and introduce
additional perspectives in computational modeling.

Extensions in Optogenetic Neuromodulation Modeling
In chapter 3, I presented my work on the optogenetic excitability of CA1 cells.
This initial step, focused on isolated cells, provided crucial insights into stimulation
thresholds, inter-cell variability, optimal optrode locations, and the influence of
various uncertain parameters. In a next step, it is essential to extend this study
towards excitability in network simulations. Isolated neurons at rest differ from
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those submerged in a network where they receive diverse synaptic inputs. The
impact on the required intensity levels should be tested. Additionally, my study
was limited to single-pulse excitation, while DBS uses high-frequency stimulation
(>100 Hz) to suppress seizures. It should be examined whether reliable phase-
locked spiking can be achieved with short optical pulses. Furthermore, potential
upper limits on excitable frequencies due to opsin light adaptation and closing rates
should be explored. Similarly, it could be meaningful to investigate the modulation
effect under prolonged illumination. Even though long illumination paradigms are
less likely to be used in a clinical setting due to tissue heating limitations.

A promising avenue of research entails enhancing biophysical realism in mod-
eling optogenetic modulation. There are two interesting improvements. The first
extension involves incorporating the opsin current’s impact on local ion concentra-
tions. Therefore, the permeability profile must be known. High transmembrane
currents could disrupt ion balance, potentially altering neuron function. For exam-
ple, Mahn et al. (2018) observed GtACR2-mediated axonal excitation [3] due to the
disruption of the chloride balance. Second, the model could include temperature
effects. Visible light gets highly absorbed by brain tissue resulting in heating. Be-
havioral changes can manifest even with modest temperature fluctuations (> 1 ◦C).
Several neural parameters, e.g., capacitance, ion channel conductance, and transmit-
ter release and uptake, have been shown to exhibit temperature dependence [4–7].
The change in temperature can be determined by solving the bioheat equation.

Another interesting research avenue is the investigation of neuromodulation
with inhibitory opsins, interesting opsins to be studied are GtACR2 and WiChr [8, 9].
The advantage of excitatory opsin studies is the clear and unambiguous, quantifiable
metric of action potential generation. However, the difficulty of inhibitory studies
lies in the typical shunting effect of the opsin’s photocurrent. For a neuron at rest,
this will result in an unobservable voltage deflection. The go-to metric will be
action potential inhibition. However, the metric contains at least two degrees of
freedom, being the input strength responsible for action potential generation, and
the light intensity for the opening of the opsin. This poses an additional challenge
in this type of studies.

In the context of an epileptic network model, it is crucial to ascertain whether
optical excitation of interneurons results in seizure suppression or disinhibition [10].
Other interesting research hypotheses include assessing suppression via information
lesion by stimulating pyramidal cells with high-frequency, phase-locked stimulation,
investigating axonal conduction block under prolonged illumination, exploring
synaptic depression, and studying network desynchronization. The inclusion of
inhibitory opsins opens up the possibility of bidirectional control and localized
synaptic input mitigation, affecting synaptic plasticity and seizure suppression [11].

As described in section 2.1.1, in the last decade numerous new opsins were
discovered and genetically engineered. The vast expansion makes it difficult for
computational modeling to keep up. Even though I presented an autonomous
fitting procedure, a difficulty lies in gathering comprehensive datasets for model
fitting. Datasets like the one reported by Williams et al. (2013) [12], encompassing
a complete raster of holding potentials and irradiances for single and two-pulse
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experiments, are scarce. Ideally, computational modeling should transition to a
proactive approach, where the model specifies the ideal opsin properties based
on predefined targets. However, achieving this goal requires defining a clear set
of targets, given the model’s high dimensionality and otherwise mathematical
underdetermination.

In addition to neuronal modeling, light propagation in neural tissue merits
further research attention. The binary classification of brain tissue into gray and
white matter oversimplifies the continuum of tissue properties. The impact of
the uncertainty of these parameters on the optogenetic excitability was tested in
chapter 3. The results showed that the influence is only marginal for variations near
the parameters’ reported means. However, the tissue parameters of white matter
differ from gray matter [13]. Additionally, tissue alterations due to foreign body
reaction occur. A fibrous capsule is formed around the implanted fiber as a reaction
to blood-brain-barrier injury and gliosis caused by the presence of the implanted
fiber itself [14]. Therefore, light propagation modeling should be extended to
heterogeneous tissues. Advanced mesh and voxel-based Monte Carlo algorithms
can accurately model the light field distribution in complex tissues, providing
insights into light propagation in realistic brain environments [15]. Furthermore,
exploring the propagation of light at different wavelengths, such as for the excitation
of red-shifted opsins, would also be of interest. Other interesting topics are fiber
tapering, flat tip patterning and alteration of the geometric properties which can
result in improved output coupling or broadened and multi-site illumination [14, 16].

Acousto-Electrophysiological Neuroimaging
In future research, several avenues for advancing acousto-electrophysiological
neuroimaging (AENI) are worth exploring. Firstly, considering the acousto-electric
(AE) effect by accounting for oscillating conductivity in the brain [17] could
enhance the accuracy of AENI models. This may involve investigating the relative
dominance of both underlying mechanisms, i.e., AE and mechanical vibrating
current sources, under various conditions like waveform, transducer placement, and
dipole location.

Secondly, exploring the potential benefits of modulated focused ultrasound [18],
with a focus on reducing the mechanical index (MI), is another avenue. Investigating
whether the acoustic particle velocity amplitude is linked to the beat frequency
could help in increasing the AENI signal-to-noise ratio. In this case, the mechanical
index would be MI = PNP[MPa]/

√
fc[MHz] = (2πAZacfb)/

√
fc. A smaller

ratio of beat to carrier frequency might result in a reduced MI, enhancing the safety
and efficacy of AENI.

Finally, it is crucial to establish limits on neuromodulation induced by ultra-
sound during AENI. While the primary aim of AENI is to record endogenous
brain activity, ultrasound has demonstrated the ability to modulate brain activity.
Computational modeling can aid in defining the parameter space in which AENI
remains feasible without significantly affecting the endogenous neural activity.
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Closed Loop Optogenetics
Currently, most neuromodulation systems operate in an open-loop mode. Here,
the system provides continuous stimulation based on manually selected settings
set by a clinician. This approach presents notable shortcomings. First, continuous
stimulation may disrupt normal brain function. Second, it imposes high energy
demands, necessitating advancements in battery technology or wireless power
delivery for implanted devices [19].

The future of neuromodulation technologies lies in closed-loop systems. These
hold the promise of real-time adjusting stimulation based on clinically relevant
physiological signals, providing a dynamic and personalized approach to therapy.
Due to their on-demand control, the aforementioned drawbacks of open-loop are
mitigated. The technologies are already slowly shifting towards closed-loop systems.
However, most closed-loop systems are currently limited to on-demand control with
fixed stimuli. Probably most challenging is the identification of reliable biomarkers,
potentially a combination of mesoscopic oscillations, microscopic neural firing,
and non-neural activity like heart rate. Crucial here will be the recording of
electrophysiological activity with high spatial and temporal resolution, which could
potentially be achieved with acousto-electrophysiological neuroimaging. Based on
these biomarkers, the system should be able to assess neurological states, triggering
stimulation, and ideally be able to predict state changes for proactive adjustments.
Such improvements would minimize time-lag and pave the way for personalized
therapy. In this context, computational modeling can play an important role in
pinpointing essential biomarkers and optimizing control parameters [19, 20].

Optogenetic neuromodulation integrates perfectly with closed-loop systems,
offering an alternative to traditional electrical stimulation sources. Unlike electri-
cal stimulation, which introduces artifacts into recordings, optogenetics provides
artifact-free stimulation, enabling continuous recording. Despite the current rel-
atively limited applications, closed-loop optogenetic manipulations have proven
to be useful in elucidating the functional and behavioral roles of specific neural
activity patterns [21, 22]. The models developed in this dissertation can serve as the
foundation for constructing a computational framework to investigate closed-loop
optogenetic neuromodulation for the treatment of temporal lobe epilepsy.

Furthermore, an interesting avenue involves exploring the modulation of non-
neural cells, such as astrocytes. This offers the potential to influence the ionic com-
position of the interstitial fluid and, consequently, neuronal excitability. Astrocyte-
based interventions could provide sustained optogenetic control. This is particularly
valuable in conditions like temporal lobe epilepsy, characterized by astrocyte prolif-
eration and necessitating long-term therapeutic strategies [23].

Computational Neuroscience and Experimental Research
Computational neuroscience employs mathematical tools and theories to study
the nervous system. Its main advantage is its ability to systematically explore
experimentally inaccessible aspects. Consequently, it proves to be an ideal tool for
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enhancing the understanding of underlying mechanisms, exemplified in this disser-
tation by the investigation of optogenetic interactions with CA1 cells. The insights
gained from such studies can guide more targeted research, thereby improving thera-
pies. Computational modeling has demonstrated effectiveness in electrostimulation,
facilitating the design of novel electrode configurations and optimization of applied
waveforms. The models developed in this dissertation can also be utilized to identify
optimal fiber positions and stimulation protocols for optogenetic neuromodulation,
as was demonstrated in isolated CA1 neurons (chapter 3). When integrated into a
network model (chapter 4), these tools can pinpoint effective stimulation strategies
for treating temporal lobe epilepsy. However, due to uncertainties inherent in the
models, predictions may not yield the ”ideal” stimulation set. Nevertheless, they
can reveal the safety limits and provide an estimation of the optimal configuration.

However, computational models are only a complementary tool to experimental
research. To make a computational model useful, an initial investment in experimen-
tal data collection is essential. Subsequently, the developed models can be employed
to test and postulate new hypotheses, as seen in the exploration of increased op-
togenetic excitability due to subcellular opsin restriction or perpendicular fiber
positioning (chapter 3). These hypotheses then require experimental validation. To
align models with experimental results, they can be fine-tuned to enhance biological
realism. Examples of valuable model improvements in this dissertation that necessi-
tate additional experimental data include the impact of local ion concentrations, pH
and temperature dependence on cell and channel behavior, improved opsin model
responses to short pulses, and the endogenous noise at MHz-frequencies.

Accurate representation of neural activity by models has the potential to reduce
the need for animal experiments. This reduction is achieved by refining research
questions after systematic exploration with computational models first. Conse-
quently, only targeted experiments are required. The long-term goal is replacement
by the development of digital twins. However, due to the nervous system’s complex-
ity, limited computational resources, and the need for interpretability, a trade-off
between biological realism and simplicity remains necessary to date.

Artificial Intelligence
The arrival of generative artificial intelligence (AI), like ChatGPT, is literally
transforming daily life with its ability to handle laborious tasks. These applications
span a wide range, including the generation of new images, text summarization,
code generation based on textual prompts, and proofreading and enhancement
of textual coherence (applied in this dissertation). The innovative pace of AI is
currently so fast that even voices are raised expressing concerns [24]. It is also
finding its way into (computational) neuroscience. Therefore, in this final section, I
would like to discuss the intersection of AI and neuroscience.

The relationship between neuroscience and AI has a rich history of mutual
influence. Neuroscience has served as a source of inspiration for the development
of various algorithms and architectural designs. A prominent example is artificial
neural networks (ANN, what’s in a name), where the basic elements, known as
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perceptrons, are modeled after neurons. Deep neural networks, resembling the
brain’s information processing, consist of multiple layers of diverse building blocks.
Some AI architectures, like long short-term memory networks, also draw inspiration
from neuroscience. Conversely, AI has offered valuable insights into neuronal
processes. For instance, convolutional neural networks (CNNs) have contributed
to the comprehension of high-level visual areas. An interesting overview of these
reciprocal contributions is given by Hassabis et al. (2017) [25].

AI has already proven to be useful in neuroscience, especially in classification.
Convolutional neural networks excel in tasks like tumor recognition in medical
images. Machine learning algorithms have proven highly accurate in identifying
disease episodes, such as seizures, tremors, and other motor symptoms. Overall,
there is an evolving trend towards deep learning, where raw data serves as input
and systems autonomously learn feature extraction, unlike with machine learning,
which relies on predefined features. This shift not only holds the potential to en-
hance outcomes but also analyzing the neural network’s architecture layers can
improve understanding of how biological systems process information. Further-
more, ongoing efforts are directed toward training algorithms capable of predicting
forthcoming episodes, a development that could significantly advance closed-loop
stimulation systems [20].

ANNs are progressively finding their place in computational neuroscience. For
instance, Golabek et al. (2023) developed ANN models aimed at rapidly and
accurately predicting the neuronal response to DBS stimulation [26]. Their models
were trained using data generated from multi-compartment cable models of axons
subjected to predictions from a finite-element model of the implanted DBS system.
Remarkably, their ANN models exhibited a speed enhancement of 4 to 5 orders
of magnitude while maintaining low prediction errors. Another example is given
by Baby et al. (2020). They introduced a hybrid model that incorporates a CNN.
This model can serve as a real-time end-to-end solution for simulating human
cochlear mechanics, delivering a speed boost of 3 orders of magnitude compared to
conventional transmission line models [27].

An adaptation of the ANN is spiking neural networks (SNN). In ANNs, the
biophysical analog of perceptron inputs is typically represented by neuron firing
rates. In contrast, SNNs include individual spike times from multiple neurons, more
closely resembling biological neuronal networks hence having a higher empirical
content [28]. The fundamental components of SNNs are typically leaky integrate-
and-fire models, a model often used in computational neuroscience as a faster
alternative to Hodgkin-and-Huxley model. Compared to Hodgkin-and-Huxley
networks, a SNN is more easily fit, being, for instance, not affected by ion channel
degeneracy [29]. Furthermore, Brette (2015) even argued that a SNN is biologically
more realistic than single compartment Hodgkin-and-Huxley networks [30].

In conclusion, the integration of AI in neuroscience is inevitable, however,
providing a valuable new tool. AI can be harnessed to study the complex nervous
system by training deep neural networks on electrophysiological data and drawing
conclusions from the ideal architectural fits. Alternatively, AI can replace compu-
tationally intensive models to enhance prediction speed in cases where detailed
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voltage traces are unnecessary. Moreover, AI holds promise for numerous clinical
applications, with classification and prediction in closed-loop systems representing
just the beginning of its potential impact in the field.
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