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Abstract

Dysregulated cell-cell communication is a hallmark of many disease phenotypes. Due to recent

advances in single-cell transcriptomics and computational approaches, it is now possible to study

intercellular communication on a genome- and tissue-wide scale. However, most current cell-cell

communication inference tools have limitations when analyzing data from multiple samples and

conditions. Their main limitation is that they do not address inter-sample heterogeneity adequately,

which could lead to false inference. This issue is crucial for analyzing human cohort scRNA-seq

datasets, complicating the comparison between healthy and diseased subjects.

Therefore, we developed MultiNicheNet (https://github.com/saeyslab/multinichenetr), a novel

framework to better analyze cell-cell communication from multi-sample multi-condition single-cell

transcriptomics data. The main goals of MultiNicheNet are inferring the differentially expressed and

active ligand-receptor pairs between conditions of interest and predicting the putative downstream

target genes of these pairs. To achieve this goal, MultiNicheNet applies the principles of

state-of-the-art differential expression algorithms for multi-sample scRNA-seq data. As a result, users

can analyze differential cell-cell communication while adequately addressing inter-sample

heterogeneity, handling complex multifactorial experimental designs, and correcting for batch effects

and covariates. Moreover, MultiNicheNet uses NicheNet-v2, our new and substantially improved

version of NicheNet's ligand-receptor network and ligand-target prior knowledge model.

We applied MultiNicheNet to patient cohort data of several diseases (breast cancer, squamous cell

carcinoma, multisystem inflammatory syndrome in children, and lung fibrosis). For these diseases,

MultiNicheNet uncovered known and novel aberrant cell-cell signaling processes. We also

demonstrated MultiNicheNet's potential to perform non-trivial analysis tasks, such as studying

between- and within-group differences in cell-cell communication dynamics in response to therapy.

As a final example, we used MulitNicheNet to elucidate dysregulated intercellular signaling in

idiopathic pulmonary fibrosis while correcting batch effects in integrated atlas data.

Given the anticipated increase in multi-sample scRNA-seq datasets due to technological

advancements and extensive atlas-building integration efforts, we expect that MultiNicheNet will be

a valuable tool to uncover differences in cell-cell communication between healthy and diseased

states.
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Introduction

Tight coordination between different cells is required to maintain homeostasis in multicellular

organisms. Consequently, dysregulation of cell-cell communication can lead to disease phenotypes.

Studying cell-cell interactions is thus essential for an improved understanding of fundamental tissue

biology and disease pathophysiology. Advances in single-cell and spatial transcriptomics are now

providing opportunities to address this need through their ability to generate molecular profiles of

cells within a tissue1. However, deciphering cell-cell communication from these profiles requires

dedicated analysis approaches. As a result, several computational tools have been developed for this

task2,3.

Most tools infer cell-cell communication by predicting protein ligand-receptor interactions between

pairs of cell clusters4–7 (typically annotated as cell types) or cells8,9. They first estimate which ligands

are expressed by one cell type (the sender) and which receptors by another (the receiver). They then

link the expressed ligands to the expressed receptors if an interaction between a ligand and receptor

is documented in a database of cognate ligand-receptor pairs. Differences between these

ligand-receptor inference tools involve the choice of the used ligand-receptor database and the

statistical procedure by which they infer the interaction likelihood based on the gene expression

levels of the ligand and receptor10. For example, CellPhoneDB4 and CellChat7 use a permutation

approach to prioritize ligand-receptor interactions based on cell-type specificity. Whereas these tools

provide a comprehensive overview of expressed ligand-receptor pairs, they typically return an

extensive list of interactions. As a consequence, it can be hard to decide which interactions are the

most vital ones in the system of interest. Another limitation is that RNA-level co-expression of ligand

and receptor does not necessarily guarantee that the ligand and receptor interact physically. Finally,

they might overlook essential interactions that are weakly expressed or not cell-type specific.

Some other tools approach the cell-cell communication inference problem differently by

incorporating downstream signaling of ligand-receptor interactions11,12. We previously published

NicheNet11, which predicts downstream affected target genes of expressed ligand-receptor pairs by

combining the expression data of interacting cells with a model of ligand-target regulatory potential.

This prior knowledge model is calculated through network-based data integration of signaling and

gene regulatory networks. Contrary to the tools that prioritize ligand-receptor pairs based on

cell-type specificity, NicheNet prioritizes expressed pairs according to how strongly their predicted

targets are enriched in the receiver cell type (their so-called ligand activity). A high ligand activity
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might thus suggest that the ligand and receptor are not only expressed but also functionally

interacting, making that ligand-receptor interaction an attractive candidate as a critical interaction in

the biological process of interest. An additional benefit of NicheNet is that it generates hypotheses

about the effects of ligand-receptor interactions on the receiver cell type (i.e., which are the specific

targets they induce). But, the quality of the predictions critically depends on the accuracy of the prior

knowledge used to link the ligand-receptor pairs to their target genes. We can expect false positive

predictions if the signaling effects of ligand-receptor pairs were determined through experiments

performed in different cell types and contexts than the ones of interest for the user’s analysis. False

negative predictions are likely to occur for ligand-receptor pairs that are not well studied and for

which there is thus a lack of knowledge on the downstream effects. Nevertheless, our previous

benchmark11 demonstrates that NicheNet can accurately predict active ligands given an observed

gene expression signature after in vitro ligand stimulation. The accuracy of ligand activity predictions

is harder to systematically assess in vivo, but several studies reported experimental in vivo validation

of some of the top predictions13–17.

Although both types of approaches have limitations, they have been applied successfully to study

both communication in steady state and differences in communication between conditions7,11,18.

Similarly to their application to steady-state data, the output of both approaches on the differential

cell-cell communication inference task should be interpreted differently. The first class of methods

returns ligand-receptor pairs of which one or both members are differentially expressed (DE)

between the conditions. But, as mentioned above, differential RNA expression does not imply that

an interaction is differentially active between conditions. In contrast, NicheNet predicts “differentially

active” ligand-receptor interactions for which prior knowledge supports that they could function

upstream of the DE genes in a receiver cell type of interest. This means that ligand-receptor

interactions should not be DE themselves, increasing the chance of improperly prioritizing non-DE

interactions. Improper prioritization is then likely to happen when these interactions would share

signaling effects with a DE ligand-receptor pair that is truly pivotal in the process of interest. Even

though ligand-receptor pairs should not necessarily be DE to be differentially active, including DE

information might thus help in reducing false positives and identifying a more limited number of

interactions for further experimental validation. Inferring differential cell-cell communication by

prioritizing both differentially active and expressed ligand-receptor pairs is thus an exciting analysis

strategy. However, Scriabin19 and our recent ad-hoc extension of NicheNet14 are currently the only

tools to our knowledge with software support for such an analysis.
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Moreover, current cell-cell communication tools suffer from additional limitations when applied to

infer differential cell-cell communication from multi-sample scRNA-seq data. Biological replication in

the form of multiple subjects (research animals or humans) is undoubtedly necessary to draw more

robust conclusions. However, analysis strategies should consider the sample-to-sample biological and

technical variability to avoid biased inferences. Several studies within the field of DE analysis from

multi-sample scRNA-seq data highlighted that ignoring this variation can lead to false discoveries20–22.

Running the classical cell-cell communication tools in their default mode on multi-sample data

generates results after pooling all cells across samples23–28. This approach is thus statistically

inadequate because it ignores sample-to-sample variation, and results might be skewed towards

sample-specific interactions of samples with more cells19. Furthermore, one should ideally correct for

confounding batch effects and other covariates (e.g., sex and age) if applicable to the data.

Noteworthy, this pooling procedure is also suboptimal from a biological perspective because it

ignores that cell-cell communication occurs within one sample. Lastly, visualizations showing

inter-sample heterogeneity in cell-cell communication patterns are missing from the default output

of the current tools. These issues are especially crucial for analyzing scRNA-seq data from clinical

cohorts to investigate the role of cell-cell communication in human disease pathophysiology and

therapy response.

Fortunately, several studies have already acknowledged these issues and performed a more

appropriate ad-hoc analysis18,29–32. Here, cell-cell communication is first analyzed per sample,

followed by a statistical comparison of these cell-cell communication outputs between the different

conditions of interest. However, dedicated stand-alone tools with a solid statistical basis and broad

applicability are lacking. This lack of differential cell-cell communication tools for multi-sample

scRNA-seq data is an important issue because of the expected rise in multi-sample datasets due to

technological advances, for example, in sample multiplexing33,34,35,36,37,38. Sample multiplexing

improves the throughput, decreases reagent costs, and minimizes the risk of introducing batch

effects. In parallel to this evolution, more and more datasets are added to existing atlases in projects

like the Human Cell Atlas39,40, facilitated by effective integration algorithms41,42. These atlases consist

of several healthy and diseased samples of several tissues from multiple individuals. Deciphering the

role of cell-cell communication in the pathogenesis of these diseases requires tools that can correct

for the source of origin of the data and relevant clinical covariates.

Ideally, these tools should also be able to exploit the wealth of these multi-sample multi-condition

datasets and tackle more complex questions than just pairwise comparisons. An exciting analysis

would be to elucidate differential dynamics of cell-cell communication, such as comparing therapy
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response or disease progression between disease subtypes or diseases of the same tissue. Moreover,

the multi-sample nature of these data also opens up opportunities to investigate the across-sample

covariance structure between genes in different cell types. A few elegant novel methods like

DIALOGUE43 and scITD44 started exploring this concept and aim to uncover so-called “multicellular

gene expression programs”. These are gene sets from multiple cell types with co-varying expression

across different samples. Tensor-cell2cell45 also extracts co-varying expression patterns, but it focuses

explicitly on retrieving ligand-receptor interactions between sender-receiver cell-type pairs.

In summary, a few tools exist for expression- and activity-based differential communication analysis

or for extracting intercellular communication patterns from multi-sample data. However, methods

that connect both are lacking. This is an important issue because both aspects are intricately linked

since robust differential analyses require multiple samples. Thus, there is a clear need for dedicated

differential cell-cell communication tools that consider both the expression and activity of

ligand-receptor pairs and can address the challenges and opportunities of multi-sample scRNA-seq

data.

Therefore, we developed MultiNicheNet, a novel tool for differential cell-cell communication analysis

from multi-sample multi-condition scRNA-seq data. MultiNicheNet builds upon the principles of

state-of-the-art approaches for DE analysis of multi-sample scRNA-seq data. As a result, the

algorithm considers inter-sample heterogeneity, can correct for batch effects and covariates, and can

cope with complex experimental designs to address more challenging questions than pairwise

comparisons. MultiNicheNet uses this DE output to combine the principles of NicheNet and

ligand-receptor inference tools into one flexible framework. This enables the prioritization of

ligand-receptor interactions based on differential expression, cell-type specific expression, and

NicheNet’s ligand activity. Because the trustworthiness of the prioritization strongly depends on the

quality of the used ligand-receptor database and ligand-target regulatory potential model, we

updated the original NicheNet networks to obtain an improved version of both (“NicheNet-v2”).

We applied MultiNicheNet to scRNA-seq data of several tissues and diseases. On data of patients

undergoing immunotherapy against breast cancer23, MultiNicheNet uncovered between- and

within-group differences in cell-cell communication dynamics in response to therapy. Furthermore,

MultiNicheNet’s predictions on data from patients with cutaneous squamous cell carcinoma24 or

MIS-C (“multisystem inflammatory syndrome in children”)18 were corroborated by spatial

co-localization or serum protein analyses. Finally, we applied MultiNicheNet to integrated lung atlas

data to elucidate dysregulated cellular crosstalk in idiopathic pulmonary fibrosis while correcting
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batch effects42,46–49. These applications demonstrate altogether that MultiNicheNet both retrieves

known biology and generates novel hypotheses, including the possible identification of previously

undescribed subgroups of patients, thus offering a novel way for patient stratification in cohort

studies. In conclusion, MultiNicheNet is a flexible and broadly applicable differential cell-cell

communication method that can reliably perform non-trivial analyses from multi-sample

multi-condition single-cell transcriptomics datasets.

Results

MultiNicheNet prioritizes differential ligand-receptor-target communication

patterns from multi-sample multi-condition scRNA-seq data

MultiNicheNet infers and prioritizes condition-specific ligand-receptor pairs and their target genes

from multi-sample multi-condition single-cell transcriptomics data (Figure 1a). The main idea behind

the prioritization strategy is to uncover essential interactions by considering several complementary

aspects informative for cell-cell communication inference. We hypothesize that prioritization based

on multiple relevant factors can increase the likelihood of inferring interactions vital for the

communication process of interest. This contrasts with existing approaches that only use one aspect

(e.g., expression or activity) for prioritization. As ideal ligand-receptor pairs, we consider pairs that

are more strongly expressed in the condition of interest, are cell-type specific, are present in most

samples of the condition of interest, and for which predicted target genes are enriched in the

receiver cell type. MultiNicheNet uses the following criteria to achieve this prioritization: differential

expression of the ligand in the sender cell type and its receptor(s) in the receiver cell type; cell-type

and condition-specific expression of the ligand and its receptor(s); the fraction of samples in the

condition of interest with sufficient expression of both ligand and receptor; and differential ligand

activity in the receiver cell type (Methods). In the rest of this section, we describe how these criteria

are calculated and used to obtain a final ranking.

MultiNicheNet starts from multi-sample multi-condition scRNA-seq data of putatively interacting

cells and combines this with a ligand-receptor network and a corresponding NicheNet ligand-target

regulatory potential model. As input, users have to provide the raw count matrix of the scRNA-seq

dataset with a corresponding metadata table that indicates the following labels for each cell: the cell

type, sample, and condition. If applicable, users can add batch and covariate information to correct

for these factors. By default, MultiNicheNet will infer cell-cell communication between each pair of
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cell types, but users can restrict the analysis to pairs of interest, depending on the biological question

or information on spatial co-localization. Finally, the user should indicate the comparison(s) they

want to assess with MultiNicheNet (e.g., condition 3 versus conditions 1 and 2). MultiNicheNet uses

all this information to score each ligand-receptor pair between each sender-receiver cell type

combination for all the prioritization criteria described above.

First, DE analysis for the requested comparison(s) is performed for each cell type. The DE analysis

output is then used to define the strength of differential expression of ligands and receptors, and to

determine the entire set of DE genes in a cell type. This set of DE genes is used to predict ligand

activities for all ligands (as described in the original NicheNet paper11). To perform the DE analysis,

MultiNicheNet uses pseudobulk aggregation followed by edgeR analysis, a state-of-the-art approach

for DE analysis from multi-sample scRNA-seq data21,22,50 (Methods). In this approach, counts for all

cells of a given cell type are first aggregated per sample into a pseudobulk count matrix. Next, each

cell type’s pseudobulk matrix is used individually as input for DE tools designed for bulk RNA-seq

analysis, such as edgeR51. As a result, we can compare the different conditions by using the sample as

the experimental unit (in contrast to the cell, as frequently (mis)used in scRNA-seq DE analyses21).

This approach thus handles inter-sample variation correctly and overcomes the problems associated

with pooling all cells from all samples per condition. Moreover, the edgeR framework enables

efficient handling of complex experimental designs and correcting for batch effects and covariates. In

brief, state-of-the-art DE analysis is conducted to score each ligand-receptor interaction according to

differential expression and ligand activity.

Secondly, the pseudobulk expression matrices are also used to calculate a metric that indicates a

combination of cell-type and condition-specific expression of the ligand or receptor. This metric is the

average normalized pseudobulk expression value per cell-type-condition combination (Methods). We

introduced this criterion to avoid prioritizing non-cell-type-specific ligand-receptor pairs with slightly

stronger differential expression over more cell-type-specific ligand-receptor pairs with slightly weaker

differential expression. Subsequently, MultiNicheNet calculates per condition the fraction of samples

in which the ligand-receptor pair is sufficiently expressed. We added this final criterion to reduce the

chance of strongly prioritizing ligand-receptor interactions that are DE but are only expressed in a

small subgroup of samples.

Finally, we scale each of these metrics for each ligand-receptor interaction across all sender-receiver

cell type combinations and aggregate these scaled scores to obtain a final ranking of ligand-receptor

interactions according to condition-specificity (Figure 1b) (Methods). We want to stress that this
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strategy results in a ranking of interactions, not in a defined set of interactions. We prefer this

approach because it incorporates all the criteria mentioned above, but it will not eliminate

interactions that score poorly on one of the criteria (which would occur in strategies that use

thresholding on individual criterion scores to obtain a final set of interactions). We also want to

emphasize the flexibility of the framework. Users can perform the aggregation in a weighted fashion

to modify the influence of certain criteria during the prioritization (according to their insight into the

data they are working on).

The MultiNicheNet software package does not only provide this prioritization framework, but it also

provides possibilities for further downstream analyses and the generation of several intuitive

visualizations. One downstream analysis is the prediction of specific target genes downstream of the

prioritized differential ligand-receptor interactions with high ligand activity. In addition to inferring

ligand-target links solely based on prior knowledge as described in the original NicheNet study, we

can now exploit the multi-sample nature of the data to keep links only when there is expression

correlation between the ligand-receptor pair and the target gene. Furthermore, we introduce a novel

type of downstream analysis that we can only perform because of MultiNicheNet’s ability to predict

target genes downstream of ligand-receptor interactions. Some target genes induced by certain

ligand-receptor interactions encode for ligands or receptors themselves. Therefore, these might be

involved in communication with other cell types, resulting in potential intercellular signaling cascades

and feedback chains (Figure 1b). The MultiNicheNet software enables users to explore these putative

“intercellular regulatory networks”.

As mentioned above, MultiNicheNet requires a ligand-receptor network and a corresponding

NicheNet ligand-target model as input. Both have to provide accurate prior knowledge to ensure

proper ligand-receptor prioritization and prediction of downstream target genes. The next section

describes how we updated the ligand-receptor network and ligand-target model from the original

NicheNet study.
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Figure 1 | MultiNicheNet performs differential cell-cell communication analysis from multi-sample multi-condition

single-cell transcriptomics data. a) MultiNicheNet starts from the raw counts of an annotated scRNA-seq dataset (each

sample is here represented by one data rectangle). It infers differential cell-cell communication patterns that include

ligand-receptor pairs (thick solid arrows) and predicted downstream target genes (dashed arrows). b) MultiNicheNet

performs a ranking-based prioritization of differential cell-cell communication patterns based on multiple criteria, such as

differential expression (DE) and downstream signaling activity (“ligand activity”). These criteria are summarized in an

aggregated score, which can be used to define the most differential interactions for downstream visualizations (e.g., chord

diagrams as shown in a)). Differential expression of ligands, receptors, and target genes is visualized through the blue-red

color scale (blue: low, red: high). Ligand activity is here represented by the number of target genes predicted for each

ligand-receptor pair (dashed arrows show receptor-target links). Some target genes encode for ligands that might be

involved in interactions with other cell types, potentially forming “intercellular signaling cascades”.

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2023. ; https://doi.org/10.1101/2023.06.13.544751doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.13.544751
http://creativecommons.org/licenses/by-nc-nd/4.0/


MultiNicheNet uses NicheNet-v2: an update of NicheNet’s prior knowledge

that contains an up-to-date comprehensive ligand-receptor database and a

more accurate model of ligand-target regulation

To improve ligand-receptor prioritization and target gene predictions, we substantially updated the

NicheNet ligand-receptor network and prior knowledge model of ligand-target regulatory potential.

In the rest of this manuscript, we will refer to the updated version of the prior knowledge networks

as “NicheNet-v2” and to the original version as “NicheNet-v1”.

A major limitation of the NicheNet-v1 ligand-receptor network is that it contains many non-curated

links predicted based on protein-protein interactions (PPIs) and gene annotation11. A second

limitation is that it lacks relatively recently described ligand-receptor interactions that are

documented in databases of more recently published cell-cell communication tools. To overcome

these limitations, we constructed a novel ligand-receptor network for NicheNet-v2 that mainly

comprises ligand-receptor interactions from the Omnipath intercellular communication database52

(see Methods). Omnipath is a comprehensive database that includes the different ligand-receptor

databases used in multiple ligand-receptor inference methods, like the databases used in CellChat7

and CellPhoneDB4. In addition to Omnipath, we also incorporated additional ligand-receptor

interactions from Verschueren et al53. Verschueren et al. described a set of novel ligand-receptor

interactions of which at least one member is part of the immunoglobulin superfamily. We included

these interactions because of their clinical relevance, certainly in tumor immunology, which is one of

the research fields in which we expect MultiNicheNet to be used the most.

In addition to the ligand-receptor network, we also reworked the ligand-target regulatory potential

model (see Methods, Supplementary Note 1, and Supplementary Table 1). We updated the existing

data sources for which updates were available and included some novel data sources relevant to

signaling pathways and gene regulation (e.g., KnockTF54). However, the main improvement of

NicheNet-v2’s ligand-target model is the addition of in vitro experimentally determined target genes

for 119 ligands. For this, we used the CytoSig55 database and the ligand treatment datasets described

in the original NicheNet paper11 (see Methods). To assess whether the update results in a better prior

model of ligand-target regulatory potential, we benchmarked the NicheNet-v2 model against the

NicheNet-v1 model. As benchmark, we performed the same evaluation procedure as in the original

NicheNet study11. In short, we determined a gold standard of ligand-target links as follows: we

analyzed public transcriptomics datasets of cells before and after being treated by a ligand (in vitro),
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and we determined DE genes to obtain a set of true target genes of the ligand. Using this gold

standard, we calculated two evaluation measures: target gene prediction and ligand activity

prediction performance. To evaluate target gene prediction, we calculated how accurate the model

predicts which genes are DE after ligand stimulation. To assess ligand activity prediction, we

estimated how well the model predicts by which ligand the cells were stimulated. In addition to the

ligand treatment datasets used in the NicheNet study, we also used the cytokine signatures provided

by the CytoSig database55 as a second gold standard dataset. Because we also included the NicheNet

and CytoSig ligand-treatment inferred ligand-target links to the model itself (see the previous

paragraph), we had to design an evaluation strategy to avoid data leakage between model

construction and model evaluation. In essence, we removed all CytoSig-based ligand-target links

from the model before evaluating on the CytoSig gold standard and all NicheNet-based ligand-target

links before evaluating on the NicheNet gold standard (see Methods). Using this procedure, we

compared the predictive performance of NicheNet-v2 against NicheNet-v1 for both evaluation

measures and gold standard datasets. We can conclude that NicheNet-v2 is substantially more

accurate in target gene prediction than NicheNet-v1, whereas ligand activity accuracy is similar

(Supplementary Figure 1 and Supplementary Table 2c-f). These conclusions are identical based on

both the NicheNet and CytoSig gold standard.

In summary, NicheNet-v2 provides a comprehensive and up-to-date ligand-receptor network and a

more accurate ligand-target regulatory potential model than NicheNet-v1. We expect both

improvements to reduce false positive and false negative predictions of ligand-receptor and

ligand-target predictions in case studies. NicheNet-v2 provides both a human and mouse version of

the ligand-receptor network and ligand-target model. In the rest of this paper, we will describe

several MultiNicheNet case study analyses that we performed with this NicheNet-v2 model.

However, users can now apply this new NicheNet-v2 model for regular NicheNet analyses as well.
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MultiNicheNet highlights critical pre-therapy cell-cell signaling patterns linked

to therapy response in breast cancer patients

As a first case study, we applied MultiNicheNet to publicly available scRNA-seq data from breast

cancer biopsies of patients receiving anti-PD1 immune-checkpoint blockade therapy23. Bassez et al.

collected from each patient one tumor biopsy before anti-PD1 therapy (“pre-treatment”) and one

during subsequent surgery (“on-treatment” - collected +/- nine days after the anti-PD1 treatment)23.

Because of the importance of clonal expansion of T cells in defining the treatment response to

immune checkpoint blockade therapy, Bassez et al. performed both single-cell transcriptomics and T

cell receptor sequencing (scTCR-seq). Based on the scTCR-seq results, they identified one group of

patients with clonotype expansion as response to the therapy (“E”) and one group with only limited

or no clonotype expansion (“NE”).

Given this information, we applied MultiNicheNet to compare pre-treatment cell-cell communication

between the E and NE patients. First, we focus on the interactions between macrophages and T cells

(Figure 2a and Supplementary Figures 2 & 3). The two interactions with the highest prioritization

scores were between PDL1 (CD274) from macrophages and PD1 (PDCD1) from CD4 T and CD8 T cells

in E patients (Supplementary Table 3a). These interactions are characterized by both strongly

differential expression and high ligand activity (see bubble heatmap of Figure 2a). In this case study,

PDL1-PD1 signaling can be considered as a true positive prediction because we expect that PD1

signaling should be present in the tumor microenvironment of patients responding to anti-PD1

therapy56. In addition to PD1 signaling, MultiNicheNet inferred many other immune checkpoint

interactions in the top 50 E-specific interactions between macrophages and T cells (Supplementary

Figure 2)56. The most strongly E-specific checkpoint interactions from macrophages towards CD4 T

cells are PDCD1LG2-PDCD1, NECTIN2-TIGIT, TNFRSF14-BTLA, LGALS3-LAG3, and CD86-CTLA4.

Checkpoint interactions from macrophages towards CD8 T cells in this top 50 are NECTIN2-TIGIT and

LGALS3-LAG3. We also observe many chemokine interactions in the top 50 E-specific interactions

(Supplementary Figure 2): CXCL9-CXCR3 (macrophages - CD4 T cells); CCL7, CCL8, CCL13, CCL18, and

CXCL11 towards CCR5 (macrophages - CD8 T cells); CXCL9, CXCL10, CXCL1, and CCL13 toward CXCR3

and CXCL16-CXCR6 (macrophages - CD4 regulatory T cells). Another strongly differential ligand in the

E-specific tumor microenvironment seems to be IL15 (Supplementary Figure 2). Interestingly,

combining anti-PD1 therapy with IL15 signaling activation might potentially be a novel promising

form of immunotherapy57.
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If we now look at the interactions from T cells toward macrophages, we see that IFNG, CSF1, CSF2,

and BTLA signaling are the most specific interactions in patients with clonotype expansion (Figure

2a). Like PD1 signaling, IFNG gamma signaling is one of the known predominant factors determining

anti-PD1 therapy response56. Other top predicted E-specific signals include IL10, IL21, and IL7

(Supplementary Figure 3), which are all involved in modulating macrophage activity58,59,60.

Additionally, interactions between CCR1 on macrophages and chemokines such as CCL3 and CCL5

(from CD8 T cells) and CCL4 (from CD4 T cells) seem to be specific for the tumor microenvironment

of E patients (Supplementary Figure 3). Noteworthy, MultiNicheNet also predicts some potentially

exciting interactions (e.g., IGF2L-IGFLR1 from T cells to macrophages) that have not been extensively

studied before in the context of tumor microenvironment interactions and therapy response

(Supplementary Figure 3).

Whereas we only discussed expansion-specific interactions in the previous paragraphs,

MultiNicheNet also predicted some interactions specific for the patients without or with limited

clonotype expansion. TGFB1, GDF11, and TNF are the most specific communication pathways

between T cells and macrophages in NE patients (Figure 2a). Whereas we expected to retrieve

anti-inflammatory signals like TGFB1 and GDF11 in non-expander patients61, retrieving TNF as

NE-specific interaction was more surprising, even though it is known to have a complex dual role in

the tumor microenvironment62. The bubble heatmap plot shows us that the predicted receptors of

TNF are here LTBR and TNFRSF21 - two non-canonical receptors - and that these ligand-receptor

interactions are not very clearly differentially expressed (Figure 2a). Their prioritization seems to be

due to their strong predicted downregulatory activity in NE. However, the algorithm cannot

discriminate between downregulatory activity in NE or upregulatory activity in E: it just indicates that

TNF target genes are more strongly expressed in E patients. This might be due to the downregulation

of these genes in NE patients. Still, it might also be possible that TNF is actually more active in E and

that regulation of its activity occurs at the post-transcriptional level. Based on inspecting this plot, we

might thus become less confident in this prediction compared to, for example, the prediction of

TGFB1-TGFBR1: this is an interaction between a ligand and its canonical receptor, and both the

interaction and its target genes are more strongly expressed in NE patients.
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(Figure 2 | caption on next page)
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Figure 2 | MultiNicheNet prioritizes differential pre-therapy communication patterns between breast cancer patients

with and without T cell clonotype expansion in response to anti-PD1 immunotherapy. a) MultiNicheNet was applied to

scRNA-seq from Bassez et al. to compare pre-therapy cell-cell communication between expander (preE) and non-expander

patients (preNE). The most differential interactions between macrophages and T cells are shown and divided per patient

group. Left: chord diagram visualization of the prioritized interactions. The arrowhead indicates the direction from sender

to receiver cell type, and the color of the arrow indicates the sender cell type that expresses the ligand. Right: For each

interaction, ligand-receptor pseudobulk expression and scaled ligand activity values are visualized. Scaled ligand activity

values are calculated as z-score normalized NicheNet ligand activity values (Methods), calculated per receiver cell type. The

higher these values, the more enriched target genes of a specific ligand are among the set of up- or downregulated genes in

the preE or preNE group. The size of the dots indicates whether a sample had enough cells (>= 10) for a specific cell type to

be considered for DE analysis. b) MultiNicheNet predicts an intercellular regulatory network showing potential intercellular

signaling cascades specific for each patient group. This network consists of predicted ligand-target links for which the target

gene encodes for a prioritized differential ligand or receptor. A predicted “up-regulatory” link indicates a positive

across-patients expression correlation between the ligand-receptor and the prior-knowledge-supported target gene in the

receiver cell type. A predicted “down-regulatory” link indicates an anti-correlation. To generate this plot, we considered the

ligand-receptor pairs in the top 50 most differential interactions from macrophages to T cells and vice versa. Target genes

should be among the 250 genes with the highest regulatory potential to be regulated by the specific ligand and should

show expression correlation with the specific upstream ligand-receptor pair (Pearson or Spearman correlation > 0.33).

This last point illustrates the benefit of checking visualizations that show the data behind the

predictions. The bubble heatmaps (as shown in Figure 2a and Supplementary Figures 2 & 3) show

both the expression and activity of the ligand-receptor pairs. Moreover, they give the user insight

into potential patient-to-patient heterogeneity. They also indicate if there were sufficient cells of a

particular cell type in a sample to be included in the DE analysis. Furthermore, MultiNicheNet

provides another visualization for users to explore which specific target genes are enriched in a

receiver cell type (Supplementary Figure 4a). These ligand-target links are inferred based on prior

knowledge in the same way as described in the original NicheNet paper. However, the user can also

filter interactions based on expression correlation between the ligand-receptor pair and the target

gene (Supplementary Figure 4a-b). We expect that target genes downstream of a ligand-receptor

interaction will follow the same expression trend as the ligand-receptor pair. Consequently, outlier

patients based on ligand-receptor expression will also be outliers in target gene expression (for

example, patient 18; Supplementary Figure 4a). As the original NicheNet publication describes, we

recommend that users verify the prior knowledge used to predict certain ligand-target links.

Performing this verification for a subset of target genes downstream of PDL1-PD1 demonstrates that

many edges in the intracellular signaling network are additionally supported by data sources newly

added to NicheNet-v2 (Supplementary Figure 5 and Supplementary Table 3c). Finally, MultiNicheNet

provides the possibility to predict intercellular regulatory networks and compare them between the

conditions of interest. These networks link prioritized ligands from one cell type to their

ligand-encoding or receptor-encoding target genes in other cell types. The putative intercellular

regulatory network between macrophages and T cells points to a potential interplay between IL15,

IFNG, and PDL1 (CD274) in patients with clonotype expansion and connects many of the
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above-described signals (Figure 2b). Literature supports several links in this network (e.g., CCR5

regulation by IL1563 and CD274 regulation by IFNG64).

Although the previous paragraphs described the main interactions inferred among macrophages and

T cells, we also investigated interactions among the other cell types in the tumor microenvironment

(Supplementary Note 3). MultiNicheNet uncovered several interesting interactions involving

dendritic cells (DCs), natural killer (NK) cells, and malignant cells. For example, MultiNicheNet

retrieved a loss of antigen presentation in cancer cells in non-expander patients. Together with

decreased PD-L1 and IFNG signaling, this is a known essential determinant of non-responsiveness to

immune checkpoint blockade therapy56. Altogether, the results of this case study showcase that

MultiNicheNet can prioritize both well-known and novel cell-cell signaling patterns linked to anti-PD1

therapy response in breast cancer patients.
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MultiNicheNet elucidates differences in therapy-induced communication

changes between and within response groups

We here describe how MultiNicheNet can exploit the flexibility of generalized linear models in the

pseudobulk-edgeR framework to handle complex multifactor experimental designs and address

non-trivial questions. We applied MultiNicheNet to the same breast cancer data from Bassez et al. to

compare cell-cell interaction changes during anti-PD1 therapy (“on” versus “pre”) between the E

patients and the NE patients (Figure 3a)23. This analysis exemplifies how to study differential

dynamics of cell-cell communication between conditions or patient groups. MultiNicheNet predicts a

stronger increase in several immunomodulatory interactions (including chemotactic interactions)

during anti-PD1 therapy in patients with clonotype expansion (Figure 3a and Supplementary Table

3d). Examples of increasing chemotactic interactions are CCL19-CCR7 between fibroblasts and B cells,

CXCL12-CXCR4 between endothelial cells and B cells, and CXCL9-CXCR3 between

macrophages/fibroblasts/DCs and (regulatory) CD4 T cells (Figure 3a and Supplementary Table 3d).

These predictions suggest that T and B cells may be more strongly recruited into the tumor during

anti-PD1 therapy, specifically in expander patients. Notably, previous research also demonstrated

that the CXCR3 chemokine system is a key determinant of anti-PD1 therapy efficacy65.

In contrast to our expectations, several intercellular signaling patterns also increased during therapy

in the non-responder patient group (Figure 3a and Supplementary Table 3e). Endothelial cells were

one of the predominant receivers, together with fibroblasts and malignant cells (Supplementary

Table 3e). The majority of molecules participating in interactions toward endothelial cells were

previously shown to be involved in the regulation of angiogenesis (semaphorin-plexin, IGF2, FGF7,

and PDGFC66–69) or lymphangiogenesis (VEGFC, FLT4, ITGA1, ITGA2, and ITGA570,71)(Figure 3b). These

processes play a role in determining the response to cancer immunotherapy, and a combination of

anti-angiogenesis and immunotherapy has been proposed to work synergistically72.

Importantly, we can clearly see inter-patient heterogeneity in these (lymph)angiogenesis-related

interactions in the NE group (Figure 3b). Even though these interactions seem to increase in

expression and activity at the group level, this group-level increase appears to be driven by a subset

of the NE patients (Figure 3b and Supplementary Figure 6). Moreover, we can even observe a

decrease in these interactions in a small subset of NE patients. This demonstrates the benefit of

MultiNicheNet’s visualizations in uncovering inter-patient heterogeneity.
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Figure 3 | MultiNicheNet prioritizes differences in therapy-induced intercellular communication changes between and

within response groups. a) MultiNicheNet was applied to scRNA-seq from Bassez et al. to compare on-therapy versus

pre-therapy differences in cell-cell communication between breast cancer patients with T cell clonotype expansion in

response to anti-PD1 therapy (expander - E) and patients without expansion (non-expander patients - NE). The top 50

differential ligand-receptor pairs are depicted in chord diagrams, divided into the expander-specific pairs (left) and

non-expander-specific pairs (right). The arrowhead indicates the direction from sender to receiver cell type, and the color

of the arrow indicates the sender cell type that expresses the ligand. b) Bubble plot showing the on-vs-pre therapy

difference in ligand-receptor pseudobulk expression value (product of normalized expression) for each ligand-receptor pair

and each NE patient. Dots colored in grey indicate the absence of the sender and/or receiver cell type in a certain sample.

The red box at the bottom indicates the NE patients in which angiogenesis-related signals increased during anti-PD1

therapy, and the blue box indicates NE patients in which these signals were decreased.

Next, we further explored the potential biological and clinical relevance of these subgroups of

non-responding patients. However, we could not link these patient groups to a relevant clinical

subdivision such as breast cancer type or tumor architecture (hot-vs-cold). Nor could we connect this

subdivision to the degree of clonotype expansion or relative cell type abundances23. Therefore, we

assessed pre-treatment differences in intercellular signaling between the angiogenesis-increasing

NE-subgroup and the angiogenesis-decreasing NE subgroup (patients indicated by the red box versus

the blue box in Figure 3b). MultiNicheNet elucidates various interesting differential communication

patterns. The group of patients with an increase in angiogenesis interactions show higher TNF

signaling toward malignant cells, higher expression levels and activity of Annexin and multiple

chemokines toward macrophages, and higher IL1 and ACKR1 signaling toward endothelial cells

(Supplementary Figure 7 and Supplementary Table 3f). On the contrary, the main characteristic of

patients with a decrease in angiogenesis interactions is the presence of a diverse set of interactions

toward endothelial cells. These interactions include TGF-beta, JAG-NOTCH, semaphorin-plexin,

VEGFC, and IGF2 (Supplementary Figure 8 and Supplementary Table 3g). Remarkably, these factors

are also involved in (lymph)angiogenesis73,74 and partially overlap with the interactions that increase

during therapy in the angiogenesis-increasing group of NE patients. Whereas this analysis revealed

various differential signaling pathways within NE patients, further research would be necessary to

explain these differences and their importance.

In conclusion, the MultiNicheNet analysis of anti-PD1 therapy response revealed a therapy-induced

increase in chemotactic interactions in expander patients and (lymph)angiogenesis-related

within-group differences in the non-expander patients. Given the crucial role of angiogenesis and

lymphangiogenesis, these results warrant a further examination of the biological and clinical

relevance of this intra-group heterogeneity.
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MultiNicheNet infers tumor-specific cell-cell interactions that are supported

by spatial co-localization analysis

For the following application, we looked for studies that generated multi-sample scRNA-seq and

spatial transcriptomics data of the same samples. Both data modalities would enable us to verify

whether highly prioritized interactions show spatial co-localization. The study conducted by Ji et al.

fulfills this criterion24. Ji et al. performed scRNA-seq of tumor and healthy skin tissue of patients with

cutaneous squamous cell carcinoma (cSCC) and spatial transcriptomics of tumor tissues from a

subset of these patients24. We performed MultiNicheNet to unravel differences in cell-cell signaling

between tumor and healthy skin tissue (while considering the paired nature of the data) (Figure 4a,

Supplementary Table 4a-b, and Supplementary Figure 9).

The tumor-specific interactions can mainly be divided into two parts: interactions among the

different immune cell types and interactions among the fibroblasts and tumor cells

(keratinocytes)(Figure 4a, Supplementary Table 4a, and Supplementary Figure 9). As expected, we

retrieve the IFNG - PDL1 axis between T cells and myeloid cells (DCs and macrophages)75.

Noteworthy, MultiNicheNet predicts several interactions between fibroblasts themselves, such as

WNT, TGF-beta, inhibin, and collagen signaling. Fibroblasts also seem to interact with the tumor cells

by producing TNC, TGFB3, and TGFB1 that can bind putative receptors on tumor-specific

keratinocytes. These interactions were also described by Ji et al. in the original publication24. Some of

the rare interactions between fibroblasts and immune cells are FN1-ITGA4 with DCs and IGF2-IGF2R

with macrophages. Literature suggests that FN1 can improve antigen presentation in DCs and that

IGF2 can modulate macrophage function76.

The intercellular regulatory network also shows this split between the interactions among immune

cells versus interactions among fibroblasts and keratinocytes (Supplementary Figure 10).

Nevertheless, some interactions seem to connect both systems, such as the IGF2-IGF2R interaction

between fibroblasts and macrophages and the TSLP-IL7R interaction between keratinocytes and

myeloid cells (DCs and macrophages). IGF2 is a known modulator of macrophage function, and TSLP

is an epithelial cell-derived cytokine that is known to activate DCs76,77. The observation of a myriad of

TSLP-specific target genes in DCs provides further support for the potentially pivotal role of TSLP in

modulating DCs in the cSCC tumor microenvironment (Supplementary Figure 11 and Supplementary

Table 4c). Moreover, previous research suggests that TSLP-activated DCs are linked to T cell

hyporesponsiveness due to PD-L1 upregulation78. This confirms what we observe in the intercellular
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regulatory network, where TSLP appears at the top of the hierarchy of the predicted signaling

cascades (Supplementary Figure 10).

Whereas the authors of the original study used spatial transcriptomics data to refine their cell-cell

communication analysis24, we decided to use this data to verify spatial co-localization of

MultiNicheNet-prioritized interactions. We would expect that the majority of cell-type pairs with the

most differential interactions would spatially co-localize. This hypothesis was also the basis of one of

the benchmark procedures described in a recent comparison study of cell-cell communication

inference methods10. As expected, tumor-specific ligand-receptor pairs were mainly inferred between

cell types that show co-localization in 10x Visium spatial transcriptomics data of tumor tissue (Figure

4b, Supplementary Figure 12, and Supplementary Table 4d). On the contrary, a random set of

ligand-receptor pairs, pairs in the middle of the prioritization ranking, and healthy skin-specific pairs

did not show co-localization enrichment in tumor spatial transcriptomics data (Figure 4b).

To summarize, the results of this case study indicate that a spatially-agnostic MultiNicheNet analysis

can prioritize biologically relevant interactions between cell-type pairs that are spatially co-localized.
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Figure 4 | MultiNicheNet prioritizes differential cell-cell communication patterns between cutaneous squamous cell

carcinoma (cSCC) and matched healthy skin from the same patient. a) MultiNicheNet’s top 75 differential ligand-receptor

pairs between tumor and healthy skin are depicted in chord diagrams, divided per tissue type. The arrowhead indicates the

direction from sender to receiver cell type, and the color of the arrow indicates the sender cell type that expresses the

ligand. b) Spatial co-localization analysis of MultiNicheNet-prioritized cell-cell communication patterns. For the top 500

tumor-specific ligand-receptor (“LR”) interactions, we retrieved the cell types involving these interactions. Next, we

determined the fraction of all interactions occurring between each combination of sender-receiver cell type pairs. This was

also done for normal skin-specific interactions, a set of random interactions, and a set of interactions in the middle of the

ranking. Spatial localization of cell types was determined by applying RCTD for deconvolution of the 10x Visium spatial

transcriptomics data of tumor tissue (from one patient). Each dot represents one cell-type pair.
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MultiNicheNet compares cell-cell communication between PBMCs of adult

COVID-19, MIS-C, and healthy siblings and prioritizes differential signals

supported by serum protein analyses

The next case study will demonstrate that MultiNicheNet can compare communication patterns

between three conditions. We applied MultiNicheNet to scRNA-seq data from Hoste et al. who

performed single-cell sequencing to shed light on the disease pathophysiology of “multisystem

inflammatory syndrome in children” (MIS-C)18. MIS-C is a novel immune dysregulation syndrome that

can arise in rare instances a few weeks after pediatric SARS-CoV-2 infection. Specifically, Hoste et al.

performed single-cell sequencing on peripheral blood mononuclear cells (PBMCs) from patients with

MIS-C, healthy siblings, and adults with severe Coronavirus disease 2019 (COVID-19)18.

Differential cell-cell communication analysis with MultiNicheNet reveals several MIS-C-specific

communication signals, such as IFNG (from T cells to monocytes), the CCR5-binding chemokines CCL3

and CCL4 (from NK and T cells to proliferating T cells) and RETN and the alarmins S100A8 and S100A9

produced by CD14+ monocytes (Supplementary Figures 13-14 and Supplementary Table 5). Five

independent studies describing different patient cohorts indicate that these signals are more present

at the protein level in serum of MIS-C patients compared to healthy controls and/or COVID-19

patients18,28,79–81. According to both Sacco et al. and Hoste et al., the serum of MIS-C patients contains

higher levels of the protein IFNG and its induced chemokines CXCL9 and CXCL10 compared to healthy

controls and COVID-19 patients (respectively pediatric and adult)18,80. Higher serum protein levels of

IFNG were also reported by Carter et al.79, higher levels of CXCL10 by Ramaswamy et al28, and higher

levels of both CXCL9 and CXCL10 by Diorio et al81. Moreover, both Sacco et al. and Diorio et al.

detected higher protein levels of the chemokines CCL3 and CCL4 in the serum of MIS-C patients

compared to healthy controls80,81. For CCL3, protein serum levels were also higher in MIS-C compared

to COVID-19 patients according to Sacco et al80. In addition, Diorio et al. reported higher serum

protein levels of RETN in MIS-C patients versus healthy controls81. Furthermore, Ramaswamy et al.

also confirmed the stronger expression of the proteins S100A8 and S100A9 by classical CD14+

monocytes in MIS-C through flow cytometry, just like other signs of myeloid dysfunction such as

lower expression levels of CD86 and HLA-DR molecules28. Consistent with this finding, MultiNicheNet

retrieves CD86 and HLA-DR molecules as members of ligand-receptor pairs specific for healthy

siblings (Supplementary Figure 13 and Supplementary Table 5b).
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We want to emphasize that higher protein levels of the members of the inferred ligand-receptor

interactions do not necessarily imply that the inferred interactions are occurring. This analysis can

thus not serve as a direct validation of MultiNicheNet’s predictions. However, interactions between

members that are expressed at the protein level are more likely to take place than interactions

consisting of members that are not expressed at the protein level. As described above,

MultiNicheNet includes predicted ligand activities in the prioritization because ligand activity might

provide additional support that a ligand is also expressed at the protein level. The results of this

MIS-C case study illustrate this idea: top-predicted MIS-C specific ligands with differential expression

at the RNA level and high ligand activities are also differentially expressed at the protein level

(Supplementary Figure 14). Future use-cases that also include ligands with differential RNA

expression but with low ligand activities could further emphasize the relative importance of ligand

activities in predicting protein expression of the ligand.

An additional benefit of the ligand activity analysis is that it allows exploring ligand-induced

expression signatures for ligands that do not show expression in the data. These latter ligands might

only be expressed shortly before the specific data was captured, or they might be produced by

non-profiled cell types. We want to emphasize that ligand activities are always calculated for all

ligands in the database during a MultiNicheNet run, and that users can thus easily access these

results afterward. Ligand activity analysis for all the cell types in the scRNA-seq data of Hoste et al.

points to the presence of a clearer type I interferon signature in adult COVID-19 patients compared

to MIS-C patients (Supplementary Figure 15). Supporting this result, Sacco et al. and Hoste et al.

detected higher serum levels of IFNA2 (one of the main type I interferons) in COVID-19 patients

compared to MIS-C patients18,80. Type I interferon signaling was not inferred as a COVID-19-specific

interaction by the regular MultiNicheNet analysis because no type I interferon ligand-receptor pairs

were expressed. This is probably because the primary producers of type I interferons, plasmacytoid

DCs82, were not included in the analysis.

Furthermore, the ligand expression-agnostic activity analysis points to a possible role of a few other

noteworthy ligands. These ligands were not retrieved by the regular MultiNicheNet analysis, but they

exhibit a high predicted upregulatory activity in MIS-C patients and are MIS-C-specific proteins

according to the serum proteomics data of Diorio et al81. One of these ligands is IL10, the ligand with

the highest activity score for CD14+ monocytes and one of the only differentially expressed proteins

between MIS-C patients and patients with severe COVID-1981. Another ligand is PLA2G2A, the ligand

with the highest activity score for TRDV2+ gd activated T cells and, strikingly, the most strongly

differentially expressed protein between MIS-C patients and healthy controls81.
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In brief, MultiNicheNet uncovered several cellular communication signals that might contribute to

MIS-C pathophysiology. Several independent studies reported higher protein levels of these signals in

the serum of MIS-C patients.
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MultiNicheNet corrects for batch effects in integrated lung atlas data to

reveal dysregulated intercellular communication in idiopathic pulmonary

fibrosis

In the previous applications, we showcased MultiNicheNet’s potential on multi-sample data

generated by one lab. In the last case study, we will apply MultiNicheNet on integrated data from

four studies comparing healthy lungs to lungs from patients with idiopathic pulmonary fibrosis (IPF).

This analysis exemplifies that MultiNicheNet can be used to compare cell-cell communication

between health and disease from integrated atlas data.

Starting from the Azimuth-integrated atlas of ten scRNA-seq datasets of healthy and diseased human

lungs, we searched for datasets that had profiled lungs from both healthy patients and patients with

IPF42. Four datasets fulfilled this criterion46–49. Together with the provided Azimuth-harmonized cell

type annotations, we used the raw counts of these datasets and ran MultiNicheNet while correcting

for the source dataset (Methods). MultiNicheNet retrieved several IPF-specific communication

patterns representing biological processes known to play a role in IPF (Figure 5a, Supplementary

Figure 16, and Supplementary Table 6). These include TGF-β signaling, aberrant extracellular matrix

(ECM) deposition and remodeling, and recruitment of fibrogenic myeloid cells83–85. Interactions

involving TGFB1 and TGFB2 represent the first process (Figure 5a and Supplementary Table 6a)83.

The predicted interactions between collagens, integrins, and the ECM remodeling mediators

metalloproteinases (MMPs) and their inhibitors (TIMPs) illustrate the second process (Figure 5a and

Supplementary Table 6a)84. The chemoattractive interaction CXCL12-CXCR4 between fibroblasts and

AREG-and-TGFB1-producing monocytes is indicative of the third process (Figure 5a and

Supplementary Table 6a)85. In line with this, is the finding of the IPF-specific CSF1-CSF1R interactions

towards macrophages: monocyte-derived recruited alveolar macrophages are known to depend on

CSF1 rather than CSF2 (which is the crucial growth factor for alveolar macrophages in homeostasis)

(Supplementary Table 6a)85,86.

Moreover, MultiNicheNet prioritized some interactions of which the role in IPF has not been well

described. One such interaction is between CXCR3 from CD8 T cells and the chemokine CCL13

produced by DCs, macrophages, and fibroblasts (Figure 5a and Supplementary Table 6a). Another

interaction concerns the receptor AXL on DCs and the ligand GAS6 produced by several cell types

such as fibroblasts, basal cells, club cells, and type 1 alveolar epithelial cells (AT1) (Figure 5a and

Supplementary Table 6a). GAS6-AXL is involved in the phagocytosis of apoptotic cells and debris87, a
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crucial process in lung fibrosis, and is also linked to the survival and migration of DCs88. Interestingly,

both interactions are only prioritized when performing batch correction because they are not part of

the top 1000 interactions when executing the analysis without correction (Supplementary Table

6a,c). In the following paragraphs, we will elaborate on the influence of the batch effect correction

on MultiNicheNet’s prioritizations.

If strong batch effects are present, we expect substantial differences in the MultiNicheNet output

since correction will affect most prioritization criteria in MultiNicheNet: differential expression of the

ligand and receptor; ligand activity which is calculated based on the set of DE genes in the receiver

cell type; and the cell-type and condition-specific expression of the ligand and receptor, which is

calculated from the normalized pseudobulk values (Methods). Improper handling of batches will thus

likely lead to improper downstream prioritization. To exemplify the effect that the correction can

have on the DE analysis output, we show the genes that are only DE in macrophages after correction

in Supplementary Figure 17. This geneset contains several genes linked to essential macrophage

biological processes such as proliferation (CCND1, WEE1, POLD2, RGCC, EYA2), motility (MYL9,

ASAP1, PLXNA1, PLXNC1, PLXNB1, TPM1, TPM4, KIF13B, EZR), metabolism (FABP5, TREM2, LEPR, LPL,

FAM3C, BCAT1, SCARB1), ECM and ECM remodeling (PAPLN, VIM, TIMP3, DPP4), costimulation

(CD40), and phagocytosis (MERTK, TAGLN2). Consequently, predicting ligand activities without

including these genes could lead to missing crucial biological signals.

Whereas the previous analysis focused on DE genes in one cell type, we also looked at which

ligand-receptor pairs would be more or less clearly DE with or without correcting batch effects

(Figure 5b). One of these ligand-receptor pairs is LGALS3-ANXA2, which was found to be upregulated

in IPF between myeloid cells (macrophages, monocytes, and DCs) only after batch correction (Figure

5b). LGALS3 has been shown to be involved in the pathogenesis of IPF by activating macrophages and

fibroblasts89, and to improve the ability of macrophages to phagocytose apoptotic cells in chronic

obstructive pulmonary disease (COPD)90. The specific interaction LGALS3-ANXA2 has not been linked

to IPF before but was found to be anti-apoptotic in breast cancer91. A second interaction specifically

DE after batch correction is the interaction between the matrix metalloproteinase MMP7 from

macrophages and the syndecan SDC1 from club cells (Figure 5b). This interaction suggests possible

shedding of syndecans by MMPs in IPF. Syndecan shedding is a process in which proteases like MMPs

cleave the ectodomains of the syndecans from the cell membrane. These cleaved syndecan

ectodomains can then bind and modulate the activity of chemokines, growth factors, and cell surface

receptors, consequently influencing processes like fibrosis92. Moreover, expression levels of MMP7

itself are associated with IPF disease progression93. The last correction-specific IPF ligand-receptor
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pairs we will discuss are A2M-MMP2 and A2M-MMP9 between macrophages (Figure 5b). A2M is a

general protease inhibitor and might thus be involved in inhibiting the ECM-remodeling activity of

MMPs94.

One of the main interactions more strongly DE without batch correction is the predicted

PTPRM-PTPRM interaction between bronchial vessel cells (Figure 5b). This interaction illustrates one

of the scenarios for which batch correction is necessary. The PTPRM gene is more strongly expressed

in one of the datasets compared to the others, and this dataset has more samples with a sufficient

number of bronchial vessel cells in the IPF group (Figure 5b). As a consequence, the PTPRM gene is

considered to be IPF-specific.

To conclude, MultiNicheNet’s ability for batch correction enables performing differential cell-cell

communication analysis from integrated atlas data. Although most of the prioritized interactions

were also retrieved without batch correction (Supplementary Table 6), some correction-specific DE

genes and interactions are associated with critical processes in IPF pathogenesis. This illustrates that

improperly handling batches might conceal relevant biological signal in the data.
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Figure 5 | MultiNicheNet corrects for batch effects in integrated scRNA-seq atlas data to compare cell-cell

communication patterns between lungs from patients with idiopathic pulmonary fibrosis (IPF) and healthy patients. a)

MultiNicheNet was applied to an integrated scRNA-seq lung atlas built from four source datasets that profiled both healthy

and IPF lungs, while considering each source dataset as a separate batch. IPF’s most specific ligand-receptor pairs are

depicted in chord diagrams. The arrowhead indicates the direction from sender to receiver cell type, and the color of the

arrow indicates the sender cell type that expresses the ligand. b) For a subset of interactions for which the prioritization

score strongly depended on batch correction, we compared corrected and non-corrected ligand-receptor pseudobulk

expression values. The size of the dots indicates whether a sample had enough cells (>= 5) for a specific cell type to be

considered for DE analysis.
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Discussion

In this paper, we presented two main contributions to the field of cell-cell communication modeling,

namely NicheNet-v2, an updated NicheNet prior knowledge model of ligand-receptor and

ligand-target links, and MultiNicheNet, a novel framework for differential cell-cell communication

analysis.

The improvements upon NicheNet-v1’s prior knowledge include the use of the up-to-date and

comprehensive Omnipath-derived ligand-receptor network and the addition of several new signaling

and gene regulation data sources. As a consequence, ligand-target predictions improved substantially

according to our benchmark. The primary improvement of the ligand-target model is the inclusion of

experimentally-determined ligand-target links inferred from ligand treatment datasets. For the 119

ligands for which these datasets were available, top-predicted target genes are now supported by

both network-based signal propagation prediction and in vitro experiments. Enrichment of several of

these target genes in a receiver cell may thus strongly point to the upstream activity of the particular

ligand. To conclude, we expect that using NicheNet-v2 will improve the ligand-receptor prioritization

and ligand-target predictions for (Multi)NicheNet analyses. Moreover, other cell-cell communication

tools that use the NicheNet ligand-target model as part of their methodology (e.g., Scriabin19,

LRLoop95, CINS96) or as part of their downstream interpretation (scITD44) will benefit as well.

Nevertheless, we still see many opportunities for future work regarding the NicheNet prior model.

One future improvement could be considering the multi-subunit architecture of receptors (similarly

to, for example, CellphoneDB4 and CellChat7). Another potential improvement could be including

non-protein ligands in the model, as done in, e.g., MEBOCOST97 and CellphoneDB-v498.

As the second main contribution of this paper, we presented MultiNicheNet, a novel algorithm for

differential cell-cell communication inference from multi-sample multi-condition scRNA-seq data. In

four case studies, we demonstrated MultiNicheNet’s power in addressing different cell-cell

communication questions in several biological systems. We showcased that MultiNicheNet can

retrieve expected and well-studied biological patterns but that it also can elucidate sensible yet

undiscovered patterns. From an algorithmic standpoint, MultiNicheNet is a flexible multi-criteria

prioritization framework based on a pseudobulk aggregation DE approach to analyze multi-sample

datasets in a statistically solid way22. MultiNicheNet has several benefits compared to the most

widely used cell-cell communication tools when applied for differential cell-cell communication

inference from multi-sample data. First, MultiNicheNet considers differential and cell-type-specific
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expression together with downstream target gene enrichment to prioritize ligand-receptor pairs.

Second, it does so while taking into account inter-sample heterogeneity. Moreover, MultiNicheNet

can address complex experimental designs, which enables tackling exciting non-trivial questions like

investigating differences in intercellular dynamics between health and disease states. Furthermore,

MultiNicheNet can correct for covariates and batch effects, such as data source effects in integrated

atlas data. For this reason, we anticipate that MultiNicheNet will be a valuable tool for the Human

Cell Atlas community to exploit the wealth of the collected data to elucidate the role of cell-cell

communication in disease pathophysiology.

Additionally, MultiNicheNet offers a variety of easily interpretable visualizations to provide users with

further insights into the data and predictions. We think it is of paramount importance for a

hypothesis-generating tool that users can explore why certain predictions are made before deciding

on which communication patterns to validate experimentally. As illustrated by the analysis of group

differences in anti-PD1 therapy response, some visualizations allow for exploring inter-sample

heterogeneity, potentially revealing hidden patterns of within-group differential cell-cell

communication. Another novel type of downstream analysis and visualization is the inference of

intercellular regulatory networks. These networks, which link ligands to ligand/receptor-encoding

target genes, can only be constructed because MultiNicheNet links differential ligand-receptor pairs

to their predicted target genes. By revealing how cell types might influence each other and how this

differs between conditions, these networks can help investigate diseases from a tissue-centric

perspective instead of a classic cell-type perspective. Although the case studies indicated that these

networks could report expected links, the outcome from the proposed inference approach should be

interpreted cautiously. Ligand-target links in this network are predicted based on correlation in

expression across patients and prior knowledge support of ligand-to-target signaling. Yet, correlation

does not necessarily imply causation, even though prior knowledge may suggest a potential causal

link. Including context-specific perturbation data and spatiotemporal information would be necessary

to refine the links in this network. Nevertheless, we still include this analysis type in the software

framework to point users to potential intercellular crosstalk and help them further prioritize signals.

We think this concept of intercellular regulatory networks is an interesting idea that fits within the

notion of multicellular programs as proposed by others43,44. Extending these approaches is an exciting

avenue for further research to advance our ability to unravel tissue circuitry in health and disease.

In this paragraph, we will discuss the limitations of MultiNicheNet. Because MultiNicheNet is based

on DE, cell types must be present in all compared conditions. This limits the analysis of
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condition-specific cell types. In some cases, it is possible to circumvent this issue by using a less

fine-grained level of cell type annotation. Other limitations of MultiNicheNet are similar to the

limitations of the multi-sample scRNA-seq DE methods that are at the basis of it. One disadvantage

of the currently implemented method is that the pseudobulk aggregation step reduces the original

single-cell resolved data to one point estimate per sample-cell-type combination. The next

disadvantage is that the DE method can be underpowered when applied to datasets with a few

samples. This is less of a problem for MultiNicheNet’s prioritization of DE ligand-receptor pairs

because we use the DE p-values and log fold change (logFC) values to rank the pairs and not for hard

thresholding. But, this issue might be more problematic for defining the entire set of DE genes in the

receiver cell type, a necessary step to calculate ligand activities. Using the multiple-testing corrected

p-value for filtering can result in only a few DE genes when there is a low number of samples. In

those cases, we suggest that users consider the biological effect size and filter on the logFC value.

Another disadvantage is that the pseudobulk approach requires a sufficient number of cells for

accurate DE analysis. This approach is thus less suited to handle rare cell types because samples are

omitted from the DE analysis for a certain cell type if they have fewer cells than a pre-defined cutoff

(by default 10 in MultiNicheNet, but user-adaptable). When less than two samples are then left in

one condition, DE analysis cannot be performed, and this cell type is excluded from the

MultiNicheNet analysis. This issue also occurs in the case of batch effect correction, where at least

one sample per condition-batch combination should be present. If one combination does not comply

with this rule, the cell type is excluded as well. This was the case for myofibroblasts in the IPF case

study, which is suboptimal, given their important role in IPF pathophysiology99. Therefore, using a

coarser level in the cell type annotation hierarchy is often necessary. For example, in the IPF case

study, we used the provided cell type annotation that considered non-proliferating lung

macrophages as one cell type. However, this is a heterogeneous population consisting of alveolar

macrophages, interstitial macrophages, and recruited monocyte-derived macrophages85. Potential

subpopulation-specific DE patterns can then be concealed. Although these issues are significant, the

currently implemented DE approach is still considered state-of-the-art in the multi-sample DE

analysis field21,22,50. Nevertheless, we anticipate future developments in the DE analysis field, and we

will include potentially more appropriate DE methods when available.

Whereas we focused on the limitations of the MultiNicheNet algorithm in the previous paragraph,

we will now discuss the limitations of this study in general. The major limitation is that we did not

perform a comprehensive quantitative assessment of MultiNicheNet’s performance. However, this is

a common limitation for the entire computational cell-cell communication research field because of
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the lack of an extensive ground truth of essential communication patterns in various in vivo biological

systems. That performing a conclusive benchmark of cell-cell communication tools is very challenging

has been noted before by other researchers2,3,10. To partially circumvent this limitation, we employed

a strategy consisting of three parts:

1. Using state-of-the-art quantitatively benchmarked approaches for submodules of

MultiNicheNet, or performing such a benchmark ourselves;

2. Assessing whether alternative data modalities are in line with MultiNicheNet’s predictions in

the case studies;

3. Performing a qualitative comparison of MultiNicheNet against other tools.

For the first part, we benchmarked the prior knowledge model of NicheNet-v2 to assess target gene

prediction and ligand activity prediction performance in vitro. Both prediction tasks are crucial

elements of the MultiNicheNet framework. In addition, we chose the pseudobulk-aggregation-edgeR

approach for DE analysis based on recently published benchmarks21,22,50. Noteworthy, because

MultiNicheNet is a flexible and modular framework, it will be easy to plug in potential future

improvements of both submodules. For the second part, we searched for case study datasets that

would enable us to check the accordance of MultiNicheNet’s predictions with other data modalities.

In the cSCC case study, we used spatial transcriptomics data for verifying cell-cell interactions in a

similar way as Dimitrov et al. described in their comparative study10. According to this spatial

co-localization analysis, MultiNicheNet predicted tumor-specific cell-cell interactions that were

indeed spatially co-localized. In the MIS-C case study, we found differential protein expression in the

serum of patients for almost all top-ranked interactions. These additional data modalities may thus

suggest that MultiNicheNet captured biological signal in the specific case studies. But, we want to

emphasize that both data modalities do not necessarily provide strong evidence that the

top-predicted interactions are occurring, nor that they are pivotal for the system under study.

Because of these limitations and the limited number of datasets, we do not think that these data

modalities can currently be used to quantitatively compare the performance of different tools in a

conclusive way. Therefore, we compared several tools in a qualitative way (Supplementary Note 4),

highlighting their primary use cases, underlying assumptions, potential pitfalls, and unique benefits.

We think that several of these tools are complementary for the study of differential cell-cell

communication patterns across patient groups, and that using them in conjunction might be a

powerful analysis strategy. For example, multi-sample-specialized tools (DIALOGUE43, scITD44,

MultiNicheNet, and Tensor-cell2cell45) shed light on inter-sample heterogeneity at the cost of

potentially missing relevant patterns for rare cell types. In contrast, the opposite is true for tools that
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perform cell-cell communication analysis at single-cell resolution (Scriabin19 and NICHES8)

(Supplementary Note 4). Compared to the other methods, MultiNicheNet stands out in its ability to

combine ligand-receptor and ligand-target prioritization with the possibility of elegantly addressing

batch effects and complex multifactorial experimental designs.

To conclude, we are convinced that MultiNicheNet is a necessary addition to the ecosystem of

cell-cell communication tools. Given the anticipated increase in multi-sample datasets and

atlas-generation efforts, we envision that MultiNicheNet will be a valuable tool to elucidate key

cell-cell communication processes in health and disease states.
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Methods

Construction of the NicheNet-v2 model.

NicheNet uses a model of potential ligand-target links that are predicted based on data integration of

ligand-receptor, signaling, and gene regulatory networks. To build an updated version of the

NicheNet ligand-target prior model (NicheNet-v2), we used the same procedure as described in the

original NicheNet publication11. However, we substantially updated the underlying networks.

One of the most important updates concerns the ligand-receptor network in NicheNet. For

NicheNet-v2, we replaced the original NicheNet-v1 ligand-receptor network with a novel

ligand-receptor network that comprises mainly ligand-receptor interactions documented in the

comprehensive Omnipath intercellular communication database52. The Omnipath ligand-receptor

network was processed to ensure high-quality ligand-receptor interactions with the correct

directionality of the ligand-receptor links. As a processing strategy, we first used the annotations in

the intercellular communication database to get confident annotations of ligands ("transmitters")

and receptors ("receivers"). In the next step, we queried the Omnipath interaction network for

interactions between these confident transmitters and receivers. In addition to Omnipath, we also

incorporated extra ligand-receptor interactions from Verschueren et al53. Finally, we also added

interactions not documented in Omnipath but part of the curated databases at the basis of

NicheNet’s original ligand-receptor network.

Regarding the signaling network, interactions from Omnipath100 and Pathwaycommons101 (version 12)

were updated, and all other data sources were kept as they were. We also included additional

interactions from two novel databases: HuRi102 and HumanNet103.

Finally, the gene regulatory network was updated and expanded with novel data sources.

PathwayCommons101 and ReMap104 were updated (to respectively version 12 and 2022), and

MOTIFMAP105 was removed. Novel regulator-target interactions were added from KnockTF54 (a

database of gene expression signatures after regulator perturbation) and Dorothea106 (a

comprehensive database of regulator-target interactions). Moreover, we also extended the gene

regulatory network by adding direct ligand-target links. We used co-expression-based links between

ligands and targets based on the HumanNet103 co-expression resource as the first source of direct

ligand-target links. As the second and most relevant source, we added in vitro

experimentally-determined links between ligands and their target genes. These links were gathered

36

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2023. ; https://doi.org/10.1101/2023.06.13.544751doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?0EimhS
https://www.zotero.org/google-docs/?5PsB8j
https://www.zotero.org/google-docs/?mU8DIc
https://www.zotero.org/google-docs/?8FuCkF
https://www.zotero.org/google-docs/?QzTejv
https://www.zotero.org/google-docs/?vxUaif
https://www.zotero.org/google-docs/?XZYiiL
https://www.zotero.org/google-docs/?wMgqYB
https://www.zotero.org/google-docs/?R7mO5U
https://www.zotero.org/google-docs/?Er5eYY
https://www.zotero.org/google-docs/?DoQvLk
https://www.zotero.org/google-docs/?KrezLe
https://www.zotero.org/google-docs/?VfHfGX
https://doi.org/10.1101/2023.06.13.544751
http://creativecommons.org/licenses/by-nc-nd/4.0/


from “ligand treatment” datasets, which are datasets from experiments where the transcriptome of

cells is analyzed before and after stimulation with a specific ligand. Differentially expressed genes

after ligand treatment can then be considered target genes of the particular ligand. More specifically,

these links were added from the original NicheNet11 publication and CytoSig55, a database

documenting thousands of transcriptome profiles for human ligand responses. Whereas this type of

link was only used for model validation and optimization in the original NicheNet study11, we now

also included these highly-relevant links to the prior knowledge model of NicheNet-v2. Consequently,

we had to adapt the evaluation and optimization procedure to ensure an appropriate validation (see

section "Evaluation of NicheNet-v2 model").

The specific processing steps of each new data source are described in more detail in Supplementary

Note 1. Information regarding each data source and results of network analyses are presented in

Supplementary Note 1 and Supplementary Table 1.

Evaluation of the NicheNet-v2 model.

Evaluation of the performance of NicheNet-v2 in target gene and ligand activity prediction.

Target gene and ligand activity prediction performance was evaluated on ligand treatment datasets

as described in the original NicheNet publication. A difference is that we now have two gold standard

(GS) datasets: 1) the same 111 ligand treatment datasets from the original NicheNet publication11

and 2) 52 datasets from CytoSig. To define the CytoSig GS, we started from the provided “Cytokine

signatures” file, which provides median logFC values for each gene after ligand treatment, across a

subset of datasets in which the in vitro transcriptional response was considered to be relevant for

human physiological responses55. To handle the different ranges of logFC values across the different

ligand signatures, we z-score normalized the logFC values per signature and considered genes a

target of a ligand when |z-score normalized logFC| >= 2.5. These genes were thus considered to be a

"true positive" target of a ligand, and other genes were not considered as targets ("true negative").

Supplementary Table 2a provides an overview of all the ligand treatment datasets.

To ensure a correct evaluation procedure, we removed all NicheNet-ligand treatment-derived links

from the model before using the NicheNet-ligand treatment-GS for evaluation. The same was done

for the CytoSig-GS links. Because some ligand treatment datasets from the NicheNet publication are

also part of CytoSig (this overlap was determined based on GEO accession numbers), we removed
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CytoSig's ligand-target links from overlapping datasets before evaluating on NicheNet’s ligand

treatment GS datasets.

As the original NicheNet publication described, ligand activities are predicted based on the most

predictive "target-gene-prediction performance metric"11. In contrast to the original study, this

metric was now the area under the precision-recall curve (AUPRC) instead of the Pearson correlation

(for the NicheNet GS: average area under the receiver-operating-characteristic curve (AUROC) for

ligand prediction was 0.884 when using the AUPRC-target-prediction versus 0.863 when using the

pearson-target-prediction, the average AUPRC for ligand prediction was 0.458 versus 0.430; for the

CytoSig GS: the average AUROC for ligand prediction was 0.860 versus 0.827, the average AUPRC was

0.318 vs 0.302).

To compare the unoptimized and optimized NicheNet-v2 models (Supplementary Note 2), we used

the following parameters to create the unoptimized model: the ligand-signaling network hub

correction factor and gene regulatory network hub correction factor 0; the cutoff on the Personalized

PageRank vector 0.9; and damping factor 0.5. We defined the optimized model's parameters via

parameter optimization as described in the next section.

Parameter optimization via NSGA-II.

Because new data sources were added to the NicheNet-v2 model, the model hyperparameters and

data source weights needed to be updated through parameter optimization. As described

previously11, we performed multi-objective optimization to optimize both target gene and ligand

activity prediction performance on all ligand treatment datasets (NicheNet and CytoSig). We opted

for NSGA-II107 (nsga2r package), a genetic algorithm that is a state-of-the-art method that allows for

multi-objective optimization of expensive black-box functions. We chose this over model-based

optimization (the technique used in the original NicheNet publication) because of its shorter running

time. However, as demonstrated in the NicheNet paper, both options rendered very similar results.

Optimization was performed during 15 iterations with a population size of 360 and a tournament size

of 2. Nsga2r's default values were chosen for the other parameters of the optimization algorithm. As

done previously, the optimization criteria were: AUROC for target gene prediction, AUPRC for target

gene prediction, AUROC for ligand activity prediction, and AUPRC for ligand activity prediction. In

contrast to the NicheNet-v1 optimization process, proposed parameter values for the data source

weights were set to zero or one when they were respectively < 0.025 or > 0.975. The rationale

behind this was to facilitate the removal of potential low-quality data sources instead of keeping
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them with very low weights. We did not perform this approach for ligand-receptor data sources to

avoid some ligands being absent in case of data source weights of 0.

We conducted the following cross-validation-like strategy to avoid overfitting and over-optimistic

performance estimation. NicheNet’s and CytoSig’s ligand treatment datasets were each randomly

divided into five groups, and a fivefold cross-validation was performed (Supplementary Table 2b).

Per fold, 4/5 of the NicheNet and 4/5 of the CytoSig ligand treatment datasets were used for

calculating the optimization objectives during optimization (“training set”). The left-out 1/5 of

NicheNet and CytoSig datasets (“test set”) were used for the final evaluation of the model (including

the comparison to NicheNet-v1). During the training of one fold, we defined all the ligands with a

corresponding GS training dataset from NicheNet in that fold. For these ligands, we then removed all

NicheNet-ligand-treatment-derived ligand-target links from the gene regulatory network before

model building. This strategy is necessary to avoid leakage from the model building to the model

evaluation and optimization (because both the links in the network and GS come from the same

datasets). Noteworthy, the gene regulatory network still contains the

NicheNet-ligand-treatment-links of the ligands from the 1/5 of left-out datasets. Therefore, the

training process can learn how these NicheNet-ligand-treatment-links help predict the independent

GS links from CytoSig. The same was done for ligands and their links from the CytoSig ligand

treatment datasets. At the end of the optimization process of each fold, we built a model with the

median parameter values of the 25 parameter settings with the highest geometric average over the

four objectives described above. We then applied this model to the corresponding left-out test GS

datasets to calculate the target gene and ligand activity prediction performances used to evaluate

the model (as described in “Evaluation of the performance of NicheNet-v2 in target gene and ligand

activity prediction”). This procedure was repeated for every fold, and these performance results were

then aggregated over all folds to obtain the results shown in Supplementary Figure 1 and

Supplementary Table 2.

Finally, we defined the hyperparameter values and data source weights for the NicheNet-v2's final

ligand-target matrix that is used for application purposes. These parameter values were calculated as

the median of the final parameter settings of all folds (Supplementary Table 1e-f). Noteworthy, for

the final application model, all CytoSig and NicheNet ligand treatment target links are kept in the

gene regulatory network before model construction.

As a result of this approach, the parameter optimization procedure optimizes for both the ligands

with ligand-treatment-derived links in the gene regulatory network and the ligands without (these
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are the majority of ligands). However, model performance is still assessed unbiasedly without data

leakage.

MultiNicheNet algorithm description

MultiNicheNet aims to study differences in intercellular communication between conditions of

interest from multi-sample multi-condition single-cell transcriptomics data. MultiNicheNet prioritizes

ligand-receptor interactions based on the following criteria: differential expression of the ligand and

its receptor(s); differential ligand activity in the receiver cell type; cell-type and condition-specific

expression of the ligand and its receptor(s); the fraction of samples in the condition of interest with

sufficient expression of the ligand-receptor interaction. The steps to calculate each of these

prioritization factors are described in the next paragraphs.

Required user input for a MultiNicheNet analysis.

The following elements are required as input for MultiNicheNet:

1) a scRNAseq raw count matrix (dimensions G x C, with G the number of genes and C the number

of cells)

2) a metadata matrix providing the sample, group, and cell-type label per cell (and batch and

covariate information if applicable)

3) a list of contrasts of interest to indicate the cell-cell communication comparisons that should be

assessed. Contrast can range from simple (e.g. condition A – condition B) to more complex (e.g.

condition A – [condition B + condition C]; [condition A – condition B] – [condition C – condition

D]).

4) a list of the sender and receiver cell types of interest to indicate between which cell-type pairs

cell-cell communication should be analyzed. This can be all cell-type pairs in the data but also

specific sender-receiver cell-type combinations, e.g., to restrict the analysis to cell types located

in the same tissue microenvironment.

5) a ligand-receptor network and corresponding ligand-target matrix (in this study, the NicheNet-v2

version was used for both).

Step 1: Performing DE analysis after pseudobulk aggregation.
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In the first step, MultiNicheNet starts from the provided matrix of raw counts to generate a

pseudobulk count matrix for each cell type. Pseudobulk aggregation is performed by summing all the

counts of that cell type per sample. This results in k matrices with dimensions G x S with S the

number of samples and k the number of cell types.

Next, these pseudobulk matrices are used for DE analyses via edgeR51. We chose the options to sum

the raw counts to generate pseudobulk matrices and EdgeR for DE analysis based on the benchmark

of "differential state analysis approaches" performed by Crowell et al22. Differential testing is

performed for each provided contrast. Batch and covariates variables can be added to the model

matrix to perform batch/covariate-corrected DE analysis. DE analysis is only performed for cell types

with at least a certain minimum number of cells (min_cells) in at least two samples per

group/condition. The default value of min_cells is ten22. If a batch or categorical covariate variable is

added to the model matrix, cell types should have more than min_cells in at least one sample per

group-batch/covariate combination. In addition to filtering cell types, gene filtering is also

performed. Similarly to the implementation of muscat, this is done by the function filterByExpr of the

edgeR package22,51. However, we changed the default filtering parameters because we found those to

be rather stringent for pseudobulk expression data for most scRNA-seq multi-sample human cohort

datasets: min.count = 7 (instead of 10) and large.n = 4 (instead of 10). The first adaptation reduces

the minimum number of counts required for a gene to be considered as expressed in a sample. The

second adaptation reduces the number of samples in which a gene should be expressed to be

retained.

By default, edgeR first models the expression of each gene by fitting a quasi-likelihood negative

binomial generalized linear model. Next, it will compute a test statistic for each gene for the model

parameter of interest. The null distribution of these test statistics is theoretically expected to be an

F-distribution. However, in large-scale inference settings, deviations from the theoretical null

distribution are often observed. Efron108 has proposed four reasons for why the theoretical null

distribution may fail: failed mathematical assumptions, correlation across features (here: genes),

correlation across samples/subjects, and unobserved confounders. To avoid these issues, Efron108

proposed a strategy to empirically estimate the null distribution of the test statistics and use this to

estimate empirical p-values. Therefore, we additionally implemented the strategy of estimating

empirical p-values in case the theoretical null distribution would be invalid109. These empirical

p-values can then be corrected for multiple testing with the method of Benjamini and Hochberg to

control the False Discovery Rate (FDR)110. This strategy was implemented in the MultiNicheNet

(“multinichenetr”) package in the same way as described in the satuRn paper and package109. As
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described in the multinichenetr package vignettes, we recommend that users check the p-value

distributions for each cell type after DE analysis and assess whether these p-value distributions

indicate a potential violation of the theoretical null. In case of violation (when the p-value

distribution would not be uniform or uniform with a peak at p < 0.05), we recommend users to adapt

the analysis settings (for example, add necessary covariates to the model) or continue the pipeline

with the empirical p-values.

Finally, the DE logFC and p-value are stored for each gene for each cell-type-contrast combination.

This enables defining all significantly DE genes in each receiver cell type and keeping track of the

strength of differential expression of each ligand and receptor in all sender and receiver cell types. All

this information will be used for prioritization as described in the corresponding paragraph.

Step 2: Calculating normalized pseudobulk expression values.

In the second step of the pipeline, we will calculate normalized pseudobulk expression values. These

values are used later on for downstream visualizations and to define the cell-type- and

condition-specific expression of each ligand and receptor (which is one criterion in the final

prioritization). This step, and all the next steps, are only performed for the cell types that were

retained after the cell type filtering step before the DE analysis.

MultiNicheNet performs pseudobulk count normalization for each cell type separately. First, library

size normalization is performed by dividing the raw pseudobulk counts by the effective library size, in

the same way as described in the edgeR tutorials51. Second, these normalized pseudobulk counts are

multiplied by one million, followed by adding a pseudocount of one and a log2 transformation.

Hereby, pseudocount addition will allow that a zero-count value as input gets transformed into a

log-normalized value of 0, without substantially changing the log transformation of non-zero values.

When a user indicates that batch correction should be performed, the pseudobulk values will be

normalized in the following way. First, the raw count matrix is batch-corrected by applying

Combat-seq111. Combat-seq uses a negative binomial regression model that considers the input

experimental design and returns a corrected count matrix in integers. We opted for Combat-seq

correction of pseudobulk counts because batch correction is performed as in the edgeR DE analysis

described in the previous step. The Combat-seq-corrected pseudobulk count matrix is then

normalized and log2-transformed in the same way as described above. We want to emphasize that
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we only recommend performing this Combat-seq correction of pseudobulk counts only for batch

effects and not for covariates like sex and age.

Finally, the log-normalized pseudobulk gene expression values are stored for each cell-type-sample

combination. This information will be used for prioritization and visualization as described in the

corresponding paragraphs.

Step 3: NicheNet ligand activity analysis and ligand-target inference

In this step, the output of the DE analysis is used to calculate NicheNet ligand activities. For each

receiver cell type and contrast of interest, a set of upregulated and downregulated genes is

determined. Based on these genesets, “upregulatory” and “downregulatory” NicheNet ligand

activities are calculated for all ligands in the database. The AUPRC in target gene prediction is used as

the ligand activity metric, with all genes in the NicheNet ligand-target matrix as the background11. To

determine the exact set of upregulated and downregulated genes per contrast, the default logFC

thresholds are respectively 0.50 and -0.50 and the default p-value threshold is 0.05. Using the

adjusted p-values is recommended in general, except when only a very few genes ( < 10) are

significantly upregulated or downregulated. This can occur when the data has a limited number of

samples because pseudobulk DE methods can be too conservative20. It is recommended to check the

number of genes in the final up -and downregulated genesets because NicheNet ligand activity

prediction might be less accurate when the number of genes in the geneset is very small (< 20) or

very high (> 2000).

Both upregulatory and downregulatory ligand activities are stored for each ligand-receiver-contrast

combination. These activity values are then z-score normalized per contrast-receiver combination.

We performed this normalization because our benchmark of ligand activity prediction indicates that

the relative ranking of ligands per analysis is more informative than the absolute ligand activity

value11.

Finally, target gene inference is performed per ligand-receiver-contrast combination in the same way

as described in the original NicheNet publication11, by using the get_weighted_ligand_target_links

function from the nichenetr package. This will only consider target gene predictions when a target

gene belongs to the top n of targets of that ligand according to the ligand-target model of regulatory

potential (default top n = 250).

Step 4: Prioritization of differential ligand-receptor pairs
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In this step, prioritization of differential ligand-receptor pairs will be performed by considering the

information calculated in the previous steps. In general, the scores from each criterion will be scaled

between 0 and 1, followed by a weighted aggregation.

The first criterion is the level of differential expression of the ligand in the sender cell type. The logFC

of each ligand in each sender is transformed into a value between 0 and 1 by calculating the rank

over all ligand-sender-contrast combinations, and dividing this by the maximally possible rank. For

example, the ligand with the highest logFC value out of 1000 ligand-sender-contrast combinations

has a rank of 1000, which after division by 1000 gives a score of 1. The second most strongly

upregulated ligand gets then a score of 0.999, etcetera. We preferred a rank-based scaling over a

z-score or min-max scaling such that the final score reflects whether a ligand is DE or not, rather than

the absolute strength of differential expression. Using a z-score or min-max scaling could lead to

overemphasizing very strongly DE ligands. We wanted to avoid this because we consider the

biological relevance of very strongly DE versus moderately DE (e.g., logFC of 4 versus 1.5) less

relevant for differential ligand prioritization than the difference between moderately DE and not DE

(e.g., logFC of 1.5 versus 0.1). In addition to the logFC-transformed score for ligand differential

expression, MultiNicheNet also calculates a p-value-transformed score. To calculate this score, the

negative log10 is calculated, followed by multiplication with the sign of the logFC value such that

strongly upregulated ligands get the highest scores, and strongly downregulated ligands the lowest.

Subsequently, rank-based scaling over all ligand-sender-contrast combinations is performed.

The second criterion is the level of differential expression of the receptor in the receiver cell type.

Both a logFC- and p-value-based score are calculated, in the same way as described in the previous

paragraph for ligands. The only difference is that rank-based scaling is now performed across all

receptor-receiver-contrast combinations instead of ligand-sender-contrast.

The third criterion is the ligand activity of the ligand in a receiver cell type for a specific contrast.

Min-max scaling of the z-score-normalized ligand activity values (with cutoffs on the bottom and

upper 1% quantile to reduce outliers’ impact) is performed over all ligand-receiver-contrast

combinations. In contrast to the DE-based scores, we used min-max quantile scaling to assign more

weight to ligands with substantially higher ligand activity values. This scaling is performed for both

the up-and downregulatory activities per contrast. As the final ligand activity criterion score, the

maximum of the scaled up- or downregulatory activity is selected. In this way, we do not prioritize

ligands that have both high up-and downregulatory activity over ligands with only one of the two.
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We did this because ligands that only induce upregulation or downregulation of target genes are not

necessarily less relevant than ligands that do both.

Whereas these three criteria are calculated per contrast, the following criteria will be calculated per

condition. Therefore, MultiNicheNet users must connect each contrast to a specific group if they

want to calculate the next criteria. For most questions, this is very straightforward. For example, for

the contrast “condition A – [condition B + condition C]”, the condition of interest is “condition A”; for

the contrast “condition B – [condition A + condition C]”, the condition of interest is “condition B”.

For the next criterion, the log-transformed normalized pseudobulk expression values of each ligand

are first averaged per condition. Then, min-max scaling is performed for each ligand separately across

all condition-sender combinations. As a result, this score reflects whether a ligand is expressed in

both a condition-specific and sender-specific way. For receptors, a similar procedure is applied across

receiver instead of sender cell types.

The last criterion represents the fraction of samples (per condition) with sufficient expression of both

ligand and receptor. For each sample and ligand-receptor pair, it is assessed whether the

ligand-receptor pair is sufficiently expressed by the corresponding sender-receiver cell types in that

sample. By default, MultiNicheNet considers a ligand/receptor expressed when the encoding gene

has a non-zero value in >= 5% of cells of the sender/receiver. Next, the fraction of samples with

sufficient expression is determined for each condition.

After the calculation of all the aforementioned criteria, a weighted aggregation is performed to get a

final prioritization score for each sender-receiver-ligand-receptor-contrast combination. The score

after weighted aggregation is divided by the sum of the used weights to scale the final prioritization

score in the range between 0 and 1. This score then reflects the most relevant differential

ligand-receptor pairs, and a score of 1 would mean that a particular

sender-receiver-ligand-receptor-contrast combination obtains the maximum score for each

prioritization criterion. Noteworthy, all contrasts are considered together so that it is possible to

assess which contrast has the most strongly differential interactions. The used weights can be

adapted by the user according to insight into the specific dataset and personal preference to

emphasize certain criteria more strongly. However, we recommend following parameters to balance

the different criteria evenly.

● The weight used to multiply with the ligand-logFC score and the ligand-p-value score = 1

● The weight used to multiply with the receptor-logFC score and the receptor-p-value score = 1
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● The weight used to multiply with the ligand activity score = 2

● The weight used to multiply with the condition-sender-specificity score of the ligand = 2

● The weight used to multiply with the condition-receiver-specificity score of the receptor= 2

● The weight used to multiply with the score reflecting the fraction of samples with sufficient

expression per condition = 1

The output of the weighted aggregation step is stored in one final prioritization table which is given

as part of the analysis output to the MultiNicheNet user. Other parts of the analysis output include

data tables like the normalized pseudobulk expression table, the ligand activity table, and the

ligand-target table. Based on these data tables, downstream visualizations can be generated as

described in the corresponding section.

MultiNicheNet applications

MultiNicheNet analysis on data from Bassez et al. (breast cancer case study)

The scRNA-seq read counts and metadata from the study from Bassez et al.23 were downloaded from

https://lambrechtslab.sites.vib.be/en/single-cell, and used to create a SingleCellExperiment object112.

We only used the data from cohort A because more detailed cell type annotations were provided for

this cohort. From the lymphoid and myeloid detailed annotations, we generated more

coarse-grained annotations to have sufficient cells per sample-cell-type combination. As “CD8 T

cells”, we considered all cells labeled as: "CD8_EMRA", "CD8_N", "CD8_EX_Proliferating", "CD8_EX",

"CD8_RM", and "CD8_EM". As “CD4 T cells”, we considered all cells labeled as: "CD4_EM", "CD4_N",

"CD4_EX", and “CD4_EX_Proliferating". As “CD4 TREGs cells”, we considered all cells labeled as:

"CD4_REG" and "CD4_REG_Proliferating". As “NK cells”, we considered all "NK_CYTO" and "NK_REST"

cells. As “gdT cells”, we considered “Vg9Vd2_gdT” and “gdT” cells. All myeloid cells with the labels

"C1_CD14", and "C2_CD16" were considered as “monocytes”, and all other non-DC-labeled myeloid

cells as “macrophages”. These labels, together with the broad labels indicating other cell types (e.g.,

fibroblasts and endothelial cells) were used as input for MultiNicheNet. Sample ids were extracted

from the “sample_id” metadata column. All analyses were performed with all cell types in the data

and with the default parameters of MultiNicheNet, except that the non-corrected p-values were

used. However, the cell types “Myeloid_cell” and "T_cell" were not included in the visualizations

shown in this paper. We did not consider these cell types for visualizations because they consisted of

non-deeply annotated myeloid and T cells.
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For the analysis described in the results section “MultiNicheNet highlights critical pre-therapy

cell-cell signaling patterns linked to therapy response in breast cancer patients”, condition labels

were extracted from the “expansion_timepoint” metadata column, and the following contrasts were

assessed: “PreE – PreNE” and “PreNE – PreE”.

For the multifactorial analysis described in the results section “MultiNicheNet elucidates differences

in therapy-induced communication changes between and within response groups”, condition labels

were extracted from the “expansion_timepoint” metadata column, and the following contrasts were

assessed: “[OnE – PreE] – [OnNE – PreNE]” and “[OnNE – PreNE] – [OnE – PreE]”. Instead of the

default p-values, p-values estimated from the empirical null distribution were used because the DE

p-value distributions indicated that some model assumptions were violated (Supplementary Figure

18).

For the MultiNicheNet analysis to assess differential cell-cell communication within the group of

non-expander patients, we divided the patients in three groups: “Angio” group consisting of patients

with patient_ids "BIOKEY_26", "BIOKEY_22", "BIOKEY_14", "BIOKEY_25, "BIOKEY_24", "BIOKEY_8",

and "BIOKEY_19", the “NO_angio” group consisting of patients with patient_ids "BIOKEY_21",

"BIOKEY_20", "BIOKEY_4", "BIOKEY_3", and "BIOKEY_29", and the rest group consisting of the other

patients. The assessed contrasts were “Angio – NO_angio” and “NO_angio – Angio” and only cells

from the pre-therapy samples were considered.

MultiNicheNet analysis on data from Li et al. (cSCC case study)

The Visium spatial transcriptomics and scRNA-seq read counts and metadata from the study from Li

et al.42 were downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144240.

scRNA-seq counts from all samples were merged into one matrix before making a

SingleCellExperiment object112. From the most detailed annotations (“level3_celltype”), we

generated more coarse-grained annotations to have sufficient cells per sample-cell-type

combination. As “CD8 T cells”, we considered all cells labeled as: "CD8_EM", "CD8_EMRA",

"CD8_Exh", and "CD8_Naive". As “CD4 T cells”, we considered all cells labeled as: "CD4_Exh",

"CD4_Naive", "CD4_Pre_Exh", and "CD4_RGCC". As keratinocytes (cycling) we considered

“Tumor_KC_Cyc” and “Normal_KC_Cyc”; as keratinocytes (basal) "Tumor_KC_Basal" and

"Normal_KC_Basal"; as keratinocytes (differentiating) “Tumor_KC_Diff” and “Normal_KC_Diff”; as

keratinocytes (other) "TSK" and "Keratinocyte". Sample ids were extracted from the “sample_id”
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metadata column, and condition labels were extracted from the “tum.norm” metadata column. The

following contrasts were assessed: “Tumor – Normal” and “Normal – Tumor”. The “patient” id was

included as covariate to the model to correct for patient-specific effects. It was not included as batch

effect because we did not want to correct the expression values themselves. The analysis was

performed for all cell types and with the default parameters of MultiNicheNet, except for three

parameters. The min_cells argument for the DE analysis was set to 5 instead of 10 because only three

cell types would be retained in that case. The logFC_threshold was set to 0.75 to perform a slightly

more stringent selection of the gene sets of interest because many genes are DE (probably because

of the paired design and strong differences between normal and tumor tissue). However,

non-corrected p-values were used instead of p-values corrected for multiple testing (because of the

small sample size).

To assess spatial co-localization of MultiNicheNet-prioritized cell-cell interactions, we analyzed

corresponding spatial transcriptomics data. In specific, we downloaded 10x Visium spatial

transcriptomics data from the two replicates samples from the tumor of patient 4. Cell type

proportions per spot were obtained by applying deconvolution with RCTD113 and cell2location114. The

Spotless benchmark pipeline for deconvolution tools was used to run these deconvolution methods

(https://github.com/saeyslab/spotless-benchmark)115. To define spatial co-localization of cell types,

the Pearson correlation between cell type proportions across spots was calculated. To define a value

of “interaction potential” between cell type pairs, we based ourselves on the number of prioritized

differential interactions. Per condition of interest (tumor and normal), the top n ligand-receptor pairs

were considered (n: 250, 500, 750, 1000). Additionally, n randomly chosen pairs and n pairs in the

middle of the ranking were also considered as control. For each heterotypic cell-type pair (this is,

pairs with different sender and receiver cell types), the number of ligand-receptor pairs in this set of

n pairs was counted and divided by n. Hereby, we get which fraction of the total interactions are

between a particular sender and receiver cell type. This fraction differs per cell type pair depending

on the directionality of the interaction. For example, the fraction of interactions from cell type A to

cell type B is different than from cell type B to cell type A. To get one fraction value per cell type pair,

we considered the maximum fraction of both directions. This fraction was then plotted versus the

spatial co-colocalization of the cell type pair to get an idea of potential spatial enrichment of the

prioritized differential interactions. Figures in this paper were made by considering the RCTD output

for spatial co-colocalization calculations. Conclusions were the same when using cell2location’s

predictions (see code availability section).
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MultiNicheNet analysis on data from Hoste et al. (MIS-C case study).

For the MIS-C case study, we used the scRNA-seq read counts and metadata from the study from

Hoste et al18. Sample ids were extracted from the “ShortID” metadata column, cell type labels from

the “Annotation_v2.0” column, and condition labels from the “MIS.C.AgeTier” column. The same cell

type labels were used as indicated in that metadata column, except that we pooled

“M_Monocyte_CD14_activated” and “M_Monocyte_CD14_resting” together as “CD14+ monocytes”,

and “L_B_Memory” and “L_B_Memory_Unknown” as “Memory B cells”. The provided condition

labels were adapted as follows for readability reasons: “Y_P” (MIS-C: yes; pediatric) becomes “M”

(MIS-C), “N_P” (MIS-C: no; pediatric) becomes “S” (sibling) and “N_A” (MIS-C: no; adult) becomes “A”

(adult COVID-19). The analysis performed with all cell types in the data and with the default

parameters of MultiNicheNet, except that the non-corrected p-values were used. The following

contrasts were assessed: “M –[S+A]/2”, “S –[M+A]/2”, and “A –[S+M]/2”.

MultiNicheNet analysis on integrated lung atlas data to study cell-cell communication in IPF.

For the IPF case study, the dataset “Azimuth meta-analysis of 10 datasets of healthy and diseased

human lungs” was downloaded from

https://cellxgene.cziscience.com/collections/2f75d249-1bec-459b-bf2b-b86221097ced4142. Only

datasets with profiles from healthy controls and patients with IPF were kept: Adams 2020, Reyfman

2019, Morse 2019, and Habermann 202042,46–49. Cell types with less than 5 cells per disease-dataset

combination were omitted from the data. Sample ids were extracted from the “donor” metadata

column, cell type labels from the “annotation.l1” column, condition labels from the “disease”

column, and batch labels from the “dataset_origin” column. Batch effect correction for the dataset of

origin was applied for both DE analysis and pseudobulk expression normalization as described in the

section “MultiNicheNet algorithm description”. The analysis was performed with all cell types in the

data and with the default parameters of MultiNicheNet, except that the min_cells parameter was set

to 5 instead of 10. The following contrasts were assessed: “idiopathic.pulmonary.fibrosis – normal”,

“normal – idiopathic.pulmonary.fibrosis”.

MultiNicheNet visualizations

In this section, we will describe additional details about some of the types of plots that can be

generated for the interpretation of the MultiNicheNet results.
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Expression and ligand activity plots

In the plots showing the expression and activity of ligand-receptor pairs (e.g., Supplementary Figure

2), the log-transformed and normalized pseudobulk expression values of the ligand and receptor in a

specific sample are multiplied. Subsequently, these values are scaled per ligand-receptor pair across

all patients. We decided to visualize pseudobulk expression values instead of single-cell-derived

expression values (as done in the muscat vignettes22) because DE analysis is performed on the

pseudobulk expression values and we wanted the downstream visualizations to be as representative

of the analysis as possible. Therefore, we created the option to calculate and visualize

batch-corrected log-transformed and normalized pseudobulk expression values.

Ligand-target heatmaps filtered by expression correlation

Ligand-target links are inferred and visualized as described in the NicheNet publication11. To make

ligand-target heatmap visualizations, we now provide the option to the user to filter ligand-target

predictions based on across-sample expression correlation between the upstream ligand-receptor

pair and the downstream target gene. Therefore, the Pearson and spearman correlation is calculated

between 1) the product of log-transformed normalized pseudobulk expression values of ligand and

receptor of each pair of interest, and 2) the target gene in the receiver cell type. We recommend that

users only keep ligand-target links if they are supported by correlation for predicted upregulated

target genes (e.g., Pearson or spearman correlation > 0.33) and anti-correlation for predicted

downregulated genes (e.g., Pearson or spearman correlation < -0.33).

Intercellular regulatory networks

Intercellular regulatory networks are networks that consist of predicted ligand-target links for which

the target gene encodes for a prioritized differential ligand or receptor. They are constructed based

on the (correlation-filtered) ligand-target links. The networks shown in this paper were visualized

using Cytoscape116.

Ligand-target signaling networks

Potential signaling paths between a ligand and a set of target genes can be predicted and visualized

as described in the NicheNet publication11. For the networks In this paper, we used the function

nichenetr::get_ligand_signaling_path_with_receptor with the parameter top_n_regulators = 2 such
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that only the top two predicted transcriptional regulators per target gene are shown to keep the

network small.
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Data availability

No new data were generated for this study. All data used in this study are publicly available as

described in the Methods section “MultiNicheNet applications”. The NicheNet-v2 networks and

ligand-target matrix are available at Zenodo (https://zenodo.org/record/7074291). Databases used

to create the NicheNet-v2 model are mentioned and referred to in the Methods section

“Construction of the NicheNet-v2 model” and corresponding Supplementary Note 1 and

Supplementary Table 1.

Code availability

An open-source R implementation of MultiNicheNet is available at GitHub

(https://github.com/saeyslab/multinichenetr). The release includes tutorials and example vignettes

for the following analyses: a classic pairwise comparison, a pairwise comparison between two paired

conditions, a comparison between multiple conditions, a complex multifactorial comparison

investigating differences in cell-cell communication changes, and an analysis that corrects for batch

effects. Moreover, the package tutorials of the original NicheNet software

(https://github.com/saeyslab/nichenetr) have been adapted to include the new NicheNet-v2 model.

The model evaluation and benchmarking tutorial has also been updated to include the CytoSig

dataset of gold standard ligand-target links as well. Finally, code and data to reproduce the analyses

from this study are available at Zenodo (https://zenodo.org/record/8016880).
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MultiNicheNet to compare intercellullar communication 
between cSCC and normal skin of the same patients (n = 10)
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b) Spatial co-localization enrichment of prioritized cell-cell interactions

a) Differential cell-cell communication between cutaneous squamous cell carcioma (cSCC) and matched normal skin

Tumor
(cSCC)

Normal
skin

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2023. ; https://doi.org/10.1101/2023.06.13.544751doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.13.544751
http://creativecommons.org/licenses/by-nc-nd/4.0/


GAS6

COL17A1
GAS6

MMP14PDGFCTGFB2COL4A1

ENTPD1

JAM
2A
R

E
G

T
G

F
B

1

T
G

F
B

1

G
A

S
6

T
G

F
B

2C
C

L1
3

T
G

F
B

1

A
N

G
P

T
L4

B
M

P
4

C
O

L1
A1

C
O

L1
A2

CXCL1
2

GAS6TIM
P2LGALS3

LPL
SDC2

LGALS3

SDC2

ITGB6

ITGB6

ADORA2B

ERBB2

ITGA2

ITG
A3

ITG
AV

ITG
B

8
S

D
C

1
T

G
F

B
R

1

C
D

93
F

LT
1 C

X
C

R
4

IT
G

B
1

C
X

C
R

3
IT

G
A

4
P

TP
R

J
BM

PR
1B

AXL

ITGA11

VLDLR

CD36

ANXA2

AT1 cells
AT2 cells
Basal cells
Bronchial Vessel cells
CD14+ Monocytes

CD4 T cells
CD8 T cells
Club cells
DCs
Fibroblasts
Macrophages
Proliferating Macrophages

Cell types

b) Effect of batch effect correction on prioritized cell-cell interactions and visualizations
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