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Abstract

RNA-sequencing (RNA-seq) is increasingly used to diagnose patients with rare
diseases by prioritising genes with aberrant expression and/or splicing. State-
of-the-art methods for detecting aberrant expression and splicing, however, are
extremely slow. The latter, also discard much information because they only
use junction reads to infer aberrant splicing. In this contribution, we show that
replacing the offset for library size unlocks conventional bulk RNA-seq workflows
for fast and scalable differential usage, aberrant splicing and expression analyses.
Our method, saseR, is several orders of magnitude faster than the state-of-the-art
methods and dramatically outperforms these in terms of sensitivity and specificity
for aberrant splicing, while being on par with these inferring differential usage
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and aberrant expression. Finally, our framework is also very flexible and can be
used for all applications that involve the analysis of proportions of short- or long
RNA-seq read counts.

1 Introduction

An estimated 350 million people worldwide suffer from rare diseases [1, 2]. For these

individuals, a diagnostic rate of 15-75% is currently achieved by using whole exome

sequencing (WES) and whole genome sequencing (WGS) to identify the underlying

pathogenic variants [3–7]. Although most of these are within coding regions, there is

increasing evidence that the diagnostic rate can be further improved by discovering

variants in intronic regions that mostly lead to aberrant splicing and in other non-

coding regions that contribute to impaired transcriptional regulation [8]. Because the

effect of these variants is difficult to identify using WGS only [9], WGS is increasingly

complemented with RNA-sequencing (RNA-seq) to improve the diagnostic rate by

identifying aberrant expression, missplicing or mono-allelic expression [2, 9–12].

The detection of aberrant expression and missplicing, however, is not possible with

default bulk RNA-seq workflows. Indeed, testing for differential expression by com-

paring each sample against the rest of the cohort is statistically invalid. With this

respect, OUTRIDER [13] and FRASER [14] have disrupted the field by providing

formal count-based outlier tests that pick up aberrant expression and splicing respec-

tively, while automatically controlling for latent confounders. But, their approach is

slow and FRASER is discarding a lot of useful information as it only focuses on junc-

tion reads to discover aberrant splicing. To overcome the computational burden of

OUTRIDER, OutSingle [15] was developed, which uses the procedure of Gavish and

Donoho [16] to determine the optimal rank of the matrix decomposition when denois-

ing matrices. This avoids the need of OUTRIDER’s hyperparameter optimisation,

which reduces computational time by several orders of magnitude. OutSingle assumes
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gene-expression to be log-normal distributed, which, although obtaining similar per-

formance and better computational time compared to OUTRIDER, does not account

for the heteroscedasticity and discrete nature of the count distribution of RNA-seq

data. Moreover, OutSingle can also not correct for known confounders.

Here, we argue that conventional bulk methods can be unlocked for detecting

aberrant expression and splicing. More specifically, they can be used for estimating the

mean and dispersion of the negative binomial (NB) distribution upon including latent

factors in the model, which can subsequently be plugged into the NB distribution

to perform count-based outlier tests. The ASpli tool [17] is an important starting

point for developing workflows for aberrant splicing detection. ASpli complements the

differential splicing analysis by also conducting hypothesis tests on exonic and intronic

bin reads next to junction reads, which has been shown to boost the power. However,

its parameter estimation is based on edgeR’s diffSpliceDGE [18] which performs worse

than DEXSeq [19], while the latter scales poorly to the large cohorts in rare disease

studies (Fig. 1, Supplementary Fig. 1) [20]. To overcome this, we have developed

satuRn for differential transcript and exon usage [20]. satuRn is fast and scalable as

it uses a quasi-binomial model that directly models the proportion of transcript (or

exon) counts on the total gene count. But, satuRn’s estimation approach is based on

quasi-likelihood that does not provide a full distribution, which renders it useless for

outlier discovery.

In this contribution, we show how juggling offsets can effectively unlock conven-

tional bulk RNA-seq workflows for fast and scalable differential usage and aberrant

splicing analyses. Indeed, by replacing the conventional offset for library size in DESeq2

or edgeR transcript or exon level analyses by the logarithm of the total gene count, the

parameters of the mean model enable us to directly estimate the average transcript

or exon usage, respectively. We further develop workflows on different ASpli counts,

i.e. bin and junction counts, combined with the appropriate offsets to infer aberrant

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2023. ; https://doi.org/10.1101/2023.06.29.547014doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.29.547014
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.
01

0.
05 0.

1
0.

1

0.
2

0.0

0.2

0.4

0.6

FDR

T
P

R

A

0

10

20

30

40

20 40 60
Number of samples per group

E
la

ps
ed

  t
im

e 
(m

in
)

B

edgeR−diffspliceDGE DEXSeq satuRn

Fig. 1 Comparison of current state-of-the-art methods for assessing differential transcript usage.
True positive rate (TPR) versus false discovery rate (FDR) curves for detecting differential transcript
usage (panel A) and the computational time relative to the number of samples (panel B) for edgeR-
diffspliceDGE, DEXSeq and satuRn in a two-group comparison. Figure adapted from Gilis et al. [20].

splicing. We also provide an unbiased and fast algorithm for parameter estimation to

assess aberrant expression and splicing that scales better to the large number of latent

covariates that are typically needed in studies on rare disease with large cohorts. In

simulation and real case studies we show how our framework, saseR (Scalable Aberrant

Splicing and Expression Retrieval), vastly outperforms existing state-of-the-art tools as

DEXSeq, OUTRIDER, OutSingle and FRASER in terms of computational speed and

scalability. More importantly, they also dramatically boost the performance for aber-

rant splicing (cf. FRASER) while maintaining a similar performance for differential

usage (cf. DEXSeq) and aberrant expression detection (cf. OUTRIDER, OutSingle).

2 Results

In this manuscript, we will first use saseR to detect simulated aberrant expression

events, using our fast parameter estimation and count-based outlier tests. Next, we

introduce adapted offsets in conventional bulk RNA-seq tools, edgeR [18] and DESeq2

[21], to unlock them for different applications. For differential splicing, for instance, we

suggest to use the log-transformed total read counts of the gene to which the feature
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belongs as an offset, so that the mean model parameters get an interpretation in terms

of usage, i.e. the log-transformed feature read count relative to the total read count

of its corresponding gene. An overview of different counts and offsets for interesting

applications is given in Table 1. We then continue with benchmarking saseR against

FRASER [14, 22] to detect aberrant splicing. Finally, we assess the performance of

saseR to detect real aberrant events in a case study.

Table 1 Bulk RNA-seq tools can be unlocked for different applications by carefully
selecting the input data and offsets for the negative binomial model framework.

Input data (yij) Offsets (oij) Application

Gene counts Conventional offsets Differential gene expression
for library size or aberrant expression

Exon and intron bin counts Log of total count for gene Differential usage
or aberrant splicing

Junction counts Log of total count for gene Differential usage
or aberrant splicing

Transcript counts Log of total count for gene Differential transcript usage
or aberrant splicing

Allele specific counts Log of total count over all Differential allele usage
alleles or aberrant allele usage

2.1 Detection of aberrant expression

To benchmark aberrant expression detection, the GTEx [23] and Kremer [10] datasets

are used. Only suprapubic skin cells were retained from the GTEx data, originating

from healthy deceased donors. The Kremer dataset contains fibroblast cell lines from

patients diagnosed with mitochondrial diseases. Outliers are randomly simulated in

these datasets with a frequency of 10−3. The performance of saseR is benchmarked

against OutSingle [15] and OUTRIDER [13]. Similar to the default releases of Out-

Single and OUTRIDER, saseR is run without controlling for known confounders. We

include two OUTRIDER workflows, (1) OUTRIDER-Autoencoder using a negative
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binomial autoencoder to estimate and control for latent factors, and (2) OUTRIDER-

PCA performing a principal component analysis on log-transformed counts, which is

computationally more efficient but does not account for the count properties of the

data.

Figure 2 shows the area under the precision-recall curve (AUC) for each sample, the

overall precision-recall curve and the computational time on the GTEx data with sim-

ulated aberrant expression outliers. saseR, OutSingle and OUTRIDER-Autoencoder

have a similar performance for detecting simulated aberrant expression outliers, and

slightly out-compete OUTRIDER-PCA. Strikingly, saseR and OutSingle are much

faster than OUTRIDER-Autoencoder and OUTRIDER-PCA, while saseR is an addi-

tional factor two faster than OutSingle. Indeed, by using the Gavish and Donoho

threshold method [16] saseR and OutSingle by default do not require hyperparameter

optimisation to select the number of latent factors. saseR can also be run with a simi-

lar hyperparameter optimisation as OUTRIDER to select the number of latent factors

(see Supplementary Fig. 2). This shows that, saseR with hyperparameter optimisa-

tion has similar performance compared to its fast default workflow, while remaining

much faster than OUTRIDER-Autoencoder. Although saseR’s computational time

with hyperparameter optimisation is slower than OUTRIDER-PCA, Supplementary

Fig. 3 shows that the computational time to run a single analysis for a certain number

of latent factors, genes and samples is faster for saseR. This indicates that the increased

computational complexity is probably related to the outlier injection scheme required

for hyperparameter optimisation, i.e. NB versus Gaussian outliers, respectively. Sup-

plementary Fig. 3 also shows the benefits of saseR’s fast estimation procedure. Indeed,

parameter estimation with edgeR [18] does not scale well with increasing number

of latent factors or large design matrices. saseR, however, by default considers a

quadratic variance structure, which reduces each Newton-Raphson interation to a

matrix multiplication and thus scales well towards large design matrices.
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Fig. 2 Benchmark of aberrant expression detection. Comparison of performance to detect simulated
expression outliers in the GTEx dataset based on area under the precision-recall curve per sample
(panel A), the precision-recall curve (panel B) and the computational time (panel C). Four methods
are benchmarked: saseR, OutSingle, OUTRIDER-Autoencoder and OUTRIDER-PCA. Simulated
outliers were injected according to the gene-specific marginal distribution, only taking into account
DESeq2 size factors for normalisation. The whiskers of the boxplots in panel A correspond to the 5th
and 95th quantile.

Similar results are observed when analysing the Kremer dataset with simulated

outliers (Supplementary Fig. 4).

Note, that saseR can also include known covariates to estimate the mean, although

for the GTEx dataset this does not yield better performance to detect simulated out-

liers based on the conditional distribution (Supplementary Fig. 5). This functionality

is not available for OutSingle.

2.2 Detection of differential usage

Here, we show that the analysis of differential usage (DU), i.e. changes in relative

abundance of transcripts/exons/introns within the same gene, can also be done with

canonical bulk RNA-seq tools when using the logarithm of the total gene count as

an offset. To assess the performance of these novel workflows, we add them to the

benchmark of Gilis et al. [20]. Panels A and B in Fig. 3 show the performance to pick

up DU using true positive rate (TPR) versus the false discovery rate (FDR) plots

for both bulk- and single-cell RNA-seq (scRNA-seq) datasets, respectively. Panel C
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shows the computation time in function of the number of samples. DEXSeq, edgeR-

diffspliceDGE, satuRn, and our novel edgeR and DESeq2 workflows with adapted

offsets are included in our comparison. Note, that the computational time for DEXSeq

is not included in panel C because it was several orders of magnitudes slower, which

we already have shown in Figure 1. The computational time of our novel edgeR and

DESeq2 workflows are in line with the other methods. edgeR is even slightly faster

than satuRn, but, it remains slightly slower than edgeR-diffspliceDGE. The perfor-

mances of edgeR and DESeq2 using adapted offsets to detect DU on bulk RNA-seq

data are comparable to DEXSeq and satuRn, and outperform edgeR-diffspliceDGE.

On scRNA-seq data, however, satuRn still outperforms all other methods. DEXSeq

performs slightly better than edgeR with adapted offsets, closely followed by edgeR-

diffspliceDGE and DESeq2 with adapted offsets. Note, however, that this comparison

only involved 20 vs 20 cells as DEXSeq does not scale to the data volumes in real

scRNA-seq datasets (see Figure 1).

2.3 Detection of aberrant splicing

In this section we show how intron, exon and junction counts can be modeled with bulk

RNA-seq tools to pick up aberrant splicing. Indeed, when using the logarithm of the

total gene count as an offset, the mean model parameters again get an interpretation

in terms of usages. To benchmark the performance of our workflows, aberrant splicing

outliers are injected in the lymphoblastoid cell lines from the healthy patients of the

Geuvadis [24] dataset, using the RSEM simulator [25]. Again, outliers are injected with

a frequency of 10−3. We evaluate different workflows for saseR: (1) saseR-bins using bin

read counts (exon and intron) and the logarithm of the total gene counts as offset, (2)

saseR-junctions using junction reads and the logarithm of the sum of the junction read

counts per gene as offset, and (3) saseR-ASpli using junction reads and as offset the

logarithm of the sum of the junction reads that have at least one splice site in common,
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Fig. 3 Benchmark of differential usage detection. Comparison of performance for differential tran-
script usage between satuRn, DEXSeq, edgeR-diffspliceDGE, and edgeR and DESeq2 with adapted
offsets. The performance of the methods is compared on basis of true positive rate (TPR) versus
false discovery rate (FDR) curves for a 5 vs 5 comparison on bulk RNA-seq data (panel A), for a 20
vs 20 comparison on scRNA-seq data (panel B) and the computational time relative to the number
of samples (panel C). The three circles on each TPR-FDR curve represent the working points when
the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the
empirical FDR is equal or below the imposed FDR threshold. Note, that the computational time of
DEXSeq is not shown in panel C because it is several orders of magnitude larger than for the other
tools, which was already illustrated in Figure 1.

i.e. based on the ASpli junction cluster. These three saseR workflows are benchmarked

against FRASER [14], which can use different autoencoders to control for confounders,

i.e. a beta-binomial autoencoder (FRASER-Autoencoder), a PCA encoder and beta-

binomial decoder (FRASER-BB-Decoder) and PCA (FRASER-PCA). All comparison

are based on the prioritisation of genes in which outliers were injected. A gene p-value

was obtained by using the minimal p-value of all features belonging to that gene.

Note that the results in the main paper are based on FRASER’s novel Intron

Jaccard Index [22], which combines the former aberrant donor, acceptor and intron

retention metrics [14]. We refer to this method as FRASER 2.0. The hyperparameter

optimisation of FRASER was done with PCA to reduce computational time, which is

its default setting. Results with FRASER’s donor and acceptor metrics are included

in Supplementary Information.

9

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2023. ; https://doi.org/10.1101/2023.06.29.547014doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.29.547014
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4 shows the AUC for each sample, the overall precision-recall curve and the

computational time for saseR-bins, saseR-junctions, saseR-ASpli and FRASER 2.0.

All saseR workflows outperform these of FRASER 2.0. saseR-bins and saseR-junctions

have the best power, followed by saseR-ASpli. The precision-recall curve shows that

the precision of FRASER 2.0 never reaches high levels, even at a low recall of simulated

outliers.

Remarkably, FRASER-PCA 2.0 performs better in our benchmark than its BB-

Decoder and Autoencoder variants. This was not observed using the FRASER donor

and acceptor metrics (Supplementary Fig. 6). But, the performance of these older

methods never reaches these of FRASER-PCA, let alone those of saseR. To rule out

convergence issues as the cause for the lack of performance of the FRASER 2.0 BB-

decoder and autoencoder methods, we removed the junctions for which the decoder

matrix did not converge. This, however, did not improve the results considerably

(Supplementary Fig. 7).

To ensure a fair comparison, we also assess the impact of the filtering strategies

of saseR and FRASER. The performances shown in Fig. 4 are solely based on the

outliers that were included in its corresponding output, and filtered outliers are thus

ignored. Alternatively, we assess the performance by enforcing all methods to use the

same set of outliers. On the one hand, we consider the union of all outliers in the

output of all methods. When an outlier is filtered for a specific workflow its p-value

was set at 1. The results for this analysis remain very similar. The power of saseR-

bins and FRASER remained more or less the same. The power of saseR-junctions

and saseR-ASpli reduced slightly because they filtered more outliers. However, they

still largely outperform FRASER (Supplementary Fig. 8). On the other hand, we also

considered the intersection of the outliers in all methods, which did not alter the

results (Supplementary Fig. 9).
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Finally, we assess the performance when injecting outliers in the Kremer dataset

with FRASER’s method. When injecting outliers based on jaccard counts, saseR-

junctions still largely outperforms FRASER-PCA 2.0, and FRASER with donor and

acceptor metrics (Supplementary Fig. 10). saseR-bins and saseR-ASpli could not

be benchmarked on the Kremer dataset, as only junction reads are publicly avail-

able. Note, that it is also possible to include junction counts and jaccard offsets in

saseR. This, however, does not lead to consistent results. It dramatically outperforms

FRASER-PCA 2.0 in the Geuvadis benchmark and reaches similar performance as

saseR-junctions (Supplementary Fig. 11), but has a slightly lower power in the Kre-

mer benchmark compared to FRASER-PCA 2.0, which are both outperformed by

saseR-junctions (Supplementary Fig. 12).
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Fig. 4 Benchmark of aberrant splicing detection. Comparison of performance to detect RSEM sim-
ulated splicing outliers in the Geuvadis dataset based on area under the precision-recall curve per
sample (panel A), the precision-recall curve (panel B) and the computational time (panel C). saseR,
with bin reads (saseR-bins), with junction reads and the logarithm of the total junction read counts
per gene as offset (saseR-junctions), and with junction reads and the logarithm of the total junctions
read count per ASpli junction cluster (saseR-ASpli) are benchmarked against FRASER 2.0 workflows,
which use the Intronic Jaccard Index, i.e. one with an autoencoder (FRASER-Autoencoder 2.0), a
beta-binomial decoder matrix (FRASER-BB-Decoder 2.0) and PCA (FRASER-PCA 2.0). Note, that
PCA is always used for hyperparameter optimisation, which is FRASER 2.0’s default to reduce com-
putational time. The whiskers of the boxplots in panel A correspond to the 5th and 95th quantile.

Interestingly, saseR considering bins, junction or ASpli junctions is also much faster

than FRASER, even when considering hyperparameter optimisation (Supplementary
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Fig. 13). Moreover, Supplementary Fig. 14 shows that our fast estimation procedure

with 50 iterations is as good as the slower edgeR implementation. But, the additional

speed gain of restricting the number of iterations cannot be justified as it seems to

lead to a sub-optimal precision-recall.

2.4 Case study: Kremer dataset

saseR, OutSingle, OUTRIDER and FRASER are compared to detect aberrant expres-

sion and splicing events in real rare disease cases from the Kremer dataset. Again,

only saseR-junctions is used for prioritising genes with aberrant splicing, because no

BAM files are publicly available for the Kremer dataset. We assess if these methods

can discover the novel genes discussed by Kremer et al. [10], Brechtmann et al. [13] and

Mertes et al. [14], as well as the list of disease related genes with aberrant splicing that

are reported in the FRASER paper [14]. Although some gene variants (ALDH18A1

and MCOLN1 ) are known to be related to mono-allelic expression, these were picked

up by Kremer et al. [10] and are also considered here. The rank of the p-value of the

disease-related genes that were validated in a specific patient are shown in Table 2.

Every line corresponds to a validated disease-related gene in a different patient.

saseR aberrant expression, OutSingle and OUTRIDER show similar performance

to prioritise the previously reported disease-related genes. Only TAZ and COASY are

not easily detected by the four methods and OUTRIDER-PCA can also not prioritise

SFXN4.

When assessing aberrant splicing with saseR-junctions and FRASER 2.0, it can

be observed that the ranking of saseR-junctions is better in picking up the previously

reported disease-related genes than FRASER 2.0 with the PCA and Autoencoder

method. The most remarkable differences are TAZ and TALDO1, which are prioritised

by saseR-junctions while they are missed by the FRASER 2.0 workflows. When using

FRASER with donor and acceptor metrics (Supplementary Table 1) the prioritisation
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Table 2 Detection of disease-related genes. Prioritisation based on the rank of the p-values for
disease-related gene within diagnosed patients using saseR, OutSingle, OUTRIDER AUTO
(autoencoder), OUTRIDER PCA (principal component analysis), saseR-junctions, FRASER 2.0
AUTO and FRASER 2.0 PCA.

Aberrant expression Aberrant splicing

Gene saseR OutSingle OUTRIDER saseR FRASER 2.0
AUTO PCA junctions AUTO PCA

MGST1 2 3 3 9 5840 3688 4324
TIMMDC1 1 1 1 1 2 1 2
TIMMDC1 1 2 1 3 7 9 6
CLPP 1 1 1 1 1 1 1
TAZ 2994 2065 1717 772 1 1029 1153
TANGO2 1 1 1 1 2783 831 801
TALDO1 1 1 1 1 9 87 37
SFXN4 2 2 5 100 5 53 4
COASY 81 77 212 122 4 7 4
PANK2 12 14 9 6 3 2 2
ALDH18A1 1 1 1 7 3985 1958 1470
MCOLN1 1 1 1 1 3 1 1

of most disease-related genes is worse. Also, a saseR workflow with junction counts

and jaccard offsets leads to suboptimal rankings compared to saseR-junctions and

FRASER 2.0 (Supplementary Table 1).

Finally, an analysis with saseR using hyperparameter optimisation to determine

the number of latent factors returns similar results as our default workflow with the

Gavish and Donoho [16] threshold (Supplementary Table 2).

3 Discussion

In this contribution we developed saseR, a framework that unlocks bulk RNA-seq tools

for fast and scalable differential splicing, aberrant splicing and expression analysis.

Our key idea is to use specific RNA-seq counts in conjunction with well-chosen offsets

to facilitate the proper interpretation of the mean model parameters for a specific

application, e.g. gene counts and conventional offsets to correct for library size for

the expression based analyses; exon or junction counts with respectively the exon or

junction count per gene as an offset for usage and splicing based analysis; amongst

others.
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Upon parameter estimation, the conventional bulk RNA-seq inference framework

can then be used when one wants to infer differential expression or usage. When

the aim is to infer aberrant expression or splicing, the estimated mean model and

dispersion parameters are simply plugged into the negative binomial distribution to

obtain the corresponding quantile to assess how extreme the observed count is for each

feature in each sample.

Hence, our approach has the advantage of providing a single, unified framework

to infer a wide range of applications. Moreover, in contrast to current state-of-the-art

methods for aberrant splicing that only consider junction reads, it is also future-proof

to novel sequencing-based technologies and applications, such as transcript counts

with long-read sequencing and allele specific expression, amongst others, as long as

the quantification can be recasted in specific feature counts in conjunction with proper

offsets.

For aberrant splicing applications, saseR outperforms the current state-of-the-art

method FRASER with donor, acceptor and Jaccard metrics [14, 22] both in terms

of outlier detection as well as in computational complexity. saseR allows for different

count inputs, such as bin read counts and junction read counts. This improves upon

FRASER, which only uses junction read counts and discards much information on

aberrant splicing that is also present in short-read RNA-seq exon and intron bin reads.

With saseR we still provide a separate junction read count workflow, because bin read

counts are less suited to pick up novel splice sites. We convincingly showed saseR’s

superior performance in our simulation studies on aberrant transcript splicing outliers

simulated with RSEM [25] as well as on junction outliers simulated with FRASER’s

jaccard outlier injection scheme, and in our case study that focuses on prioritising

disease-related genes in the Kremer dataset [10].

For aberrant expression and differential usage on bulk RNA-seq data, the perfor-

mance of the saseR workflows is at least on par with current state-of-the-art methods,
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such as OutSingle [15] and OUTRIDER [13] for aberrant expression, and DEXSeq

[19] and satuRn [20] for differential usage analysis. However, saseR dramatically out-

performs the existing methods in terms of computational time and/or flexibility to

formulate the mean model.

The poor scalability of DEXSeq stems from modelling both the counts for a specific

feature and the other counts for the same gene in one model, which requires the intro-

duction of blocking factor for each sample to address the within sample correlation.

These sample specific intercepts, therefore, leads to an explosion of the design matrix

with increasing sample size. By normalising each feature with a well-chosen offset, e.g.

the logarithm of the total gene count per sample to which the feature belongs, the

mean model parameters also get the interpretation of a ratio without having to esti-

mate a sample specific model parameter, which vastly improves the scalability. This

approach can also be motivated theoretically due to the well known approximation of

a multinomial model by a Poisson model with the total counts as an offset, which is

extended towards a negative binomial distribution in the presence of overdispersion.

For aberrant detection and aberrant splicing only an unbiased estimator for the

mean model and dispersion parameters is required, which are subsequently plugged

into the negative binomial distribution for outlier discovery. Therefore, saseR intro-

duces a fast algorithm by assuming a quadratic variance structure when estimating

the mean model parameters, which reduces each Newton-Raphson iteration to matrix

multiplication. We show that this parameter estimator remains unbiased even when

the variance structure is misspecified. We then use the mean model parameter esti-

mates in edgeR’s estimateDisp function to estimate the negative binomial dispersion.

This approach improves the scalability dramatically for large cohort studies of rare

diseases, which often require many latent factors to be included when estimating the

mean model. We have shown that our fast algorithm for parameter estimation has
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equal performance to detect aberrant splicing events compared to edgeR, while improv-

ing the computational time by orders of magnitude for large studies. This approach,

however, cannot be used for differential analyses because a misspecification of the

variance structure renders the downstream inference invalid.

A further improvement upon OUTRIDER and FRASER is the use of Gavish

and Donoho threshold [16] to determine the number of latent factors to include in

the mean model, which avoids the computational intensive hyperparameter optimi-

sation. Salkovic et al. [15] already introduced this idea in the context of aberrant

expression detection. However, they considered RNA-seq read counts to be log-normal

distributed, ignoring heteroscedasticity and the count nature of the data. Moreover,

their method also lacks the flexibility to specify the mean model structure and cannot

be used for other applications. We also implemented the option to select the number

of latent factors in saseR with a similar hyperparameter optimisation as OUTRIDER

and FRASER and showed that the performance for outlier detection remained very

similar to the fast Gavish and Donoho threshold method.

In conclusion, we developed a novel and very flexible framework saseR for fast

and scalable analysis for differential usage, aberrant splicing and aberrant expression

that dramatically outperforms state-of-the-art methods in terms of computational

complexity. Interestingly, it also boosts the performance to detect aberrant splicing

in rare diseases. Moreover, our approach has the advantage that it provides a unified

workflow for many applications. Indeed, the user only has to change the input towards

the proper count matrix and offsets for their specific application, which makes it

generally applicable, user-friendly, and future-proof for current and novel sequencing-

based technologies and applications.
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4 Methods

We first introduce the framework of saseR, and explain how it can infer aberrant

expression, aberrant splicing and differential splicing using adapted offsets in the nega-

tive binomial framework. Next, we show how we control for unknown confounders, and

develop a novel algorithm for parameter estimation that scales to large design matrices.

We conclude with an overview of the datasets and our benchmarking protocols.

4.1 Detection of aberrantly expressed genes

Conventional bulk RNA-seq tools for differential analysis use a negative binomial

framework to estimate the mean expression for each feature [18, 21] which can be

formulated as:


yij ∼ NB(µij , θj)

log(µij) = ηij

ηij = xT
i βj + oij ,

(1)

with yij the observed count for feature j of sample i, µij the sample specific mean

of feature j, θj the negative binomial dispersion parameter for feature j, ηij the linear

predictor of feature j for sample i, xT
i the covariate pattern for sample i, βj a vector

with the corresponding model parameters for feature j, and oij an offset for feature

j in sample i to normalise for differences in library size between samples. Note, that

conventional bulk RNA-seq tools by default consider the same offset for all features.

However, in user defined workflows they allow the user to specify different offsets for

each feature, which we will exploit in this paper.

Upon parameter estimation, differentially expressed features are prioritised by test-

ing on a single mean model parameter or a linear combination of model parameters that

corresponds with the research hypothesis of interest. However, conventional hypothe-

sis testing for prioritising aberrant expression in the context of rare diseases is invalid
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because the condition of each subject is typically caused by another feature. There-

fore, the problem reduces to outlier detection and aberrant features can be prioritised

by assessing how extreme the quantile of an observed feature is given its estimated

distribution. For RNA-seq data, the negative binomial distribution is typically used

and the quantile can be transformed to a kind of ”two sided p-value” [13]

pij = 2×min
(
0.5,

yij∑
1

P (yij |µij , θj), 1−
yij−1∑

1

P (yij |µij , θj)
)
, (2)

which can be estimated using conventional bulk RNA-seq tools such as edgeR [18].

Due to the discrete nature of the distribution, the p-values have to be restricted to

be at most 1. These two-sided p-values can be used to rank the genes according to

their magnitude of aberrant expression. Note, that a distribution is needed to compute

these quantiles, so we cannot resort to quasi-likelihood based workflows.

4.2 Differential usage and aberrant splicing

For differential usage or aberrant splicing, one has to estimate the relative abundance

or proportion for a certain exon, intron or transcript relative to the total expression of

all features mapping to a particular gene. To overcome this, we developed our satuRn

[20] tool, which uses quasi-binomial likelihood. However, with quasi-likelihood only the

first two moments of the distribution are modelled, which renders it useless for outlier

detection. Similar to FRASER, we could resort to the beta-binomial distribution to

address heteroscedasticity in the binomial counts. However, fitting a beta-binomial is

slow.

Alternatively, DEXSeq [19] could be used, which models the counts of specific

feature and the other counts of all features that map to the same gene using a negative

binomial model. But, the DEXSeq approach introduces a subject specific intercept

to account for the correlation between the counts and the other counts as they are

measured for the same subject, which leads to an explosion of the size of the design
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matrix in studies with many subjects. Therefore, DEXSeq does not scale to the large

data compendia that are typically used in the context of rare diseases.

We argue that similar results to DEXSeq can be obtained using a negative binomial

model with an offset for the total count of all features that map to a gene. Indeed, the

mean model parameters in Equation 1 then also get an interpretation in terms of the

log-ratio relative to the total count for a gene, which unlocks bulk RNA-seq tools for

differential usage and aberrant splicing applications. To avoid taking the logarithm of

0, a pseudo-count of 1 is added to gene counts that are equal to 0, as well as to their

corresponding feature count of 0.

Table 1 in the results section gives an overview for interesting applications that

can be modeled using different kinds of input count and offset combinations.

For each application, saseR will use different counts and offsets in its workflow, i.e.

workflows for intron and exon bin counts as well as junction counts are developed for

aberrant splicing. For the former we will use the logarithm of the total count over all

bins that map to a gene as an offset. For the latter we will consider two workflows with

different offsets, one with the logarithm of the sum over all junction counts that map

to a gene, the other with an offset derived of ASpli [17] junction clusters, which do not

require prior annotation. These junction clusters correspond to all junctions that have

at least a splice site in common and are needed to infer novel/unknown splice sites.

4.3 Correction for latent confounders

When performing differential or aberrant event detection in large data compendia

one typically has to account for unknown confounders. To correct for these latent

factors, several algorithms have been developed, e.g. [26, 27]. In saseR, we use RUV

[27] that adopts a singular value decomposition on the deviance residuals to estimate

these latent confounders, which are subsequently incorporated in the negative binomial

model as covariates.
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To estimate the optimal number of latent factors, two different approaches were

used. On the one hand, we implement the optimal hard threshold for singular val-

ues of Gavish and Donoho [16], which was adopted recently by Salkovic et al. [15]

in the context of aberrant expression. As opposed to Salkovic et al. who assume the

RNA-seq counts to be log-normal distributed and therefore do not account for the

heteroscedastic nature of counts, our method explicitly models the data using nega-

tive binomial models. On the other hand, we also implement a similar approach to

OUTRIDER [13] and FRASER [14, 22]: corrupted counts are injected in the data to

estimate the number of latent factors. The corrupted counts replace original counts

with a frequency of 10−2. Then, a grid search is performed that varies the number of

latent factors, and the discovery of the corrupted counts is then evaluated. The num-

ber of latent factors that obtains the highest area under the precision-recall curve is

then used for the final analysis on the original data. Note, that a grid search implies

that this approach will by much slower than the strategy from Gavish and Donoho

[16] because the NB-model has to be fitted for each grid point. For details on the sim-

ulation of corrupted counts for aberrant expression and splicing, we refer the reader

to Supplementary Information.

4.4 Fast parameter estimation for large design matrices

The mean model parameters of the negative binomial model are commonly estimated

using a Newton-Raphson algorithm. It iteratively solves

βk+1
j = βk

j + (XTWjX)−1XT ∂ηj

∂µj
Wj(yj − µj),

with Wj a n× n feature-specific diagonal weight matrix with elements

wii =
∂µij

∂ηij
V ar(yij)

−1 ∂µij

∂ηij
.
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For the detection of aberrant events, and mainly for aberrant expression, the

required number of latent factors to obtain optimal power can be large as large

data compendia are typically used for this purpose. For large design matrices X,

the computation of the Newton-Raphson equation does not scale well and becomes

slow. Therefore, we introduce a method for parameter estimation that is fast, scalable

with large design matrices and provides an unbiased estimator of the mean model

parameters.

In particular, we replace the NB variance structure, V ar(Yij) = µij + θjµ
2
ij by a

quadratic variance structure

V ar(Yij) = ϕjµ
2
ij ,

together with the log link function

log(µij) = ηij ,

which reduces the diagonal elements of weight matrix Wj in each Newton-Raphson

iteration to a feature-specific constant,

wii = µij
1

ϕjµ2
ij

µij =
1

ϕj
,

implying that the parameter estimator

βk+1
j = βk

j + (XT 1

ϕj
X)−1XT 1

ϕj

1

µj
yj − µj

= βk
j + (XTX)−1XT (yj − µj)

µj
,
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no longer involves feature-specific matrices, and shows that each iteration is

reduced to a fast matrix multiplication. In case of misspecification of the variance

structure, the estimator remains unbaised

E[β̂j ] = βj + (XTX)−1XT
(E[yj ]− µj)

µj

= βj + (XTX)−1XT
(µj − µj)

µj

= βj .

Upon the estimation of the mean model parameters, the feature-specific dispersion

θj can then be calculated using standard bulk RNA-seq tools, such as edgeR [18].

Note, that our fast parameter estimator can only be used for aberrant detec-

tion, which only requires an unbiased estimator of the mean and dispersion. Indeed,

the estimators are then plugged into the NB distribution and no further inference

is required on the parameter estimators themselves. Differential analysis, however,

involves statistical hypothesis tests on (contrasts of) the mean model parameters,

and the misspecification of the variance could lead to incorrect standard errors on

(contrasts of) the mean model parameters and thus to incorrect inference for these

applications.

4.5 Data

Three different datasets are used in this work. First, similar to [13], gene expression

read counts were downloaded from GTEx portal (version V6P counted with RNA-

SeQC v1.1.8) [23]. Only sequencing reads from suprapubic skin cells were retained and

samples with a lower RNA integrity number than 5.7 were removed. Genes were kept

when having at least 1 fragment per kilobase of transcript per million mapped reads

for 5% of the samples. This filtering was done with DESeq2 [21]. Also, genes were only
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kept when having at least 1 or more read counts in 25% of the samples. Second, gene,

junction and intron-exon boundary reads were downloaded from Zenodo [10, 28] for the

Kremer dataset, which contains samples suspected to suffer from Mendelian diseases.

The gene expression read counts were filtered in the same way as the GTEx dataset,

while the junction and intron-exon boundary reads were filtered using the standard

filtering of FRASER [14]. Third, FASTQ-files of 39 samples from the Geuvadis dataset

[24] were used (ERR188023-ERR188062, of which ERR188032 was removed due to

errors with alignment), which were aligned to the protein coding genes of the of the

GRCh38.p13 primary genome assembly [29] using STAR (version 2.7.10b) [30].

The benchmarks on differential usage were performed by using the benchmark

framework described in the satuRn paper [20], to which we refer the reader for more

details.

4.6 Outlier simulation

4.6.1 Aberrant expression

Different methods to detect aberrant expression were benchmarked by injecting artifi-

cial outliers in the GTEx and Kremer datasets. The value of the outlier was determined

by using a quantile of the negative binomial distribution, specified by a gene-specific

mean and dispersion parameter. These parameters are obtained by performing a neg-

ative binomial regression of the read counts with a linear predictor with only an

intercept and an offset with sample specific size factors obtained by DESeq2 [21]. The

quantile used in the benchmarks correspond to the quantile of Z=3 in the standard

normal distribution. Both over- and underexpression outliers were injected. This is

conceptually similar to the artificial outlier injection of OUTRIDER [13]. However, we

use proper counts from a negative binomial instead of a log-normal approximation.
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4.6.2 Aberrant splicing

To simulate aberrantly spliced genes, the read counts corresponding to a transcript

within that gene should be increased, while the read counts corresponding to another

transcript should be decreased. As this cannot be done starting from a exon or junction

count matrix, RSEM (version 1.3.0) [25] is used to simulate these outliers in a similar

way as Soneson et al. [31] did for differential usage benchmarks. First, RSEM estimates

transcripts per million expression values in each sample. Then, from randomly selected

genes, the two most expressed transcripts were further used. Candidate transcripts

were only considered if the total gene expression is greater than 100, the two transcripts

both have an expression proportion larger than 10%, and the difference between both

expression proportions is larger than 30%. The expected expression proportions of

these two transcripts are then switched to simulate aberrant splicing outliers. Next,

based on these expected proportions, a Dirichlet distribution is used to simulate new

transcript counts per million. FASTQ-files were simulated based on these transcript

counts per million, using the same library sizes as the original samples. These files

were again aligned using STAR (version 2.7.10b) [30].

5 Data availability

No data were generated for this study. The GTEx v6p dataset is available through

dbGaP (accession number: phs000424.v6.p1) at https://gtexportal.org/home. Gene,

junctions, and intron-exon boundary read counts from the Kremer dataset [10] were

downloaded from Zenodo (https://zenodo.org/record/4271599 [28]). FASTQ files from

the Geuvadis dataset [24] were downloaded from https://www.ncbi.nlm.nih.gov/sra.

The data from Gilis et al. [20], used for the differential usage benchmarking are avail-

able at https://doi.org/10.5281/zenodo.6826603 [32]. The scripts used to simulate

aberrant expression and splicing are available on our companion GitHub repository

for this paper: https://github.com/statOmics/saseRPaper/.
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6 Code availability

All code to reproduce the analyses, figures, and tables in the paper is available on

our companion GitHub repository https://github.com/statOmics/saseRPaper/. saseR

with vignettes for the different workflows will be submitted to Bioconductor.
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